Category: Machine Learning

Statistics and machine learning often use different terminology for similar concepts. I recently confronted this when I began reading about maximum causal entropy as part of a project on inverse reinforcement learning. Many of the terms were unfamiliar to me, but as I read closer, I realized that the concepts had close relationships with statistics concepts. This blog post presents a table of connections between terms that are standard in statistics and their related counterparts in machine learning.

This post was co-authored by Robert Nord.

Technical debt communicates the tradeoff between the short-term benefits of rapid delivery and the long-term value of developing a software system that is easy to evolve, modify, repair, and sustain. Like financial debt, technical debt can be a burden or an investment. It can be a burden when it is taken on unintentionally without a solid plan to manage it; it can also be part of an intentional investment strategy that speeds up development, as long as there is a plan to pay back the debt before the interest swamps the principal.

In a previous blog post, we addressed how machine learning is becoming ever more useful in cybersecurity and introduced some basic terms, techniques, and workflows that are essential for those who work in machine learning. Although traditional machine learning methods are already successful for many problems, their success often depends on choosing and extracting the right features from a dataset, which can be hard for complex data. For instance, what kinds of features might be useful, or possible to extract, in all the photographs on Google Images, all the tweets on Twitter, all the sounds of a spoken language, or all the positions in the board game Go? This post introduces deep learning, a popular and quickly-growing subfield of machine learning that has had great success on problems about these datasets, and on many other problems where picking the right features for the job is hard or impossible.

As the use of unmanned aircraft systems (UASs) increases, the volume of potentially useful video data that UASs capture on their missions is straining the resources of the U.S. military that are needed to process and use this data. This publicly released video is an example of footage captured by a UAS in Iraq. The video shows ISIS fighters herding civilians into a building. U.S. forces did not fire on the building because of the presence of civilians. Note that this video footage was likely processed by U.S. Central Command (CENTCOM) prior to release to the public to highlight important activities within the video, such as ISIS fighters carrying weapons, civilians being herded into the building to serve as human shields, and muzzle flashes emanating from the building.

Micro-expressions--involuntary, fleeting facial movements that reveal true emotions--hold valuable information for scenarios ranging from security interviews and interrogations to media analysis. They occur on various regions of the face, last only a fraction of a second, and are universal across cultures. In contrast to macro-expressions like big smiles and frowns, micro-expressions are extremely subtle and nearly impossible to suppress or fake. Because micro-expressions can reveal emotions people may be trying to hide, recognizing micro-expressions can aid DoD forensics and intelligence mission capabilities by providing clues to predict and intercept dangerous situations. This blog post, the latest highlighting research from the SEI Emerging Technology Center in machine emotional intelligence, describes our work on developing a prototype software tool to recognize micro-expressions in near real-time.

As organizations' critical assets have become digitized and access to information has increased, the nature and severity of threats has changed. Organizations' own personnel--insiders--now have greater ability than ever before to misuse their access to critical organizational assets. Insiders know where critical assets are, what is important, and what is valuable. Their organizations have given them authorized access to these assets and the means to compromise the confidentiality, availability, or integrity of data. As organizations rely on cyber systems to support critical missions, a malicious insider who is trying to harm an organization can do so through, for example, sabotaging a critical IT system or stealing intellectual property to benefit a new employer or a competitor. Government and industry organizations are responding to this change in the threat landscape and are increasingly aware of the escalating risks. CERT has been a widely acknowledged leader in insider threat since it began investigating the problem in 2001. The CERT Guide to Insider Threat was inducted in 2016 into the Palo Alto Networks Cybersecurity Canon, illustrating its value in helping organizations understand the risks that their own employees pose to critical assets. This blog post describes the challenge of insider threats, approaches to detection, and how machine learning-enabled software helps provide protection against this risk.

The year 2016 witnessed advancements in artificial intelligence in self-driving cars, language translation, and big data. That same time period, however, also witnessed the rise of ransomware, botnets, and attack vectors as popular forms of malware attack, with cybercriminals continually expanding their methods of attack (e.g., attached scripts to phishing emails and randomization), according to Malware Byte's State of Malware report. To complement the skills and capacities of human analysts, organizations are turning to machine learning (ML) in hopes of providing a more forceful deterrent. ABI Research forecasts that "machine learning in cybersecurity will boost big data, intelligence, and analytics spending to $96 billion by 2021." At the SEI, machine learning has played a critical role across several technologies and practices that we have developed to reduce the opportunity for and limit the damage of cyber attacks. In this post--the first in a series highlighting the application of machine learning across several research projects--I introduce the concept of machine learning, explain how machine learning is applied in practice, and touch on its application to cybersecurity throughout the article.

In cyber systems, the identities of devices can easily be spoofed and are frequent targets of cyber-attacks. Once an identity is fabricated, stolen or spoofed it may be used as a nexus to systems, thus forming a Sybil Attack. To address these and other problems associated with identity deception researchers at the Carnegie Mellon University Software Engineering Institute, New York University's Tandon School of Engineering and Courant Institute of Mathematical Sciences, and the University of Göttingen (Germany), collaborated to develop a deception-resistant identity management system inspired by biological systems; namely, ant colonies. This blog post highlights our research contributions.

Malware, which is short for "malicious software," consists of programming aimed at disrupting or denying operation, gathering private information without consent, gaining unauthorized access to system resources, and other inappropriate behavior. Malware infestation is of increasing concern to government and commercial organizations. For example, according to the Global Threat Report from Cisco Security Intelligence Operations, there were 287,298 "unique malware encounters" in June 2011, double the number of incidents that occurred in March. To help mitigate the threat of malware, researchers at the SEI are investigating the origin of executable software binaries that often take the form of malware. This posting augments a previous postingdescribing our research on using classification (a form of machine learning) to detect "provenance similarities" in binaries, which means that they have been compiled from similar source code (e.g., differing by only minor revisions) and with similar compilers (e.g., different versions of Microsoft Visual C++ or different levels of optimization).