Technical Report

CMU/SEI-89-TR-022
ESD-TR-89-030

Real-Time Software Engineering in
Ada;
Observations and Guidelines

Mark W. Borger
Mark H. Klein
Robert A. Veltre

September 1989



Technical Report

CMU/SEI-89-TR-022
ESD-TR-89-030
September 1989

Real-Time Software Engineering in

Ada:
Observations and Guidelines

Mark W. Borger

Mark H. Klein

Robert A. Veltre

Real-Time Embedded Systems Testbed (REST) Project

Unlimited distribution subject to the copyright.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213



This report was prepared for the SEI Joint Program Office HQ ESC/AXS
5 Eglin Street

Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is
published in the interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF, SEI Joint Program Office
This work is sponsored by the U.S. Department of Defense.
Copyright 1989 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is granted, provided the copyright and
\'‘No Warranty\' statements are included with all reproductions and derivative works. Requests for permission to reproduce this document or to

prepare derivative works of this document for external and commercial use should be addressed to the SEI Licensing Agent.
NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN \'AS-IS\' BASIS.
CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTIBILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with Carnegie Mellon University for the
operation of the Software Engineering Institute, a federally funded research and development center. The Government of the United States has a
royalty-free government-purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit

others to do so, for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc. / 800 Vinial Street / Pittsburgh, PA 15212. Phone: 1-800-685-6510. FAX: (412)
321-2994. RAI also maintains a World Wide Web home page at http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For information on ordering, please contact

NTIS directly: National Technical Information Service / U.S. Department of Commerce / Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides acess to and transfer of scientific and
technical information for DoD personnel, DoD contractors and potential con tractors, and other U.S. Government agency personnel and their
contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information Center / 8725 John J. Kingman Road / Suite 0944 /

Ft. Belvoir, VA 22060-6218. Phone: 1-800-225-3842 or 703-767-8222.



Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Real-Time Software in Ada



Real-Time Software Engineering in Ada:
Observations and Guidelines

Abstract: Two important aspects of developing a real-time system are controlling
devices and managing concurrency. In this report, we present several techniques
for controlling devices with Ada and several Ada tasking paradigms for managing
concurrency. The material presented in this report is taken from our experiences
in developing a real-time embedded system in Ada, and we use examples from
this system to illustrate the various methods we present. We begin by describing
our experiences using Ada to control devices. Specifically, we identify issues re-
lated to accessing device registers and handling interrupts, and present tech-
niques for dealing with such issues. We then recount our experiences using Ada
to manage concurrency. Specifically, we present coding paradigms for im-
plementing periodicity and constructing synchronization mechanisms. We il-
lustrate analytical methods for determining the schedulability of a task set. We
then discuss the effect of aperiodic processing requirements on the schedulability
of a task set.

1. Introduction

A fundamental goal of the Real-Time Embedded Systems Testbed (REST) Project at the
SEl is to examine Ada technology from a real-time systems perspective. Our basic strategy
has been to define a representative real-time embedded problem, develop the system in
Ada, and make observations along the way. This strategy has resulted in a real-time Ada
artifact that has provided us with many insights into real-time programming issues and the
state of Ada technology.

Our development effort was atypical for various reasons. First, the purpose of the effort was
to experiment with real-time systems, not to deliver a real-time system. Second, certain Ada
features are sometimes not used to avoid the risks associated with them. We chose instead
to exercise these features to explore their efficacy in developing real-time systems. For
example, we believe the use of Ada tasking separates this effort from other early real-time
Ada efforts. Finally, a close association with the Advanced Real-Time Technology (ART)
Project within Carnegie Mellon University’s School of Computer Science and with the Real-
Time Scheduling in Ada (RTSIA) Project at the SEI has allowed us to use the latest in
analytical methods whenever possible.

This report! presents a set of observations and guidelines drawn from our experiences in
developing the Ada artifact. Specific emphases are placed on controlling devices, managing
concurrency through the use of Ada tasking, and applying analytical methods to predict and

1The following reviewers provided many valuable comments and suggestions: Neal Altman, Nancy Belz, Rich
D’Ippolito, Pat Donohoe, Ken Fowler, Michael Gagliardi, John Goodenough, Tim McCardle, Ragunathan Raj-
kumar, Lui Sha, Roger Van Scoy, and Nelson Weiderman.
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understand the runtime behavior of Ada software in a deadline-driven environment. Three
classes of tasks are introduced: periodics, servers, and aperiodics. Analytical methods ap-
plicable to periodics and servers are also presented. An extended example drawn from the
artifact is used to illustrate the various analytical methods. The conclusion summarizes the
major lessons we have learned.
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2. Controlling Devices Using Ada

A common characteristic of real-time systems is a strong reliance on time-critical inter-
actions (e.g., input and output) with a set of potentially heterogeneous devices. To control
devices through application code, one must be able to:

1. Map data types efficiently and accurately onto an underlying machine’s ar-
chitecture to access I/O memory (e.g., device registers).

2. Enable, disable, and/or handle device interrupts.

The following subsections discuss several of our experiences and offer recommendations
about how to use the Ada programming language to implement these two types of required
capabilities. Although we realize that using assembly language to control devices is always
a viable alternative to using Ada, our intent is to illustrate how Ada could be used to achieve
the same functionality.

2.1. Accessing Device Registers

To control a hardware device, you must be able to access its register set. Ada provides
representation clauses that allow you to specify the layout of data types to represent device
registers. In particular, Ada representation clauses allow you to specify the storage layout of
a record type, including the alignment, order, storage location, bit positions within the
storage location, and size of the components. The record representation clause, in com-
bination with a length clause, allows you to specify precisely defined data structures for in-
terfacing with hardware devices. For example, Figure 2-1 demonstrates the use of a record
representation clause, length clause, and address clause to define the structure, size, and
memory location of a receiver buffer register for a serial communications device.

The length clause used in Figure 2-1 guarantees that exactly 16 bits will be used for
representing the buffer register. Additionally, this code segment defines RX_Buffer, a vari-
able to store the contents of the device’s receiver buffer register. An Ada address clause
immediately follows the declaration of the RX_Buffer variable in Figure 2-1. This address
clause specifies an address in memory to which the RX_Buffer variable is to be mapped. In
this example, Memory_Address is an instantiation of Unchecked_Conversion that converts
an unsigned word into an address.

Accessing device registers using Ada involves issues other than just correct data represen-
tation. The following list, which is summarized from our experiences in developing an ap-
plication for an inertial navigation system (INS) simulator [9, 8], contains some of the most
important observations we made when using Ada to read and write device registers.

1. If the memory location of a device register is known at compile time then the
example code shown in Figure 2-1 is applicable. However, if the device
register address is not known until runtime (e.g., it is returned from a kernel
service call), a different approach must be used to access the register. In

CMU/SE-89-TR-22 3



type Byte is range 0..16#FF#;
type Line_Nunber_Type is range 0..16#3#;

type Receiver_Buffer is record

Recei ve_Char . Byte;
Recei ver _Li ne_Nurber : Line_Nunber_Type;
Parity_Error : BOOLEAN;
Fram ng_Error . BOOLEAN
Overrun_Error . BOCOLEAN,
Data_Valid . BOOLEAN,

end record;

for Receiver Buffer use record at nod 2;
Recei ve_Char at 0 range 0..7;
Recei ver _Line_Nunmber at 0 range 8..9;
Parity_Error at 0 range 12..12;
Fram ng_Error at 0 range 13..13;
Overrun_Error at 0 range 14.. 14,
Data_Valid at 0 range 15..15;

end record;
for Receiver_Buffer’SlZE use 16;

RX _Buf fer : Receiver_Buffer;
for RX Buffer use at Menory_Address(16#00FF_0000#) ;

Figure 2-1: Receiver Buffer Representation Clause

such a case, an Ada subprogram (or a declare block) with local variables,
whose memory locations are specified via dynamic address clauses, provides
an effective way of accessing data stored in particular locations of memory.
The example code shown in Figure 2-2 illustrates this technique, using a func-
tion and a dynamic address clause for the RX_Buffer variable shown earlier in
Figure 2-1. In Figure 2-2, the address of the receiver buffer register is passed
as a parameter and is used in a dynamic address clause to map the local
variable RX_Buffer to the memory location corresponding to the device’s data
register. An alternative approach to using a dynamic address clause is to use
an access variable (i.e., a pointer to an object of type Receiver_Buffer) and
assign the pointer a value (address) at runtime.?

2. Some hardware devices have registers that serve a dual (read/write) purpose.
For such registers, different register layouts are used for reading and writing.
These special dual-purpose device registers can be modeled in Ada as two
different device registers. Using the approach outlined in Figure 2-1, you can
define two local variables and use two address clauses to specify the same
memory location to represent the read and write view of the register for read-

2This approach assumes that you can perform an unchecked conversion from an address to the appropriate
access type.
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ing and writing the register's contents.3 One alternative to this overlaying of
variables with different types is to use one additional variable declared as an
unsigned integer type (having the same number of bits as the device register)
through which I/O operations can be performed. However, using this ap-
proach introduces the need to do unchecked conversions from the unsigned
type to the read register type (for reading) and from the write register type to
the unsigned type (for writing) to access the device register.

3. Some hardware architectures restrict the kinds of machine instructions that
can be used for accessing device registers. For example, some devices are
only word addressable and will produce erroneous results if accessed through
bit field instructions [1]. You should be aware of any such device access
restrictions and inspect your generated code to check for any such instructions
that might violate those restrictions.

