Category: Mission Assurance

The first blog entry in this series introduced the basic concepts of multicore processing and virtualization, highlighted their benefits, and outlined the challenges these technologies present. This second post will concentrate on multicore processing, where I will define its various types, list its current trends, examine its pros and cons, and briefly address its safety and security ramifications.

Multicore processing and virtualization are rapidly becoming ubiquitous in software development. They are widely used in the commercial world, especially in large data centers supporting cloud-based computing, to (1) isolate application software from hardware and operating systems, (2) decrease hardware costs by enabling different applications to share underutilized computers or processors, (3) improve reliability and robustness by limiting fault and failure propagation and support failover and recovery, and (4) enhance scalability and responsiveness through the use of actual and virtual concurrency in architectures, designs, and implementation languages. Combinations of multicore processing and virtualization are also increasingly being used to build mission-critical, cyber-physical systems to achieve these benefits and leverage new technologies, both during initial development and technology refresh.

In this introductory blog post, I lay the foundation for the rest of the series by defining the basic concepts underlying multicore processing and the two main types of virtualization: (1) virtualization by virtual machines and hypervisors and (2) virtualization by containers. I will then briefly compare the three technologies and end by listing some key technical challenges these technologies bring to system and software development.

The crop of Top 10 SEI Blog posts in the first half of 2017 (judged by the number of visits by our readers) represents the best of what we do here at the SEI: transitioning our knowledge to those who need it. Several of our Top 10 posts this year are from a series of posts on best practices for network security that we launched in November 2016 in the wake of the Dyn attack. In this post, we will list the Top 10 posts with an excerpt from each post as well as links to where readers can go for more information about the topics covered in the SEI blog.

As part of an ongoing effort to keep you informed about our latest work, this blog post summarizes some recently published SEI technical reports, white papers, podcasts and webinars on supply chain risk management, process improvement, network situational awareness, software architecture, network time protocol as well as a podcast interview with SEI Fellow Peter Feiler. These publications highlight the latest work of SEI technologists in these areas. This post includes a listing of each publication, author(s), and links where they can be accessed on the SEI website.

This post is coauthored by Carol Woody.

Software is a growing component of business and mission-critical systems. As organizations become more dependent on software, security-related risks to their organizational missions also increase. We recently published a technical note that introduces the prototype Software Assurance Framework (SAF), a collection of cybersecurity practices that programs can apply across the acquisition lifecycle and supply chain. We envision program managers using this framework to assess an acquisition program's current cybersecurity practices and chart a course for improvement, ultimately reducing the cybersecurity risk of deployed software-reliant systems. This blog post, which is excerpted from the report, presents three pilot applications of SAF.

As part of an ongoing effort to keep you informed about our latest work, this blog post summarizes some recently published SEI technical reports, white papers, podcasts and webinars on software assurance, data governance, self-adaptive systems, engineering high-assurance software for distributed adaptive real-time (DART) systems, technical debt, and automating malware collection and analysis. These publications highlight the latest work of SEI technologists in these areas. This post includes a listing of each publication, author(s), and links where they can be accessed on the SEI website.

Since its debut on Jeopardy in 2011, IBM's Watson has generated a lot of interest in potential applications across many industries. I recently led a research team investigating whether the Department of Defense (DoD) could use Watson to improve software assurance and help acquisition professionals assemble and review relevant evidence from documents. As this blog post describes, our work examined whether typical developers could build an IBM Watson application to support an assurance review.

First responders, search-and-rescue teams, and military personnel often work in "tactical edge" environments defined by limited computing resources, rapidly changing mission requirements, high levels of stress, and limited connectivity. In these tactical edge environments, software applications that enable tasks such as face recognition, language translation, decision support, and mission planning and execution are critical due to computing and battery limitations on mobile devices. Our work on tactical cloudlets addresses some of these challenges by providing a forward-deployed platform for computation offload and data staging (see previous posts).

When establishing communication between two nodes--such as a mobile device and a tactical cloudlet in the field--identification, authentication, and authorization provide the information and assurances necessary for the nodes to trust each other (i.e., mutual trust). A common solution for establishing trust is to create and share credentials in advance and then use an online trusted authority to validate the credentials of the nodes. The tactical environments in which first responders, search-and-rescue, and military personnel operate, however, do not consistently provide access to that online authority or certificate repository because they are disconnected, intermittent, limited (DIL). This blog post, excerpted from the recently published IEEE paper "Establishing Trusted Identities in Disconnected Edge Environments"--I coauthored this paper with Sebastián Echeverría, Dan Klinedinst, Keegan Williams--presents a solution for establishing trusted identities in disconnected environments based on secure key generation and exchange in the field, as well as an evaluation and implementation of the solution.

Interest in Agile and lightweight development methods in the software development community has become widespread. Our experiences with the application of Agile principles have therefore become richer. In my blog post, Toward Agile Strategic Planning, I wrote about how we can apply Agile principles to strategic planning. In this blog post, I apply another Agile concept, technical debt, to another organizational excellence issue. Specifically I explore whether organizational debt is accrued when we implement quick organizational change, short-cutting what we know to be effective change management methods. Since I started considering this concept, Steve Blank wrote a well-received article about organizational debt in the context of start-up organizations. In this post, I describe organizational debt in the context of change management and describe some effects of organizational debt we are seeing with our government clients.