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Durra: A Task-Level Description Language User’s
Manual

Abstract: Durra is a language designed to support the development of large-
grained parallel programming applications. This is the manual for users of the
Durra compiler, runtime system, and support tools.  Additional documents that
describe the syntax and semantics of the language and the runtime environ-
ment are cited in the bibliography section.

1. Introduction

The syntax and semantics of Durra are described in Durra: A Task-Level Description
Language Reference Manual [3]. This user’s manual supplements the language refer-
ence manual by describing the facilities available to a Durra user to compile, debug, and
execute distributed applications.

All the features described in the Durra language reference manual are implemented with
the following two exceptions: (1) Function and timing specifications cannot be used in
task selections and the behavioral information part of a task description is treated as
commentary information by the compiler.  However, timing expressions are used to emu-
late the behavior of a task by the Durra task emulator [1]. (2) Only sequences of full-item
transformations are supported. Array element and record field transformations are not
implemented.

To illustrate the various commands and support tools we will use a small Durra appli-
cation. The example application in Figure 1 consists of two type definitions, a data
source task with one output port, two data sink tasks, each with one input port, and an
instance of the predefined task broadcast, which transmits data received from the
source task to each of the sink tasks.
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TaskB TaskC

Broadcast

TaskA

a -- Application Structure

type byte is size 8;
type string is array of byte;

b -- Type Declarations

task taska
ports

out1: out string;
attributes

processor = vax;
implementation = "source_task";

end taska;

task taskb
ports

in1: in string;
attributes

processor = sun;
implementation = "sink_task";

end taskb;

task taskc
ports

in1: in string;
attributes

processor = vax;
implementation = "sink_task";

end taskc;

c -- Task Descriptions

task main
structure

process p1: task taska;
p2: task taskb;
p3: task taskc;
pb: task broadcast

ports in1: in string;
out1, out2: out string;

end broadcast;
queues q1b[10]: p1.out1 >> pb.in1;

qb2[10]: pb.out1 >> p2.in1;
qb3[10]: pb.out2 >> p3.in1;

end main;

d -- Application Description

2 CMU/SEI-89-TR-33Figure 1: Durra Application Example



2. Compilation Commands

Three Unix commands have been defined to invoke the Durra compiler, the executive-
command generator, and the Durra library management utility: dall, dcode and
dlibrary.

2.1. DLibrary Command

The dlibrary command implements a modest library management utility.

dlibrary { options } { file_names }

The Durra library is a text file containing information about the various compilation units
stored in the library and pointers to other libraries containing additional units. The com-
piler looks first in the current library, then in the libraries referenced in the current library,
and so on.  The library file is always named ‘‘.DLIBRARY’’ and there can be at most one
library file per Unix directory.

dlibrary -c

The -c option creates a new library (or reinitializes an existing library).  This command is
normally used when starting the development of a new application.

dlibrary -a directory_name

The -a option extends the library by adding a pointer to a remote directory to be
searched for imported task descriptions or type declarations.

dlibrary -r directory_name

The -r option complements the -a option and removes a pointer to a remote directory.
Task descriptions and type declarations defined in that directory are no longer acces-
sible.

dlibrary -d durra_file_name

The -d option deletes a task description or type declaration from the library (the source
files are not disturbed, only the library entry is deleted).  Under normal conditions there is
no need to delete library entries using this option because the compiler takes care of
inserting or deleting task descriptions or type declarations from the library.
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2.2. DAll Command

The dall command invokes the Durra compiler to process a type declaration, a task de-
scription, or an application description.  A lower-level (i.e., component) task or type must
be compiled before a higher-level task or type that uses it.

dall durra_description_file_name

By convention, a Durra source file name has the extension ‘‘durra’’, although this is not
mandatory. The output file (syntax tree stored in the library) is named
durra_description_file_name.TREE.

