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What a Software Engineer Needs to Know:
I. Program Vocabulary

Abstract: Software development, like any complex task, requires a wide variety of
knowledge and skills. We examine one particular kind of knowledge, the programming
language vocabulary of the programmer, by gathering statistics on large bodies of code in
three languages. This data shows that most of the identifiers in programs are either uses of
built-in or standard library definitions or highly idiomatic uses of local variables. We interpret
this result in light of general results on expertise and language acquisition. We conclude

* that tools to support the vocabulary component of software development are wanting, and
this part of an engineer's education is at best haphazard, and we recommend ways to
improve the situation.. -

1. Proficiency Requires Content Knowledge

Proficiency in any field requires a large store of facts together with a certain amount of
context about their implications and appropriate use. The learning of these facts can be
organized so that useful subsets are learned first, followed by more sophisticated subsets.

1.1. The Magic Number 70,000 ± 20,000
Experts know a great deal. This is true across a wide range of problem domains; studies
demonu.ie it for meuical diagnosis, physics, chess, financial analysis, architecture,
scientific research, policy decision making, and others [Reddy 88, pp. 13-14; Simon 89,
p.1]. This is not of itself surprising. What is perhaps not so obvious is that the knowledge
includes not only analytic techniques but also very large numbers of facts.

An often-quoted measure of factual knowledge is that an expert in any field must know
50,000 chunks of information, where a chunk is any c!uster cf knowledge sufficiently
familiar that it can be remembered rather than derived. Furthermore, in domains where
there are full-time professionals, it takes no less than ten years for a world-class expert to
achieve that level of proficiency [Simon 89 pp.2-4].

A software engineer's expertise includes facts about computer science in general,
software design elements, programming idioms, representations, and specific knowledge
about the program of current interest and about the language, environment, and tools in
which this program is implemented. We are concerned here with the meanings of the
symbols or identifiers that appear in the program and that name functions, variables, types,

* or other entities of the program.

1.2. The Content Component of Fluency
Proficiency requires content and context as well as skills. In the case of natural language
fluency, for example, Hirsch argues that in American education abs~ract skills have driven

* out content. Students are expected to learn general skills from a few typical examples, not
from the "piling up of information"; intcl!ctual and social skills ar- supposed to develop
naturally without regard to the specific content [Hirsch 88]. However, says Hirsch, specific
information is important at all stages. Not only are the specific facts important in their own
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right, but they serve as carriers of shared culture and shared values. The accumulation of
these shared symbols and their connotations supports the cooperation required for the
complex undertakings of modern life.

Hirsch provides a list of some five thousand words and concepts that represent the
information actually possessed by literate Americans. The list goes beyond zsimple
vocabulary to enumerate objects, concepts, titles, and phrases that implicitly invoke
cultural context beyond their dictionary definitions. Whether or not you agree in detail with
its composition, the list and accompanying argument demonstrate the need for
connotations as well as denotations of the vocabulary. Similarly, a programmer needs to
know not only a programming language but also the system calls supported by the
environment, the general-purpose libraries, the application-specific libraries, and how to
combine invocations of these definitions effectively. Moreover, he or she must be familiar
with the global definitions of the program of current interest and the rules about their use.

1.3. The Incremental Nature of Vocabulary
Natural language fluency is a particularly interesting case of proficiency. One indicator of
fluency is the size of working vocabulary. Vocabulary development involves acquisition of
both expanding sets of general vocabulary and of specialized vocabulary appropriate to
particular domains. In the case of programming language proficiency, the general
vocabulary includes the words of the programming language, the system calls of the
environment, and various general-purpose subroutine libraries. The specialized
vocabulary includes subroutine libraries specialized to an application domain and the
definitions written specifically for a particular program.

1.3.1. General Vocabulary
English language fluency is acquired in stages [Curtis 87]:

1: "1 never saw it before."
2: "I've heard of it, but I don't know what it means."
3: "1 recognize it in context-it has something to do with ... "

4: "1 know it."

The third stage provides a useful reading vocabulary--the ability to "get th,- nist" of a
passage, but fourth-stage knowledge is required to write precisely.

English vocabulary is acquired both through vocabulary drill and through reading in
context; by analogy, a programmer might study specifications or code of library routines, or
alternatively might read large amounts of code that uses the routines of the library in order
to see how they are used in algorithmic context. For English language vocabulary the rate
of vocabulary growth cannot be accounted for by direct vocabulary instruction; it appears
that much vocabulary is acquired by encountering words multiple times in context [Nagy
87].

Thorndike and Lorge [Thorndike 44] reported the frequency of occurrence of words in five
large bodies of text. They found 1,069 words occurring at least 100 times per million
words of text and another 952 occurring 50 to 99 times per million words of text. The
number of words occurring at least once per million was 19,440; another 9,202 words
occurred less than once per million but more often than four times per 18 million. Based
on this list Thorndike and Lorge recommend for each grade level a number of words that
students should learn as "a permanent part of their stock of word knowledge." Zipf, in his
studies of languages, shows that in most natural languages the most common 100 words
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account for 50% of total usage and the most common 1,000 words account for about 85%
of the usage [Zipf 49].

Because of very different interpretations of what it means to "know" a word. measures of
vocabulary size have large variance. Taking these and other factors into account,
however, Nagy and Herman [Nagy 87] estimate that a high school graduate can be
expected to know around 40,000 words, acquiring them at a rate of around 3,000 words
per year. This is consistent with Simon's observation that an expert takes ten years to

0 acquire 50,000 chunks.

