e
PR
LI
(;,.« ES
7 St
[

-

AD-A215 846

eTTeTEEEEEEEE SR

Technical Report ‘
CMU/SE!-89-TR-16
ESD-TR-89-24

~-:‘~‘:: C'd.-p,‘;'; e Metlon Jnnmersity,
T Software Engineering Institute

Guidelines for the Use of the SAME

‘ Marc H. Graham
May 1989

R Y
'S o B
IS ¢ IS
. IS

4 ¢

89 12 11 ¢

Carnege Mellon Universty does not discnminate and Camegie Mellon Unwersity & required not to discnminate in admissions and empioyment on the bass
of race, color, nationat ongin, sex or handcap in violation of Title VI of the Civil Rights Act of 1964, Title X of the Educational Amendments of 1972 and Section
504 of the Rehabiltation Act of 1973 or other tederal, state, or local laws or axecutive orders. In addition, Carnegie Mellon University does not disciminate in
admssions and employmant on the basis of rekgon, creed, ancestry, belief, age, veteran status or sexual onentation in violaon of any tederal. state, or local
laws or executive orders. Inquines concarning application of this policy shouk! be dwected to the Provost, Carnegie Mellon University, 5000 Forbes Avenue,

teiephone (412) 263 2056

Pmsburgh. PA 15213, telephone (412) 268 6684 or the Vice President tor Enrolimant, Carnegie Mailon University, 5000 Forbes Avenue, Pittsburgh PA 15213,

Technical Report

CMU/SEI-89-TR-16
ESD-TR-89-24
May 1989

Guidelines for the Use of the SAME

|'l'|‘|l|‘|'|

Marc H. Graham
Ada SQL Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsyivania 15213

This report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD position. It is pub-
lished in the interest of scientific and technical information exchange. '

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

g 2 ’)
/A‘v‘_'& N~ / OB/—’_\
harles J. Ryan, Major, lJSAF

SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1989 Camegie Mellon University

This document is available thue _.1the Defense Technical Information Center. DTIC provides access to and transfer of scientific and
technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government agency personnel

and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information Center, Atn: FDRA, Cameron
Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on ordenng, please
contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springficid, VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

I T P L T T T T e T T, —m—m -
| |
i SAME Software Order Form !
|]
| |
| Name :
I Organization :
| Mailing Address !
| |
| |
| |
| |
| |
| i
: City State Zip }
| |
: Country Phone () :
| E-Mall Address (it avallable) !
: |
: Distribution Medium: [J UNIX Tar Format J MS-DOS Format :
| O TKs0 Cartridge [J 51/4” Floppy Disk |
{ (O 1/4” Tape Cartridge {
| |
| O vMS Backup Format |
: O 7Tkso Cartridge }
e e e e e e e e e e e e e e e e o e e o e et s e s e e e e e e . e s e —— — — — 4

Remit Amount: $100.00 for US addresses, $115.00 for foreign addresses.

Remit Procedure: All checks or purchasz orders should be made payable to Carnegie
Mellon University Software Engineering Institute. Please return this completed form along
with your payment to:

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

USA '

Attn: Business Services Division (Box SAME)

If you have questions, please contact the SEI Resource Center at (412) 268-5800.

—

l Table of Contents
1. Introduction 1
I 1.1. Overview of the SAME Method 1
1.2. An Example of the SAME Method 8
I 1.3. Structure of This Document 15
2. The SAME Typing Model 17
I 2.1. Concrete Types 19
3. Developing the Abstract Domains 23
3.1. The SAME Treatment of SQL Null Values 23
. 3.1.1. The Minimalist Approach 24
3.1.2. The Full SQL Approach 25
l 3.1.3. A Compromise Approach for Comparison Operators 26
3.2. he Image and Value Functions 29
3.3. Range Constraints and the Generic Sub-Packages 30
. 3.4. Character Data 32
3.5. Decimal Fixed Point Arithmetic 37
I 3.5.1. Basic Support 38
3.5.2. SQL Support 41
3.5.3. Range Constraints for Decimal Types 42
l 3.6. Data Types Not in the SQL_Standard 45
3.6.1. Ada Enumeration Types 45
3.6.2. Date Time Types . 47
l 3.7. Packaging the Type Definitions 51
3.8. The Package SQL_Base_Types_Pkg 55
l 4. The SAME Operational Model 59
4.1. Constructing an Abstract Interface 59
4.1.1. A Note on Typing Parameters 60
l 4.1.2. A Note on Naming and Packaging 62
4.2. Constructing an Abstract Module 62
l 4.3. Database Exceptional Conditions 63
4.3.1. The Packages SQL_Communications_Pkg and 64

SQL_Database_Error_Pkg

l 4.3.2. Handler for SQL_Database_Error 66
4.4. Note on the Overloading of INDICATOR Parameters 67
I 5. Notes on Writing Application Programs Using the SAME Method 69
5.1. Design Rules 69
5.2. Visibility and the Use of use 69
l 5.3. Using Non-ASCIll Character Sets 70
5.4. Handling the Null_Value_Error Exception 71
I CMU/SEI-89-TR-16 i

5.5. Simulating Predefined Attributes
5.6. Doing Type Conversions
5.6.1. Ada Explicit Type Conversions
5.6.2. Using Conversion Functions
5.7. Using Three-Valued Logic
5.8. Commenting Procedure Calls

. The SAME Method Summarized
. Building a SAME Application Without a Module Compiler
. Some Detailed Examples

. Advanced DBMS Applications

9.1. Dynamic SQL
9.2. SQL and Ada Tasks

References

A SAME Quick Reference List

A.1 Example Domains
A.2 Functions Available to the Application

B Glossary of Terms

C SAME Standard Package Listings

C.1 Introduction

C.2 Copyright Notice

C.3 SQL_System Specification

C.4 SQL_Standard Specification

C.5 SQL_Communications_Pkg Specification
C.6 SQL_Communications_Pkg Body

C.7 SQL_Exceptions Specification

C.8 SQL_Boolean_Pkg Specification

C.9 SQL_Boclean_Pkg Body

C.10 SQL_Int_Pkg Specification

C.11 SQL_Int_Pkg Body

C.12 SQL_Smallint_Pkg Specification

C.13 SQL_Smallint_Pkg Body

C.14 SQL_Real_Pkg Specification

C.15 SQL_Real_Pkg Body

C.16 SQL_Double_Precision_Pkg Specification
C.17 SQL_Double_Precision_Pkg Body

C.18 SQL_Decimal_Pkg Specification

C.19 SQL_Decimal_Pkg Body

71
72
72
73
74
75

77
81
85

113
113
126

131

133
133
134

137

143
143
144
144
145
145
145
146
146
147
148
151
156
158
163
166
170
172
177
184

CMU/SEI-89-TR-16

\
- AR AR N A

C.20 SQL_Decimal Assembler Support (VAX)
C.21 SQL_Decimal Assembler Support (IBM)
C.22 sQL_Char_Pkg Specification

C.23 SQL_Char_Pkg Body

C.24 Subunit To_String

C.25 Subunit To_SQL_Char_Not_Null

C.26 SQL_Enumeration_Pkg Specification
C.27 SQL_Enumeration_Pkg Body

C.28 SQL_Database_Error_Pkg Specification
C.29 SQL_Database_Error_Pkg Body

C.30 SQL_Date_Pkg Specification

C.31 INGRES_Date_Pkg Specification

. Accession For
L

| NTIS GRA&I 7 |

| pT1c TAB 0
Unagnounced J
Justification . |

—

By

Distritution/
lht ’ .
Availability Codes

JRS—

" lAvatl a'nrd'/ox‘h
Dist | Special

W\}

208
215
226
229
235
235
235
237
241

241

241

245

CMU/SE}-89-TR-16

CMU/SEI-89-TR-16

iv

Figure 1-1:
Figure 1-2:
Figure 1-3:
Figure 1-4:
Figure 1-5:
Figure 1-6:
Figure 1-7:
Figure 1-8:
Figure 1-9:

Figure 1-10:
Figure 1-11:
Figure 1-12:

Figure 1-13:

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:
Figure 3-8:
Figure 4-1:
Figure 4-2:
Figure 4-3:

Figure 6-1:
Figure 7-13:
Figure 7-2:
Figure 8-1:
Figure 8-2:
Figure 8-3:
Figure 8-4:
Figure 8-5:
Figure 8-6:
Figure 8-7:

List of Figures

Classical Approach to Database Access
Modular Approach to Database Access
The Manual Method
The Automated Method
An E-R Diagram for Parts and Suppliers
The Parts-Suppliers Schema
Some of the Abstract Domains as Ada Types
Example Abstract Interface
An Application Program Usirg an Abstract Interface
Application Using Concrete Interface
The Concrete Moduie for tne exampie