2.3. DCode Command

The dcode command generates the executive instructions for the application.

dcode application_description_file_name

This command must be issued after all the components and the application descriptions
have been compiled with the dall command. This command is applied only to the appli-
cation description file and not to the component task files. The output file (executive
program) is named application_description_file_name.SCHED

2.4. Examples

The following script illustrates the use of these commands to create a library file contain-
ing a reference to an external library, to compile several task descriptions and an appli-
cation description, and finally, to generate the executive commands to execute the appli-
cation:
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user > dlibrary -c
user > dlibrary -a /usr/projects/hetsim/durralib
user >
user > dall taska.durra taskb.durra taskc.durra taskmain.durra
taska.durra -> taska.durra.TREE
--Link V4.0 1989/08/14 23:20:25 taska.durra TASK TASKA
Entered in library.
taskb.durra -> taskb.durra.TREE
--Link V4.0 1989/08/14 23:20:34 taskb.durra TASK TASKB
Entered in library.
taskc.durra -> taskc.durra.TREE
--Link V4.0 1989/08/14 23:20:44 taskc.durra TASK TASKC
Entered in library.
taskmain.durra -> taskmain.durra.TREE
--Link V4.0 1989/08/14 23:20:50 taskmain.durra TASK MAIN
Entered in library.
user >
user > dcode taskmain.durra
taskmain.durra.TREE -> taskmain.durra.SCHED
No Errors found. Created taskmain.durra.SCHED
user >

After each successful compilation, the library file is augmented with the information
about the new unit. This information is used by the compiler to identify the units and to
detect changes that might require recompiling dependent units.
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3. Configuration File

The purpose of the configuration file is to provide information about the hardware config-
uration to the Durra runtime executive.  Figure 2 illustrates the definition of the hardware
configuration (i.e., the values for the ‘‘processor’’ attribute).

processor fi.sei.cmu.edu VAX UVAX SEIFI
processor cu.sei.cmu.edu VAX UVAX SEICU
processor ag.sei.cmu.edu VAX UVAX SEIAG
processor e.sei.cmu.edu VAX UVAX SEIE
processor sei.cmu.edu VAX SEI
processor cr.sei.cmu.edu VAXVMS SEICR
processor fh.sei.cmu.edu SUN SEIFH
processor af.sei.cmu.edu SUN SEIAF
xdisplay fi.sei.cmu.edu:0.0 SEIFI
xdisplay ag.sei.cmu.edu:0.0  SEIAG
xdisplay e.sei.cmu.edu:0.0 SEIE

Figure 2: Configuration File

Each line of the configuration file identifies a resource available to execute task imple-
mentations. The first field of the line, processor or xdisplay identifies the type of
line. The second field specifies the Internet address of the processor (e.g.,
fi.sei.cmu.edu) or the X window display unit (e.g., ag.sei.cmu.edu:0.0). The
rest of the fields specify values for the ‘‘processor’’ or ‘‘xdisplay’’ attributes used in the
task descriptions.

The values of the ‘‘processor’’ attribute are used to specify classes of machines. For
example, the first line specifies that processor fi.sei.cmu.edu belongs to classes
VAX, UVAX, and SEIFI. (The names of the classes are arbitrary although it makes
sense to choose mnemonic values.) Class UVAX (i.e., microvax) is a subset of class VAX
and this is different from class VAXVMS. (The former run the Ultrix-32 operating system,
the latter runs the VMS operating system.) Class SEIFI contains exactly one processor,
fi.sei.cmu.edu, and can be used as the value of the ‘‘processor’’ attribute of a task
implementation that can only run on that processor.

The values of the ‘‘xdisplay’’ attribute are used to specify the display for a task under the
X Window screen management system. For example, the first xdisplay line specifies
that fi.sei.cmu.edu:0.0 will be the X Window display for all tasks that specify
SEIFI as their xdisplay attribute. (The values of the xdisplay attribute are arbitrary
although it makes sense to choose mnemonic values.)

