Category: Cyber Missions

As cyber-physical systems continue to proliferate, the ability of cyber operators to support armed engagements (kinetic missions) will be critical for the Department of Defense (DoD) to maintain a technological advantage over adversaries. However, current training for cyber operators focuses entirely on the cyber aspect of operations and ignores the realities and constraints of supporting a larger mission. Similarly, kinetic operators largely think of cyber capabilities as a strategic, rather than a tactical resource, and are untrained in how to leverage the capabilities cyber operators can provide. In this blog post, I present Cyber Kinetic Effects Integration, also known as CKEI, which is a program developed at the SEI's CERT Division that allows the training of combined arms and cyber engagements in a virtual battlefield.

Distributed denial-of-service (DDoS) attacks have been dominating the IT security headlines. A flurry of reporting followed the September 2016 attack on the computer security reporter Brian Krebs's web site KrebsonSecurity when he reported attack traffic that was at the unprecedented scale of gigabytes per second. In November, my colleague Rachel Kartch wrote "DDOS Attacks: Four Best Practices for Prevention and Response," outlining what we can do to defend against these attacks. In this blog post, I tell the story of the Mirai powered botnet that's been harnessed in some of these recent attacks and which has also received its own share of press. My purpose is to explore the vulnerabilities that Mirai exploits and describe some simple practices that could help transform our Internet devices to mitigate the risk posed by botnets.

The Domain Name System (DNS) is an essential component of the Internet, a virtual phone book of names and numbers, but we rarely think about it until something goes wrong. As evidenced by the recent distributed denial of service (DDoS) attack against Internet performance management company Dyn, which temporarily wiped out access to websites including Amazon, Paypal, Reddit, and the New York Times for millions of users down the Eastern Seaboard and Europe, DNS serves as the foundation for the security and operation of internal and external network applications. DNS also serves as the backbone for other services critical to organizations including email, external web access, file sharing and voice over IP (VoIP). There are steps, however, that network administrators can take to ensure the security and resilience of their DNS infrastructure and avoid security pitfalls. In this blog post, I outline six best practices to design a secure, reliable infrastructure and present an example of a resilient organizational DNS.

Late last month, Internet users across the eastern seaboard of the United States had trouble accessing popular websites, such as Reddit, Netflix, and the New York Times. As reported in Wired Magazine, the disruption was the result of multiple distributed denial of service (DDoS) attacks against a single organization: Dyn, a New Hampshire-based Internet infrastructure company.

DDoS attacks can be extremely disruptive, and they are on the rise. The Verisign Distributed Denial of Service Trends Report states that DDoS attack activity increased 85 percent in each of the last two years with 32 percent of those attacks in the fourth quarter of 2015 targeting IT services, cloud computing, and software-as-a-service companies. In this blog post, I provide an overview of DDoS attacks and best practices for mitigating and responding to them based on cumulative experience in this field.

This post was co-authored by Nancy Mead.

Cyber threat modeling, the creation of an abstraction of a system to identify possible threats, is a required activity for DoD acquisition. Identifying potential threats to a system, cyber or otherwise, is increasingly important in today's environment. The number of information security incidents reported by federal agencies to the U.S. Computer Emergency Readiness Team (US-CERT) has increased by 1,121 percent from 5,503 in fiscal year 2006 to 67,168 in fiscal year 2014, according to a 2015 Government Accountability Office report. Yet, our experience has been that it is often conducted informally with few standards. Consequently, important threat scenarios are often overlooked.

Given the dynamic cyber threat environment in which DoD systems operate, we have embarked on research work aimed at making cyber threat modeling more rigorous, routine, and automated. This blog post evaluates three popular methods of cyber threat modeling and discusses how this evaluation will help develop a model that fuses the best qualities of each.

Network flow plays a vital role in the future of network security and analysis. With more devices connecting to the Internet, networks are larger and faster than ever before. Therefore, capturing and analyzing packet capture data (pcap) on a large network is often prohibitively expensive. Cisco developed NetFlow 20 years ago to reduce the amount of information collected from a communication by aggregating packets with the same IP addresses, transport ports, and protocol (also known as the 5-tuple) into a compact record. This blog post explains why NetFlow is still important in an age in which the common wisdom is that more data is always better. Moreover, NetFlow will become even more important in the next few years as communications become more opaque with the development of new protocols that encrypt payloads by default.