Ada Specification of Concrete Module -- The Concrete
Interface

Bcdy of the Abstract Interface -- The Abstract Moduie
The SAME Typing Model
The Package SQL_STANCARD
The Package SQL_System
Three-Valued Logic
The Generic Subpackage Sql_Int_Ops
The Generic Subpackage SQL_Char_Ops
The Generic Subpackage SQL_Decimal_Ops
The Package Specification SQL_Enumeration_Pkg
The Domain Packages for Suppliers-Parts
The Domain Fackages for Suppliers-Parts, cont'd.
The Package SQL_Base_Types_Pkg
Parameter Kinds (with Modes)
The Abstract Module Procedure Calculate_Weight

Package Specifications for Sgl_Communications_Pkg and

SQL_Database_Error_Pkg

SAME Application Package Structure
Concrete_Mod for Alsys
Concrete_Mod for Verdix

A Block Dingram of the Example

The SQL Procedure tor Example_A
The Abstract Module for Example_A
Example_A (Part 1)

Example_A (Part If)

The Abstract Module Body for Exampie_A
The Conversions Package

WO O N OO WM

[O U Sy

PR WD 2O

N - - —s
[@J{e]

Iy

DO O N O, s b WwWwWwN
N wWo~ITO A o~ B 2 0 -

79
82
82
86
88
88
89
90
91
93

CMU/SEI-89-TR-16

Freface

Overview of Document and Intended Audience

These gui® 'nes describe the Str:ctured CGuery Language (SQL) Ada Module Extensions, a
methe *r the construction of Ada applications that access database management systems
wh.»- . data manipulation language is SQL. The SAME is not a tool set, it is a method of program
design and development. There is a set of support software, called the SAME standard
packages, which are needed by applications using the SAME.

As its name implies, the SAME extends the capabilities of the Module language defined in the
ANSI SQL standard to fit the needs of Ada. The defining characteristic of the use of the module
language is that the SQL statements appear together, physically separated from the Ada appli-
cation, in an object called the module. The Ada application accesses the module through proce-
dure calls.

The primary audience for this document consists ot application developers and technicians creat-
ing Ada applications for SQL database management systems. The document contains a com-
plete description of the SAME, including its motivation. It is not intended as a programmer’s
guide. Organizations using the SAME may wish to create such a guide from this document.

The reader of this document is expected 10 be tamiliar with both Ada and SQL, at some level of
detail. An attempt has bzen made to make the document accessible to readers who are not
experts in either language. Technical details are explained under the assumption that the reader
has a genera! understanding of both languages.

A Note on the Code in This Document

All of the Ada code in this document has been compiled, in many cases on more than one
compiler, and the great bulk of it has been tested. Exceptions to this rule are noted in the text.
The code in Appendix C has been exhaustively tested. The SQL code in the document has also
been tested, but not in the exact form shown. However, the processes of transcribing the code
into the document and editing it for improved readibility may have inadvertently introduced errors.
The code in the appendix was copied into the document without modification and should thus be
less likely to contain errors.

CMU,SEI-89-TR-16

CMU/SEI-89-TR-16

Acknowledgments

This dccument would never have been created were it nor for the efforts of the Structured Query
Language {SQL) Ada Module Extensions Cesign Committee (SAME-DC). This volunteer com-
mittee of users, database and congiler vendors, and recognized experts has been meeting
reqularly since May 1988. The hard work and heated discussions of those meetings effectively
shaped this document.

The following is a list of those pecple who attended SAME-DC meetings. <Companies are listed
for information purposes cnly. In no case should the opinions in this document be considered
those of the companies listed, nor of any individual in this list.

Naine
Judith Bamberger
Wanda B. Barber
Stowe Boyd
Bill Brykczynski
Scott L. Bunis
Janet E. Edvrards

Robert Firth
Neil Goodman
Marc Graham
Nabil Hijaz:

Jeff lves

Phillip R. Joiner
Arthur Keller
Gary M. Lichvar
James Metcalfe
Jim Moore

Dit Morse
Susan Philips
Judith Richardson

Paul Sciatica
Phil Shaw

John Steensen

S. Tucker Taft
Pat Timpanaro
Keith Usher
Eiigene Vasilescu
Hector Villarreai
Kurt Wallinau

Tom Wheeler

Bill Wood
Dale Worley
Greg Zelesnik

Organization

Software Engineering Institute

USA - ISS - Development Center Lee
Meridian

!nistitute for Defense Analyses
Computer Science Corp

Headquarters, USA Information Service
Support Center

- Software Engineering Institute

RTI

Software Erigineering Institute

MITRE Corp

Compass

USA - ISS - Development Center Lee
Stanford University

U.S. Army - (SS - Development Center Lee
Hewlett-Packard

IBM

QOracle Com -

lockheed Software Technology Center
US Army Communications Electronics
Command

Cullinet Software

1BM

Applied Data Research, Inc.
Intermetrics

Compass

iBM

Grumman Data Systems

Sybase Ccrpoiation

UNISYS

USA Communications Electronics
Ccoimand

Software Engineering Institute
Compass

Software Engineering Institute

The author would particularly like to thank Stowe Boyd for his help in publicizing this work, and
Arthur Keller, Susan Philips, and Tucker Tait for hosting meetings of the SAME-DC. Special
thanks to Greg Zelesnik, who is responsible for much of the code in this document and much of
the work in verifying the code’s correctness.

CMU/SE!-89-TK-16

—

This work was financially supported by the Ada Joint Program Office (AJPO). The author and the
SAME Design Committee wishes to thank Ginny Castor, David Taylor, and Glenn Hughes for
their suppont.

CMU/SEI-89-TR-16

.

Guidelines For the Use of the SAME

Abstract. These guidelines describe the Structured Query Language (SQL) Ada
Module Extensions, or SAME, a method for the construction of Ada applications
that access database management systems whose data manipulation language is
SQL. As its name implies, the SAME extends the module language defined in the
ANSI! SQL standard to fit the needs of Ada. The defining characteristic of the use
of the module language is that the SQL statements appear together, physically
separated from the Ada application, in an object called the module. The Ada appli-
cation accesses the module through procedure calls.

The primary audience for this document consists of application developers and
technicians creating Ada applications for SQL database management systems.
The document contains a complete description of the SAME, including its motiva-
tion.

1. Introduction

The SQL Ada Module Extensions (SAME) method of constructing database application pro-
grams in Ada is based on the SQL module language [2]. The method extends the features
of the module language by exploiting the capabilities of Ada. This results in robust appli-
cation programs written in a style suitable to Ada. The SAME treats SQL in much the same
way that Ada treats other foreign languages; that is, it imports complete modules, not lan-
guage fragments.

1.1. Overview of the SAME Method

In the classical approach to database access from application programming languages [3],
the programmer prepares a single text containing statements from two different ianguages:
the programming language and a database language. These two subtexts are disentangled
by a so-called preprocessor, which outputs the programming language text in which the
database statements have been replaced with procedure calls. This text can be processed
by the programming language compiler. A diagram of this process is given in Figure 1-1.

A programmer using a modular method such as the SAME does not prepare such a mixed
text. Instead, he prepares a compilable Ada program in which database services are ac-
cessed via procedure calls. The bodies of those procedures are defined by SQL statements
collected into a separate text called a module. The process is diagrammed in Figure 1-2.

As Ada database application programs written with the SAME are written in pure Ada, there
is no need for an Ada/SQL preprocessor. Ada-sensitive editors and debuggers can be used
to create these applications. Since the database interactions are written in standard SQL,
they can be processed by existing SQL tools. There is no need for programmers to learn
new syntax and semantics; no new system software need be written, maintained, and

CMU/SEI-89-TR-16

Program with
Embedded
Database Statements

sarrsrsrrsssrrrrrnn
Prsssrsrrrrrsmnnss

ld
4
¢
'
]
1
¢
N [
[
?
’
]
‘
i
’
]
’
]
‘ 4
‘
]
[
’
'
'
]
'
'
‘
‘
]
[
’
‘'
‘
1
.

Preprocessor

....................................

§ Program with §
} Call Statements ;
DBMS Support §
: Coce :
Compiler
Binder/Linker
Figure 1-1: Classical Approach to Database Access
CMU/SEI-89-TR-16

P

Ada Program
with Calls

.................................

Ada Compiler

; s e
)) SQL Module :
5 s
SQL Module
Processor

vy

Binder/Linker

Figure 1-2: Modular Approach to Database Access

CMU/SEI-83-TR-16

ported to process a new syntax and semantics for SQL." In this regard, the SAME treats
Ada and SQL as equals. The SAME intertaces two existing standards and their implement-
ing software. It does not attempt to crcate an “ideal” Ada DBMS. Rather, it aliows access to
existing, commercial DBMS in a manner which exploits the tools and capabilities of the
DBMS.

