Archive: 2013-07

In 2012, Symantec blocked more than 5.5 billion malware attacks (an 81 percent increase over 2010) and reported a 41 percent increase in new variants of malware, according to January 2013 Computer World article. To prevent detection and delay analysis, malware authors often obfuscate their malicious programs with anti-analysis measures. Obfuscated binary code prevents analysts from developing timely, actionable insights by increasing code complexity and reducing the effectiveness of existing tools. This blog post describes research we are conducting at the SEI to improve manual and automated analysis of common code obfuscation techniquesused in malware.

When life- and safety-critical systems fail, the results can be dire, including loss of property and life. These types of systems are increasingly prevalent, and can be found in the altitude and control systems of a satellite, the software-reliant systems of a car (such as its cruise control and GPS), or a medical device. When developing such systems, software and systems architects must balance the need for stability and safety with stakeholder demands and time-to-market constraints. The Architectural Analysis & Design Language (AADL) helps software and system architects address the challenges of designing life- and safety-critical systems by providing a modeling notation that employs textual and graphic representations. This blog posting, part of an ongoing series on AADL, describes how AADL is being used in medical devices and highlights the experiences of a practitioner whose research aims to address problems with medical infusion pumps.

Soldiers and emergency workers who carry smartphones in the battlefield, or into disaster recovery sites (such as Boston following the marathon bombing earlier this year) often encounter environments characterized by high mobility, rapidly-changing mission requirements, limited computing resources, high levels of stress, and limited network connectivity. At the SEI, we refer to these situations as "edge environments." Along with my colleagues in the SEI's Advanced Mobile Systems Initiative, my research aims to increase the computing power of mobile devices in edge environments where resources are scarce. One area of my work has focused on leveraging cloud computing so users can extend the capabilities of their mobile devices by offloading expensive computations to more powerful computing resources in a cloud. Some drawbacks to offloading computation to the cloud in resource-constrained environments remain, however, including latency (which can be exacerbated by the distance between mobile devices and clouds) and limited internet access (which makes traditional cloud computing unfeasible). This blog post is the latest in a seriesthat describes research aimed at exploring the applicability of application virtualization as a strategy for cyber-foraging in resource-constrained environments.

As part of an ongoing effort to keep you informed about our latest work, I would like to let you know about some recently published SEI technical reports and notes. These reports highlight the latest work of SEI technologists in acquisition, socio-adaptive systems, application virtualization, insider threat, software assurance, and the Personal Software Process (PSP). This post includes a listing of each report, author(s), and links where the published reports can be accessed on the SEI website.