4. You should be aware of any global code optimizations that might eliminate
important assignment statements being used to control a device. For ex-
ample, many hardware devices require explicit initialization sequences that
can involve a sequence of assignments to the same device control register.
To a global optimizer, some of these assignment statements may appear to be
redundant (through variable definition or use analysis) and therefore would be
eliminated. But eliminating such assignment statements can effect the opera-
tional correctness of your code.

function Get_Character (RX_Buffer_Address : in ADDRESS)
return CHARACTER i s

- - Map variable RX_Buffer to serial I/O device’s receive buffer

- - using a dynamic address clause.

Read_Character : CHARACTER := ASCl|. NUL;

RX_Buf f er . Receiver Buffer;
for RX_Buffer use at RX_Buffer_Address;
begin

if RX_Buffer.Data_Valid then
--  Assumes an 8 bit CHARACTER type representation; otherwise
--  apotential data size mismatch could occur for the conversion.
Read_Character :=

Convert _To_Char (RX_Buffer. Recei ve_Char);
end if;
return Read_Character;
end Get Character;

Figure 2-2: Using a Dynamic Address Clause to
Access a Device Register

3In effect, this approach overlays two separate data objects onto the same memory address. Although the
Ada Language Reference Manual (LRM) [20] states that overlaying objects is erroneous, some Ada implemen-
tations do support it. Here, erroneous means that the runtime behavior of this code cannot be guaranteed across
Ada implementations.
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2.2. Interrupt Handling

To handle hardware interrupts in application software, Ada defines task interrupt entries,
which enable binding, via an address clause, of a hardware interrupt to a task entry. The
semantics of the interrupt handling model described in the Ada Language Reference Manual
(LRM) [20] state that an interrupt acts as an entry call made from a conceptual hardware
task whose priority is higher than the main program and any other user-defined task.
However, the LRM does not specify the type of entry call which must be made to interrupt
entries, but rather gives implementors the freedom to implement any calling mechanism
(e.g., normal entry call, conditional entry call) provided that it preserves the above seman-
tics. Figure 2-3 illustrates a generic interrupt handler task written in the spirit of Ada that
builds on the example code shown in Figures 2-1 and 2-2.

task Keyboard_Watcher is

entry Character_Entered,;

for Character_Entered use at RX_Interrupt_Address;
end Keyboar d_Wat cher;

task body Keyboard Watcher is
My_Character : CHARACTER,
begin
| oop
accept Character_Entered do
My_Character := Get_Character (RX_Buffer_Address);
Place_Character_In_Buffer;
Reset_RX_Interrupt;
end Character_Entered;
end | oop;
end Keyboar d_Wat cher;

Figure 2-3: Interrupt Handling Ada Task

In this example, the Keyboard_Watcher task has an entry named Character_Entered, which
is bound to the receiver interrupt of a serial I/O device. When a receiver interrupt occurs, an
entry call to Character_Entered will be made. Within the accept body, a call to the
Get_Character function of Figure 2-2 is made to fetch a character from the receiver buffer
register.  Since the language definition does not specify how the entry call to
Character_Entered is to be implemented, Ada implementations can vary in how they
achieve this call.

It has been our experience that the techniques employed for implementing Ada interrupt
entry calls vary along at least two dimensions:

1. When the entry call is made relative to the time of the interrupt event. In
general, the interrupt entry call can be made immediately upon receipt of the
interrupt or it can be deferred.

2. How the entry call is achieved, i.e., what kind of synchronization mechanism is
used. For example, the interrupt entry call can be either a normal, conditional,
or timed entry call.
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Some of the Ada interrupt handling implementation schemes we have encountered are sum-
marized below.

1. Interrupt Service Routine (ISR): The ISR interrupt handling scheme involves
using an Ada procedure for handling hardware interrupts. Under this ap-
proach, the address of an Ada subprogram (ISR) is stored as the interrupt
vector for the hardware device. When the device interrupts, the interrupt han-
dling logic of the CPU sets the program counter to the starting address of the
ISR, and thus effects a subroutine call to the ISR. Typically, this approach has
the least amount of runtime overhead, but this minimal overhead may come at
the expense of flexibility within the ISR procedure. For example, common
restrictions on ISR code include: no task entry calls, no calls to Text_IO sub-
programs, and limited access to the user’'s data space. Of the Ada interrupt
handling models discussed in this paper, the ISR approach is the only one that
isn't patterned after the LRM model in some way, since an Ada task is not
used to handle the device interrupt. Normally, however, the ISR code can call
an implementation-dependent signaling primitive to synchronize with applica-
tion tasks, and therefore achieve the effect of an Ada interrupt task. Note that
this task synchronization is not immediate, but rather occurs from within the
runtime kernel to the application task some time after the interrupt has been
completely handled.

2. Deferred Runtime Signal Mechanism: The deferred runtime signal approach
implements the semantics of an Ada interrupt entry by using a runtime signal
primitive, rather than a full Ada rendezvous, to effect a call to the interrupt han-
dling task. When an interrupt occurs under this scheme, a runtime system
ISR posts a signal and completes its execution. The runtime system sub-
sequently maps that signal into a call to the interrupt task’s entry. The main
advantage of this approach is the minimal runtime overhead needed to service
the interrupt. Notice that in this model, servicing the interrupt does not include
executing the interrupt entry’s accept body. Generally, this model does not
limit the operations that can be performed in the interrupt task. However, task-
ing optimizations often can be performed when certain guidelines are followed
within the task body.

3. Ada Rendezvous Mechanism: This approach is suggested in the LRM and
uses an Ada rendezvous to call the interrupt handling task. When an interrupt
occurs, the runtime makes an Ada entry call to the interrupt task as part of
dispatching the interrupt. Since a normal Ada entry call can potentially block,
some Ada implementations use a conditional entry call for calling interrupt task
entries. For example, the TeleGen2 3.23 VAX/VMS to MC68020 cross-
compiler provides the user with a capability for defining a "failure" task to be
called if the interrupt task cannot immediately accept the interrupt entry call.
The main advantages of this approach are portability and the lack of any
restrictions on code in the interrupt task.

Nevertheless, because this scheme uses an Ada rendezvous for synchroniz-
ing with the interrupt task, it has more runtime overhead than the other ap-
proaches. However, optimized interrupt entry calls are possible when the ap-
plication task code follows certain coding restrictions. For example, the VADS
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5.7 Sun/UNIX to MC68020 cross-compiler has a passive task scheme that
implements the semantics of an Ada interrupt entry by using compiler op-
timizations that treat the code inside the accept body of the interrupt entry as a
subprogram protected by a semaphore.

2.3. Recommendations

Although representation clauses are part of the language definition, only recently has the
Ada Compiler Validation Capability (ACVC) (suite 1.10) begun to test Ada implementations
for compliance to Chapter 13 of the Ada Language Reference Manual. Unfortunately, most
of these added ACVC tests check to ensure that syntactically illegal clauses are rejected;
only a few of the tests actually check for the presence of representation clause functionality.
As a consequence of this inadequate testing in the ACVC suite, the extent and reliability to
which compilers implement the features defined in Chapter 13 of the LRM varies con-
siderably. Our recommendations for controlling devices in Ada are summarized below.

1. Determine representation specification restrictions. Determine if your
compiler provides sufficient support to handle the range of external interface
specifications expected for your application. In particular, determine whether
or not representation clauses are supported, and if so, what restrictions on
their use are dictated by your Ada implementation.# For instance, if your Ada
implementation does not support representation specifications at the bit level,
then writing device controlling code in Ada will be difficult. Also, know if your
Ada implementation imposes any restrictions with respect to aligning data
records in memory. Some hardware devices are strictly odd- or even-word
addressable; furthermore, across various devices, register sizes often vary be-
tween 8, 16, or 32 bits.

2. Verify data structure representation. Verify that your representation
clauses are implemented as expected. Having a technique (e.g., inspecting
the generated code) for verifying that your data structures are being
represented correctly is essential. Know how your Ada implementation’s
scheme for numbering bytes, words, and long words maps onto the target’s
data organization in memory. Also, an important implementation detail is
whether your Ada compiler uses a left-to-right or right-to-left bit field ordering
scheme for its record representation clauses. Additionally, unsigned types
can be very important in developing code to control a hardware device. The
critical issue here is to ensure that an exact number of bits will be used for
mapping onto a device register defined in the 1/0O address space.

3. Assess the efficiency of generated code. Besides verifying the correctness
of the generated code, consider its efficiency. For example, does the code
generator use the least expensive instructions for accessing bit level com-
ponents of device register records?

“The Ada Language Reference Manual requires that a list of all restrictions on representation clauses be
provided in Appendix F.
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4. Understand the syntax and semantics of interrupt entries. Determine if
your Ada implementation supports interrupt entries, and if so, what implemen-
tation scheme(s) they use. Be aware of the following issues when using Ada
interrupt entries.

a. Performance: What is the latency from the time the hardware interrupts
until the code in the Ada interrupt task begins executing? How much
runtime overhead is incurred on a call to an interrupt entry? How long
are interrupts disabled by the runtime system during interrupt process-
ing?

b. Implementation restrictions: What restrictions have been placed on in-
terrupt tasks? Can they be called from the application code? Can they
perform 1/O operations? Can they share data with other pieces of ap-
plications code? Can they make entry calls to other tasks? What type
of interrupt entry call is made when a interrupt occurs: normal Ada
entry call, timed entry call, conditional entry call, signal? Are interrupt
entry calls queued or can they be lost?