Using the preprocessor approach to database application programming as shown in Figure
1-1, the application programmer must know the syntax and semantics of not only the pro-
gramming language but also the database language. These are rarely identical or even
similar; certainly not in the case of Ada and SQL. The programmer must think in two differ-
ent ways as he alternates between Ada and SQL. In such non-modular approaches, the
application programmer must understand not only the logic of the application, but also the
logical design of the stored database. He must know not only what information services the
application program requires of the database, but aiso how the database can be made to
provide those services.

Modular approaches, such as the SAME, make it possible for the application and database
programming tasks to be assigned to different programmers. For development organizations
which are large enough to afford this specialization of roles, there are benefits in reduced
training costs and greater productivity. in the case that the same programmer creates the
Ada application and the SQL module, he is able to separate the concerns of the application
logic and the database logic. When designing or writing the application he can ignore the
issues of database interacuon; when dealing with the database he can concentrate solely on
it. In both cases, since the resulting Ada application program contains no SQL, it is isolated
from changes in the database structure and the SQL statements. This isolation decreases
the cost of maintenance and porting.

Large, complex database applications have extensive design phases. Modular approaches
such as the SAME are particularly well suited for such appiications. The module makes the
database services needed by the application visible. It is an application-specific, DBMS-
independent interface between the database and the application, which is naturally treated
during the design as a design object. The dependence of the application on the database
can be controlled more easily since it is more visible, not scattered throughout the appli-
cation as in non-modular approaches. The module is an external schema [6), a “simple user
view, tailored to the requirements of a specific application” [8].

The benefits of modular interfaces are summarized in the following list.

» Maintenance and porting costs are reduced by the isolation and separation of
the Ada code from the SQL code. The application - database interaction is
elevated to the status of a design object. This makes it easier to manage and
control.

'The method proposed by the Institute for Defense Analysis (IDA) [12] does not embed SQL into Ada in the
standard sense, but it does produce application programs containing intermixed application and database logic.
This is done by modifying the syntax and semantics of SQL so that it appears as compilable Ada code. The
necassary support packages and system software are expensive in development, compilation, and runtime
costs, although accurate figures are not available. By separating the Ada and the SQL and allowing each to be
processed by pre-existing processors, the SAME avoids these modifications and expenses antirely.

4 CMU/SEI-89-TR-16

- em mm em em omm omm tm e e e e e e o

e The potentiai exists for increased specialization of the software development
team. Fewer programmers need to know the details of the database aesign.
This can lead to improvements in team productivity.

» Ada applicaticn programs are written in compilable Ada, preserving the use of
syntax-directed editors, etc. There is no need for pre-processing. There is no
need to develop any new syntax nor system software; these methods can be
used with existing tools.?

The SAME is a specialization of the modular approach particular to the needs of Ada. The
benefits which it brings to database apglications written in Ada are:

e The Ada typing model. Using the SAME method, the Ada program views the
database through the abstract type facilities of Ada. Type derivation and sub-
typing are available as are range constraints to control runtime behavior and
inappropriate operand usage.

¢ A safe treatment of null values. SQL supports partial and incomplete infor-
mation through the use of the null value. The null value is a concept foreign to
Ada, as it is to most programming languages. Through the use of Ada's data
abstraction mechanism, the SAME brings a measure of incomplete information
processing to Ada while ensuring that null values are never used as though
they were not null.

* A simple, robust, yet flexibie treatment of database exceptional
conditions. SQL database management systems signal the occurrence of ex-
ceptional events, such as hardware failure, through a status code field. The
meanings of the values of that field are not set by the standard; each implemen-
tation presents a different set of values. Usually the application program cannot
recover from any of these conditions. The SAME treatment of exceptional con-
ditions presents a failure-free DBMS to the application program; if an SQL
statement encounters an unexpected condition, an exception is raised and an
appropriate error message is generated. This simplifies the application
programmer's job and ensures uniform treatment of errors. On the other hand,
the SAME allows applications which need to do some or all of their own error
processing full access to the DBMS facilities.

The features in the above list are implemented in a thin interface layer, called the abstract
module. In Figure 1-3, the concrete module is the object containing solely SQL statements
as might be processed by an SQL module language compiler.3 The abstract module serves
to transform data and procedural abstractions of the Abstract and Concrete Interfaces of
Figure 1-3. The architecture of Figure 1-3 is specific to the manual implementation of the
SAME method. The SAME Design Committee (SAME-DC) is engaged in the task of speci-
tying the syntax and semantics of a tool to assist in the construction of abstract intertaces.
When such tools become available, the situation simplifies to that given in Figure 1-4. The
SAME method is valuable without such tooling, but is easier to use with it.

2This will depend on the tool sets supplied by particular Ada compiler and DBMS vendors. It is always possible
to use the method; these tool sets may make it easier.

3As of this writing, there are no compilers for the SQL module language, although there are some under
development that are due to be released soon. In later chapters we show how 1o build applications iIn SAME
without a module language cmpiler.

CMU/SEI-83-TR-16 5

¢
-
M
%
2
! =
" Q
a|npo m a|npon apo)
Bwhmcm/_o - - > jorliISqQy - > uoneoyddy
aoeual| “_Qm_ocoo goelalu], J0BASqY

®

Jjawwesboid
uoyeol|ddy epy

Jowwelbold Jawielboid
10S 0B alU|

Figure 1-3: The Manual Method

|
|
!
\
|
]
L
i
|
|
]
1
!
|
[
1
i
I
f
|
[}
t
|
]
|
|
{
1
i
!
|
L}
!
L}
[}
|
t
!
1
{
1
L}
!

1
1
1
]
}
1
i
1
[}
i
\
1
)
}

— { ——
1
1
t
t
I
)]
1
1
!
|
)
|
I
!
1

3|NPO 81340U0D
pue 19B1)Sqy

4

10S$920.d
JNVS

4

uoneoy, vodg 8jNPO 10BIISqQY

©

Jan108dg
8oBLBIU|

aoBLdU|

———— e w m = ——— - " — . = a —— — m — - ——

1oeiisqy

apo-
uoneoddy

©

lawwelboid
Loneolddy epy

Figure 1-4: The Automated Method

CMU/SEI-89-TR-16

R

1.2. An Example of the SAME Method

This section provices, by way of example, an overview of the SAME in use. It is meant to
provide the reader with an intuitive feel for the method. Later sections provide the details.

Use of the SAME begins during the process of database design.® Early in that process the
designer celineates the abstract domains of his database. The notion of an abstract domain
is very similar to the notion of an abstract type. However, the Ada definition of an abstract
domain requires more than a single Ada type definition, as will be shown. Hence, a new
term was needed to define this concept.

Abstract domains are objects in the real world that are reflected in the information system
which models that world. They are also the objects from which the database structures, that
is, the relations, will be built. They describe, inter alia, the value sets which may appear in
database columns. Like Ada types, abstract domains serve to distinguish differing denota-
tions of a concrete value; the value “1" as an employee number is not the same as the
value "1" as a department number, for example.

Abstract domains tend to lose their identities in the SQL schema due to SQL's weak typing
model. Ada’s typing model allows these domains to retain their identities and the SAME
exploits that power.

Entity relationship diagrams {7} are a popular database design aid. Figure 1-5 contains such
a diagram, deJsu..cing (e parts-suppliers database of C. J. Date {9). The diagram describes
two entities: Suppliers, uniquely identified by Number and having attributes Name, Status
and City; Parts, also uniquely identified by Number, with attributes Name, Color, Weigit,
and City. (The city of a supplier is the city in which the supplier is located; the city of a part
is the city in which the part is stored.) The diagram also recognizes one relationship, Order,
which relates a supplier and a part, and has the attribute Quantity.

Designing the abstract domains in a database design is much like designing the abstract
data types of an Ada program. A good rule of thumb to follow is the comparison rule. If it
makes sense to compare values of two different Ada variables or database attributes, then
they probably have the same Ada type or abstract domain. For example, it makes no sense
to compare supplier numbers to part numbers; part number one is utterly different from sup-
plier number one. The same is true for supplier and par name... On the other hand, supplier
cities and part cities have the same abstract domain; “Pittsburgh” is “Pittsburgh” whether a
supplier or a part is located there. Thus, the abstract domains in Figure 1-5 are supplier
number (SNO), supplier name (SNAME), STATUS, CITY, part number {PNO), part name .
(PNAME), COLOR, WEIGHT, and quantity (QTY).

The SQL schema for this database is given in Figure 1-6. Notice that the abstract domains
have been obscured.> SNO and PNO have the same data type, although they take values
from distinct abstract domains. The SAME Ada types for these columns makes the distinc-

“These steps are easily retro-fitted to a pre-existing database design.