1.3.2. Technical Vocabulary
Johansson [Johansson 75] compares the word frequency of scientific Englisn with that of
other kinds of written English. Comparing the thousand most common w-ords in a sample
of 14,581 words of scientific English with the thousand most common words in a sample of

* 50,406 words of general English, he found that about a third of the words were different.
and that the differences occurred mainly in the second 500 words (ranked by frequency).
It is not unreasonable to expect the phenomenon of a domain-specific vocabulary to
appear in software engineering as well.

0 1.3.3. Growth of General and Technical Vocabulary
General vocabulary is acquired incrementally, largely during the school years. Imagine
this acquisition as the mastery of increasing sets in a hierarchical, even graded, set of
vocabulary lists. The specialized vocabulary of any particular field (be it hobby or
profession) requires learning more new words and new definitions for old words. This
specialized vocabulary component both overlaps the general vocabulary (i.e., words that

9 are usually advanced become basic) and adds new words that are absent or rare In the
general vocabulary.

•

rSpecj Adv

/, /, /,.,

Figure 1: Vocabulary Families
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1.4. Engineering Design Requires Content Knowledge
Engineering design problems differ in a number of significant ways; one of the most
significant is the distinction between routine and original design. Routine design involves
solving problems that resemble problems that have been solved before; it relies on
reusing large portions of those prior solutions. Original design, on the other hand,
involves finding creative ways to solve novel problems. The need for original design is
much rarer than the need for routine design, so routine design is the bread and butter of
engineering practice.

Most engineering disciplines capture, organize, and share design knowledge in order to
make routine design simpler. Handbooks and manuals are often the carriers of this
organized information [Marks 87, Perry 84].

Software development in most application domains tends to be more often original than
routine-certainly more often original than would be necessary if we concentrated on
capturing and organizing what is already known. One path to increased productivity is
identifying applications that should be made routine and developing appropriate support.
The current emphasis on reuse [Biggerstaff 89] emphasizes capturing and organizing
existing knowledge. Indeed, subroutine libraries-especially libraries of operating system
calls and general-purpose mathematical routines-have been a staple of programming for
decades. But this knowledge cannot be useful if programmers don't know about it or
aren't encouraged to use it, and library components require more care in design,
implementation, and documentation than similar components that are simply embedded in
systems.

The usual response to the problem of knowing what library definitions are available is
improved indexing, classification, and search mechanisms. We suggest that these, like
English dictionaries, are useful for recording little-used portions of the vocabulary and
precise definitions of the core vocabulary. However, just as natural language fluency
requires instant recognition of a core vocabulary, programming fluency should require an
extensive vocabulary of definitions that the programmer can use familiarly, without regular
recourse to documentation.

1.5. Software Development Requires Content Knowledge
Software must be understood by its creators and by its maintainers. Understanding
software requires several qualitatively different kinds of knowledge:

" general knowledge about software
" general knowledge about the application domain
" the ability to use the language, operating system, methodology, and other

software tools
" the requirements and motivation of the system
* the specific vocabulary of the particular software system, including knowledge

and notation for:
- the overall software architecture
- interface protocols and interchange representations
- algorithms and data structures
- the code
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This knowledge accounts for part of the 50,000 chunks of an expert's knowledge.

Most of these topics have been discussed at length, and many are included in a computer
science curriculum. However, the ability of a programmer to read or write a program
depends critically on his or her degree of mastery of the vocabulary of the program-that
is, the meanings of the collection of variable names, reserved words, function names, and
other lexical tokens that make up the program. This vocabulary includes constructs of
several kinds:

1. built-in constructs of the language: reserved words, operators, syntactic
connectors, etc.

2. names of standard library constructs, including functions and procedures, types,
and data structures (including libraries for the application domain)

3. the shared vocabulary of this piece of software, for example as captured in the
system dictionary

4. literals whose meaning is guaranteed to be given by the lexical token itself

5. local variables whose meaning is usually obvious from local context and is of
no consequence in other parts of the program

Note that the vocabulary of the program is different from the programmer's vocabulary for
programming, which includes many words that do not appear directly in a program.

The first three sorts of constructs should be part of the working vocabulary of any
programmer who is to develop or modify the software. The third sort must be learned
specifically for each system, but the first two are shared among many systems.

To see how significant the first two sorts of constructs are in the programming vocabulary,
we examined a collection of programs to discover the distribution of "words" (i.e., lexical
tokens) of each of these kinds. Our hypothesis is that linguistic analysis of program text
can reveal the size and composition of the program vocabulary required of the developer
or maintainer of a software system.

CMU/SEI-89-TR-30 5
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2. Empirical Observations: Vocabularies of 31 Programs

2.1. Approach
We examined 31 programs written in Ada, C, and Lisp. They ranged in size from 24 to
40,539 lines, with a mean of 5,947, and amounted in all to 184,351 lines. We counted the
five kinds of constructs described in Section 1.5, counting them as built-in symbols,
common library symbols, system-specific (user-defined) symbols with widespread use,
literals, and purely local user-defined symbols using syntactic criteria to distinguish the
classes. We counted both the number of distinct symbols and the number of uses of
symbols. We did not distinguish among functions, subroutines, modules, types, and other
sorts of identifiers except to the extent that such distinctions simplified the automatic data
collection. Since we are interested in the program vocabularies rather than natural
language, comments were stripped from the programs before making the counts.

2.2. Summary
Table 1 summarizes the data collected for these 31 programs and Figure 2 shows
relations among vocabulary and usage of the five categories of symbols in the three
languages. Overall, we found that built-in words and library names account for a small
fraction of a program's discrete vocabulary but a very large share of the actual text.
System-specific symb;s and literals, however, constituted a somewhat larger fraction of
the vocabulary than of actual use.