Note that this configuration file is not written in the task description language.  The ex-
ample shown is simply an illustration of the kinds of information that are likely to be in
the file; form and content of the file are implementation-dependent.  See [2] for additional
information.
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4. Execution Environment

The runtime executive gains access to the task implementations, the configuration de-
scription, and other application or user dependent information through file and directory
names defined in the execution environment.

In the Unix implementation, the execution environment is defined by the following shell
environment variables.

DURRA_PATH is a list of directories containing the task implementations and other run-
time programs, including the location of the servers and executive. This variable must be
defined before running a Durra application.  For example, it could be defined by:

setenv DURRA_PATH ~hetsim/tasklib/:~hetsim/exec/

DURRA_MONITOR is the name of the monitor task. The executive will start the monitor
task if the -m switch is used with the dexec command (Section 5.1). For example, it
could be defined by:

setenv DURRA_MONITOR ~hetsim/mon/monitor

DURRA_MONITOR_WINDOW defines the window for the monitor task. For example, it
could be defined by:

setenv DURRA_MONITOR_WINDOW "-geometry 80x50+150+20"
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5. Execution Commands

Two Unix commands have been defined to invoke the runtime executive and monitor:
dexec and dmonitor.

5.1. DExec Command

The dexec command starts the executive.  This command must be issued on each
processor available to the application. The executive can run in two modes: master and
server. One of the processors must run the master executive, the others must run server
executives.

dexec -s

The -s options starts a executive in server mode. This command must be issued on
each processor that is to execute any of the application tasks.  However, if any of these
processors is also used to run the master executive then it is not necessary to start a
server executive on that processor since the master executive will subsume the server
function for that processor.

If the -s option is not used, the executive starts in master mode. In master mode the
dexec command allows additional options and parameters.

dexec { master-executive-options } executive_program_file_name

The only parameter required by the master executive is the name of a file containing
executive instructions.  By convention, these files have names of the form
application_name.durra.SCHED. The dexec command supplies the appropriate file ex-
tensions (‘‘.durra’’ and ‘‘.SCHED’’) if they are missing. For example, ‘‘dexec
some_application’’ invokes the executive with the file ‘‘some_application.durra.SCHED’’.

dexec -cconfiguration_file ...

The -c option specifies the name of a file containing network configuration information
(e.g., the names of the available processors on which tasks can execute).  If not speci-
fied, the executive looks by default for the configuration file ‘‘config.txt’’, first in the cur-
rent directory and then in each directory specified in the ‘‘DURRA_PATH’’ environment
variable (Section 4).

dexec -m ...
dexec -mdmonitor_display ...
dexec -mfmonitor_command_file ...
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The -m options specify that the monitor task is started by the executive. The user can
then use the monitor command language to interact with the executive before the appli-
cation task start. The monitor task is specified by the DURRA_MONITOR environment
variable (see Section 4). If mdmonitor_display is specified, then the X window for the
monitor appears on the specified display; otherwise it appears on the default display
identified in the environment. If mfmonitor_command_file is specified, then the monitor
reads its initial commands from the specified file.

dexec -qqueue_size ...

The -q option specifies the default size (number of elements) for those queues whose
size was not provided in the task or application descriptions.  If this option is not speci-
fied, the default queue size is 1.

5.2. DMonitor Command

The dmonitor command starts the Durra application debugger/monitor.

dmonitor { optional-parameters }

This command may be issued on any currently configured processor. The Durra execu-
tive must be running on some node in the configuration so that the monitor will be able to
communicate with it.

dmonitor -fmonitor_command_file ...

The -f option specifies a file from which the monitor will read an initial set of commands.
The default is interactive input.

dmonitor -hexecutive_host_processor_name ...

The -h option specifies the name of a processor on which an executive is currently run-
ning. This parameter defaults to the local processor and must be supplied if the monitor
is started on a processor on which there is no running executive.