5. Consider alternatives to Ada interrupt entries. If your Ada implementation
does not support interrupt entries or you choose not to use them, you have
some other options as summarized below.

a. You can code the entire interrupt handler (e.g., subprogram) in Ada
and associate its starting memory location with the interrupt either
through an address clause or by calling a runtime kernel service.

b. You can perform the above interrupt linkage, but implement the
declared Ada interrupt service routine in another language (probably
assembler) and use either pragma INTERFACE or machine code in-
sert statements for the subprogram body.

c. You can rely on an existing device driver and interrupt service routine
to handle device interrupts.

Of course, to fully support the semantics of an Ada interrupt entry call these
ISRs would need to have a signaling capability in order to synchronize with
application level tasks.

CMU/SE-89-TR-22
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3. Managing Concurrency in Ada

There are two fundamental methods for managing concurrency on a single processor:

1. Through the use of time-division multiplexing (e.g., a cyclic executive).

2. Through the use of a preemptive scheduling mechanism.

The basic tradeoff between these two approaches is complexity and maintainability of ap-
plication design versus nondeterminism of execution timing behavior. The manual dissec-
tion and multiplexing of execution threads, which is necessary for designing and maintaining
a cyclic executive, may be a difficult task; however, the resulting execution timing behavior
is basically deterministic. The reverse is true for a preemptive scheduler, which allows for
the separation of scheduling and functional aspects of the program but introduces nondeter-
minism into the timing behavior. Ada tasking provides a vehicle for separating scheduling
and functional concerns. The use of Ada tasking in conjunction with analytical methods
based on scheduling theory allows us to maintain this separation and at the same time
predict and understand an Ada program'’s timing behavior.

This section offers guidelines for using Ada tasks to construct real-time software that will
execute in an understandable and predictable manner. Following the spirit of Sha [17], we
have grouped tasks into three major categories: periodics, servers, and aperiodics. We
compare and contrast several design paradigms for periodics and servers, and illustrate as-
sociated techniques for performing schedulability analysis. Aperiodics are then briefly dis-
cussed with an emphasis on how they affect the schedulability of a task set. Finally, we
offer a set of recommendations based on our experiences.

3.1. Periodic Tasks

Periodic processing requirements with hard deadlines® are common in real-time systems
(e.g., reading a device and sending messages at a specified frequency). Paradigms that
are amenable to schedulability analysis are needed for implementing periodicity in order to
guarantee that rigorous timing requirements will always be satisfied. The following subsec-
tions discuss alternatives for performing periodic processing in Ada and illustrate the prac-
tical application of analytical methods to a periodic task set extracted from an INS simulator
[9, 8].

5A task’s deadline is considered to be hard if meeting the deadline is critical to the system’s operation. On the
other hand, it is desirable but not necessary to meet a soft deadline [19].
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3.1.1. Implementing Periodic Tasks

For this discussion, we define a periodic task as one that is ready to execute at fixed inter-
vals in time (or periods) and must complete execution before the end of the interval (which is
the start of the next period). We outline four models for designing periodic tasks in Ada,
summarizing the design approach of each model and commenting on them.

Delay Model

The most widely known model for implementing periodic tasks in Ada, and the one that is
offered in the Ada LRM, involves using Ada’s delay statement as shown in Figure 3-1. In
this approach, the periodic tasks operate autonomously in an endless loop by performing
their computations, computing their next activation time, and delaying until the start of their
next period.

task body Periodic_Task is
Next _Tinme : Calendar.Time := Task_Start_Ti ne;
begin
delay (Task_Start_Time - Cal endar. d ock);
| oop
Do_Work;
Next _Tinme := Next_Time + Task_Peri od;
del ay (Next_Tinme - Cal endar. d ock);
end | oop;
end Peri odi c_Task;

Figure 3-1: Autonomous Periodic Task Using Ada Delay

A major drawback with this approach is that it suffers from a phenomenon that we call delay
jfitter, which occurs when a task is preempted between the time the clock is read and the
time at which the delay begins. If such preemption occurs, the preempted task will start its
delay later than it should and effectively postpone the starting point of its next period.

The problem caused by delay jitter can be significant since the preemption time can be long.
A low-priority periodic task could be preempted for the entire execution time of a higher
priority task. There are circumstances under which this problem will result in the task miss-
ing deadlines. Moreover, this phenomenon alters the periodicity of the task and thus vio-
lates a premise used in the analytical techniques described later in this report. For these
reasons, we cannot recommend this approach. However, there may be circumstances
where this approach is viable. One example is a system in which it can be shown that
deadlines will be met even in the presence of delay jitter. Additionally, if one can prevent
delay jitter by ensuring that a periodic task cannot be preempted from the time the clock is
read until the delay is started, then this alternative is more attractive. However, even if delay
jitter is eliminated in this manner, the model still incurs the overhead of using
Calendar.Clock. The need to read the clock is inherent in using delay intervals to achieve
periodicity [21]. Delaying until an absolute time eliminates this problem.

Supervisor/Worker Model
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A slight variation of the previous model uses pairs of tasks to achieve periodic processing as
shown in Figure 3-2. In this approach, each periodic (worker) task has a higher priority
supervisor task associated with it. In fact, to reduce the delay jitter inherent in the previous
model, each supervisor task has a priority which is higher than all worker tasks; therefore a
supervisor cannot be preempted by a worker. The priorities of the supervisors are ordered
based on the priority of the associated worker task. Each supervisor task is responsible for
achieving the desired periodic execution. The worker task embodies a simple endless loop
that accepts the periodic activation calls from its supervisor and then performs its computa-
tions.

task body Peri odi c_Supervisor is

Next _Time : Calendar.Time := Task_Start _Ti ne;
begin

delay (Task_Start_Tine - Cal endar. d ock);

| oop
sel ect
Peri odi c_Task. Acti vate;
el se
Handle_Missed_Deadline;
end sel ect;

Next _Time := Next_Tine + Task_Peri od;
del ay (Next_Time - Cal endar. d ock);
end | oop;
end Peri odi c_Supervi sor;

task body Periodic_Task is
begin
| oop
accept Activate
Do_Work;
end | oop;
end Peri odi c_Task;

Figure 3-2: Supervisor/Worker Model

The preemption time, which can potentially cause delay jitter, is bounded in this model be-
cause the supervisor tasks perform the delaying (on behalf of their workers) and because a
supervisor’'s only work is to periodically activate a worker task via an entry call. Nonethe-
less, this approach still suffers from the delay jitter problem because the supervisors can
preempt each other. Additionally, the cost of an extra rendezvous (to activate the worker
task) is introduced. This method can be recommended only for situations in which the ex-
ecution of a conditional entry call is an insignificant fraction of the worker’s period. If this is
the case, then the supervisor can detect missed deadlines by using a conditional entry call
to activate its associated worker.

CMU/SE-89-TR-22 13



Task Dispatcher Model

The previous model requires multiple supervisor tasks, one for each periodic task. This
model uses only one supervisor task which we call a task dispatcher. The task dispatcher is
responsible for periodically activating all worker tasks. One method for implementing a task
dispatcher is to use a real-time clock. The real-time clock serves as a source of interrupts
that signal the task dispatcher; the task dispatcher, in turn, activates the appropriate periodic
task(s). An example demonstrating this scheme is shown in Figure 3-3.

task body Peri odic_Dispatcher is
begi n
| oop
accept C ock_Interrupt;

| oop
Determine_Which_Periodic_Task_To_Activate;
exi t ( When_No_Periodic_Task To_Activate) ;

sel ect
Peri odi c_Task. Acti vat e;
el se
Handle_Missed_Deadline;
end sel ect;
end | oop;

end | oop;
end Peri odi c_Di spat cher;

task body Periodic_Task is
begi n
| oop
accept Activate;
Do_Work;
end | oop;
end Peri odi c_Task;

Figure 3-3: Real-Time Ada Task Dispatcher

In this approach, the task dispatcher receives an interrupt from a real-time clock only when a
periodic task (or a set of tasks) should be activated. The dispatcher task iteratively deter-
mines which periodic task to activate and makes a conditional entry call to that task’s Ac-
tivate entry. If this conditional entry call fails, the periodic task has missed a deadline and
appropriate action can be taken. Details on how to implement this periodic tasking scheme
in Ada are explained by Borger [2].

There are several advantages to this approach. First, it does not suffer from delay jitter
since the Periodic_Dispatcher executes at the highest priority and consequently will not suf-
fer from preemption.5 Second, it allows for a finer notion of time than is readily available

6We assume that the task dispatcher will not be preempted by other tasks or by other interrupts; i.e., interrupts
from the real-time clock never will be masked. We also assume that the clock automatically rolls over. See
[21] for a discussion of drift due to resetting a real-time clock.
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from most Ada systems. (For example, using this model we were able to effectively reduce
our resolution of time from 10 ms to 2.56 ms for the INS.) Finally, this is a solution that can
be used today, because modifications to the Ada language are not necessary; it only re-
guires that an implementation supports interrupts and a real-time clock. We demonstrate
the application of scheduling theory to this technique later in this section.

