Archive: 2013-05

The ubiquity of mobile devices provides new opportunities to warn people of emergencies and imminent threats using location-aware technologies. The Wireless Emergency Alerts (WEA) system, formerly known as the Commercial Mobile Alert Service (CMAS), is the newest addition to the Federal Emergency Management Agency (FEMA) Integrated Public Alert and Warning System (IPAWS), which allows authorities to broadcast emergency alerts to cell phone customers with WEA-enabled devices in an area affected by a disaster or a major emergency. This blog posting describes how the Software Engineering Institute's (SEI) work on architecture, integration, network security, and project management is assisting in implementing the WEA system, so it can handle a large number of alert originators and provide an effective nationwide wireless emergency warning system.

Building a complex weapon system in today's environment may involve many subsystems--propulsion, hydraulics, power, controls, radar, structures, navigation, computers, and communications. Design of these systems requires the expertise of engineers in particular disciplines, including mechanical engineering, electrical engineering, software engineering, metallurgical engineering, and many others. But some activities of system development are interdisciplinary, including requirements development, trade studies, and architecture design, to name a few. These tasks do not fit neatly into the traditional engineering disciplines, and require the attention of engineering staff with broader skills and backgrounds. This need for breadth and experience is often met by systems engineers. Unfortunately, system engineering is often not valued among all stakeholders in the Department of Defense (DoD), and is often the first group of activities to be eliminated when a program is faced with budget constraints. This blog post highlights recent research aimed at demonstrating the value of systems engineering to program managers in the DoD and elsewhere.

In the first blog entry of this two part series on common testing problems, I addressed the fact that testing is less effective, less efficient, and more expensive than it should be. This second posting of a two-part series highlights results of an analysis that documents problems that commonly occur during testing. Specifically, this series of posts identifies and describes 77 testing problems organized into 14 categories; lists potential symptoms by which each can be recognized; potential negative consequences, and potential causes; and makes recommendations for preventing them or mitigating their effects.