5In this case, the domains have been preserved in the attribute names. in general, relational database design
methods, and SQL in particular, do not recognize abstract domains.,

8 CMU/SEI-89-TR-16

Nimber Manw: Status oty
Suppilier
Order ' Quantitv
Part
Number Name Color Weight City

Figure 1-5: An E-R Diagram for Parts and Suppliers

CREATE TABLE S (SNO . CHAR(S) NOT NULL,
SNAME CHAR(20),
STATUS 1INT,
CITY CHAR(15),
ONIQUE (SNO))

CREATE TABLE P (PNO CHAR (5) NOT NULL,
PNAME CHAR(20),
COLOR CHAR(S®),
WEIGRT INT,
CITY CHAR(15),
UNIQUE {(PNO))

CREATE TRBLE SP (SNO CHAR (5) NOT NULL,
PNO CHAR (5) NOT NULL,
QTY INT,
UNIQUE (SNO, PNO))

Figure 1-6: The Parts-Suppliers Schema

tion apparent. The full set of type declarations for some of these abstract domains is given in
Figure 1-7. The meanings of these definitions is not immediately obvious; they will be ex-
plained in Chapters 2 and 3.

Although the SAME is a method for interfacing Ada and SQL and not a tool set, it does have
underlying support software. This software is known collectively as the SAME standard
packages. The packages SQL_Char_Pkg and SQL_Int_Pkg are two of these packages. A

CMU/SEI-89-TR-16 9

complete listing of the specification and bodies of these packages, along with a quick refer-
ence guide to them, are attached as Appendix A®

with SQL_Char Pkg; Wwith SQL Int_Pkg;
package Example Definitions is

type PNONN_Base is new SQL Char Pkg.SQL Char Not_ Null;
subtype PNO_Not_Null is PNONN_Base (1..5):
type PNO_Base isNew SQL_Char Pkg.SQL_Char;
subtype PNO_Type is PNO_Base (PNO_Not_Null’'Length);
package PNO Ops is new

SQL_-E:h.lr_Pkg. SQL_Cba.r_Ops (PNO_Bas., PNONN_B&..) ;

type CITYNN_Base isnew SQL Char Pkg.SQL_Char_ Not_Null;
subtype CITY Not Null is CITYNN Base (1..15);
type CITY Base is new SQL_Char_ Pkg.SQL_Char;
subtype CITY Type is CITY_Base (CITY Not_Null’Length):
package CITY Ops is new

SQL_Char_Pkg.SQL Char_Ops (CITY Base, CITYNN_Base);

type status Not_Null is new SQL_Int_Pkg.SQL_Int_Not__Null;
type Status_Type iSnew SQL Int Pkg.SQL_Int;
package Status_Ops IS new
SQL_Int_Pkg.SQL_Int_Ops (Status_Type, Statua_Not__Null) H
end Example Definitions;

Figure 1-7: Some of the Abstract Domains as Ada Types

In Figure 1-7, each of the illustrated abstract domains has two Ada types. One of the types,
with the suffix _Not_Null, is a visible Ada type; thus Status_Not_Null is an integer type;
PNO_Not_Null is a one dimensional array, of a character type.” The other type, with the
suffix _Type,8 is a limited private type. This type provides an encapsulation of the SQL null
value. A full range of comparison and, for numeric types, arithmetic operators are defined
for these types. These operators implement the semantics of the corresponding SQL oper-
ator, which is defined for the null value. The majority of these operators are denved, using
Ada derivation, from those defined in the SAME standard packages. The few operators
which cannot be derived in this way are generated by the generic packages illustrated in
Figure 1-7. This is done to reduce compilation time and runtime storage requirements.

In the remainder of these guidelines, the two types which together with the package instan-
tiation make up the declaration of an abstract domain are be called the visible Ada or
_Not_Nulltype and the limited or _Type type.

Once the database schema has been defined in Ada, subsequent steps of the SAME are
application specific. Consider the following application: “For each part ordered from any
supplier, print the part number and the names of cities in which some supplier with a status
of X or greater is located. X is a runtime parameter.” In order to implement this application,
an Ada program will need three database procedures:

$The SEI will, for a limited time, distribute this software in machine-readable form. An order form is attached to
this document.

"This type may be other than Standard.Character, as the database may stare non-ASCIl character strings.

8Section 3.4 explains the need for the structure of the character string type definitions,

10 CMU/SEI-83-TR-16

1. An “open cursor” procedure which accepts the runtime parameter.
2. A “fetch” procedure to return the rows of part numbers and cities.

3. A “close cursor” procedure to be called when the application has exhausted
all seiected rows.

The program will also need a definition of the rows being passed to it. These procedure and
row record definitions make up the abstract interface, the specification of the abstract mod-
ule. That specification, for this example, is given in Figure 1-8.

with Example Definitions; use Example Definitions;
package Example_Interface is

type Part Nbr City Pairs is record
Pno : PNO_Not Null;

City : City Type;
end record;

== All of these procedures may raise SQL Database_Error

procedure Open (Lower Bound : Status_Not_Null);
~- creates the relation of Part numbers and Cities
~- where there exists some supplier, with status
-~ at least Lowor_Bound, of that part in that city

procedure Fetch (Tuple : inout Part Nbr_City Pairs;
Found : out Boclean);
-- returns the records of the relation created by open
-- Found becomes False at end of table

procedure Close;
-- clean up procedure
end Example Interface;

Figure 1-8: Example Abstract Interface

Once the abstract interface has been determined, the application program can be written.
Figure 1-9 contains the application program. For that figure, assume that Status_IO is an
instantiation of integer_|O for the integer type Status_Not_Null. The functions Not_Null and
to_unpadded_string are supplied by the SAME standard packages.

it is instructive to notice the differences between application programs using an abstract in-
tertace, as exemplified by Figure 1-8, and one using the concrete interface provided by the
ANSI module language, as is shown in Figure 1-10. (In Figure 1-10, Example_Module is the
Ada package name assigned to the concrete module, which is illustrated in Figure 1-11;
SQL_Standard is a package defined in a revis&d version of the ANSI standard. See

[16] [5] and Section 2-1. SQL_int_IC is integer_IO instantiated for SQL_Standard.int.)

CMU/SEI-89-TR-16 1

with Text IO: use Text_ IO; .

with status_IO; -- Integer IO instantiated for Staéus_Not_Ywa
with Example Interface; Use Example_ Interface;

with Example Definitions; use Exanple Definitions;

procedure Example is

Statuc_Buffer : Status_ﬂot_ﬂull;
Data Record : Part Nk.s City Pairs;
Record Found : Boolean;

begin
put ("Enter Status=> ");
Status_IO.Get (Status_Buffer); new_line;
put ("Part Numbers and Cities for Status ");
Status_IO.put (Status_Buffaer); new line;

Opcn(Lowor_sound => Status_puffor): ~- create result table
loop
fotch(Data_Rccord, Rocord_Pound); -- naxt record into buffer
exit when not Record_Found; -- if exit taken, all done
If Not_Null (Data_Record.City) then -- filter out unknown cities
put_line (to_unpadded_string(Data_Record.Pno) & " " &
to_unpadd.d_ctring(Data_Bccord.City));
end if;
end loop;
close;

end Example;
Figure 1-9: An Application Program Using an Abstract Interface

These differences are summarized in the foliowing list.

» Using an abstract interface, an application program treats rows of a table as an
object of a record type. At the concrete interface, the components of a row are
treated as individual parameters.

 Using an abstract interface, an application program sees the database through
the abstract domains identified during database design. At the concrete inter-
face, only the limited set of SQL types are present.

» Using an abstract interface, an application programmer may safely remain un-
aware of the SQL conventions for null values. At the concrete interface, sepa-
rate indicator variables signal nuliness. Obscure errors can result from mishan-
diing these indicators. These errors cannot arise in programs using the SAME.

» Using an abstract interface, an application program does not see the
SQLCODE parameter. This is the variable which holds the status code returned
from every SQL statement execution. At the concrete interface, the application
must check this parameter, understand it, and execute application suppiied er-
ror processing if things go wrong. Obscure errors can result from not handling
these DBMS exceptional conditions correctly. These errors are eliminated from
programs using the SAME.