Nevertheless, there are three main drawbacks to this approach. First, the task dispatcher
introduces the runtime overhead for handling the clock interrupts and activating tasks via a
conditional entry call. Second, the application programmer must play a role (i.e., implement-
ing the task dispatcher) in managing concurrency; ideally, this function should be abstracted
out of the application program. Finally, a real-time clock is required. The last model to be
discussed offers a relatively simple, efficient, and easy to use approach for implementing
periodic tasks in Ada.

Delay_Until Model

An improvement over all the previous models, which is discussed by Volz [21], is to code
autonomous periodic tasks using a Delay_Until absolute time mechanism as shown in
Figure 3-4.

task body Periodic_Task is
Next _Tine : Calendar.Tine := Task_Start_Ti ne;

begin
delay_until (Task_Start_Ti ne);
| oop
Do_Work;
Next _Tinme := Next_Time + Task_Peri od;
begin
del ay_until (Next _Tine);
exception
when CALENDAR. TI ME_ERRCR => Handle_Missed_Deadline;
end;
end | oop;

end Peri odi c_Task;

Figure 3-4: Autonomous Periodic Task
Using Delay_Until Mechanism

This model is similar to the delay model in that the periodic tasks operate autonomously in
an endless loop. The task delays until its initial start time and then becomes ready to ex-
ecute. When it is the highest priority task that is ready to execute, it enters a loop and
repeatedly performs its computations, computes the next activation time based on the pre-
vious schedule time and the task’s period, and delays until the start of its next period. The
Delay_Until mechanism illustrated above has built-in semantics stating that if the specified
absolute time has already passed at the time of the Delay Until subprogram call, the
Time_Error exception in package Calendar will be raised. Given such a runtime
mechanism, missed deadline detection is straightforward to implement in the application
code.
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The Delay_Until model does not suffer from delay jitter. For the delay model to work, the
calculation of the delay duration followed by the start of the delay must be an atomic action.
If it is not atomic, delay jitter results. The Delay_Until model does not have an equivalent
atomicity requirement since the Delay_ Until is based on absolute time. The only require-
ment is for the Delay_Until statement to be executed before that absolute time. Although it
is not commonly available, we have been working with an Ada system that supports this
mechanism.

Several techniques for implementing periodicity through the use of Ada tasking have been
discussed, yet we still need a guarantee that our timing requirements will be met. Analytical
methods can offer this guarantee. The next section introduces analytical methods that allow
us to reason about the timing characteristics and predict the timing behavior of a collection
of periodic tasks.

3.1.2. Analyzing the Schedulability of Periodic Tasks

The rate-monotonic algorithm (RMA) [12] provides a foundation for analyzing the
schedulability of a set of periodic tasks. This algorithm states that for priority-based preemp-
tive scheduling, the static priority assigned to a periodic task is determined solely by its fre-
guency; higher frequency tasks are assigned higher priorities than lower frequency tasks. If
this rule is followed then all tasks are guaranteed to meet their deadlines, provided that CPU
utilization for the periodic task set is below n(2¥"-1), where n is the number of tasks.
7 Moreover, this algorithm is optimal; that is, any task set that is schedulable using another
fixed priority algorithm is also schedulable using the RMA. Since Ada uses a fixed priority,
preemptive scheduling discipline, the RMA applies.

Consider the periodic tasks from the INS task set whose task periods and execution times
are shown in Table 3-1.8 Task priorities are assigned to the six periodic tasks in decreasing
order, with P; being assigned the highest priority and P being assigned the lowest priority.

7n(21/”—1) converges to 0.69 as the number of tasks is increased.

8In Table 3-1, the task periods are exact whereas the execution times are estimates that illustrate the various
types of analyses that can be performed. Since this is ongoing work, the actual execution times are still
changing.
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Task Description Period Exec. util.

() (T) (<) (G/T)

P, Update Ship Attitude 256ms 0.5ms 19.53%
P, Update Ship Velocity 4096 ms 50ms 12.21%
P; Send Attitude Message 61.44ms 15.0ms 2441 %

P, Send Navigation Message  983.04ms 30.0ms 3.05%
Ps; Update Console Display 1024.0ms 50.0ms 4.88%
Ps Update Ship Position 1280.0ms 1.0ms 0.08%

Table 3-1: Periodic Tasks from the INS

The total utilization for this task set is 64.16%, so the task set is schedulable according to
the RMA.2 This is a very easy schedulability test to apply. However, there are several
practical concerns that are not treated by the algorithm. These limitations include:

1. Context switching overhead is assumed to be negligible.
2. The overhead required to activate periodic tasks is assumed to be negligible.

3. The RMA assumes that tasks do not interact.

The next two sections discuss techniques for including context switching and task dispatch-
ing overheads in the schedulability analysis. Section 3.2 discusses the effects of task
synchronization on the schedulability of the periodic tasks.

Including Context Switching Overhead in the Analysis

Task switching time can be introduced into the utilization calculation by adding it to task
execution time [18]. When a task preempts a lower priority task, a context switch saves the
state of the lower priority task and establishes the execution state (e.g., register values,
program counter and stack pointer) of the higher priority task. After the higher priority task
completes execution, a context switch restores the state of the lower priority task. If Cg
represents this context switching overhead and C, is the execution time of task P;, then
C.+2C, is the new execution time to be used in the analysis.!? This allows us to make the

9Utilization is calculated by

n CI
U:ZT
i= |

where C; and T; represent the execution time and the period of task P;, respectively.

10Note that this treatment of context switching overhead assumes perfect preemptability (i.e., that the runtime
may itself be preempted during a context switch). Perfect preemptability is an assumption of rate-monotonic
theory. In the event that the runtime system does not exhibit perfect preemptability, we can use the techniques
for handling blocking time that are discussed later.
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observation that the example task set in Table 3-1 will continue to be schedulable provided
that the following inequality is satisfied.

(05+2C) (50+2C) (150+2C) (30.0+2C) (50.0+2C) (0.8+2C)
+ + + +

U6_1y—
256 | 4096 | 6144 08304 | 102400 | 128000 - o2 D073

Using the above inequality and solving for C, we find that the periodic tasks can sustain
0.106 ms of context switching overhead and remain schedulable. Note that the RMA uses a
pessimistic utilization bound which is based upon a worst-case analysis. It has been shown
in [10] that on the average the RMA can schedule task sets with 88% periodic utilization. In
fact, this task set can sustain significantly more overhead and remain schedulable as is
shown below.

A necessary and sufficient condition for the schedulability of a periodic task set (allowing for
any possible task phasing) is also provided in [10]. In essence, this schedulability test re-
quires that each task be examined to ensure that it can meet its first deadline when all tasks
are started at the same time (which has been shown to be the worst task phasing [12]). For
each particular task, this is accomplished by numerically determining if there is sufficient
time to allow the task to meet its first deadline [18]. In the following example we will use the
same technique to illustrate a method for determining the absolute maximum amount of
overhead sustainable by the INS periodic task set.

Consider task P,. The following inequality tests if task P, can sustain the 2C units of over-
head and still meet its deadline.

C,+2C < T, » 05+2C,< 256 * C,=1.03ms

Solving for C,, we determine that it will remain schedulable provided that context switching
overhead does not exceed 1.03 ms.

Consider task P,. The strategy for this task is to determine if there is a point in time be-
tween time t=0 and time t=T,, the end of the period of P,, such that P, has completed its
execution. For each scheduling point (i.e., the starting point of each task’s period), we must
determine if the execution of task P; to that point and the execution of all of P, (including
overhead) have completed. For example, the first inequality below tests whether the execu-
tion of P, and P, have completed by time t=T,. The second inequality tests whether P, has
executed twice and P, has completed by time t=2T,. We continue in this fashion until all
scheduling points from time t=0 to the end of the period of P, have been examined. The
goal is to determine the maximum Cg such that at least one of the following inequalities
holds:
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(C+2C)+(Cy+2C) = T, » (05+2CY+(5.0+2C) < 256 " C <O, or
2(C;+2C)+(C,+2C) < 2T; ~  2(05+2C)+(5.0+2C) < 512 ~ C, <O, or
3(C;+2C)+(C,+2C) < 3T; ~  3(05+2C)+(5.0+2C) < 7.68 " C,=0.148ms, or

RN T EEN
16(C; +2C) +(C,+2Cy < 16T, ~ 16(0.5+2Cy +(5.0+2C)
16(C;+2C)+(C,+2C) < T, 16(0.5+2C)+(5.0+2Cy < 40.96

C, would have to be negative for the first and second inequality to be true. The third in-
equality can sustain a positive C.. The last two inequalities can sustain the largest C_. Notice
that since the first two tasks are harmonic, the last two inequalities are identical. P, will
remain schedulable provided that context switching overhead does not exceed 0.822 ms.
For the first two tasks to remain schedulable, the maximum amount of sustainable overhead
will be the minimum of the overheads calculated for P, and P.,.

Table 3-2 lists the the maximum overhead sustainable by each task. To determine the max-
imum sustainable overhead by the periodic task set, we take the minimum of all of the listed
numbers, which is 0.41 ms. This is a significant improvement over the previous calculation
of 0.106 ms.

Task Maximum C
P 1.03 ms
P, 0.82 ms
P 0.45 ms
P, 0.47 ms
Pg 0.41 ms
Pe 0.41 ms

Table 3-2: Maximum Sustainable Context
Switching for Each Task

Analyzing the Task Dispatching Mechanism

The INS uses a real-time clock and associated task dispatcher to precisely schedule the six
periodic tasks in the task set. This raises two questions:

» How can the task dispatcher be modeled analytically?