Lisp C Ada
Number of systems 8 11 12
Total size (lines) 68,415 47,991 67,945
Average size (lines) 8,552 4,363 5,662
Range (lines) 317-40,539 926-11,240 24-19,648
Average size (# symbols) 19,435 13,623 12,429
Average vocabulary (# distinct symbols) 2,245 820 715
Average usage rate (size/vocabulary) 8.7 16.5 17.4

N % N % N %
Distinct instances (vocabulary size)

Built-in symbols 469 3.0% 64 0.9% 115 1.9%
Common library symbols 498 3.2% 256 3.6% 28 0.5%
System-specific symbols 2,693 17.4% 1,414 19.6% 2,394 40.1%
Literals 7,394 47.7% 2,640 36.7% 1,030 17.3%
Purely local symbols 4,434 28.6% 2,824 39.2% 2,404 40.3%

Occurrences in the program
Built-in symbols 46,208 29.7% 53,546 35.7% 62,559 41.9%
Common library symbols 7,227 4.6% 6,429 4.3% 4,492 3.0%
System-specific symbols 23,342 15.0% 10,785 7.2% 34,353 23.0%
Literals 28,106 18.1% 20,778 13.9% 11,600 7.8%
Purely local symbols 50,598 32.5% 58,311 38.9% 36,147 24.2%

Table 1: Summary Statistics

CMU/SEI-89-TR-30 7
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Figure 2: Overall Distribution of Symbols in Vocabulary (rows 1-3)
and Usage (rows 4-6)

In summarizing the statistics from Tables 3 through 5, which present individual programs,
the vocabulary size (that is, the count of instances) for each language was determined by
taking unions of the vocabularies of the individual data cases. Since duplicates are
counted when occurrences are tallied, the summaries for this portion of the data are the
sums of the counts in the individual data cases.

The symbols in programs are of three kinds:
" Meaning is lexically obvious: The literals include numbers, quoted strings, and

other symbols whose meaning (i.e., value) is given by their spelling. They
account for 17% to 48% of the vocabulary but only 8% to 18% of the program
text. In most cases essentially no effort is required to interpret them, though
format strings in C and Lisp can be exceptions, as can the special syntax for
literals that must be mapped to particular machine representations.

* Meaning is syntactically obvious: Purely local symbols have no meaning that
persists over large scopes within the program. They account for 29% to 40% of
the vocabulary and 24% to 39% of the program text. They are more heavily
represented in the text of the Lisp programs than in the vocabulary for those
programs, but the opposite is true for Ada-local symbols make up a drastically
larger portion of the vocabularies than of the program text. The same is true to a
lesser extent for C. Initial examination of the use of these variables indicates
that they are often used idiomatically, with the syntactic template of the idiom
carrying the meaning. Typical uses include:
- temporary location for storage of an intermediate result of a computation,

especially one that is used several times
- accumulation of sum, product, or count
- loop control
- auxiliary pointer used to traverse a data structure

8 CMU/SEI-89-TR-30



- status flag (boolean)
- formal parameter
Thus these local symbols often have semantics rather like pronouns; that is,
they take on meaning from context, the meaning is easily understood within that
context, and there is no reason to understand them outside their context of use.
We did not distinguish semantically different (independently declared) uses in
this study.
Meaning cannot be derived from local context The meanings of symbols in the
remaining three categories must be learned, looked up, or derived. Call this the
learnable vocabulary of the program. In the programs studied, symbols of this
vocabulary are represented about twice as heavily in use as they are in the
complete vocabulary; in C and Lisp they account for about 24% of the
vocabulary and 47 to 49% of the uses and in Ada they account for 42% of the
vocabulary and 68% of the uses. The contribution of each of the categories to
the learnable vocabulary is interesting. Table 2 compares the distribution of
distinct instances (Vocab) to occurrences (Occur) of the symbols in the learnable
vocabulary.

Lisp C Ada
Vocab Occur Vocab Occur Vocab Occur

Count 3,660 76,777 1,734 70,760 2,537 101,404
Within the learnable vocabulary:

% Built-in 12.8% 60.2% 3.7% 75.% 4.5% 61.7%
%Common library 13.6% 9.4% 14.8% 9.1% 1.1% 4.4%
%System-specific 73.6% 30.4% 81.5% 15.2% 94.4% 33.9%

Table 2: Learnable Vocabulary

This follows the pattern of English, in which the core vocabulary (the thousand
most common words) accounts for 85% of the total text.

Expectedly, the built-in symbols are used much more heavily than any other group. Less
obviously, the common library symbols are more heavily used than the system-specific
symbols. Although these symbols make up but a small fraction of the Ada vocabulary,
their rate of usage approximates that of the built-in symbols of Lisp. The ratio of frequency
in the text to frequency in the vocabulary (from Table 2) is given in Table 3.

Lisp C Ada

Built-in 4.7 20.6 13.5
Common library 0.7 0.6 4.0
System-specific 0.4 0.2 0.4

Table 3: Uses per Symbol in Learnable Vocabulary

We also note the relatively low number of symbols relative to the number of lines. On
average Lisp programs have 2.3 symbols/line, C programs have 3.1 symbols/line, and
Ada programs have 2.2 symbols/line. This is not explained by comments, because
comments were removed before collecting the data. It is partly explained by blank lines
used for readability, by many lines consisting simply of a subroutine call with one
parameter, and, for C and Ada, by grouping symbols such as begin and end. This result is
consistent with Knuth's [Knuth 71] finding that lines of Fortran text were quite sparse and
that expressions were quite simple.