5.3. Examples

The following script illustrates the use of these commands to define the environment
variables, start servers and executive, and execute the example application:
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Define the environment variables:
user > set hetsim=/usr/projects/hetsim
user > setenv DURRA_PATH "$hetsim/tasklib:$hetsim/exec"

Start the executive with a user-specified configuration file:
user > dexec -cseiag_config.txt broadcast_example.durra
Executive will execute as master out of

/usr/projects/hetsim/exec/executive
Using configuration file: seiag_config.txt
Executive/Server is executing on ag.sei.cmu.edu

Application dependent output:
Opening parameter_file
Message count=500
Message size=20
Process 3(Source_Task ) Message Size= 20 Messages Count= 500
Process 4(Sink_Task ) Message Size= 20 Messages Count= 500
Process 5(Sink_Task ) Message Size= 20 Messages Count= 500

:
:

Application runs to completion:
user >

The invocation of dexec in this example illustrates the use of a user-specified configu-
ration file (seiag_config.txt) to override the default configuration file (‘‘config.txt’’).
In this particular example, the configuration file used consisted of a single line:

processor ag.sei.cmu.edu UVAX VAX SUN SEIE SEIAG SEIFI

The effect of using such a configuration file is to ‘‘fold’’ all the network processors and
processor classes into one machine. Although this example is extreme, it illustrates the
ability to configure the network and to control the allocation of resources without modi-
fying the task implementations or the task/application descriptions.

CMU/SEI-89-TR-33 13



14 CMU/SEI-89-TR-33



6. Monitor Commands

The Durra application debugger/monitor [4] is an interactive process which communi-
cates with the Durra executive at runtime to provide a user with information about and
control over the progress of the application.

There are two ways to start the monitor in the Unix environment.  To start the Monitor
when the application is started one includes an optional flag to the dexec command (this
requires X Window System support from the environment).  To start the Monitor after an
application has begun executing, use the dmonitor command, as described in Section
5.2.

Commands to the monitor may be entered from the keyboard or from a file (or files)
specified by the user.  Commands and keywords may be abbreviated to the shortest
non-ambiguous initial substring; identifiers must always be complete. This section de-
scribes the commands recognized by the monitor.

The following notation is used in the monitor command descriptions:

command or keyword
identifier or literal-value
‘‘[ a | b ]’’ means choice of a or b
‘‘{ a }’’ means that a is an optional argument

The character ‘‘*’’ is a wildcard symbol implying all possible values that make sense in
the context.  In the context of an expected port, queue, task, or type name, the ‘‘*’’ ex-
pands to all such names in the application currently running.  In the context of an ex-
pected rpc-name, the ‘‘*’’ expands to all the Durra interface call names.  If an optional
argument is omitted, the effect is the same as if the value of the argument were ‘‘*’’.

Excerpts from a sample monitoring session on the previously described example Durra
application appear throughout the following discussion.  In all excerpts, lines beginning
with the prompt monitor> represent commands and all other lines represent monitor
responses.

6.1. Go, Quit, and Ctrl-C Commands

This section describes commands which control the interaction between the monitor and
executive.

go { duration }

The go command tells the executive to continue processing the application for a speci-
fied amount of time (in seconds) before prompting the users for more commands. If no
duration is specified, the application runs indefinitely. The user can always regain control
by typing ctrl-C to interrupt the monitor.
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quit

The quit command ends the monitoring session.

ctrl-C

A ctrl-C interrupts the application and prompts the user for a monitor command.

6.2. Watch and Break Commands

This section describes commands which allow the user to follow the flow of data through
an application and interrupt the application at any point of communication with the Durra
runtime.

dpbreak { [ port-name | ‘‘*’’ ]  { [ rpc-name | ‘‘*’’ ] } }
dpwatch { [ port-name | ‘‘*’’ ]  { [ rpc-name | ‘‘*’’ ] } }
dqbreak { [ queue-name | ‘‘*’’ ] { [ rpc-name | ‘‘*’’ ] } }
dqwatch { [ queue-name | ‘‘*’’ ] { [ rpc-name | ‘‘*’’ ] } }
dtbreak { [ task-name | ‘‘*’’ ]  { [ rpc-name | ‘‘*’’ ] } }
dtwatch { [ task-name | ‘‘*’’ ]  { [ rpc-name | ‘‘*’’ ] } }