* How does the task dispatcher affect the schedulability of the periodic tasks?

Assume that the task dispatcher has an Ada priority greater than that of P,, the highest
priority task in the task set. Since the task dispatcher executes once each time a periodic
task is to be activated (and no more often than that), we can treat the execution time of the
task dispatcher as additional execution time on behalf of each periodic task. However, it is
important to emphasize that this additional execution time occurs at the highest priority.
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Thus, the dispatching of a lower priority task can temporarily block the execution of a higher
priority task. We must be careful to account for these blocking effects in addition to the
preemption effects.

Preemption occurs naturally when a low-priority task is delayed by the execution of a higher
priority task. In contrast, blocking occurs when a high-priority task is delayed by the execu-
tion of a lower priority task. In the context of the task dispatching analysis, blocking may
occur when tasks are activated. For example, since the execution time of the dispatcher
when activating P, is considered additional execution time on behalf of P;, then P, can effec-
tively block both P, and P, because P; is a lower priority task. Therefore, the time taken
from P, and P, when P, is activated must be considered blocking time. To treat the task
dispatching mechanism analytically, we must also account for the blocking time resulting
from the dispatching of periodic tasks.

Now consider the case of P;. When the task dispatcher activates P,, the execution time of
the task dispatcher (referred to as D) can be modeled as additional execution time on be-
half of P,. But in the worst possible case, where all six periodic tasks must be activated at
the same time, the task dispatcher must execute five additional times to activate the remain-
ing tasks. Since the five additional iterations of the task dispatcher are on behalf of lower
priority tasks, P, may be blocked for as long as 5D,, where D, represents the time taken by
the dispatcher to activate a lower priority task. Continuing the analysis in this manner, we
find that each periodic task must be able to accommodate additional execution time due to
being dispatched (De)11 and blocking time caused by the dispatching of all lower priority
periodic tasks (a multiple of D,).

The analytical techniques for independent periodic tasks do not take into account blocking
time. However, it has been shown in [16] that the analytical techniques for determining the
schedulability of a set of independent periodic tasks can be generalized to account for block-
ing time. When we apply these analytical techniques to the problem of determining the
schedulability of the periodic tasks in the presence of the task dispatcher, we find that the
series of inequalities shown in Figure 3-5 express sufficient conditions for the periodic tasks
to be schedulable. There are six inequalities, one for each task. Each inequality determines
whether or not a periodic task can accommodate its own execution time (which includes
additional execution time caused by the task dispatcher), preemption time caused by all
higher priority tasks, and blocking time caused by the dispatching of all lower priority tasks.
Note in Figure 3-5 that the last inequality does not contain a D, term. Since Py is the lowest
priority periodic task, it cannot be blocked by the dispatching of any lower priority periodic

11De includes the time that it takes to: switch from the currently executing task to the task dispatcher,

determine which task(s) to activate, rendezvous with the task(s) being activated, and switch back to the highest
priority task ready to execute.
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tasks. Also note that since D, =D, in the worst case,!? the distinction between D, and D, is
to emphasize that execution time and blocking time are treated differently.

With C.=C, +D,,
C1, 0 1(2V1-1) and
T+ < -
TP T o A
C, C, 4D,
—+—+— < 2(2¥2-1) and
n T, T, ( ) an
C, C, C; 3D,
—++_"+_— < 3(2¥3-1) and
T T, T3 T4 ( ) an
c, C, C; C, 2D,
"+ "+ —+_—— < 4(2V4-1) and
o T I3 1, T, ( )
C, C, C, C, C. 1D
B e O 5(2¥5-1) and
T T, T3 T, T Tg
C, C, C, C, C. C
R R S < 6(21/6—1)
T T, T, T, T5 Tg
Figure 3-5: Sufficient Conditions for Periodic Tasks to Be
Schedulable in the Presence of the
Task Dispatching Mechanism

If all of the inequalities of Figure 3-5 are satisfied, then the task set is schedulable. Table
3-3 contains a summary of the various parameters that describe the periodic tasks and the
task dispatcher. Substituting values from Table 3-3 into the inequalities of Figure 3-5, we
find that all of the inequalities evaluate to true. Therefore, the periodic tasks are still
schedulable, even with the overhead of the task dispatcher taken into account. Note that it
is our intention to use the INS to verify these predicted results empirically.

12When more than one periodic task is activated at the same time, higher priority tasks are activated first.
Thus, when a low-priority task is activated at the same time as a high-priority task, Dy <D, because the task
dispatcher incurs the runtime overhead associated with handling the clock interrupt only for the first task ac-
tivated. When a low-priority task is activated while a high-priority task is already running, the high-priority task
will be blocked for as long as De. Therefore, Dbz De in the worst case.
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D,=Dp=0.2ms

Task  Period Exec.  Figure 3-5 Inequality
P) (T) (C;+Do (Left Side) (Right Side)

Py 25 ms 0.7ms 047 1.00
P, 4096ms 52ms 041 0.82
P 61.44ms 152ms  0.65 0.77
P, 983.04ms 30.2ms 0.68 0.75
Pg 10240ms 50.2ms 0.73 0.74
Pe 12800ms 12ms 0.73 0.73

Table 3-3: Runtime Characteristics of Periodics with the
Task Dispatcher

While the inequalities shown in Figure 3-5 describe sufficient conditions for the task set to
be schedulable, the conditions are not necessary. Therefore, should any one of the in-
eqgualities evaluate to false, we cannot immediately conclude that the task set is unschedul-
able. Rather, we would proceed to apply the technique shown in [10] to determine whether
or not a timeline exists such that all of the tasks will meet their deadlines.

3.2. Server Tasks

In addition to periodicity requirements, real-time systems often have synchronization re-
guirements since (periodic) tasks must interact to share logical and physical resources.
Task synchronization can be achieved in Ada by using server tasks. For our purposes, we
will adopt the definition of an Ada server task as presented in [16]: "A server task is a task
whose accept statements are all contained in a single select statement that is the only state-
ment in the body of an endless loop."

When tasks interact, priority inversion [5] occurs if a high-priority task is blocked by a lower
priority task. Because such a high-priority task must accommodate blocking from a lower
priority task, priority inversion can have a negative effect on the overall schedulability of a
task set. Although priority inversion cannot be eliminated, it can be bounded [16].

In this section we will discuss some of our relevant experiences in using Ada server tasks to
solve a typical data access and consistency problem. Our design problem concerns provid-
ing a synchronization mechanism by which all six of the INS periodic tasks can access a
shared table of data. Some of the INS periodic tasks read this shared data, some modify it,
and some do both. Since we do not know exactly when a task is going to read or write this
data (as we would with a cyclic executive), the INS tasks must synchronize their access of
the shared data. We will first illustrate how an ill-conceived Ada tasking design for this
problem can lead to uncontrolled priority inversion. Then we will discuss another design
alternative which uses Ada tasking in a way that will minimize the blocking time caused by
priority inversion. Finally, we will present some analytical techniques which are useful for
better understanding the runtime behavior of interacting tasks.
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3.2.1. Implementing Server Tasks

In general, a server task’s entries correspond to the various services that it provides and we
consider a called server task to be executing on behalf of (or as an extension to) its cor-
responding client task. In this section, we will analyze two different task designs for solving
the INS synchronization problem introduced above. The first design uses Ada tasking to
implement a binary semaphore for protecting the shared data, whereas the second design
alternative implements an Ada server task based on the priority ceiling protocol guidelines
discussed in [7, 16].

Semaphore Tasks

A binary semaphore is a widely accepted synchronization primitive that can be used for
providing mutually exclusive access to a shared resource such as the INS results table. As
illustrated in Figure 3-6, an Ada task can be used to implement such a binary semaphore.
Figure 3-6 also illustrates a possible implementation of a periodic client task that uses this
semaphore task for gaining access to some shared data.

task body Semaphore is
begin
| oop
accept Enter_Critical _Region;
accept Exit_Critical _Region;
end | oop;
end Semaphor e;

task body Periodic_Client is
begin
| oop
accept Activate;

Semaphore. Enter _Cri ti cal _Regi on;
Do_Critical _Section_Read;
Semaphore. Exit _Criti cal _Regi on;

Do_Some_More_Work;
end | oop;
end Periodic_Cient;

Figure 3-6: Simple Ada Binary Semaphore Task and
a Periodic Client Task

Unfortunately, using a semaphore task for solving the INS synchronization problem can lead
to undesirable runtime behavior, such as missed deadlines. For example, assume that the
semaphore task in Figure 3-6 (call it S) controls access to a block of shared data that is
used by all of the INS periodic tasks. In our example, further assume that the priority of Sis
set to be higher than P, our highest priority periodic task, to ensure that none of the periodic
client tasks can preempt S13 We will also assume that each periodic task’s critical section

13The priority of Sis set high, because if it were not, priority inversion would be possible if Sdid not loop back
around (after the Exit_Critical_Region accept) prior to another client call. Of course, this only removes one
potential source of priority inversion.
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consumes 0.5 ms of execution time. Under these conditions, our higher priority periodic
tasks can be blocked by lower priority tasks for an unnecessarily long time. Suppose, for
instance, that the phasing of all our periodic clients is such that immediately after one client
attempts to lock the semaphore, the next higher priority client becomes ready to execute. In
such a situation, the periodic clients will be activated and thus make their entry calls to
Enter_Critical_Region in reverse priority order, i.e., a calling order of Pg, Pg, P,, P, P,, Py,
and the following could happen:

1. Py is granted the lock on the shared data (i.e., the call by Py to
Enter_Critical_Region is accepted) through Sat time t=0ms.