CMU/SEI-89-TR-30 9



2.3. Details for Lisp Programs
Table 4 presents the statistics for 8 Lisp programs amounting to some 68,000 lines of
code. The distribution of symbols among categories is shown for the vocabulary in Figure
3 and for overall usage in Figure 4. For Lisp, we defined the constructs of interest as
follows:

" Built-in symbols : any of the 827 functions, macros, variables, or types defined
in Steele's Common Lisp manual [Steele 84]

" Common library symbols: symbols neither defined as part of Common Lisp nor
provided by the program

" System-specific symbols:
- functions and macros defined by the program
- symbols declared in an export statement

" Literals: numbers, quoted strings, character constants, symbols preceded by a
quotation mark, keywords, and sharp macros

• Purely local symbols: local variables, special variables, and parameters

These programs were obtained from projects in the Carnegie Mellon University School of
Computer Science. They cover a variety of applications and system functions; some are
clients of others. They are:

• hemlock.lisp: the Hemlock text editor
• inter.lisp: graphics interactor package; uses kr.lisp and opal.lisp
• kr.lisp: frame-based knowledge representation system
" lapidary.lisp: object-oriented graphics editor; uses inter.lisp, opal,lisp, and

kr.lisp
* opal.lisp: object-based graphics system; uses kr.lisp
" ops.lisp: Common-Lisp implementation of OPS-5
• profile.lisp: Lisp performance profiling tools
* psgraph.lisp: generates PostScript diagrams of arbitrary graphs

Common Lisp is remarkable for its large body of built-in operators. These originated as
personal libraries for older Lisps. As time passed, some consensus emerged on the most
commonly used functions, and these became system libraries. At that time the Lisp
community developed a cultural expectation that a programmer would learn a system
library as part of learning the language. Common Lisp took the next step toward
unification and standardization and incorporated several hundred functions directly in the
language. Further, even though these functions are incorporated in the language, Lisp
programs remain heavy users of external libraries.

The pattern of usage of functions and variables is rather different for Lisp than for C and
Ada. Lisp emphasizes the use of functions rather than variables and much smaller local
scopes. The joint effect of these two factors is to generate relatively larger numbers of
functions which are known outside local scopes; in our statistics, this increases the usage
rate of system-specific symbols.

10 CMU/SEI-89-TR-30



hemlock.lisp inter.lisp kr.lisp lapidary.lisp
Size (lines) 40,539 5,197 2,419 11,400
Size (# lexical tokens) 89,851 13,063 3,928 23,959
Vocab (# distinct tokens) 10,034 2,121 516 2,221

N % N % N % N %
Distinct instances (vocabulary size)

Built-in symbols 410 4.1% 135 6.4% 134 26.0% 151 6.8%
Common library symbols 307 3.1% 97 4.6% 0 0.0% 107 4.8%
System-specific symbols 1,502 15.0% 190 9.0% 101 19.6% 293 13.2%
Literals 5,188 51.7% 1,232 58.1% 120 23.3% 1,071 48.2%
Purely local symbols 2,627 26.2% 467 22.0% 161 31.2% 599 27.0%

Occurrences in the program
Built-in symbols 27,524 30.6% 3,327 25.5% 1,566 39.9% 5,709 23.8%
Common library symbols 835 0.9% 1,299 9.9% 0 0.0% 4,132 17.2%
System-specific symbols 18,421 20.5% 828 6.3% 586 14.9% 977 4.1%
Literals 13,647 15.2% 3,646 27.9% 269 6.8% 7,301 30.5%
Purely local symbols 29,424 32.7% 3,963 30.3% 1,507 38.4% 5,840 24.4%

opal.lisp ops.Iisp profile.lisp psgraph.lisp
Size (lines) 3,594 4,457 317 492
Size (# lexical tokens) 9,323 13,488 551 1,318
Vocab (# distinct tokens) 1,087 1,525 190 263

N % N % N % N %
Distinct instances (vocabulary size)

Built-in symbols 154 14.2% 153 10.0% 79 41.6% 51 19.4%
Common library symbols 98 9.0% 0 0.0% 11 5.8% 0 0.0%
System-specific symbols 218 20.1% 382 25.0% 16 8.4% 6 2.3%
Literals 365 33.6% 266 17.4% 44 23.2% 131 49.8%
Purely local symbols 252 23.2% 724 47.5% 40 21.1% 75 28.5%

Occurrences in the program
Built-in symbols 2,239 24.0% 5,028 37.3% 262 47.5% 553 42.0%
Common library symbols 946 10.1% 0 0.0% 15 2.7% 0 0.0%
System-specific symbols 870 9.3% 1,598 11.8% 45 8.2% 17 1.3%
Literals 2,167 23.2% 806 6.0% 83 15.1% 187 14.2%
Purely local symbols 3,101 33.3% 6,056 44.9% 146 26.5% 561 42.6%

Table 4: Statistics on Lisp programs

CMU/SEI-89-TR-30 11
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2.4. Details for C Programs
Table 5 presents the statistics for 11 C programs amounting to about 48,000 lines of code.
The distribution of symbols among categories is shown for the vocabulary in Figure 5 and
for overall usage in Figure 6. For C, we defined the constructs of interest as follows:

• Built-in symbols: the 64 operators and keywords of the C language

• Common library symbols: C library functions, macros, variables, or types as
defined by all the .h files in the default directory for such definitions (/usr/include
and /usr/include/sys); there are 3,743 such symbols on our system

• System-specific symbols:
- user-defined functions, macros, variables, or types which are declared in

.h files which are part of the program
- any name explicitly mentioned in an extern statement
- procedures or functions defined in the program

• Literals: numbers and quoted strings
• Purely local symbols: everything else

These programs, obtained from projects in the CMU School of Computer Science, cover a
variety of applications and system functions. Except for the last four, they are largely self-
contained and have relatively few high-level exports. This distinguishes them from the
Lisp and Ada sets. They are:

• avietest.c: a collection of short test programs for testing the Mach operating
system

• chinese.c: an interactive intelligent tutoring system for Chinese
• dynload.c: a dynamic loader for C programs
* fscript.c: a graphical window system
• mololo.c: a cartographical database and mapping system; it is monolithic and

has no .h files
* rfr.c: a collection of very short performance test programs, standalone programs

without .h files
• sc.c: a frame-based knowledge representation system
• descartes.c: a research prototype user interface construction system
• airlog.c, ckbook.c, crostic.c: example clients that use descartes.c

Despite C's relatively small built-in vocabulary, over 75% of the uses of words in the
learnable vocabulary were of built-in words. The basic syntax of the language clearly
contributes to this effect, but in comparison to Lisp it does not appear to be offset as much
as one might expect by Lisp's large collection of built-in functions. Indeed, this may be the
reason Lisp's occurrence rate of 60% is close to Ada's of 62%.

The programming culture of C is very much tied up with unix shell programming as well.
We did not examine shell scripts; that would make an interesting extension of the study.
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avietest.c chinese.c dynload.c fscript.c
Size (lines) 4,187 5,248 1,328 9,867
Size (# lexical tokens) 14,401 12,249 357 43,590
Vocab (# distinct tokens) 513 1,395 425 1,930

N % N % N % N %
Distinct Instances (vocabulary size)

Built-in symbols 46 9.0% 57 4.1% 59 13.9% 61 3.2%
Common library symbols 45 8.8% 35 2.5% 43 10.1% 78 4.0%
System-specific symbols 58 11.3% 276 19.8% 50 11.8% 296 15.3%
Literals 167 32.6% 657 47.1% 105 24.7% 534 27.7%
Purely local symbols 197 38.4% 370 26.5% 168 39.5% 961 49.8%

Occurrences in the program
Built-in symbols 5,764 40.0% 3,166 25.8% 1,548 41.2% 16,402 37.6%
Common library symbols 1,413 9.8% 419 3.4% 292 7.8% 688 1.6%
System-specific symbols 299 2.1% 2,659 21.7% 185 4.9% 2,081 4.8%
Literals 687 4.8% 1,629 13.3% 247 6.6% 9,658 22.2%
Purely local symbols 6,238 43.3% 4,376 35.7% 1,485 39.5% 14,761 33.9%

mololo.c rfr.c sc.c descartes.c
Size (lines) 11,240 1,199 2,598 7,928
Size (# lexical tokens) 40,082 4,103 5,583 15,538
Vocab (# distinct tokens) 1,376 341 516 1,377

N % N % N % N %
Distinct Instances (vocabulary size)

Built-in symbols 45 3.3% 48 14.1% 46 8.9% 53 3.8%
Common library symbols 24 1.7% 31 9.1% 15 2.9% 50 3.6%
System-specific symbols 173 12.6% 19 5.6% 151 29.3% 364 26.4%
Literals 492 35.8% 88 25.8% 105 20.3% 481 34.9%
Purely local symbols 642 46.7% 155 45.5% 199 38.6% 429 31.2%

Occurrences in the program
Built-in symbols 15,304 38.2% 1,764 43.0% 1,788 32.0% 4,692 30.2%
Common library symbols 1,459 3.6% 214 5.2% 145 2.6% 337 2.2%
System-specific symbols 664 1.7% 57 1.4% 1,067 19.1% 2,758 17.8%
Literals 5,410 13.5% 602 14.7% 390 7.0% 1,021 6.6%
Purely local symbols 17,245 43.0% 1,466 35.7% 2,193 39.3% 6,730 43.3%

airlog.c ckbook.c crostic.c
Size (lines) 2,344 926 1,126
Size (# lexical tokens) 5,278 2,574 2,694
Vocab (# distinct tokens) 563 222 403

N % N % N %
Distinct Instances (vocabulary size)

Built-in symbols 35 6.2% 31 14.0% 39 9.7%
Common library symbols 68 12.1% 31 14.0% 64 15.9%
System-specific symbols 102 18.1% 25 11.3% 45 11.2%
Literals 220 39.1% 46 20.7% 132 32.8%
Purely local symbols 138 24.5% 89 40.1% 123 30.5%

Occurrences in the program
Built-in symbols 1,571 29.8% 761 29.6% 786 29.2%
Common library symbols 632 12.0% 401 15.6% 429 15.9%
System-specific symbols 622 11.8% 141 5.5% 252 9.4%
Literals 581 11.0% 284 11.0% 269 10.0%
Purely local symbols 1,872 35.5% 987 38.3% 958 35.6%

Table 5: Statistics on C Programs
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2.5. Details for Ada Programs
Table 6 presents the statistics for 12 Ada programs amounting to nearly 68,000 lines of
code. The distribution of symbols among categories is shown for the vocabulary in Figure
7 and for overall usage in Figure 8. For Ada, we defined the constructs of interest as
follows:

* Built-in symbols: the 147 reserved words, attributes, operators, predefined
types, exceptions, and pragmas of the Ada language

* Common library symbols: any symbol defined in one of the following packages:
Text_10, System, Calendar, string_pkg, stringscanner, and stringlists

* System-specific symbols: symbols defined in the specification part of a
package, except for formal parameters to subroutines

* Literals: numbers and quoted strings
• Purely local symbols: other symbols, primarily local variables, and a few user

types
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The programs, obtained from the Ada Repository [Conn 87], cover a variety of applications
and system functions. They are:

