
Less is More with Intelligent Packet Capture
RANDY CALDEJON

FLOCON 2020

22

Objectives

• Consider merits of streaming analytics
• Expose to advanced open source tools
• Encourage to experiment with OpenArgus

33

• Increase speed
• Reduce bandwidth
• Local Resources

Streaming Analytics
at the Edge

4

DragonFly Design Goals

Incremental
Updates

Receive updates before
the flow is complete

Sustained
Performance

Maintains 20Gbps+,

Single Node
Architecture

High-performance
without a cluster

=Machine
Learning

Analyzes data
as it arrives

Bolt-On
Mindset

Integrate seamlessly
with other security tools

55

A Practical Application of DragonFly

PCAP or it didn’t happen.

6

Full Packet
Capture is
Ground Truth;
but…

0%

20%

40%

60%

80%

100%

Packet Capture

10Gbps Network Link
30 days ~$1.2M annually

Low Signal to Noise

High Cost

Forensically relevant network data is
a small fraction of total network data

No Forensic Value Forensically Relevant Data Indicators of Compromise

7

Typical Packet Capture Workflow: Retrospective

Filter Analyze

Capture Record

8

Filter Analyze

Capture Record

Intelligent Packet Capture

9

Filter Record

Capture Analyze

Intelligent Packet Capture: Real-Time

10

Expensive – Despite its value, full packet capture is not used to its
fullest extent because lengthy retention periods are cost prohibitive
and retention only shrinks as bandwidth utilization increases.

Ground truth – Full packet capture has long been
viewed as the “ground truth” for activity on the network,
allowing analysts to identify the source of security incidents.

Alternatives Lack Payloads – Though valuable for portions of the
security workflow, alternatives to PCAP such as Flow, and Application
Metadata cannot provide the “ground truth” payload for irregular traffic.

Combine forces – Intelligent packet capture combined with
augmented flow provides a powerful combination that supports a
data friendly log format plus the full packets for anomalous traffic.

$$ uses threat intelligence,
advanced analytics, and
Machine Learning to decide
in near real-time what to
record.

Intelligent Packet Capture

Intelligent PCAP Using Machine Learning to Capture Packets with Forensic Value

11

Intelligent PCAP
Performance Requirements

LOW LATENCY
FEEDBACK

LOOP

EVENTS/S

PACKETS/S

12

tcpdump
(recording)

mlpack
(training)

Argus
(extraction)

eBPF
(filtering)

Intelligent PCAP
Open Source Framework

13

tcpdump -i eth0 -w /cache/pcap-%m-%d-%H-%M-%S \
-W 100 -G 300 –C 1000

14

eBPF for Filtering
User Space Kernel

eBPF
program

eBPF
bytecode

LLVM
Clang

eBPF
Verifier

reject

load

JIT
compiler

eBPF
native code

maps

event config

packet data

register

15

eBPF Map
struct bpf_map_def SEC("maps") watchlist = {

.type = BPF_MAP_TYPE_PERCPU_HASH,

.key_size = sizeof(u32), /* ipv4 address */

.value_size = sizeof(u64), /* counter/timeout */

.max_entries = 100000,

.map_flags = BPF_F_NO_PREALLOC,

}

16

Mlpack for training

mlpack
lib

Training Scoring

Model

17

mlpack splitting data

/usr/local/bin/mlpack_preprocess_split \
--input_file data/$filename.data.csv \
--input_labels_file data/$filename.labels.csv \
--training_file data/$filename.train.csv \
--training_labels_file data/$filename.train.labels.csv \
--test_file data/$filename.test.csv \
--test_labels_file data/$filename.test.labels.csv \
--test_ratio 0.3 \
--verbose

1

18

mlpack generating model

/usr/local/bin/mlpack_random_forest \
--training_file data/$filename.data.csv \
--labels_file data/$filename.labels.csv \
--num_trees 10 \
--minimum_leaf_size 3 \
--print_training_accuracy \
--output_model_file model/$filename.eval-model.bin \
--verbose

2

19

mlpack testing model

/usr/local/bin/mlpack_random_forest \
--input_model_file model/$filename.eval-model.bin \
--test_file data/$filename.test.csv \
--test_labels_file data/$filename.test.labels.csv \
--probabilities_file probs.csv \
--verbose

3

• Scalable
• Lightweight
• Flexible
• Extensible

Version 2.0

21

DragonFly MLE

Analyzers

Plugins

Engine
(embedded

LUA JIT)

22

Scriptable – Embedded LUA JIT

Fast - C/C++

DragonFly
Engine

Lightweight – Small Library

Easy – Arduino Programming Model

23

DragonFly Scriptable Analyzers

function M:setup()
model = config[‘module.model’]
rf = RandomForest.load(model)

end

function M:loop (event)
….

rf:classify (event)
end

24

DragonFly Scriptable Analyzers

function M:dns (event)
….
rf:classify (event)

end

function M:tls (event)
….
rf:classify (event)

end

25

DragonFly Plug-ins

mlpack

eBPF

iptree

Redis

cuckoo filter

26

Argus

Argus
(flow meter)

Radium
(multiplexer)

Real-time Per Flow Updates

ra
(client)

ratop
(client)

Ramle
(client)

27

Real-Time Flow Meter

Field Overview

Flow
• IP Addresses
• Ports
• Protocol

• Total Bytes
• Total Packets

• Start time
• Duration

Extended Flow • Flow details by direction • Payload • MAC, VLAN, MPLS, ICMP,
TCP flags and options

Packet
Dynamics

• Connection Setup Times
• Load and Rates (bytes and

packets per second)

• Interpacket Arrival time
and Jitter

• Dropped/retransmitted
packet statistics

• Connection statistics (FIN,
RST, SYN, Window
advertisements, Zero
windows)

Computed
Statistics

• Producer/Consumer Ratio
• App/Byte Ratio • Key Stroke Identification • Flow Active Runtime

Statistics

Derived Fields • Country Code • MAC Manufacturer (OUI)

Record
Management

• Record Cause (Start, Status,
Stop, Close, Error)

• Unique Identifier (seq)
• Sensor ID

• Record Type (“flow” or
“management”)

Flow Features

Packet Dynamic
Features

100+ Features

Argus

28

Intelligent PCAP with raml

• Based on Argus client (library)
• Integrated with DragonFly (library)
• Able to run an instance per core

29

Intelligent PCAP with raml

Argus raml mlpack

30

raml: DGA Analyzer
function M:loop (event)

local v = features(event.domain,
event.ttl)

score = rf:classify (v)

return score
end

31

raml: Threat Feed Analyzer
function M:setup()

file = config[‘ioc.filename’]
iplist = iptree(file)

end

function M:loop (event)
local daddr = event[‘daddr’]
match = iplist.lookup (daddr)
return match

end

32

Intelligent PCAP Solutions

pcap0

Argus raml

eth0 tcpdump

br0

mlpack

33

LESSONS LEARNED
Performance

<50 msec

>750Keps

>14Mpps

3434

• Complete POCs
• Publish to GitHub
https://github.com/counterflow-ai/dragonfly2
• Merge raml with Argus
https://openargus.org/
• Explore additional use cases…

Next Steps…

https://openargus.org/

3535

Streaming Analytics
Use Cases

• Threat Intelligence Triage
• Encrypted Traffic Analysis
• Predictive Fault Detection

Questions?

RANDY CALDEJON
rc@counterflowai.com

https://github.com/counterflow-ai/dragonfly2

mailto:rc@counterflowai.com