The above commands are used to delete break points or watch points, which are de-
fined below.

pbreak { [ port-name | ‘‘*’’ ]  { [ rpc-name | ‘‘*’’ ] } }
pwatch { [ port-name | ‘‘*’’ ]  { [ rpc-name | ‘‘*’’ ] } }
qbreak { [ queue-name | ‘‘*’’ ] { [ rpc-name | ‘‘*’’ ] } }
qwatch { [ queue-name | ‘‘*’’ ] { [ rpc-name | ‘‘*’’ ] } }
tbreak { [ task-name | ‘‘*’’ ]  { [ rpc-name | ‘‘*’’ ] } }
twatch { [ task-name | ‘‘*’’ ]  { [ rpc-name | ‘‘*’’ ] } }

The above commands are used to set break points and watch points, where a break (or
watch) point is defined as a state in the application execution sequence at which a speci-
fied Durra object (port, queue, or task) is referenced by one of a specified set of task
interface rpcs.  When a break point is set and the application reaches the specified inter-
face call on (from) the specified object, the application is interrupted and control passes
to the monitor so that the user may issue further commands.  When a watch point is set,
the monitor informs the user that the watch point has been passed but the application
continues to run.

In the following excerpt, the user sets a watch point on the port main.p1.out1 for all
rpcs and then issues the go command, causing the application to resume running.  The
monitor displays a message each time an rpc targeted at main.p1.out1 occurs. In
this case, only Send_Port calls are occurring on that port.  The messages continue
until there is no more activity on that port or until the user interrupts from the keyboard.
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monitor> pwatch main.p1.out1 *
monitor> go
Watch at port MAIN.P1.OUT1, RPC = SEND_PORT
Watch at port MAIN.P1.OUT1, RPC = SEND_PORT
Watch at port MAIN.P1.OUT1, RPC = SEND_PORT
Watch at port MAIN.P1.OUT1, RPC = SEND_PORT
Watch at port MAIN.P1.OUT1, RPC = SEND_PORT
Watch at port MAIN.P1.OUT1, RPC = SEND_PORT
Watch at port MAIN.P1.OUT1, RPC = SEND_PORT

:
:

Next, the user removes all port watch points and sets a queue watch point on queue
main.qb2 for all rpcs. The queue has an associated producer port, main.pb1.out1,
and an associated consumer port, main.p2.in1. The occurrence of an rpc on either
port, then, causes a message to be displayed by the monitor.  (If the port watch point
had not been removed, port and queue watch point responses would have been
interleaved). When a Send_Port or Get_Port occurs, the monitor describes the
queue state.  Below, when the Send_Port occurs, the consumer task is already waiting
for the data and so the data is immediately transmitted, bypassing the queue.  The con-
sumer then issues another Get_Port before any more data has been sent and so it is
blocked, waiting for data to arrive.

monitor> dpwatch * *
monitor> qwatch main.qb2 *
monitor> go
Watch at queue MAIN.QB2, RPC = TEST_OUTPUT_PORT, on port

MAIN.PB1.OUT1
Watch at queue MAIN.QB2, RPC = SEND_PORT, issued by task MAIN.PB1

Some task already waiting, data sent immediately
Watch at queue MAIN.QB2, RPC = GET_PORT, issued by task MAIN.P2

Queue is empty, receiver is blocked
Watch at queue MAIN.QB2, RPC = TEST_OUTPUT_PORT, on port MAIN.PB1.