't is also worth noting that the abstract interface provides facilities which permit application
programs to be indifferent to the encoding of the character data in the database. The con-
crete interface supports the use of non-ASClI characters but provides no mechanism for
inter-converting them with ASCII characters. For example, the Ada explicit type conversions
(that appear as arguments to the put_line call in Figure 1-10) assume that the DBMS stores
ASCII character strings. In contrast, the corresponding portion of Figure 1-9 uses an ab-
stract interface function (to_unpadded_string) which will convert the DBMS character set to

12 CMU’'SEI-89-TR-16

ASCI! if needed. (The decision is made as part of the installation of the SAME support
packages. See [14].)

with Text IO: use Text_IO;

with SQL_Int IO;

with Examplc:Modulc; use Example_ Module;
with SQL_Standard;

procedure Example_at Concrete_Interface is

Statuc_guffor : SQL_Standard.Int;
Part_ Number: SQL_Standard.Cbar(l..S);
City: SQL_Standnrd.Char(l..lS);

SQLCODE : SQL_Standard.SQLCODE_Type:

City_Indicator : SQL_Standard.Indicator_Type;

begin
put ("Enter Status=> ");
SQL_Int_IO.Got(Status_Buffer); new_line;
put ("Part Numbers and Cities for Status ");
SQL_Inq_IO.put(Status_Buffor); new_line;
Open (Status_Buffer, SQLCODE) ;
if SQLCODE in SQL_Standard.SQL Error then
<application supplied error processing>
else
loop
fetch (Part Number, City, City Indicator, SQLCODE);
If SQLCODE = 0 then
If City Indicator >= 0 then
put_line(string(Part Number) & " " &
string(City));
end if;
elsif SQLCODE in SQL Standard.SQL_Error then
<application supplied error prc-.assing>
exit;
eisif SQLCODE in SQL_sStandard.Not_Found then
exit;
end If;
end loop;
endlf;
close;
end Ex‘mplo_pt_Concrcte_Intorfaco;

Figure 1-10: Application Using Concrete Interface

There remains now only the task of creating the body of the abstract interface, also called
the abstract module. The purpose of the procedures in that module is to form the bridge
between the concrete interface and the abstract interface. It is assumed in this section that
the concrete interface is supplied by a module language compiler that is compliant with the
ANSI standard. The SAME does not depend on the existence of such compilers. Chapter 7
demonstrates the use of the SAME in environments without such compilers.

Figure 1-11 contains the specification of the concrete module for the example as it would be
written in the module language. The Ada package specification corresponding to that mod-
ule, according to the revised ANSI standard [5] [16], appears in Figure 1-12. The body of
that package is implementation dependent; in particular, its form will depend on the tool set
available for the DBMS is use. Firally, the abstract module, implementing the abstract inter-
face on top of the concrete interface, appears in Figure 1-13.

CMU/SEI-89-TR-16 13

Module Example Module
Language Ada
Authorization Public

Declare X Cursor
For
Select SP.PNO, S.City
From SP, S
Where SP.SNO = S.SNO
And S.Status >= Input_Status;

Procedure X Open
Input_Status Int
SQLCODE ;

Open X;

Procedure X Fetch
Part Number Char(5)
City Char(15)
City Indic Smallint
SQLCODE ;
Fetch X into Part Number, City INDICATOR City Indic;

Procedure x__Clos.
SQLCODE;
Close X;

Figure 1-11: The Concrete Module for the Example

with SQL_Standard;
package Example Module is

procedure X_Open (Input_Status : SQL_Standard.Int;
SQLCODE : out SQL_Standard.SQLCODE_Typc);

procedure X Fetch (Part Number : out SQL Standard.Char;
City : out sQL Standard.Char;
City_Indic : out SQL Standard.Indicator_Type;
SQLCODE : out SQL Standard.SQLCODE_Type):
procedure X Close (SQLCODE : out SQL_Standard.SQLCODE Type);
end Example Module;

Figure 1-12: Ada Specification of Concrete Module -- The Concrete Interface

The detail in Figure 1-13 (for example, the purpose of the packages
SQL_Communications_Pkg and SQL_Database_Error_Pkg) is explained in Chapter 4,
whict- explains the construction of abstract modules. The outline of an abstract interface
procedure body can be recognized in Figure 1-13. That outline is described by the following

list.

14

CMU/SEI-89-TR-16

1. The corresponding prozedure in the concrete interface is called. Any
parameters to that procedure are convenea to the appropriate type in package
SQL_Standard.

2. The resulting status code parameter (SQLCODE) is examined. If the value of
that parameter lies in a set of expected values, control is returned to the appli-
cation program. Otherwise, a standardized error processing routine is called
and an exception is raised.

3. Values which may be null are checked for nuliness, converted to the appro-
priate types for the application program and assigned to the output row record.
Values which may not be null are placed directly into the output row record by
the concrete procedure. (In the case of INSERT or UPDATE SQL statements, for
which data flows from the application to the database, this set of steps occurs
first.)

The fact that every abstract interface procedure body has a predictable structure makes
them prime candidates for automatic generation. The SAME Design Committee hopes to
create, in the near term, a notation enhancing the standard ANS! moduie language, within
which abstract interfaces can be described ancd from which they can be generated. This is
the idea behind Figure 1-4.

1.3. Structure of This Document

The remainder of these guidelines presents the SAME in detail. Chapters 2 and 3 tell the
database designer how to describe the database in terms of the abstract types used by the
SAME. Chapter 4 gives the information needed by the buiider of abstract interface modules.
Chapter 5 contains hints and suggestions for designers and programmers of applications
using the SAME. Much of the information in Chapter 5 also appears elsewhere in the guide-
lines. It is repeated in Chapter 5 for the convenience of application programmers. Chapter
6 contains a condensed overview of the SAME. The bulk of this document assumes the
existence of a compiler for the ANSI standard moduie language. Use of the SAME does not
require such a compiler. Chapter 7 describes how the SAME can be used without a module
language compiler. Chapter 8 contains an extended example of the SAME. Chapter 9 de-
scribes the use of the SAME in applications which use dynamic SQL or Ada multi-tasking.

The SAME is supported by the SAME standard packages. A complete listing of these pack-
age specifications, along with suggested package bodies, appears in Appendix A. There are
also appendices containing a quick reference guide and a glossary of terms.

CMU/SEI-89-TR-16 15

with SQL Standard, Example Module, Example Definitions,
SQL Communications_Pkg, SQL Database Error_Pkg;

use SQL Standard

packagebody Example_Interface is

package ExMod renames Example Module;
package SCP renames SQL Communications_Pkg;
package SDEP renames SQL Database_Error_ Pkg’
package ExDef renames Example Definitions;

procedure Open (Lowar_Bound : Status_Not Null) is
begin
ExMod.X Open (Int (Lower_ Bound), SCP.SQLCODE):
If sCP.SQLCODE in SQL _Error then
SDEP .Process Databa-c _Error;
raise SCP. SQL | “Database Error,
end if;
end Open;

procedure Fetch (Tuple : inout Part Nbr City Pairs;
Found : out Boclean) is
City_Buf : Char (ExDef.CITY Not Null’Range);
City Indic : Indicator_Type;
begm
ExMod.X Fotch(Char(tuplo Pno), City buf, City_Indic, SCP .SQLCODE) ;
case SCP.SQLCODE is
when Not_Found =>
Found := false;
when SQL Error =>
SDEP.Prccosc_Pataba-o_;rror:
raise SCP.SQL Database_Error;
when 0 =>
It City Indic < 0 then
asgign (tuple.City, Null_ SQL Char);
else
assign (tuple.City,
City Ops.With Null(City Not Null (City Buf))):

endlf;
Found := true;
when others => null; ~-- standard has no such codas
end case;
end Fetch;

procedure Close is
begin
ExModX_ Close (SCP.SQLCODE) ;
if SCP.SQLCODE in SQL Error then
SDEP .Process_Database_ Error;
raise SCP.SQL Database_Error:
end if;
end Close;

end Example_Interface;
Figure 1-13: Body of the Abstract Interface -- The Abstract Module

16 CMU/SEI-89-TR-16

2. The SAME Typing Model

This section describes the model of data typing employed by the SAME. The model's objec-
tive is to integrate the data semantics of Ada and SQL to the extent that is desirable and
practicable. The problems to be solved in such an integration are:

» The differences between the typing models of Ada and SQL. SQL offers a
limited set of primitive data types. It does not offer a mechanism for user-
defined types. The abstract typing mechanisms of Ada are a central aspect of
the language. An Ada program prefers a view of the database contents consis-
tent with a set of abstract, application-oriented types.

» The null vaiue. SQL provides a means of processing missing or incomplete
information. This is the null value and three-vaiued logic. These notions do not
appear in Ada.

e String processing. Ada and SQL give subtly different semantics to the string
comparison operators. Further, the Ada predefined type string is by definition a
sequence of ASCII characters. SQL strings are over an implementor-defined
character set.

» Decimal fixed point arithmetic. Ada fixed point arithmetic does not resemble
SQL decimal arithmetic. More importantly, Ada compilers do not recognize the
machine-specific packed decimal formats in which SQL database management
systems store decimal data.

