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Objectives

• Consider merits of streaming analytics
• Expose to advanced open source tools
• Encourage to experiment with OpenArgus
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• Increase speed
• Reduce bandwidth
• Local Resources

Streaming Analytics
at the Edge
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DragonFly Design Goals

Incremental 
Updates

Receive updates before
the flow is complete

Sustained 
Performance

Maintains 20Gbps+,

Single Node
Architecture

High-performance
without a cluster

=Machine
Learning

Analyzes data
as it arrives

Bolt-On
Mindset 

Integrate seamlessly
with other security tools
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A Practical Application of DragonFly

PCAP or it didn’t happen.
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Full Packet
Capture is
Ground Truth;
but…

0%

20%

40%
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Packet Capture

10Gbps Network Link
30 days ~$1.2M annually

Low Signal to Noise

High Cost

Forensically relevant network data is
a small fraction of total network data

No Forensic Value Forensically Relevant Data Indicators of Compromise
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Typical Packet Capture Workflow: Retrospective

Filter Analyze

Capture Record
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Filter Analyze

Capture Record

Intelligent Packet Capture
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Filter Record

Capture Analyze

Intelligent Packet Capture: Real-Time
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Expensive – Despite its value, full packet capture is not used to its 
fullest extent because lengthy retention periods are cost prohibitive 
and retention only shrinks as bandwidth utilization increases.

Ground truth – Full packet capture has long been
viewed as the “ground truth” for activity on the network, 
allowing analysts to identify the source of security incidents. 

Alternatives Lack Payloads – Though valuable for  portions of the 
security workflow, alternatives to PCAP such as Flow, and Application 
Metadata cannot provide the “ground truth” payload for irregular traffic.

Combine forces – Intelligent packet capture combined with 
augmented flow provides a powerful combination that supports a
data friendly log format plus the full packets for anomalous traffic.

$$ uses threat intelligence,
advanced analytics, and
Machine Learning to decide
in near real-time what to 
record. 

Intelligent Packet Capture

Intelligent PCAP Using Machine Learning to Capture Packets with Forensic Value
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Intelligent PCAP
Performance Requirements

LOW LATENCY
FEEDBACK

LOOP

EVENTS/S

PACKETS/S
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tcpdump
(recording)

mlpack
(training)

Argus
(extraction)

eBPF
(filtering)

Intelligent PCAP
Open Source Framework



13

tcpdump -i eth0 -w /cache/pcap-%m-%d-%H-%M-%S \
-W 100 -G 300 –C 1000
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eBPF for Filtering
User Space Kernel

eBPF
program

eBPF
bytecode

LLVM
Clang

eBPF
Verifier

reject

load

JIT
compiler

eBPF
native code

maps

event config

packet data

register
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eBPF Map
struct bpf_map_def SEC("maps") watchlist = {

.type        = BPF_MAP_TYPE_PERCPU_HASH,

.key_size = sizeof(u32), /* ipv4 address */

.value_size = sizeof(u64), /* counter/timeout */

.max_entries = 100000,

.map_flags = BPF_F_NO_PREALLOC,

}
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Mlpack for training

mlpack
lib

Training Scoring

Model
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mlpack splitting data

/usr/local/bin/mlpack_preprocess_split \
--input_file data/$filename.data.csv \
--input_labels_file data/$filename.labels.csv \
--training_file data/$filename.train.csv \
--training_labels_file data/$filename.train.labels.csv \
--test_file data/$filename.test.csv \
--test_labels_file data/$filename.test.labels.csv \
--test_ratio 0.3                                         \
--verbose

1
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mlpack generating model

/usr/local/bin/mlpack_random_forest \
--training_file data/$filename.data.csv \
--labels_file data/$filename.labels.csv \
--num_trees 10                                     \
--minimum_leaf_size 3                              \
--print_training_accuracy \
--output_model_file model/$filename.eval-model.bin \
--verbose

2
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mlpack testing model

/usr/local/bin/mlpack_random_forest \
--input_model_file model/$filename.eval-model.bin \
--test_file data/$filename.test.csv \
--test_labels_file data/$filename.test.labels.csv \
--probabilities_file probs.csv \
--verbose

3



• Scalable
• Lightweight
• Flexible
• Extensible

Version 2.0
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DragonFly MLE

Analyzers

Plugins

Engine
(embedded 

LUA JIT)
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Scriptable – Embedded LUA JIT

Fast - C/C++

DragonFly
Engine

Lightweight – Small Library

Easy – Arduino Programming Model
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DragonFly Scriptable Analyzers

function M:setup()
model = config[‘module.model’]
rf = RandomForest.load(model)

end

function M:loop (event)
….

rf:classify (event)
end
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DragonFly Scriptable Analyzers

function M:dns (event)
….
rf:classify (event)

end

function M:tls (event)
….
rf:classify (event)

end
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DragonFly Plug-ins

mlpack

eBPF

iptree

Redis

cuckoo filter
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Argus

Argus
(flow meter)

Radium
(multiplexer)

Real-time Per Flow Updates

ra
(client)

ratop
(client)

Ramle
(client)
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Real-Time Flow Meter 

Field Overview

Flow
• IP Addresses
• Ports
• Protocol

• Total Bytes
• Total Packets

• Start time
• Duration

Extended Flow • Flow details by direction • Payload • MAC, VLAN, MPLS, ICMP, 
TCP flags and options

Packet 
Dynamics

• Connection Setup Times
• Load and Rates (bytes and 

packets per second)

• Interpacket Arrival time 
and Jitter

• Dropped/retransmitted 
packet statistics

• Connection statistics (FIN, 
RST, SYN, Window 
advertisements, Zero 
windows)

Computed 
Statistics

• Producer/Consumer Ratio
• App/Byte Ratio • Key Stroke Identification • Flow Active Runtime 

Statistics

Derived Fields • Country Code • MAC Manufacturer (OUI)

Record 
Management

• Record Cause (Start, Status, 
Stop, Close, Error)

• Unique Identifier (seq)
• Sensor ID

• Record Type (“flow” or 
“management”)

Flow Features

Packet Dynamic
Features

100+ Features 

Argus
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Intelligent PCAP with raml

• Based on Argus client (library)
• Integrated with DragonFly (library)
• Able to run an instance per core
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Intelligent PCAP with raml

Argus raml mlpack



30

raml: DGA Analyzer
function M:loop (event)

local v = features(event.domain, 
event.ttl)

score = rf:classify (v)

return score
end
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raml: Threat Feed Analyzer
function M:setup()

file = config[‘ioc.filename’]
iplist = iptree(file)

end

function M:loop (event)
local daddr = event[‘daddr’]
match = iplist.lookup (daddr)
return match

end
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Intelligent PCAP Solutions

pcap0

Argus raml

eth0 tcpdump

br0

mlpack
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LESSONS LEARNED
Performance

<50 msec

>750Keps

>14Mpps
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• Complete POCs
• Publish to GitHub
https://github.com/counterflow-ai/dragonfly2
• Merge raml with Argus
https://openargus.org/
• Explore additional use cases…   

Next Steps…

https://openargus.org/
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Streaming Analytics
Use Cases

• Threat Intelligence Triage
• Encrypted Traffic Analysis
• Predictive Fault Detection



Questions?

RANDY CALDEJON
rc@counterflowai.com

https://github.com/counterflow-ai/dragonfly2

mailto:rc@counterflowai.com