2. Immediately after P, completes its rendezvous with S and enters its critical
section, P; preempts the critical section of Py and attempts to lock the
resource; Sis not ready to accept another Enter_Critical Region call since it
must first accept a call to Exit_Critical_Region, so Pg is placed in the cor-
responding entry queue.

3. For i=4,3,2,1, P, preempts the critical section of P; immediately after the at-
tempted rendezvous of P, with S P, is denied the lock and is placed at the
end of the FIFO entry queue.

In this example, the entry queue for Enter_Critical_Region will contain P; through Py in
reverse priority order. Sometime after time t=0.5ms when Py completes its critical section,
the next client task in the entry queue, namely P, will be granted access to the resource.
The service requests will be handled in FIFO order and consequently P; will have to wait for
P through P, to complete their critical sections before it will be granted the lock on the
resource. The earliest P, could execute its critical section would be sometime shortly after
time t=2.5ms since it would be blocked for a total of 2.5 ms waiting for the other periodic
clients to complete their critical sections. Clearly, with a period of 2.56 ms and 0.70 ms of
compute time (see Table 3-3), P, will miss its first deadline as a result of this blocking time
caused by this tasking design.

The blocking time of P, could be even longer if we introduce another periodic task, P,,, that
does not use Sand whose priority is between that of P, and P,. Assuming that the execution
time of P, is 3 ms and the same phasing exists for this new task set, P, will be blocked an
additional 3 ms because of the execution of P.,,. The three steps discussed above still
apply, but now P, will preempt Pg, and thus, Pg will not complete its critical section until
shortly after time t=3.5ms. Consequently, the earliest that P, can now execute its critical
section would be sometime shortly after time t=5.5ms, since it is being blocked by P, for
an additional 3 ms.

On the surface our semaphore (synchronization) task, S looks innocuous. But as we have
illustrated, this type of design can lead to arbitrarily long blocking time and undesirable run-
time behavior. The next subsection discusses a design approach that bounds and min-
imizes this blocking time caused by priority inversion.
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Server Tasks That Emulate the Priority Ceiling Protocol

The essence of our second design approach for solving the INS synchronization problem is
to use Ada server tasks to model semaphores as discussed in [16], and, further, to design
and implement these server tasks so that their runtime behavior emulates the priority ceiling
protocol (PCP)14 [7, 16]. The PCP guarantees that:

1. The execution of a high-priority client task can be delayed by at most one
lower priority client task per server call.

2. A deadlock cannot occur as long as a task does not call itself.

3. Blocked calls to the same server task are serviced in order of priority [16].

For convenience, we will denote these properties as PCP1, PCP2, and PCP3.

task body Server is
begin
| oop
sel ect
accept Service_1 do
Perform_Service_1; -- Critical region #1
end Service_ 1;
or
accept Service_2 do
Perform_Service_2; -- Critical region #2
end Service_2;
or

accept Service_n do
Perform_Service_n; -- Critical region #n
end Service_n;
end sel ect;
end | oop;
end Server;

Figure 3-7: General Structure of an Ada Server Task

Figure 3-7 illustrates the canonical form of a priority ceiling server task written in Ada.
Notice the difference between the semaphore task of Figure 3-6 and the server task of
Figure 3-7. In the latter model, the critical section code is within the accept body for each
respective service and not within the client’s body.

The priority ceiling of a server task is defined as the highest priority of its client tasks, i.e.,
the highest priority of tasks that can call the server directly or indirectly. To properly emulate
the priority ceiling protocol, our approach must guarantee that the following condition always
holds:

14pCP emulation is necessary for the cases in which the runtime system does not implement the protocol
directly.
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Any entry call from a client task T to a server task Scan be accepted if and only if
the priority of T is higher than the highest priority ceiling of all other servers ex-
ecuting on behalf on clients other than T [16].

26
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By following the rules listed below, one can emulate the PCP protocol in Ada applications:1®

1. Set the priority of server tasks to be equal to their priority ceiling plus 1 by
using pragma PRIORITY.16

2. Implement server tasks using the structure shown in Figure 3-7.

Rule 1 guarantees that all client requests are serviced without the possibility of being
preempted by any other of the server’s clients. Consequently, once a client enters the ren-
dezvous with the server, that task will be the highest priority client eligible to execute; thus,
no other client can make a call to that server. This runtime behavior also guarantees that no
clients will be blocked on a server call, so property PCP3 is always preserved. Rule 2 im-
poses a task coding style which yields a structure that models the notion of critical regions
guarded by a semaphore, thus allowing us to apply real-time scheduling theory based on
semaphores to our system of Ada tasks [7, 16].

Assuming non-suspending server tasks, following Rules 1 and 2 in the context of Ada’'s
scheduling rules will ensure that the fundamental condition of PCP stated above is always
met.1” For example, suppose we have three client tasks (from highest to lowest priority: Py,
P,, P;) and two server tasks (S, S,). Assume P, calls S, and P, and P; call S,. Rule 1
implies the following priority ordering: S;, P;, S,, P,, P;. Notice that since the priority of P, is
greater than the priority ceiling of S,, the priority of P, is higher than the priority of S,. Sup-
pose that S, is executing on behalf of P; and then P; and P, both become ready to run. In
this case, P; will preempt the execution of S, and be able to complete all of its execution,
including its call to S;. Under these circumstances, as would be the case for an actual PCP
runtime, P, can preempt the execution of S, because its priority is higher than the highest
priority ceiling of all other servers (i.e., S,) executing on behalf of clients (i.e., Py) other than
P,. After P, completes its execution, S, will resume its execution on behalf of client P;. As
soon as this service has completed, P, will begin executing by preempting P;, showing how
our Rule 1 works in enforcing property PCP1. Finally, knowing that the underlying condition
of the PCP is upheld by following our guidelines, it follows that property PCP2 must also
hold.

15Assuming that the server task(s) do not execute any statements which would cause them to suspend (e.g.,
synchronous I/O operation).

18|n practice, Ada implementations vary with respect to their scheduling behavior for tasks with equal priority.
Therefore, to ensure that runtime behavior is consistent with the expectations of rate-monotonic theory across
differing Ada implementations, server tasks should be assigned priorities which do not conflict with other client
tasks’ priorities. Because the server's priority must be at least that of its highest priority client Ty, we recom-
mend assigning the server task a priority one larger than the priority of T,,.

17 third rule could be added for dealing with server tasks which suspend: implement a prioritized server task;
i.e., a server task that services client requests based on their assigned priority rather than in FIFO order. Since
the server tasks can potentially suspend during a service call, resulting in client service requests queuing in their
order of arrival, prioritized entry queues are necessary. There are numerous approaches to implementing a
prioritized server in Ada using server tasks with entry families [3, 6]. Unfortunately, this approach will not
emulate the PCP for all task sets. In particular, in the presence of nested server calls it is possible to get a
deadlock using this approach.

CMU/SE-89-TR-22 27



Let's now reexamine the INS synchronization problem. For the sake of the example, as-
sume that the periodic client tasks either read or write the shared data during their respec-
tive critical sections. Assuming that the access to the shared data cannot cause any task
suspension, we want to construct a PCP server task which will service both read and write
requests from the periodic clients using the guidelines outlined above. As before, we will set
the server’s priority to be higher than the priority of P,; in particular, we will set its priority to 1
more than the priority of P, (Rule 1). We can construct a PCP server task and correspond-
ing periodic client as illustrated in Figure 3-8 (Rule 2). Notice that this server task is really a
monitor that protects the shared Results_Table defined in the task body.

task body Results_Table_ Mnitor is
Resul ts_Tabl e : Results_Tabl e_Type;
begin
| oop
sel ect
accept Read_Service (...) do
Do_Critical_Section_Read;
end Read_Servi ce;
or
accept Wite_Service (...) do
Do_Critical_Section_Write;
end Wite_Service;
end sel ect;
end | oop;
end Resul ts_Tabl e_Monitor;

task body Periodic_Cient is
begi n
| oop
accept Activate;

Resul ts_Tabl e_Mnitor. Read_Service(...);
Do_Some_More_Work;

end | oop;
end Periodic_Cient;

Figure 3-8: PCP Server Task and
a Periodic Client Task

The runtime behavior of our task set example will now change when compared with the
semaphore task of the previous section. Assuming the original INS task set without P, Pg
will still be granted the lock at time t=0ms. However, the other periodics—although they will
have become ready to execute while Py is executing its critical section—will not run, since
the Results_Table_Monitor task has higher priority. Pg will complete its critical section at
time t=0.5ms as before and P through P, will be ready to run. Shortly after time t=0.5ms,
the next highest priority, ready to run task, namely P,, will execute (remember, using the
tasking structure of Figure 3-6, P, did not execute until after time t=2.5ms). In this case, P;
can meet its first deadline at t=2.56; previously it could not.

Analyzing the INS task set including P, shows that the above runtime behavior with
respect to the effects of blocking on P, still applies. P, will start executing its critical section
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sometime after time t=0.5ms. P_,, is assumed to be ready to run prior to time t=0.5ms
based on our phasing, but it will be blocked by the Results_Table_Monitor executing on
behalf of Pg.

