Category: CMMI

For more than 10 years, scientists, researchers, and engineers used the TeraGrid supercomputer network funded by the National Science Foundation (NSF) to conduct advanced computational science. The SEI has joined a partnership of 17 organizations and helped develop the successor to the TeraGrid called the Extreme Science and Engineering Discovery Environment (XSEDE). This posting, which is the first in a multi-part series, describes our work on XSEDE that allows researchers open access--directly from their desktops--to the suite of advanced computational tools and digital resources and services provided via XSEDE. This series is not so much concerned with supercomputers and supercomputing middleware, but rather with the nature of software engineering practice at the scale of the socio-technical ecosystem.

In my preceding blog post, I promised to provide more examples highlighting the importance of software sustainmentin the US Department of Defense (DoD). My focus is on certain configurations of weapons systems that are no longer in production for the United States Air Force, but are expected to remain a key component of our defense capability for decades to come, and thus software upgrade cycles need to refresh capabilities every 18 to 24 months. Throughout this series on efficient and effective software sustainment, I will highlight examples from each branch of the military. This second blog post describes effective sustainment engineering efforts in the Air Force, using examples from across the service's Air Logistics Centers (ALCs).

Our SEI blog has included thoughtful discussions about sustaining software, such as the two-part post "The Growing Importance of Sustaining Software for the DoD." Software sustainment is growing in importance as the lifetimes of hardware systems greatly exceed the normal lifetime of software systems they are partnered with, as well as when system functionality increasingly depends on software elements. This blog post--the first in a multi-part series--provides specific examples of the importance of software sustainment in the Department of Defense (DoD), where software upgrade cycles need to refresh capabilities every 18 to 24 months on weapon systems that have been out of production for many years, but are expected to maintain defense capability for decades.

The SEI has been actively engaged in defining and studying high maturity software engineering practices for several years. Levels 4 and 5 of the CMMI (Capability Maturity Model Integration) are considered high maturity and are predominantly characterized by quantitative improvement. This blog posting briefly discusses high maturity and highlights several recent works in the area of high maturity measurement and analysis, motivated in part by a recent comment on a Jan. 30 postasking about the latest research in this area. I've also included links where the published research can be accessed on the SEI website.

We use the SEI Blog to inform you about the latest work at the SEI, so this week I'm summarizing some video presentations recently posted to the SEI website from the SEI Technologies Forum. This virtual event held in late 2011 brought together participants from more than 50 countries to engage with SEI researchers on a sample of our latest work, including cloud computing, insider threat, Agile development, software architecture, security, measurement, process improvement, and acquisition dynamics. This post includes a description of all the video presentations from the first event, along with links where you can view the full presentations on the SEI website.

As part of an ongoing effort to keep you informed about our latest work, I'd like to let you know about some recently published SEI technical reports and notes. These reports highlight the latest work of SEI technologists in Agile methods, insider threat,the SMART Grid Maturity Model, acquisition, and CMMI. This post includes a listing of each report, author/s, and links where the published reports can be accessed on the SEI website.

As part of an ongoing effort to keep you informed about the latest work of SEI technologists, I will keep you apprised of SEI-related work that's published each month as SEI technical reports and notes. This post includes a listing of each report, author/s, and links where reports published in March can be accessed on the SEI website. The first report, A Framework for Evaluating Common Operating Environments, is based on a recent SEI blog postingand is an area I'm actively working on at the SEI. As always, we welcome your feedback on our work.