OUT1
:
:

Now the user removes all queue watch points and sets a watch point on the task
main.pb1 for all rpcs. Each time an rpc originates from that task, a message identifying
the rpc (and the target port, where appropriate,) is displayed.  In this case main.pb1 is
an instance of the predefined broadcast task, and so the rpcs are only simulated.

monitor> dqwatch * *
monitor> twatch main.pb1 *
monitor> go
Observed task MAIN.PB1 doing TEST_INPUT_PORT at port MAIN.PB1.IN1
Observed task MAIN.PB1 doing TEST_OUTPUT_PORT at port MAIN.PB1.OUT1
Observed task MAIN.PB1 doing TEST_OUTPUT_PORT at port MAIN.PB1.OUT2
Observed task MAIN.PB1 doing GET_PORT at port MAIN.PB1.IN1
Observed task MAIN.PB1 doing SEND_PORT at port MAIN.PB1.OUT1
Observed task MAIN.PB1 doing SEND_PORT at port MAIN.PB1.OUT2
Observed task MAIN.PB1 doing SAFE

:
:
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Break points work exactly like watch points, except that when a break point is reached
the application is interrupted and the user has the opportunity to enter more commands.
In the following excerpt, the user removes the watch points previously set and then sets
a break point on any task doing a Get_Port. At each occurrence the user responds
with the go command and the application continues to the next instance of Get_Port.
The task break point is then removed and a queue break point set.  The effect of the
queue break point is analogous to that of the task break point.

monitor> dtwatch * *
monitor> tbreak * get_port
monitor> go
Break at task MAIN.PB1 doing GET_PORT at port MAIN.PB1.IN1
monitor> go
Break at task MAIN.P3 doing GET_PORT at port MAIN.P3.IN1
monitor> go
Break at task MAIN.P2 doing GET_PORT at port MAIN.P2.IN1
monitor> dtbreak * *
monitor> qbreak main.q1b *
monitor> go
Break at queue MAIN.Q1B, RPC = SEND_PORT, issued by task MAIN.P1

Some task already waiting, data sent immediately
monitor> go
Break at queue MAIN.Q1B, RPC = TEST_INPUT_PORT, on port MAIN.PB1.IN1
monitor> go
Break at queue MAIN.Q1B, RPC = GET_PORT, issued by task MAIN.PB1

6.3. Kill, Stop, and Resume Commands

This section describes commands used to control the execution state of an application’s
component tasks.

kill [ task-name | ‘‘*’’ ]
stop [ task-name | ‘‘*’’ ]
resume [ task-name | ‘‘*’’ ]

These commands are used to terminate, pause, or continue execution of a task at the
operating system level.  As noted previously, break points interrupt a task at the point of
some interface call to the executive.  It may happen, though, that the user wishes to
interrupt an application task that executes for long periods of time without resorting to an
interface call; on such occasions the stop and resume commands are useful.  The kill
command might be used to simulate the occurrence of unexpected task failure for sys-
tem testing purposes.
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6.4. Show and Track Commands

This section describes commands which allow the user to see information about the ap-
plication currently executing.

show attributes [task-name | ‘‘*’’]

The show attributes command displays the attributes of the specified task(s).  In the
example following we see the attributes of task main.p2.

monitor> show attributes main.p2
ATTRIBUTES of task MAIN.P2

implementation = sink_task
processor = SUN
source = taskb.durra.TREE
xdisplay = :0.0

show configuration

The show configuration command displays the name of the current configuration and
all configurations which can be reached directly from the current level.

show port [ port-name | ‘‘*’’ ]
show queue [ queue-name | ‘‘*’’ ]
show task [ task-name | ‘‘*’’ ]
show type [ type-name | ‘‘*’’ ]

These commands display information the Durra executive knows about the application’s
Durra ports, queues, tasks, and types.  Each of the following fragments demonstrates
the results of one of these commands.  Additional information is displayed when the situ-
ation warrants.  For instance, if any break points or watch points have been set on the
ports, queues, or tasks in question, then that information will be shown.

monitor> show port main.p3.in1
NAME = MAIN.P3.IN1

ID = 2
CONFIGURATION_LEVEL = MAIN
DATA_TYPE = STRING
ASSOCIATED_QUEUE = MAIN.QB3
STATUS = CONFIGURED
PORT_DIRECTION = IN

The following example shows that the receiving tasks are waiting for data at queues
main.qb2 and main.qb3, but neither sender nor receiver is waiting at queue
main.q1b (since no ‘‘waiting_client’’ field is displayed). Queue main.q1b has an up-
per bound of 10 messages and currently contains three.  The results of any active track
command would also be displayed here.
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monitor> show queue *
NAME = MAIN.Q1B