As these two examples illustrate, using the PCP emulation approach, the INS client tasks in
our example will start their execution in priority rather than FIFO order, thereby minimizing
the blocking time caused by priority inversion caused by task synchronization. Furthermore,
this approach reduces the number of rendezvous (from two to one) for accomplishing task
synchronization in comparison with the Semaphore task model.

3.2.2. Analyzing the Schedulability Effects of Server Tasks

The previous section presented specific guidelines for constructing server tasks in Ada such
that the properties of the priority ceiling protocol would be preserved. This section presents
analytical techniques that may be used to understand and predict the behavior of systems in
which periodic and server tasks interact.

We will begin by demonstrating techniques for analyzing the effect of server tasks on the
schedulability of a task set. Then we will briefly discuss the additional complexity associated
with analyzing the effects of server tasks which may suspend themselves.

Including Blocking Time in the Analysis

Server tasks introduce blocking time. To analyze the effect of server tasks on
schedulability, the analytical techniques must be able to treat blocking time as well as ex-
ecution time. General analytical techniques that treat both blocking time and execution time
are available. In this section, we will apply the generalized techniques to the case in the INS
where the six periodic tasks obtain mutually exclusive access to shared data through the
Results_Table_Monitor server. Furthermore, we will build on our earlier analysis of the task
dispatcher overhead.

When we apply the techniques of [16] to the problem of determining whether or not the six
periodic tasks in the INS task set are schedulable in the presence of the
Results_Table_Monitor server, we end up with the series of inequalities shown in Figure
3-9. The inequalities express sufficient conditions for the periodic tasks to be schedulable.
There are six inequalities, one for each periodic task. Each inequality is to determine
whether or not a periodic task can accommodate its own execution time, preemption time
caused by all higher priority periodic tasks, and blocking time due to all lower priority tasks.
We assume that each C; includes the execution time of the server on behalf of the periodic
client. In each inequality except the last one, a B, term represents the worst-case blocking
time for P; due to lower priority tasks using the server. Since Py is the lowest priority periodic
task, it cannot be blocked by a lower priority periodic task. For the periodic tasks to be
schedulable, all of the inequalities shown in Figure 3-9 must be satisfied.
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Figure 3-9: Sufficient Conditions for Periodic Tasks to Be

Schedulable in the Presence of the
Results_Table Monitor Server

To evaluate the inequalities, we must determine the value of each B, in the equation. P can
be blocked when the server is executing on behalf of P, and when the task dispatcher ac-
tivates Pg. Thus, if § represents the execution time of the Results_Table_Monitor server on
behalf of periodic client P, then B;=S,. Note that the blocking time caused by the task dis-
patcher has already been accounted for in the inequalities. P, can be blocked when the
server is executing on behalf of P; or P; and when the task dispatcher is activating P; and
Ps. Therefore, B,=max(S;,S;). Values for B;, B,, and B, can be determined in the same

manner.

Table 3-4 contains a summary of the various parameters that describe the periodic tasks

and the Results Table Monitor server.

Substituting values from Table 3-4 into the in-

equalities of Figure 3-9, we find that all of the inequalities evaluate to true. Therefore, the
periodic tasks are still schedulable even in the presence of the blocking time introduced by
the Results_Table_Monitor server. Had any one of the inequalities evaluated to false, we

would not have concluded that the task set was unschedulable.

Then we would have

proceeded to apply the technigue shown in [10] that uses numerical methods to determine
whether a timeline exists such that all of the tasks will meet their deadlines.

30
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D,=Dp=0.2ms

Task Period Exec. Server Block Figure 3-9 Inequality
(P) (T) (C;+Dy S) (B)) (Left Side) (Right Side)
P 256ms 0.7ms 0.45ms 0.60ms 0.70 1.00
P, 4096ms 52ms 0.60ms 0.52ms 0.42 0.82
P 61.44ms 152ms 0.52ms 0.44ms 0.66 0.77
P, 983.04ms 30.2ms 0.44ms 0.34ms 0.68 0.75
P 1024.0ms 50.2ms 0.25ms 0.34 ms 0.73 0.74
Pe 1280.0ms 1.0ms 0.34ms 0.00 ms 0.73 0.73

Table 3-4: Runtime Characteristics of Periodic Tasks
Including Task Dispatcher and
Results_Table_Monitor Server

Note that the following inequality is a sufficient condition for all of the inequalities shown in
Figure 3-9 to be true [16]:

c, G Co (B, +5D,) (B,+4D,) (B5+3D,) (B,+2D,) (Bs+1D,)
—+—+ [T+ —+ max ( ,

, : , ) < 6(2Y6-1)
T, T, Te T, T, T, T, Ts

Thus, the inequality above could have been used as a quick test before applying the in-
equalities in Figure 3-9. Had the quick test evaluated to true, then the six inequalities in
Figure 3-9 would also have been true. But if the quick test had failed, then the six in-
equalities in Figure 3-9 would have to have been evaluated in turn. In other words, the
single inequality above is a sufficient condition for the inequalities in Figure 3-9 to be
satisfied, but it is not a necessary condition. The purpose of the single inequality is to try to
save time when testing for schedulability.

lllustrating an Effect of Task Suspension

There are many cases in which a server task may suspend. For example, tasks P;and P, in
the INS task set send messages to an external computer system (ECS). Message sending
services that ensure mutually exclusive access to the communications port are provided by
a server called the Communications_Controller. Since the communications protocol be-
tween the INS and the ECS involves handshaking and the I/O is interrupt-driven, the
Communications_Controller must suspend routinely while waiting to hear back from the
ECs.18

Rate-monotonic scheduling theory assumes that a task which is eligible to run will indeed
execute on the CPU until either the task completes its designated duty or the task is

18Nominal message transmission sequence is as follows: (1) INS sends start-of-message to ECS, (2) ECS
replies by returning ready-to-receive to INS, (3) INS sends packet of data words followed by end-of-message to
ECS, (4) ECS validates the data packet and sends acknowledgement back to the INS.
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preempted by a higher priority task which is also eligible to run. In the case described ear-
lier, synchronous I/O with the ECS leads to a violation of this basic assumption since the
Communications_Controller gives up the CPU before completing its designated duty. In
general, when a periodic task (or a server task executing on behalf of a periodic client)
suspends in this manner, we refer to the period of time that the task is suspended as idle
time.

When analyzing the schedulability of a periodic task that may suspend, idle time must be
accounted for in the same manner as execution time, even though the task that suspends
does not use the CPU during the idle time. Thus, the C; term for the task should include
both execution time and idle time. But the analytic treatment of idle time does not stop
there. Idle time may also have an adverse effect on lower priority tasks. This adverse effect
is counter-intuitive since it would seem that lower priority tasks should be able to take ad-
vantage of a higher priority task’s idle time. We will illustrate this adverse effect by way of
an example.

Consider the three periodic tasks shown in Figure 3-10a. The three tasks are schedulable
for all possible phasings, given their execution times and periods.1® This particular phasing
is used because it will point out the effect of idle time on lower priority tasks. In Figure
3-10a, none of the tasks can suspend. Note that P, requires 3 units of execution time and
that P, finishes well before its deadline at time t=28. Now we will introduce idle time and try
to predict the results. Let us hypothesize that P, still requires just 3 units of execution time,
but that it exhibits the following runtime behavior: P, executes for 2 units, suspends for 1
unit, and then executes for 1 more unit. Our intuition is that the three tasks should still be
schedulable. After all, we have not increased C,; we have only deferred part of it until later
in T,. Our intuition also suggests that P, will complete later in T, than it had before and that
P, will complete sooner in T, than it had before. Without idle time, P; had to wait until both
P, and P, had finished before it could use the CPU. With idle time, P, has to wait only until
P, finishes and P, executes two units before it can use the CPU.

1970 verify this claim, draw a timeline in which all three tasks are activated at the same time. The timeline will
show that all three tasks will meet their first deadlines. Therefore, they will meet all of their deadlines [12].
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Figure 3-10: An Example of One Effect of Idle Time on Lower Priority Tasks
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Figure 3-10b illustrates the effect of the idle time of P, on P;. Obviously, our intuition was
wrong. Not only does P; fail to finish early, it fails to meet its deadline at time t=28; the three
tasks are no longer schedulable. Essentially, P is penalized because part of C, is deferred
until later in T,. This effect is known as the deferred execution penalty [11, 15]. In our ex-
ample, this can be seen by observing in Figures 3-10a and 3-10b that T is 24 units long and
that one of the three tasks is executing during each of the 24 units. In Figure 3-10a, P;
executes for 5 of the 24 units, P, executes for 12 of the 24 units, and P, executes for 7 of the
24 units. In Figure 3-10b, P, still executes for 5 of the 24 units but P, executes for 13 of the
24 units, leaving only the remaining 6 units for P,.

The complete effect of idle time on the schedulability of a task set is not yet fully understood.
Therefore, only pessimistic worst-case schedulability bounds are available [15]. A complete
understanding of the effects of idle time is very important in order for the scheduling theory
to be generally applicable.

The problems associated with idle time, while not new, have been brought to the forefront by
our work on the INS. In fact, one of the main objectives of the INS development was to
expose problem areas for which treatment was lacking or ad hoc. The SEI REST and
RTSIA projects and CMU ART project will collectively address the idle time problem in the
near term.

