Category: Handheld Devices

In their current state, wearable computing devices, such as glasses, watches, or sensors embedded into your clothing, are obtrusive. Jason Hong, associate professor of computer science at Carnegie Mellon University, wrote in a 2014 co-authored article in Pervasive Computing that while wearables gather input from sensors placed optimally on our bodies, they can also be "harder to accommodate due to our social context and requirements to keep them small and lightweight."

Many warfighters and first responders operate at what we call "the tactical edge," where users are constrained by limited communication connectivity, storage availability, processing power, and battery life. In these environments, onboard sensors are used to capture data on behalf of mobile applications to perform tasks such as face recognition, speech recognition, natural language translation, and situational awareness. These applications then rely on network interfaces to send the data to nearby servers or the cloud if local processing resources are inadequate. While software developers have traditionally used native mobile technologies to develop these applications, the approach has some drawbacks, such as limited portability. In contrast, HTML5 has been touted for its portability across mobile device platforms, as well an ability to access functionality without having to download and install applications. This blog post describes research aimed at evaluating the feasibility of using HTML5 to develop applications that can meet tactical edge requirements.

The Wireless Emergency Alerts (WEA) service went online in April 2012, giving emergency management agencies such as the National Weather Service or a city's hazardous materials team a way to send messages to mobile phone users located in a geographic area in the event of an emergency. Since the launch of the WEA service, the newest addition to the Federal Emergency Management Agency (FEMA) Integrated Public Alert and Warning System (IPAWS),"trust" has emerged as a key issue for all involved. Alert originators at emergency management agencies must trust WEA to deliver alerts to the public in an accurate and timely manner. The public must also trust the WEA service before it will act on the alerts. Managing trust in WEA is a responsibility shared among many stakeholders who are engaged with WEA. This blog post, the first in a series, highlights recent research aimed at enhancing both the trust of alert originators in the WEA service and the public's trust in the alerts it receives.

Warfighters in a tactical environment face many constraints on computational resources, such as the computing power, memory, bandwidth, and battery power. They often have to make rapid decisions in hostile environments. Many warfighters can access situational awareness data feeds on their smartphones to make critical decisions. To access these feeds, however, warfighters must contend with an overwhelming amount of information from multiple, fragmented data sources that cannot be easily combined on a small smartphone screen. The same resource constraints apply to emergency responders involved in search-and-rescue missions, who often must coordinate their efforts with multiple responders. This posting describes our efforts to create the Edge Mission-Oriented Tactical App Generator (eMontage), a software prototype that allows warfighters and first responders to rapidly integrate geotagged situational awareness data from multiple remote data sources.

Whether soldiers are on the battlefield or providing humanitarian relief effort, they need to capture and process a wide range of text, image, and map-based information. To support soldiers in this effort, the Department of Defense (DoD) is beginning to equip soldiers with smartphones to allow them to manage that vast array and amount of information they encounter while in the field. Whether the information gets correctly conveyed up the chain of command depends, in part, on the soldier's ability to capture accurate data while in the field. This blog posting, a follow-up to our initial post, describes our work on creating a software application for smartphones that allows soldier end-users to program their smartphones to provide an interface tailored to the information they need for a specific mission.

Many people today carry handheld computing devices to support their business, entertainment, and social needs in commercial networks. The Department of Defense (DoD) is increasingly interested in having soldiers carry handheld computing devices to support their mission needs in tactical networks. Not surprisingly, however, conventional handheld computing devices (such as iPhone or Android smartphones) for commercial networks differ in significant ways from handheld devices for tactical networks. For example, conventional devices and the software that runs on them do not provide the capabilities and security needed by military devices, nor are they configured to work over DoD tactical networks with severe bandwidth limitations and stringent transmission security requirements. This post describes exploratory research we are conducting at the SEI to (1) create software that allows soldiers to access information on a handheld device and (2) program the software to tailor the information for a given mission or situation.