¢ Non-standard data types. Many database management systems recognize
data types not in the ANSI standard. The date-time data type is an example of
this. Ada programmers may wish to store enumeration types in SQL data-
bases, even though SQL does not recognize such types.

The SAME solution to these problems aims at good performance in both time and space. It
achieves a direct mapping between SQL and Ada types [11] which requires no data conver-
sions. Each bit pattern representing a non-null vaiue of a database column represents the
same value of the Ada data type which describes it.°

The SAME typing model is flexible. An overview of it is given in Figure 2-1. At the lowest or
concrete level of the interface, at which the calls to the concrete DBMS module appear,
database values are described by Ada types designed in conformance with SQL require-
ments. These types are reviewed in the next subsection. Except for Chapter 7, these guide-
lines assume a compiler for the module language conforming to the recommendations in
[16] which are incorporated in [5]. In Chapter 7, techniques are presented for low cost im-
plementations of SAME in environments withou‘a module compiler.

As shown in Figure 2-1, the concrete types at the concrete level are transformed into ab-
stract types at the abstract level. The three branches of that diagram represent three differ-
ent treatments of data semantics.

9The Ada application program sees the database through a set of abstract, application-oriented types. These

types and their derivation are described in Chapter 3. This section is concerned with the concrete representation
of database values.

CMU/SEI-89-TR-16 17

e Ada semantics. Each database column is represented by an Ada type whose
arithmetic, comparison, and assignment operations are those of Ada. With
these semantics, treatment of database and non-database data is uniform
throughout the Ada program.

« SQL semantics. Each database coiumn is represented by an Ada type whose
arithmetic, comparison, and assignment operations simulate those of SQL. With
these semantics, treatment of database data is uniform between the SQL and
Ada portions of the complete application.

* User-defined semantics. Each database column is represented by an Ada
type whose arithmetic, comparison, and assignment operations are user de-
fined. This treatment allows for user extensions of the method.

The choice of treatment is the responsibility of the application designer. This section de-
scribes the realization of those semantic treatments.

As mentioned, the next section reviews the concrete treatment of SQL data. It is this treat-
ment which achieves the direct mapping mentioned earlier. Chapter 3 describes the devel-
opment of the abstract domains. Section 3.1 discusses the treatment of null values in the
SAME and how that affects application programs. Section 3.3 continues that discussion,
showing how the abstract types implementing SQL semantics can be arranged into type
hierarchies and Ada range constraints can be simulated for them. Section 3.4 gives the
additional information needed to understand SQL strings and their SAME implementation.
Section 3.5 explains the SAME simulation of SQL decimal fixed point arithmetic and Section
3.6 describes the treatment of data types not covered in the ANSI| standard. An implemen-
tation of a date-time data type and implementations of support for SQL storage of Ada
enumeration .ypes are presented in Section 3.6. The section serves as a model for user
extensions to the SAME typing model.

The sections described above each deal with individual columns in isolation. Section 3.7
puts the results of those sections together into a description of the database.

18 CMU/SEI-89-TR-16

Ada Application Program

Ada sQL User-Defined

Semantics Semantics Semantics
1]

Concrete Types

Figure 2-1: The SAME Typing Model

2.1. Concrete Types

At the lowest, or concrete, level of the SAME SQL Ada interface, the level at which the calls
to concrete module routines appear, all parameters have types which appear in the package
SaQL_STANDARD. This package was created by the SAME Design Committee (SAME-DC) as
a recommended change to the ANS!I SQL interface to Ada [16] [3].19 A listing of this pack-
age appears in Figure 2-2. Each type definition in SQL_STANDARD directly defines the SQL
type with the same name.'! The definition is direct in the sense used previously: the value
sets underlying the types in SQL_STANDARD are exactly the value sets underlying the cor-
responding SQL types. Further, under reasonable assumptions, 2 the data encodings will be
identical and no data conversion will be necessary.

All of this is achieved by judicious choice of the implementor-defined values in
SQL_STANDARD. These values are specific to the database management system in use.
Once they have been determined, the package will be compiled as part of the installation
procedures for the SAME standard packages into an Ada library within which it may be
referenced by other SAME standard packages. Application programmers need not be con-
cerned with this package; application programs do not reference it.

'These recommendations were accepted by the responsible ANSI subcommittee and appear in their current
proposal for Ada support in SQL [5).

"1 Although SQLCODE_TYPE is not a type defined in SQL, SQLCODE acts as though it were a type as well as a
variabie in {2] and [5].

2The assumptions are that the DBMS, at the application programming intertace, delivers numeric values in
the encoding of the machine and that the Ada compiler uses these encodings as well. This should be true in
aimost every case.

CMU/SEI-89-TR-16 19

package sql standard is
package Character_Set renames csp:
subtype Character_Type iS Character_ Set.cst;
type Char is array (positive range <>)
of Character_Type:
type Smallint isrange bs..ts;
type Int isrange bi..ti;
type Real is digits dr;
type Double Precision is digits dd;

-~ type Decimal iS to be determined;
type Sglcode_Type Isrange bsc..tsc;
subtype sql_Error is Sqlcode_Type

range Sqglcode Type’'FIRST .. -1;
subtype Not_Found is Sqlcode_Type
range 100..100;
subtype Indicator_Type is t;

-- csp is an implementor-defined package and cst is an

- implementor-defined character type. bs, ts, bi, ti, dr, dd, bsc,
- and tsc are implementor defined integral values. t is int or

- smallint corresponding to an implementor-defined <exact

-- numeric type> of indicator parameters.

end sgl_standard;

Figure 2-2: The Package SQL_STANDARD

The values appropriate to the definition of the integer and floating point types will generally
be easily available in the DBMS documentation. Likewise the definition of SQLCODE_TYPE
should not be difficult. (It is likely to be identical to one of the integer types.) The floating
point types will also be defined in the DBMS documentation. It may also be necessary to
examine the documentation for the Ada compiler, particularly true for the vaiues of
System.Max_Int and System.Max_Digits.

The treatment of character data in SQL_STANDARD is meant to allow for non-ASCI| data. The
type CHAR is defined on analogy to the Ada predefined type STRING but with respect to a
character type which can be specified by the implementor. To use these definitions with
ASCII strings, set csp to STANDARD and cst to CHARACTER.

The subtypes SQL_ERROR and NOT_FOUND of SQLCODE_TYPE are provided for the benefit of
programmers, such as authors of abstract modules, who write their own error detection
routines. For example, one may write

if SQLCODE isin sSql_Error .
or

case SQLCODE is
when 0 =>
-~ error free return
when Not_Found =>
~-- no record found
when Sgl_Error =~
-- error condition from DBMS
when others =>
-~ standard describes no such codes
end case;

20 CMU/SEI-89-TR-16

For more on the SAME treatment of exceptional conditions, see Chapter 4.

The SAME standard packages also depend upon the package SQL_SYSTEM (see Figure 2-3)
which defines two constants, the values of which cannot be deduced from SQL_STANDARD.
The constant MAXCHRLEN is the length of the longest character string supported by the
DBMS. The constant MAXERRLEN is the length of the longest error message returned by

the DBMS-supplied error message function. See Chapter 4 for details.

-- SQL System is a "platform-specific" package

-- within the SAME

package SQL System is
~- MAXCHRLEN is the upper bound of the SQL Char Pkg
-- subtypes SQL Char Length and SQL Unpadded Length

- SQL_Char_Inngt'.h is a subtype of Natural with a lower bound

-- of 1

-~ SQL Unpadded Length is a subtype of Natural with a lower
-- bound of 0

MAXCHRLEN : constant := str_leng;

-- MAXERRLEN is the maximum length of the aerror message
- string returned from the DBMS error message function

MAXERRLEN : constant := mag_leng;

end SQL_System;
Figure 2-3: The Package SQL_System

Creation and compilation of the SQL_STANDARD and SQL_SYSTEM package specifications are
part of the installation of the SAME standard packages. The installation guide for the SAME

standard packages [14] contains details of the instaliation process.

CMU/SEI-89-TR-16

21

CMU/SEI-89-TR-16

22

3. Developing the Abstract Domains

The types in SQL_STANDARD define the representation of SQL data to the Ada compiler. As
illustrated in Section 1.2, applications developed using the SAME method view the database
through a collection of abstract domains. These abstract domains are built on top of type
definitions provided in the SAME standard packages or in similar packages defined by the
user (see Section 3.6).

There exists a support package in the SAME standard packages for each of the types in
SQL_STANDARD (except for SQLCODE_TYPE) . The package SQL_INT_PKG gives support to ab-
stract types based on the SQL Int type; SQL_CHAR_PKG supports character strings, etc.