" abstractions.ada: a collection of abstract data structures (binary trees, etc)
" ada-sql.ada: files associated with the Standard Ada DBMS Interface (Ada/SQL)
* alsptypes.ada: an Al data types package (list processing and the like)
" expert.ada: a backward-chaining expert system
a adafair85.ada: a collection of testbench programs for the Ada Fair 1985
* benchada.ada: a collection of performance benchmarks
* benchdhry.ada: an Ada version of the Dhrystone testbench
* benhtools.ada: a short compilation testbench
* benmath.ada: a tiny mathematical benchmark program
* bgt.ada: a collection of performance/compilation benchmarks
* piwga5l.ada: timing tools for performance measurement of the benchmarks
* piwga831.ada: a different version of the timing tools

The most striking difference between the Ada programs and the C programs is Ada's much
lower usage rate for purely local symbols: 24% as against C's 39%. This is coupled to a
higher usage rate for system-specific symbols: 23% for Ada but only 7% for C. The cause
of the difference appears to be the extensive structuring of Ada programs via explicit
package specifications. This is accompanied by a distribution of learnable vocabulary in
which just under 5% of the symbols (the built-in vocabulary) account for 62% of the text
(much like Lisp) and 94% of the symbols (the system-specific vocabulary) account for 34%
of the text (a comparable rate of use per symbol as Lisp). This raises the following
questions:

" What support should be made available for programmers to learn and
understand the increased vocabulary of system-specific symbols?

" Would C programs that have been structured according to the discipline
supported by Ada have statistics more like the C set or the Ada set?

* Should all the names in the Ada specifications really be exported?
• If this indicates a trend for future software, what tools will be required to help

programmers cope with the system-specific vocabulary?

The Ada programs used substantially fewer library entries than did the Lisp and C
programs. Two possible reasons come to mind:

* Ada is a relatively young language, and the community has not yet had time to
reach consensus on what the shared libraries should be and to develop those
libraries.

* The programs were obtained from a public repository, and the authors may
have felt inhibited from assuming very much about the environment in which
the code might subsequently run. This effect is, of course, magnified by the
former.

The current emphasis on software reuse is especially strong in the Ada community. It will
be interesting to see how any development of a component market affects the effective
vocabulary of working programmers.

Because of the difference in application domains, it would be more likely for system data
dictionaries to be available for the Ada programs than for the other programs. If data
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dictionaries had been available, it would have been useful to compare them to the list of
symbols classified as system-specific vocabulary. That would be a useful extension of this
study.

abstractions.ada ada-sql.ada alsptypes.ada expert.ada
Size (lines) 1,781 19,648 6,278 1,048
Size (# lexical tokens) 25,883 51,626 12,203 2,127
Vocab (# distinct tokens) 1,484 2,066 603 22

N % N % N % N %
Distinct Instances (vocabulary size)

Built-in symbols 85 5.7% 87 4.2% 65 10.8% 63 28.0%
Common library symbols 20 1.3% 21 1.0% 10 1.7% 9 4.0%
System-specific symbols 658 44.3% 842 40.8% 140 23.2% 29 12.9%
Literals 227 15.3% 109 5.3% 130 21.6% 37 16.4%
Purely local symbols 494 33.3% 1,007 48.7% 258 42.8% 87 38.7%

Occurrences in the program
Built-in symbols 11,941 46.1% 21,544 41.7% 4,161 34.1% 887 41.7%
Common library symbols 247 1.0% 713 1.4% 781 6.4% 78 3.7%
System-specific symbols 7,117 27.5% 13,349 25.9% 3,342 27.4% 270 12.7%
Literals 1,050 4.1% 3,546 6.9% 408 3.3% 154 7.2%
Purely local symbols 5,528 21.4% 12,474 24.2% 3.511 28.8% 738 34.7%

adafair85.ada benchada.ada benchdhry.ada benhtools.ada
Size (lines) 8,553 2,330 571 353
Size (# lexical tokens) 18,251 6,534 1,224 745
Vocab (# distinct tokens) 1,167 405 201 190

N % N % N % N %
Distinct Instances (vocabulary size)

Built-in symbols 103 8.8% 67 16.5% 53 26.4% 49 25.8%
Common library symbols 14 1.2% 8 2.0% 5 2.5% 7 3.7%
System-specific symbols 560 48.0% 57 14.1% 36 17.9% 5 2.6%
Literals 374 32.0% 106 26.2% 38 18.9% 54 28.4%
Purely local symbols 116 9.9% 167 41.2% 69 34.3% 75 39 5%

Occurrences in the program
Built-in symbols 7,690 42.1% 2,406 36.8% 472 38.6% 242 32.5%
Common library symbols 1,459 8.0% 371 5.7% 60 4.9% 67 9.0%
System-specific symbols 6,868 37.6% 398 6.1% 213 17.4% 19 2.6%
Literals 1,622 8.9% 1,047 16.0% 120 9.8% 82 11 0%
Purely local symbols 612 3.4% 2,312 35.4% 59 29.3% 335 45.0%

benmath.ada bgt.ada piwga5l.ada piwga83l.ada
Size (lines) 24 2,436 4,701 4,189
Size (# lexical tokens) 137 6,601 12,502 11,318
Vocab (# distinct tokens) 19 436 918 862

N % N % N % N %
Distinct Instances (vocabulary size)

Built-in symbols 9 47.4% 63 14.4% 80 8 7% 80 9 3%
Common library symbols 0 0.0%," 8 1.8% 12 1.3% 12 1 4%
System-specific symbols 7 36.8% 87 20.0% 145 15.8% 140 16.2%
Literals 2 10.5% 155 35.6% 198 21.6% 181 21.0%
Purely local symbols 1 5.3% 123 28.2% 483 52.6% 449 52.1%

Occurrences in the program
Built-in symbols 91 66.4% 3,059 46.3% 5,260 42.1% 4,806 42.5%
Common library symbols 0 0.0% 206 3.1% 279 2.2% 231 2.0%
System-specific symbols 22 16.1% 843 12.8% 1,037 8.3% 875 7 7 %
Literals 12 8.8% 868 13.1% 1,407 11.3% 1,284 11 30,6
Purely local symbols 12 8.8% 1,625 24.6% 4,519 36.1% 4,122 36.4%

Table 6: Statistics on Ada Programs
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01

3. Implications for Education and Practice

0 Both general studies of expertise and our data on particular programs indicate that a large
body of facts is important to a working professional. We turn now to the question of how
software engineers should acquire this knowledge, first as students and subsequently as
working professionals.

