icon-carat-right menu search cmu-wordmark

Four Principles of Engineering Scalable, Big Data Software Systems

Headshot of Ian Gorton

In earlier posts on big data, I have written about how long-held design approaches for software systems simply don't work as we build larger, scalable big data systems. Examples of design factors that must be addressed for success at scale include the need to handle the ever-present failures that occur at scale, assure the necessary levels of availability and responsiveness, and devise optimizations that drive down costs. Of course, the required application functionality and engineering constraints, such as schedule and budgets, directly impact the manner in which these factors manifest themselves in any specific big data system. In this post, the latest in my ongoing series on big data, I step back from specifics and describe four general principles that hold for any scalable, big data system. These principles can help architects continually validate major design decisions across development iterations, and hence provide a guide through the complex collection of design trade-offs all big data systems require.

Get updates on our latest work.

Each week, our researchers write about the latest in software engineering, cybersecurity and artificial intelligence. Sign up to get the latest post sent to your inbox the day it's published.

Subscribe Get our RSS feed