3.3. Aperiodic Tasks

Many real-time systems are driven by the need to respond to aperiodic events. Con-
siderable theoretical work has been done in this area [11]. This work provides a conceptual
framework for analyzing the schedulability of a system with aperiodic processing require-
ments. However, many questions remain unanswered regarding the construction of analyz-
able models for handling aperiodic tasks in Ada. This section summarizes several important
concepts for understanding how to incorporate aperiodicity into a schedulability model.

Server tasks execute only on behalf of other tasks. Periodic tasks are tasks with a periodic
timing requirement that execute on their own behalf. Aperiodic tasks also execute on their
own behalf, but do not have periodic timing requirements; however they may have response
time requirements. Typically, aperiodic tasks execute in response to an event or perform a
low-priority background function.

Given a set of periodic tasks and a response time requirement for an aperiodic task, we
must ensure that aperiodic response time requirements are met, and at the same time, un-
derstand the effect of aperiodic tasks on the schedulability of the remainder of the task set.
The concept of an aperiodic execution manager [11], also called an aperiodic server, helps
to address both of these issues. An aperiodic execution manager is conceptually a periodic
task20 that doles out execution time to aperiodic tasks. This allows aperiodic utilization to be

20An aperiodic execution manager may manifest itself as an Ada task or an algorithm in the runtime system.
From the point of view of the schedulability analysis, it is viewed as a periodic task.
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analyzed in a periodic framework, assuming that there is a known, minimum separation of
aperiodic events. See [11, 18, 19] for a discussion of the various strategies for managing
aperiodic execution. Given this conceptual framework, let us address three types of
aperiodic tasks:

« An aperiodic task that has a hard deadline for its response to an event.

» An aperiodic task that has either a soft deadline or no deadline for its response
to an event.

< An interrupt handler, which executes at a very high priority regardless of its
response time requirement.

The basic strategy for meeting a hard deadline requirement is to give the aperiodic execu-
tion manager (that serves such a task) a high enough priority. Clearly, if the manager has
the highest execution priority in the system (assuming that there are no interrupts) then the
aperiodic task will meet its deadline if its execution time is less than its response time. To
analyze the schedulability of the entire system, the aperiodic execution manager is factored
in as one of the periodic tasks. Preserving schedulability of the periodics may not permit the
aperiodic manager to execute at the highest priority in the system. Thus, part of the
schedulability analysis of a system of tasks that has both periodics and aperiodics will in-
volve determining a priority for the aperiodic manager that meets the response time require-
ment and still allows the periodic tasks to meet their deadlines. If this is impossible, the
requirements are untenable; the requirements must be relaxed or a system overload could
occur. If it is possible, then periodic deadlines and response time requirements are
guaranteed. In both cases we have predictable results.

If an aperiodic task does not have a hard deadline but it is still advantageous to service
aperiodic activity in a timely fashion, the aperiodic execution manager is still a viable ap-
proach. The philosophy in this case is slightly different. For aperiodic tasks with hard dead-
lines, one may be willing to sacrifice low-priority periodic deadlines. However, in the ab-
sence of a hard deadline, the goal is to take advantage of spare CPU capacity in a manner
that is advantageous to aperiodic tasks. Using the same strategy described above, the aim
is to find the highest priority level in the rate-monotonic pecking order that achieves all peri-
odic deadlines and minimizes aperiodic response time.

The first two cases required that we find a suitable priority for the aperiodic manager.
However, interrupts are handled at a priority higher than all Ada task priorities; thus, a high
priority is imposed on this type of aperiodic processing independent of its response time
requirement. The approach for analyzing this case is slightly different. Once again we as-
sume that aperiodic interrupts are separated by a minimum time interval. In the worst case,
interrupts occur periodically, with that minimum separation interval as the period. There is a
rate-monotonic priority associated with this period. For all tasks with a priority higher than
this priority, the interrupt execution is treated as blocking time. For all lower priority tasks,
this interrupt is treated as a higher priority periodic task. Assuming that this interrupt is nei-
ther masked nor interrupted, response time is not an issue in this case.
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3.4. Recommendations

Recent scrutiny of Ada by the real-time software community has identified inadequacies in
the language with respect to expressing and handling real-time behavior [4, 5, 6, 13, 14].
These identified limitations include: nondeterministic selection of open alternatives, FIFO
entry call queues, lack of an adequate time abstraction for implementing real-time require-
ments, and problems with using the delay statement to achieve periodic processing. In this
section, we offer several guidelines for engineering real-time systems in Ada based on our
own experiences with the INS application. These guidelines are intended to demonstrate
how to design Ada real-time systems in ways that circumvent the problems mentioned
above and enhance the predictability of runtime behavior. Our recommendations for
managing concurrency in Ada are summarized below.

1. Design and implement analyzable software systems. To fully understand
and be able to reliably predict the runtime behavior of a real-time Ada applica-
tion, you must design and implement your system in a manner which is amen-
able to the application of real-time scheduling theory. Generally, this means
that you should design and implement your application by using language fea-
tures in well understood and analyzable ways. Without this type of engineer-
ing approach, there are no guarantees regarding the execution timing be-
havior of your real-time Ada application.

2. Understand how to implement analyzable periodicity. Implementing
analyzable periodicity depends on task priority assignment and the design
paradigm used for achieving periodic processing. The RMA should be used
as a basis for task priority assignment, since it is an optimal fixed priority algo-
rithm, because a solid body of scheduling theory is based on this algorithm,
and because it is applicable to Ada. We recommend the Delay_Until model
for achieving periodicity, provided that the runtime system’s timing resolution
meets the application’s requirements. If the functionality that is needed to
support the Delay_Until model is not available or does not provide the required
timing resolution, the Dispatcher model is a suitable alternative.

Also, be aware of effects that can alter periodicity. For the Delay_Until and
Dispatcher models, it is very important to understand the system’s interrupt
structure. In particular it is important to know if, when, and for how long the
underlying real-time clock’s interrupt is masked. If models other than these two
are used (for example, using the delay statement in the manner suggested in
section 9.6 of the LRM), then awareness of the potential for delay jitter is im-
portant.

4. Minimize priority inversion by using the priority ceiling protocol. Be
aware of priority inversions that may be caused by task interactions. Since
high-priority, high-frequency tasks must be able to accommodate additional
blocking time that results from priority inversions, the overall schedulability of a
task set can be greatly affected by task interactions. While the priority inver-
sions cannot be completely eliminated, they can be minimized by creating
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server tasks that emulate the priority ceiling protocol (assuming, of course,
that the runtime system does not directly support the priority ceiling protocol).

5. Understand the interactions between your application and the Ada run-
time system. In order to perform a comprehensive schedulability analysis of
your application, its interaction with the Ada runtime system needs to be well
understood. Generally, this means that you should identify all potential
sources of execution time, preemption time, and blocking time in both your
application and the Ada runtime system. In particular, be aware of the effects
of context switching and idle time.
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4. Conclusion

Experimenting with design and implementation alternatives in the context of an actual real-
time application (the INS) has led us to several conclusions concerning the development of
real-time systems in Ada:

» Ada allows the real-time programmer to handle devices and concurrency at a
relatively high level of abstraction; however, these language features do not
relieve the programmer of low-level data representation concerns and
schedulability concerns.

« Applying analytical methods in concert with experimentation and prototyping
can provide important insights about the system’s runtime behavior throughout
the life cycle of a real-time system.

« Given analytical methods and coding guidelines, Ada has the potential to be
successfully used in real-time systems.

The Ada language has specific features that address the need to control devices and
manage concurrency. Representation specifications allow the programmer to interact with a
device by using record types to model the memory map of its registers. However, the
responsibility for ensuring proper data representation is still in the hands of the programmer.
Compiler optimization may thwart attempts to control a device by eliminating important steps
in a sequence of device control instructions. Awareness of the relationship between the bit
and byte numbering schemes of the underlying hardware and the model used by the Ada
implementation is also important.

Ada tasking provides a conceptual model for managing concurrency. This model allows
implementation of concurrency at a relatively high level of abstraction. However, raising the
level of abstraction for real-time programming is beneficial only if the resulting behavior is
predictable. Using tasking in a manner that results in predictable runtime behavior requires
careful analysis. The analytical methods presented in this report offer a framework for per-
forming such an analysis.

Early exploration of high risk areas such as device interfaces and system timing behavior
exposes problem areas early: uncovering inconsistent or unreasonable requirements,
detecting potential performance problems, and making hardware/software tradeoffs. Con-
tinual iteration through cycles of analysis, implementation (prototyping), and experimental
verification are important activities that need to be done throughout the life cycle of a real-
time system. For example, these activities can provide feedback during requirements
analysis, help to determine the feasibility of design alternatives, and facilitate maintenance.
As the design progresses, system behavior can be modeled with increasing accuracy. A
system may be incrementally developed with schedulability analysis applied at each step.
Therefore, a skeleton system can be operating early in the development phase, and the
system runtime behavior will always be predictable. To satisfy the need for continual
analysis, the system must be instrumented to collect data about itself (e.g., performance
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data and scheduling data). This requires that instrumentation be designed into the system
from the beginning.

Finally, when complementary analytical and experimental methods are used in concert with
implementation guidelines for Ada real-time features, Ada has the potential to be employed
successfully in the real-time domain. The analytical methods and associated Ada tech-
niques presented in this article provide a foundation for engineering real-time systems in
Ada today. The REST, RTSIA, and ART Projects intend to continue extending the schedul-
ing theory to ensure its general applicability and to promulgate the resulting methods and
guidelines.
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