Category: Network Situational Awareness

This post is also authored by Matt Sisk, the lead author of each of the tools detailed in this post (bulk query, autogeneration, and all regex).

The number of cyber incidents affecting federal agencies has continued to grow, increasing about 1,300 percent from fiscal year 2006 to fiscal year 2015, according to a September 2016 GAO report. For example, in 2015, agencies reported more than 77,000 incidents to US-CERT, up from 67,000 in 2014 and 61,000 in 2013. These incident reports come from a diverse community of federal agencies, and each may contain observations of problematic activity by a particular reporter. As a result, reports vary in content, context, and in the types of data they contain. Reports are stored in the form of 'tickets' that assign and track progress toward closure.

This blog post is the first in a two-part series on our work with US-CERT to discover and make better use of data in cyber incident tickets, which can be notoriously diverse. Specifically, this post focuses on work we have done to improve useful data extraction from cybersecurity incident reports.

This blog post is coauthored by Jose Morales and Angela Horneman.

On May 12, 2017, in the course of a day, the WannaCry ransomware attack infected nearly a quarter million computers. WannaCry is the latest in a growing number of ransomware attacks where, instead of stealing data, cyber criminals hold data hostage and demand a ransom payment. WannaCry was perhaps the largest ransomware attack to date, taking over a wide swath of global computers from FedEx in the United States to the systems that power Britain's healthcare system to systems across Asia, according to the New York Times. In this post, we spell out several best practices for prevention and response to a ransomware attack.

When it comes to network traffic, it's important to establish a filtering process that identifies and blocks potential cyberattacks, such as worms spreading ransomware and intruders exploiting vulnerabilities, while permitting the flow of legitimate traffic. In this post, the latest in a series on best practices for network security, I explore best practices for network border protection at the Internet router and firewall.

The network time protocol (NTP) synchronizes the time of a computer client or server to another server or within a few milliseconds of Coordinated Universal Time (UTC). NTP servers, long considered a foundational service of the Internet, have more recently been used to amplify large-scale Distributed Denial of Service (DDoS) attacks. While 2016 did not see a noticeable uptick in the frequency of DDoS attacks, the last 12 months have witnessed some of the largest DDoS attacks, according to Akamai's State of the Internet/Security report. One issue that attackers have exploited is abusable NTP servers. In 2014, there were over seven million abusable NTP servers. As a result of software upgrades, repaired configuration files, or the simple fact that ISPs and IXPs have decided to block NTP traffic, the number of abusable servers dropped by almost 99 percent in a matter months, according to a January 2015 article in ACM Queue. But there is still work to be done. It only takes 5,000 abusable NTP servers to generate a DDoS attack in the range of 50-400 Gbps. In this blog post, I explore the challenges of NTP and prescribe some best practices for securing accurate time with this protocol.

The Domain Name System (DNS) is an essential component of the Internet, a virtual phone book of names and numbers, but we rarely think about it until something goes wrong. As evidenced by the recent distributed denial of service (DDoS) attack against Internet performance management company Dyn, which temporarily wiped out access to websites including Amazon, Paypal, Reddit, and the New York Times for millions of users down the Eastern Seaboard and Europe, DNS serves as the foundation for the security and operation of internal and external network applications. DNS also serves as the backbone for other services critical to organizations including email, external web access, file sharing and voice over IP (VoIP). There are steps, however, that network administrators can take to ensure the security and resilience of their DNS infrastructure and avoid security pitfalls. In this blog post, I outline six best practices to design a secure, reliable infrastructure and present an example of a resilient organizational DNS.

Late last month, Internet users across the eastern seaboard of the United States had trouble accessing popular websites, such as Reddit, Netflix, and the New York Times. As reported in Wired Magazine, the disruption was the result of multiple distributed denial of service (DDoS) attacks against a single organization: Dyn, a New Hampshire-based Internet infrastructure company.

DDoS attacks can be extremely disruptive, and they are on the rise. The Verisign Distributed Denial of Service Trends Report states that DDoS attack activity increased 85 percent in each of the last two years with 32 percent of those attacks in the fourth quarter of 2015 targeting IT services, cloud computing, and software-as-a-service companies. In this blog post, I provide an overview of DDoS attacks and best practices for mitigating and responding to them based on cumulative experience in this field.