Generally speaking, there are three ways to obtain a piece of information you need: you
can remember it, you can look it up, or you can derive it. Each of these incurs costs of
three kinds (over and above the cost of developing the knowledge itself): general
overhead to the profession for creating the infrastructure that organizes the knowledge,
initial cost for each professional to learn hrw to use the knowledge, and the direct cost
each time the knowledge is used in practice. These costs have different distributions:

0 Infrastructure Initial Learning Cost of Use
Cost Cost in Practice

Memory low high low
Reference high low medium

* Derivation medium-high medium high

Memorization requires a relatively large initial investment in learning the material, which is
then available for instant use. Reference materials require a large investment by the
profession for developing both the organization and the content; each individual student
must then learn how to use the reference materials and take the time to do so as a working

0 professional. Deriving information may involve ad hoc creation from scratch, it may involve
instantiation of a formal model, or it may involve inferring meaning from other available
information; to the extent that formal models are available their formulation requires a
substantial initial investment. Students first learn the models, then apply them in practice;
since each new application requires the model to be applied anew, the cost in use may be
quite high.

Each professional's allocation of effort among these alternatives is driven by what he or
she has already learned, by habits developed during that education, and by the reference
materials available. At present, general-purpose reference material for software is scarce,
though documentation for specific computer systems, programming languages, and
applications may be quite extensive. Even when extensive documentation is available,
however, it may be under-used because it is poorly indexed or because software
developers have learned to prefer fresh derivation to use of existing solutions.

Our concern here is with program vocabulary-that is, with the symbols of a program and
their meaning. Access to information about these symbols is primarily through memory
and through reference materials, though inference of meaning plays a significant role for
local variables. Accordingly, we examine ways to improve access to the programming
vocabulary with each of these mechanisms: memory for vocabulary acquisition, reference
materials and tools for access, and derivation of meaning from context. We also address
the implications for programming productivity.
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3.1. Memory for Vocabulary Acquisition

3.1.1 How Vocabulary is Learned
For natural language, there is a strong correlation between vocabulary knowledge and
reading comprehension. Both are in turn correlated with general background knowledge
of the subject matter of the text. This background knowledge is an organized, interrelated
structure, not an unstructured collection of facts; knowing where a word fits into this
structure is an essential part of understanding it. It follows that simple drill in vocabulary
does not contribute much to reading comprehension. Vocabulary instruction that
emphasizes how new words fit into prior knowledge is useful, as is vocabulary instruction
that presents new words in the context of a story. Further, vocabulary instruction can be
made more effective by requiring students to manipulate words in varied ways, to
encounter new words frequently while they are being taught, and to look for uses of the
new words outside the classroom. Wide reading leads to expanded vocabulary, which in
turn leads to better reading comprehension [Nagy 87, Beck 87].

3.1.2 Recommendations: Read a Good Program, Write a Good
Program

Elementary software engineering education emphasizes problem solving with the use of a
programming language, design of algorithms and data structures, and specification and
analysis of programs. There is considerable emphasis on the synthesis of new programs,
some emphasis on useful design elements, and very little emphasis on the libraries and
system calls available to the programmer. It is rare indeed for students to be expected to
read significant passages of code that they did not themselves write. The theme is
reasoning and design technique, not specific detailed knowledge of many different
programs.

Our data on real programs of significant size indicates that professional software
developers need substantial familiarity with the vocabulary of identifiers that appear in
programs. The Ada data, in particular, suggests that a very small built-in vocabulary
accounts for a large fraction of the program text and indeed of the text whose meaning is
not obvious from context. Natural language vocabulary studies suggest that software
developers should, as students, receive systematic education in this vocabulary.

Specifically, we recommend:
• Reading well-written programs that illustrate the concepts being taught and the

supporting libraries and system calls in applications that the students can
understand. (This would probably benefit other aspects of the education as
well.)

* Studying the meanings of the external symbols of these programs.
* Using the system reference manuals and library documentation as dictionaries

to support learning the meanings of the symbols, but not as a substitute for
actual retention of meanings for the important symbols.

• Reinforcing this reading by expecting the correct use of the libraries and system
calls in programming assignments.
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3.2. Reference Materials and Tools for Access

3.2.1 The Role of Reference Materials
Not all material can or should be memorized; the choice among memory, reference, and
derivation depends on the amount of use a oiece of information will receive as well as on
the cost of developing and learning it. Thus there will always be a use for reference
materials. As noted above, most engineering disciplines rely heavily on such materials,
especially in the form of handbooks. These handbooks organize large bodies of
information into a form that is genuinely accessible to the practicing engineer. This
accessibility depends not only on the structure of the material in the handbook, but also on
the incorporation of the conceptual structure in the early education of the engineer.

