icon-carat-right menu search cmu-wordmark

Less is More with Intelligent Packet Capture

Presentation
Attendees learned to build and deploy a cost-effective network forensics solution with open source tools like Argus and Dragonfly Machine Learning Engine.
Publisher

CounterFlow AI, Inc.

Topic or Tag

Abstract

Human-driven network forensics activities (such as threat hunting and incident response) focus on identifying the source of potential network threats or other problem incidents. Analysts must sift through large amounts of network data to find forensically relevant events. Full packet payloads (called packet capture, or PCAP) have long been considered as the gold standard of forensic evidence. While full packet capture does contain all relevant forensic information, capturing and storing every packet for an extended time period is often prohibitively expensive and inefficient to analyze in bulk.

Because of these shortcomings, network analysts often turn away from full packet capture to alternative forms of forensic data. Popular alternatives include NetFlow, extended (augmented) flow, and application metadata (DPI). These alternatives provide forensic value and use significantly less disk space than full packet capture, but lack the complete packet payloads needed to fully confirm the presence of malicious activity on the network. This trade-off between the forensic value of data and the size and cost of storing it has caused analysts to seek an optimized balance between full packet payloads and other forms of forensic data.

Part of a Collection

FloCon 2020 Presentations

This content was created for a conference series or symposium and does not necessarily reflect the positions and views of the Software Engineering Institute.