ID = 1
CONFIGURATION_LEVEL = MAIN
SOURCE_PORT = MAIN.P1.OUT1
DESTINATION_PORT = MAIN.PB1.IN1
BOUND = 10
ELEMENT_COUNT = 3
STATUS = CONFIGURED

NAME = MAIN.QB2
ID = 2
CONFIGURATION_LEVEL = MAIN
SOURCE_PORT = MAIN.PB1.OUT1
DESTINATION_PORT = MAIN.P2.IN1
BOUND = 10
ELEMENT_COUNT = 0
WAITING_CLIENT = MAIN.P2
STATUS = CONFIGURED

NAME = MAIN.QB3
ID = 3
CONFIGURATION_LEVEL = MAIN
SOURCE_PORT = MAIN.PB1.OUT2
DESTINATION_PORT = MAIN.P3.IN1
BOUND = 10
ELEMENT_COUNT = 0
WAITING_CLIENT = MAIN.P3
STATUS = CONFIGURED

Some explanation of the task fields may be required.  The fields Mailbox and
Server_mailbox refer to communications channels from the master executive to the
task and from the master executive to the server executive that started the task, respec-
tively. PID and XPID are the process IDs of the task and any associated xterm [5].
Signal_Pending indicates whether or not a signal has been received from this task
during a reconfiguration. Time_Out is the time in seconds that the task has to get to a
quiescent state [6] for reconfiguration before it is terminated. Quiesce_Status in-
dicates whether or not the task is in a reconfigurable state.

monitor> show task main.p1
NAME = MAIN.P1

KIND = USER
ID = 3
CONFIGURATION_LEVEL = MAIN
MAILBOX = 9
SERVER_MAILBOX = 5
PID = 10099
XPID = 0
PORTS = MAIN.P1.OUT1
SIGNAL_PENDING = FALSE
TIME_OUT = 20
STATUS = CONFIGURED
QUIESCE_STATUS = RUNABLE

The lower_bound and upper_bound in the following type description refer to bounds
on the size of the type; since both have a value of 8, type byte is fixed-length, 8 bits.
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monitor> show type byte
NAME = BYTE

KIND = SIZE_TYPE
ID = 2
LOWER_BOUND = 8
UPPER_BOUND = 8

show state

The show queue and show task commands described above may provide more infor-
mation than is desired. For example, if at some point during application execution one
wished to know how many messages were in each queue, one could display all queue
information using the command show queue * and then browse through it looking for
the relevant numbers.  Instead, we provide the show state command, the purpose of
which is to display a concise picture of the state of the tasks and queues comprising the
application. Below is a sample; the user may assume that any task not shown is not
blocked currently and any queue not shown is empty.

monitor> show state
Task MAIN.P2 (consumer) blocked at queue MAIN.QB2
Queue MAIN.Q1B contains 1 messages, bound = 1

show track [queue-name | ‘‘*’’]

The show track command displays the results of a track command on the specified
queue(s). The tracking operation records the elapsed time since tracking began, the
number of data items that have passed through the queue during that time, the average
time a data item spent in the queue, and the number of times the sending and receiving
tasks blocked while attempting to write to or read from the queue.  In the following ex-
cerpt, we see the user request a track operation on all queues.  The application starts
and runs until interrupted from the keyboard.  The results of the tracking operation after
90 seconds show that 120 data elements passed through each queue.  The receiving
task connected to main.qb2 had to wait every time; hence the average time a datum
spent in the queue was zero, since each was sent directly out when it arrived.  In the
other two queues, neither sender nor receiver ever blocked, and so the average wait
time in the queue is non-zero.
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monitor> track *
monitor> go