* In the case of the program vocabulary, reference material must help support both
reading-the recognition vocabulary-and writing-the generation vocabulary. (These
correspond to the third and fourth stages of language acquisition described in Section
1.3.1.) Each needs its own support, and the support should be on-line.

3.2.2 Recognition Vocabulary Supports Maintenance
The simpler of these two problems is support for the reading vocabulary. When reading a
program it is often enough to know the approximate meaning of a symbol; it is frequently
not necessary to know special restrictions on use, error conditions, etc. Fortunately, this is
the aspect of the vocabulary task most important for software maintainers. Even when
tracking down a bug, it is necessary to read portions of the program to establish context
before examining precise usage of the constructs that may be implicated in the bug.

Prototype tools already exist to help readers of natural language prose; these tools allow
the reader to point at a word and ask for help. The response may be simple delivery of a
dictionary definition; more helpfully, the response may depend on the context in which the
word is used and thus provide an explanation appropriate to the content.

* Similar tools have also been built for software, for example in Smalltalk [Goldberg 80] and
Cedar [Teitelman 84]. They allow such operations as pointing at a built-in symbol to get
standard "help" text or pointing at a user-defined symbol to see the definition of that
symbol. It should not be difficult to fetch elements of a data dictionary in the same way.
Note that scope rules and overloading introduce subtleties in the implementation of these
tools.

The ability to look up the definition of a symbol quickly does not eliminate the need to
know the meanings of a core vocabulary without recourse to tools. It can, however, help
with the learning of the core vocabulary and support the use of symbols too rare to
deserve a place in the core vocabulary.

3.2.3 Generation Vocabulary is Needed for Development
Writing is quite a bit harder than reading. First, the reader is presented with a word to
recognize, whereas the writer must generate an appropriate word for the intended
meaning. Second, the reader need only recognize a meaning in context, whereas the
writer must select a word that not only carries the intended meaning but also satisfies
restrictions on the use of the word and avoids possible ambiguities. This problem is even
more difficult in software development where, as in mathematics, a symbol may have quite
detailed or complex restrictions on use.
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There is by now a quite large body of code stored in libraries or otherwise available for
reuse. In practice, the reuse of this code is inhibited by the programmer's difficulty in
discovering what is there (generation of vocabulary) and in understanding the code's
restriction on use (test of applicability). There may, for example, be mismatches between
the library representation and the program's, between the range of values supported by
the library and that needed by the program, and so on. The indexing and organization
tasks that are already on the agenda for software reuse will help establish a basis for tools
to help with the generation vocabulary. In addition, development of libraries is not unlike
the invention of vocabulary: it is difficult to anticipate what vocabulary will actually turn out
to be useful.

3.2.4. Recommendations: Know Where (and How) to Look It Up
The data reported here shows that many programs have a sulstantial vocabulary of
system-specific definitions that both developers and maintainers must know. Although the
most common of these should be mastered by anyone who will work extensively with the
system, reference tools could help with the remainder. Specifically, we recommend:

" Expanaing the development of readers' assistant tools for accessing a system's
data dictionary and for looking up definitions of user-defined symbols.

" Augmenting the definition-retrieval tools to explain syntax and usage.
" Continuing the work on indexing and retrieval for software libraries, with

emphasis on techniques that will work for libraries with thousands or tens of
thousands of entries.

" Teaching the conceptual structure of the discipline assumed by these tools as
part of early computer science education.

3.3. Derivation of Meaning from Context
Unlike natural language vocabulary, where the meaning of a word can often be inferred
from its spelling and a general knowledge of similar words of the language, programming
language vocabulary is usually dominated by words with arbitrary spelling. This is neither
necessary nor desirable in the long run. However, programmers should know two ways of
inferring meaning from context.

First, naming conventions are often used to indicate the meaning of an identifier.
Mnemonic naming is the most-cited example of this, but perhaps more useful are the
systematic inflections of a root name to indicate common predicates and operations, such
as the -P suffix in Lisp to indicate a predicate. Conventions about parameter order can
also be helpful.

Second, 25-40% of identifiers in programs are purely local. They are used idiomatically
as loop counters, as temporary variables, list-tracers, formal parameters, and so on.
There is no reason to remember the meanings of these variables for any longer than it
takes to read the page of program text on which they appear; they have the same
intellectual standing as pronouns. Programmers should learn these patterns as an aid to
recognizing the meanings of these variables from context.

3.3.1. Recommendations: When in Rome, Talk As the Romans Do
Contextual understanding depends on shared conventions between readers and writers.
A first step is to make these explicit and teach them. Specifically, we recommend:

* Identifying common idioms for use of local variables and cataloging thm.
• Extending the tools for reading programs to understand these idiomatic usages.
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3.4. Implications for Productivity
Productivity of software developers is a matter of national concern. The lessons from
studies of expertise indicate that practitioners with more chunks of factual knowledge are
more proficient. We conjecture that there is a correlation between programming
productivity and fluency in the basic vocabulary of the software, both through
memorization and through facile use of reference tools.

3.4.1. Recommendations: Try It, You'll Like It
The proposition that explicit efforts to learn the vocabulary of a program pay off in
productivity should be tested in both development and maintenance environments.
Specifically we recommend three experiments with the following general character:

* As a group of maintainers takes over a piece of software, convert some of the
initial training of part of the group to carefully designed exercises in acquiring
the vocabulary of the software system. Then compare the effectiveness of these
maintainers with the effectiveness of maintainers trained in the usual way.

* Provide a set of program explanation tools to a group of software developers,
measuring their effectiveness before and after adoption of these tools.

• Compare the rate at which students learn to program with and without
deliberate attempts to expand their programming vocabularies by reading good
programs, studying libraries, and using existing libraries in programming
exercises.
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