Category: Artificial Intelligence

This post was co-authored by Sagar Chaki

In 2011, the U.S. Government maintained a fleet of approximately 8,000 unmanned aerial systems (UAS), commonly referred to as "drones," a number that continues to grow. "No weapon system has had a more profound impact on the United States' ability to provide persistence on the battlefield than the UAVs," according to a report from the 2012 Defense Science Board. Making sure government and privately owned drones share international air space safely and effectively is a top priority for government officials. Distributed Adaptive Real-Time (DART) systems are key to many areas of Department of Defense (DoD) capability, including the safe execution of autonomous, multi-UAS missions having civilian benefits. DART systems promise to revolutionize several such areas of mutual civilian-DoD interest, such as robotics, transportation, energy, and health care. To fully realize the potential of DART systems, however, the software controlling them must be engineered for high-assurance and certified to operate safely and effectively. In short, these systems must satisfy guaranteed and highly-critical safety requirements (e.g., collision avoidance) while adapting smartly to achieve application requirements, such as protection coverage, while operating in dynamic and uncertain environments. This blog post describes our architecture and approach to engineering high-assurance software for DART systems.

An autonomous system is a computational system that performs a desired task, often without human guidance. We use varying degrees of autonomy in robotic systems for manufacturing, exploration of planets and space debris, water treatment, ambient sensing, and even cleaning floors. This blog post discusses practical autonomous systems that we are actively developing at the SEI. Specifically, this post focuses on a new research effort at the SEI called Self-governing Mobile Adhocs with Sensors and Handhelds (SMASH) that is forging collaborations with researchers, professors, and students with the goal of enabling more effective search-and-rescue crews.