icon-carat-right menu search cmu-wordmark

Digital Engineering Effectiveness

White Paper
This paper explores the reluctance of developers of cyber-physical systems to embrace digital engineering (DE), how DE methods should be tailored to achieve their stakeholders' goals, and how to measure the effectiveness of DE-enabled workflows.
Publisher

Software Engineering Institute

Abstract

The 2018 release of the DoD’s Digital Engineering (DE) strategy and the success of applying DE methods in the mechanical and electrical engineering domains motivate application of DE methods in other product development workflows, such as systems and/or software engineering. The expected benefits of this are improved communication and traceability with reduced rework and risk. Organizations have demonstrated advantages of DE methods many times over by using model-based design and analysis methods, such as Finite Element Analysis (FEA) or SPICE (Simulation Program with Integrated Circuit Emphasis), to conduct detailed evaluations earlier in the process (i.e., shifting left). However, other domains such as embedded computing resources for cyber physical systems (CPS) have not yet effectively demonstrated how to incorporate relevant DE methods into their development workflows. Although there is broad support for SysML and there has been significant advancement in specific tools (e.g., MathWorks®, ANSYS®, and Dassault tool offerings) and standards like Modelica and AADL, the DE benefits to CPS engineering have not been broadly realized. In this paper, we will explore why CPS developers have been slow to embrace DE, how DE methods should be tailored to achieve their stakeholders' goals, and how to measure the effectiveness of DE-enabled workflows.