Each of these packages defines two types. One of these types is a visible Ada type derived
from the corresponding type in SQL_STANDARD with no added constraints. These type names
are formed from the package name by dropping the _Pkg suffix and appending the suffix
_Not_Null. Thus, SQL_Int_Not_Null is defined in the package SQL_INT_PKG as new
SQL_Standard.Int; SQL_Char_Not_Null is defined in SQL_CHAR_PKG as new
SQL_Standard.Char, etc.

The second type defined in each package is a limited private type. These type names are
formed by dropping the _Pkg suffix and adding no additional suffix. Thus SQL_INT_PKG de-
fines SQL_Int, sQL_CHAR_PKG defines SQL_Char, etc. These limited private types are used
to support SQL data semantics. In particular, objects of these types can take on the SQL
null value,’3 whereas objects of the _Not_Nuil types cannot.

As is shown in the introduction, an abstract domain is represented in the SAME by two type
definitions derived, directly or indirectly, from the types in a support package. (Character
string types further require two subtype definitions. These are explained in Section 3.4,
below.) Conventionally, the name of the type derived from the _Not_Null type retains the
_Not_Null suffix; the name for the type derived from the limited private type appends tne
suffix _Type; these derivations and naming conventions are illustrated in Figure 1-7. The
types are referred to in this document as the visible Ada, or _Not_Nulltype, and the limited

private, or _Type type.

The creation of the abstract domain definitions completes the first step in the description of
the database within the SAME method. The second step consists of collecting the definitions
into Ada package specifications. These are called domain packages and their formation is
defined in Section 3.7.

3.1. The SAME Treatment of SQL Null Values

Obijects or values that are directly or indirectly database values are to be stored as objects
of one of the types making up an abstract domain definition. in cases in which it is possible
for these database values to take on the SQL null value, they must be stored as values of
the limited, _Type type. In cases in which it is logically certain that a value cannot be nul!,
the visible _Not_Null type can be used. This logical certainty can be supplied either by SQL

3The SQL null vaiue should not be confused with the null vaiue of an access tyoe .

CMU/SE}-89-TR-16 23

or by the appiication logic. The data definition facilities of SQL can restrict the vaiue of a
table column to exclude the null value: the data manipulation statements of SQL ca: finer
out rows with null values in specified columns. Within an application. it may be logically cer-
tain that null vaiues have been previously filtered out. If the ansence of the null value 1s not
togically certain in this sense, then the limited type must be used. The SAME standard
packages are defined in such a way as to guarantee a runtime error. namely, the exception
Null_Vaiue_Error, if a null value is inadvertently used as though it were not null.

Consider, then, & situation in which the null value is logically possible and a given object has
one of the SAME limited types. As part of its method, the SAME offers three treatments of
these objects. These treatments are coding disciplines enforced on application program-
mers. The SAME allows these treatments te be intermixed in an application program in any
way, subject only to whatever local standards and guidelines may exist.

3.1.1. The Minimalist Approach

In the minimalist approach, objects of limited types are treated solely as vaiue repositories.
All manipulation of and access to the values of these objects is done by first extracting the
vaiue from the limited object into an object of the corresponding visible or _Not_Null type.
An advantage of this approach is that, as the _Not_Null types are visible Ada types, the
predefined Ada operations may be used on objects of those types. Furthermore, as objects
of those types may not be null, it is unnecessary to check for the null value when accessing
such objects. The minimalist approach may result in marginal runtime reductions. More im-
portantly, the minimalist approach may appear more natural to some programmers.

Each of the SAME standard packages offer two sets of functions to support the minimalist
approach. They are testing functions and conversion or extraction functions. The extraction
functions will raise the N '_Value_Error exception if applied to an object whose value is
null.

» Testing functions. These are the Boolean-vaiued functions s_Null and
Not_Null. These functions are declared in the specification of the appropriate
SAME standard packayes (SQL_Int_Pkg, etc.) in which the limited type and
visibie types are also declared. Therefore, when the pair of types defining an
abstract domain are derived trom those types, these subprograms are derived
for the new type.

» Conversion functions. These are the functions With_Null and Without_Null.*4
The function With_Null takes an object of the visible _Not_Null type and returns
a non-null object of the corresponding limited, _Type type. The function
Without_Null takes an object of the limuea type aind returns an ooject of the
_Not_Null type. Without_Null raises the exception Null_Value_Error if its input
is the null value.

'“The character string support provided by SQL_Char_Pkg inciudes other conversion functions. They are
described in Sectior 3 .4.

24 CMU/SEI-89-TR-16

Example

Consider the following fragment of application logic, referencing the Pans - Supplier data-
base of the introduction. Suppose there exist two vanables, City, of type City_Type (a de-
rived type of SQL-Char_Pkg.SQL_Char), and Quantity, of type Quantity Type (derived from
SQL_Int_Pkg.SQL_Int). In other words, each of the variables may have the null value. We
need to write a code fragment which increments a counter if the value of City is “Pittsburgh”
or the value of Quantity exceeds 1000. Furthermore, we want to keep a running total of the
Quantity values from rows which qualify in this way. Omitting variable declarations for the
sake of brevity, we have the following code fragment (the variable Sum_Quantity has type
Quantity_Not_Null):

If (Not_Null(City) andthen Without_ Null(City) ="Pittsburgh")
or else
(Not_Null (Quantity) and then Without Null (Quantity) > 1000)
then
Counter := Counter + 1:;
If Not_Null (Quantity) then
Sum_Quantity = Without_Null (Quantity) + Sum_Quantity;
end If;
end if;

3.1.2. The Full SQL Approach

An alternative to the minimalist approach to null values is the “full SQL" approach. Using
this approach, objects of the _Type types are accessed and manipulated directly, without
having to be extracted or converted to a visible Ada type. To enable this approach, the
SAME standard packages declare overloaded versions of the standard Ada arithmetic and
comparison operators. These versions extend the semantics of those operators to inciude
the null value. The null value is processed according to the rules of SQL. An application
using this approach treats database data in a uniform way in the Ada and SQL portions of
the application. To use the approach, it is necessary to understand how SQL processes the
null value.

SQL defines arithmetic and comgarison operators for sets including the null value. The
semantics are as foliows:

» Arithmetic: Any arithmetic operation applied to a nuil value results in the null
value; otherwise, the operation is defined to be the same as the Ada operation
for the integer and floating point types. (See also Section 3.5 for decimal
arithmetic.)

e Comparison: The comparison ot any value to the null value results in a new
truth value called UNKNOWN; otherwise the operation is defined as in Ada for the
integer and floating point types. (See Section 3.4 for the string comparisons.)

The overloaded operators provided by the SAME standard packages implement these
semantics. The comparison operators, Equals, Not_Equals, <, <=, etc., return objects of
type Booiean_With_Unknown. This is an Ada enumeration type with value set (FALSE, UN-
KNOWN, TRUE). The SAME standard package SQL_Boolean_Pkg contains declaration of
the Boolean functions and, or, not and xor defined on this type which implement the three-
valued logic of SQL. The definitions of these functions in three-valued logic are given by the
truth table in Figure 3-1.

CMU/SEI-89-TR-16 25

A B Aand B AorB A xor B not A
T T T T F F
T F F T T F
F F F F F T
T U U T u F
F u F u u T
U u U u U u

T -true F - false U - unknown

Rows not shown foliow by symmetry
Figure 3-1: Three-Valued Logic
Example

The prior example concerning Cities and Quantities can be recoded as
with SQL Boolean Pkg; USe SQL Boolean Pkg:

&.ic_Truo(Equals(City, With Null ("Pittsburgh"}) or
Quantity > With Null(1000)) then
Counter := Counter + 1;
if Not_Null (Quantity) then
assign (Sum Quantity, Quantity + Sum Quantity):
end if;
end if;
This encoding is functionaily equivalent to the prior encoding. The Counter will be incre-
mented under the same circumstances as before; namely, when at least one of City or
Quantity has the proper value. This encoding illustrates mixed usage of the two treatments.
The final value of Sum_Quantity, now of type Quantity_Type, will be the sum of all non-null
quantities encountered. Had the test for the null value not been present, and had a null
value been encountered, the result would be the null value. This treatment of summing is
equivalent to the SQL SUM set function which also sums columns of data after fittering out
null values.