:
:

{keyboard interrupt}
monitor> show track *
NAME = MAIN.Q1B

ELAPSED_TRACK_TIME = 90.0 seconds
DATA_FLOW_COUNT = 120
AVG_TIME_IN_QUEUE = 1.666E-3 seconds
SENDER_BLOCKED 0 times
RECEIVER_BLOCKED 0 times

NAME = MAIN.QB2
ELAPSED_TRACK_TIME = 90.0 seconds
DATA_FLOW_COUNT = 120
AVG_TIME_IN_QUEUE = 0.000E+0 seconds
SENDER_BLOCKED 0 times
RECEIVER_BLOCKED 120 times

NAME = MAIN.QB3
ELAPSED_TRACK_TIME = 90.0 seconds
DATA_FLOW_COUNT = 120
AVG_TIME_IN_QUEUE = 8.333E-5 seconds
SENDER_BLOCKED 0 times
RECEIVER_BLOCKED 0 times

track [queue-name | ‘‘*’’]
dtrack [queue-name | ‘‘*’’]

Beginning at the time it is issued, the track command initiates the collection of data
through the specified queue(s).  Partial results of the tracking can be displayed at any
time with the show track command. Tracking continues until the dtrack command is
issued.

6.5. Read, Echo, and Silent Commands

This section describes commands which affect the manner in which the monitor commu-
nicates with its user.

read command_file

The read command specifies a command file from which monitor commands should be
read. Command files may contain nested read commands. When the monitor finishes
reading the commands in the file, command processing continues from the scope in
which the read command was invoked, unless the file contains a quit command, in
which case the monitor is terminated as usual.

echo

The echo command requests that monitor commands be displayed as they are proc-
essed. This is the default when commands are entered interactively.  If the commands
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are being read by the monitor from a file, the default is silent, or no display, except when
the file is being read via a nested read command, in which case the echoing status is
inherited from the calling environment.

silent

The silent command suppresses the display of monitor commands that are read from
command files.  This is the default (unless echo is inherited from an enclosing file).  This
command has no effect when issued interactively.

6.6. Set Commands

This section describes the commands used to change certain values maintained by the
Durra runtime.

set attribute task-name attribute-name attribute-value

The set attribute command gives the specified task an arbitrarily-named attribute with
an arbitrary string value.  Attributes controlling process execution location and display
location do not take effect until the next time the process is started.  Some attribute
names are reserved because they have special meaning to the Durra runtime; see the
Durra User’s Manual for details.

set bound [queue-name | ‘‘*’’

positive-integer-value]

The set bound command changes the maximum size of the specified queue. The
change takes effect immediately. If a task has been blocked attempting to write to the
queue, and the new bound is larger than the old bound, the task will be unblocked.

6.7. Miscellaneous Commands

This section describes monitor commands which don’t fit into any of the preceding cate-
gories.

debug task-name { debugger-string }

The debug command requests that the specified task be run under control of a source-
level debugger.  The command must be issued before the task is started or it will have
no effect.  The optional debugger-string provides a way to specify some debugger in-
vocation other than the environment-specified default (e.g., special arguments to the de-
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fault debugger or a different debugger altogether).  Since a separate terminal interface is
required for each debugger activated, this feature is only available when the environ-
ment supports the X Window System.  Instead of starting the task directly, the Durra
executive starts an xterm and runs the specified debugger in it, giving it the task name
as an argument.

help

The help command displays an online help screen which lists the monitor commands.

reconfigure {configuration_label}

The reconfigure command causes a reconfiguration to the specified configuration level
to occur, regardless of the state of any specified trigger condition.  The configuration
label is optional if there is only one possible reconfiguration.

The command has no effect when the specified configuration does not exist or is un-
reachable from the current configuration.  The command also fails when another recon-
figuration is pending, i.e., the executive has initiated a configuration change but has not
yet completed it (for instance, when waiting for a task to get to a quiescent state).  Only
one reconfiguration may be in progress at any point in time.
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