Archive: 2012-03

In my preceding blog post, I promised to provide more examples highlighting the importance of software sustainmentin the US Department of Defense (DoD). My focus is on certain configurations of weapons systems that are no longer in production for the United States Air Force, but are expected to remain a key component of our defense capability for decades to come, and thus software upgrade cycles need to refresh capabilities every 18 to 24 months. Throughout this series on efficient and effective software sustainment, I will highlight examples from each branch of the military. This second blog post describes effective sustainment engineering efforts in the Air Force, using examples from across the service's Air Logistics Centers (ALCs).

As part of an ongoing effort to keep you informed about our latest work, I'd like to let you know about some recently published SEI technical reports and notes. These reports highlight the latest work of SEI technologists in embedded systems, risk management, risk-based measurement and analysis, early lifecycle cost estimation, and techniques for detecting data anomalies. This post includes a listing of each report, author(s), and links where the published reports can be accessed on the SEI website.

Many DoD computing systems--particularly cyber-physical systems--are subject to stringent size, weight, and power requirements. The quantity of sensor readings and functionalities is also increasing, and their associated processing must fulfill real-time requirements. This situation motivates the need for computers with greater processing capacity. For example, to fulfill the requirements of nano-sized unmanned aerial vehicles (UAVs), developers must choose a computer platform that offers significant processing capacity and use its processing resources to meet its needs for autonomous surveillance missions. This blog post discusses these issues and highlights our research that addresses them.