3.1.3. A Compromise Approach for Comparison Operators

This section considers only the comparison operators, e. g., =, >, >=, efc., and offers a third
alternative to their use. One of the difficulties with the comparison operators described in
Chapter 3.1.2 is that the values they return are not of the predefined type Boolean. This
means that predicates formed with these operators cannot appear as the condition of an if
statement uniess they are first converted to Boolean using one of the functions !s_True,
Is_Faise or Is_Unknown defined in SQL_Boolean_Pkg, as was shown in the prior example.
Further, since the rules of Ada require that any overloading of the equality operator "="
return Boolean, the three-valued equality comparison function must be coded as'the prefix
function Equals and its compiement as the prefix function Not_Equals. Finally, it is reason-
able to assume that the most frequently used function to cast a vaiue of type
Boolean_with_Unknown to type Boolean is the Is_True function used in the prior example.
Indeed, the semantics of the SQL WHERE clause are precisely evaluation using the rules of
Section 3.1.2 followed by an application of Is_True.

26 CMU/SEI-89-TR-16

For the reascns given in the prior paragraph, sets of overivadings of the comparison
operators are defined in the support packages on the null bearing _Type types. These over-
loadings return Boolean, not Boolean_with_Unknown as the operators of Section 3.1.2.
These overloadings are defined as follows: for the operator "op,” and objects O and O, of
a null bearing _Type type, the Boolean-valued expression

0, op O,
is defined as

Is_True (O, op 0,)
where in the second expression, "op" is the overloading which returns
Boolean_with_Unknown. (If "op" is "=" or "/=", the second expression is written in prefix
notation, using Equals or Not_Equals, respectively.) If P is any Boolean combination of com-
parisons from this section, and P’ is the result of substituting the three-valued operators from
Section 3.1.2 into P, then the value of P is Is_True(P’).

Example

The running example of this section can also be coded as

If ity = With Null("Pitteburgh") orelse
Quantity > With Null (1000) then
Counter := Counter + 1;
if Not_Null (Quantity) then
assign(Sum_Quantity, Quantity + Sum Quantity):
end if; -
end if;

A Note on Type Ambiguities

Notice that the context determines whether a given operator is three-valued or Boolean
valued. If the predicate P does not contain the equality operator, then the predicate P’ as
defined above is syntactically identical to P. The context must be sufficient to determine
which interpretation is meant. For example, the context Is_True(.) is sufficient to determine
that the three-valued interpretation is required for P' in Is_True(P'). Similarly, the context of
Pin If P then ... end if; is sufficient to determine that P is Boolean valued. Consider the
expression O, > O,, which has both a three-valued and Boolean interpretation. The case
statements

case Boolean’' (0, > 0,) Is

when TRUE => ... ;

when FALSE => ...;
end case;

case Boolean_with Unknown’ (0, > Q,) is
when TRUE => ... ;
when FALSE => ...;
when UNKNOWN => ...;

end case;

would not compile were the type qualifications not present. As written, these statements will
perform as expected.

CMU/SEI-89-TR-16 27

The presence of an equality operator or a Boolean short circuit control form within a predi-
cate is sufficient tc determine its type. Therefore the predicate
Equals(ol,oz) or o, > O2
is unambiguously of type Boolean_with_Unknown and the expression
0, =0, or01>02
is unambiguously of type Boolean; whereas the expression
0, >= 0,
is ambiguous. Similarly, the expression
(0, >= 0,) or (0, >= 0,)
is ambiguous, but the expression (O, >= O,) or else (O, >= O5) is unambiguously of type
Boolean.

A Note on Logic

The Boolean-valued comparison operators discussed in this section do not obey all the nor-
mal rules of propositional logic. Furthermore, due to the definition of Ada, their behavior is
inconsistent. The problem arises in the so-called rule of double negation.

Again, let P be any predicate formed using the Boolean operators and and or from Boolean-
valued expressions. Now let P’ represent the result of performing the following substitutions
to P:15

e each comparison operator is replaced by its negation; that is, = is replace by /=,
< is replaced by >=, ete.

e and is replaced by or
e oI is replaced by and

This substitution produces the result of taking the expression not P and distributing the ne-
gation over the other operators. The rule of double negation states that the equality
P = not p’

is valid, that is, always holds. This rule does not apply to predicates formed from the
Boolean-valued comparisor operators of this section.'® This fact can be used to advantage.
For example, in the statement

if Quantity > With Null(1000) then
end if;

the sequence of statement in the then clause are executed only for non-null quantities in
excess of one thousand. In contrast, the statements in the then ciause of
if not Quantity <= With Null(1000) then

end .if'; '

'5The Boolean operators not and xor have been omitted to simplity the substitution. Given that the negation of
every comparison operator is a comparison operator, as in the first bullet item, any predicate using not and xor
can be recoded as one using and and or exclusively.

'6The law of double negation is usually stated as the equality P = not (not P) This law does hold fo predicates
formed from the operators of this section.

28 CMU/SEI-89-TR-16

will be executed for those guantities and also for all null quantities. Recall that the null value
in SQL represents missing information. The null Quantity represents a fixed but unknown
value for Quantity which may exceed one thousand. Thus the second if statement, which is
often called the maximal solution, executes the sequence of statements in the then clause
for any quantity which might fit the predicate, while the first state.nent, the minimal solution,
executes that sequence only for quantities which necessarily do fit the predicate.

Regrettably, this behavior is not consistent. The inconsistency stems from the fact that Ada
does not allow an overioading of the inequality operator “/=" to be independently defined.
Rather, "/=" is implicitly defined to be the complement of "=." In short, the equivalence

(0, = 0,) =not (0, /= 0,)
is valid. When a complex predicate contains both “=" (or */=") and other comparison
operators, the result of the doubie negation process outlined above is difficult to predict. In
such cases it is best to use the three-valued operators and the case statement. Thus the
maximal solution to the running example of these sections can be written as

case Boclean with Unknown’ (
Equals (City, With Null("Pittaburgh"))
or
Quantity > With_ Null (1000)) is
when TROE | UNRNOWN => <as before>
when FALSE => null;
end case;

The extended example in Chapter 8 contains further discussion of these details.

3.2. The image and Value Functions

In addition to the testing, conversion, comparison, and arithmetic functions types and as-
signment procedure, the SAME support for integer in the packages SQL_Int_Pkg and
SQL_Smallint_Pkg inciudes the functions Image and Value. These functions are seman-
tically identical to the Ada attribute functions 'Image and 'Value except that they operate on
character strings of type SQL_Char (or SQL_Char_Not_Null) rather than the predefined type
string. This allows character set independent programs to be written, as strings of these
types are always over the machine’s native character set. When used with objects of some
_Not_Nuli type, these functions take or return strings of type SQL_Char_Not_Nuil; when
used with an object of a null bearing _Type type, they take or return SQL_Char strings, with
the null value of the source type being transformed into the null value of the target type.
Notice that the character string operands of these functions are of the base types declared
in SQL_Char_Pkg. Application programs do not have visibility to that package. A means of
getting visibility to the base types is given in Section 3.8.

CMU/SEI-89-TR-16 29

3.3. Range Constraints and the Generic Sub-Packages

Many relational database management systems provide for data integrity constraints.!’
Among these there is usually the ability to apply range constraints to numeric columns. The
SAME extends this ability to Ada program variables holding database values.

Example

Suppose all status values must be positive. In that case, the definitions of the abstract
Status domain would be

type status_Not Null is hew SQL Int Not Null
range 1 .. SQL_Int Not_Null' LAST;
type Status_Type iSnew SQL Int;
package Status Ops Is new
SQL_In-;._Op: (Status_Type, Status_Not Null):

Notice that the range constraint is applied to _Not_Null type only. Status_Type is a limited

private record type, to which range constraints cannot be applied. The generic instantiation
Status_Ops creates an Assign procedure which will enforce the range constraint on objects
of Status_Type.

The specification of the package SQL_Int_Ops, which appears within the specification of the
package SQL_Int_Pkg, is given in Figure 3-2. The packages SQL_Smallint_Ops,
SQL_Real_Ops and SQL_Double_Precision_Ops are identical to SQL_Int_Ops, with the ob-
vious modifications. SQL_Char_Ops is slightly different and is described in Section 3.4.

Notice that the generic takes two formal parameters which are types and three which are
subprograms. The subprograms will default to subprograms with the appropriate names and
profiles, which are derived by the type derivation. (The packages should be instantiated in
the declarative region in which the derived types are declared. See Section 3.7.) Therefore,
when instantiating these packages, only the types should be passed as actuals.

Notice that the generic subpackage generates three subprograms which provide conversion
and assignment procedures. It is not necessary to generate the arithmetic and comparison
operators. They are derived with the derivation of the type Status_Type.

The procedure Assign produced by the generic instantiation implements range constrained
assignment for the limited private types. It does this by calling the procedure
Assign_With_Check'® and passing it the values of the attributes 'FIRST and 'LAST from the
_Not_Null type. See the appendix for the complete code.

Note: The implementation of range constraints by the SAME standard packages is meant to
support the implementation of range constraints by the DBMS. As this feature is missing
from the current SQL standard, a given DBMS may not support it. This does not mean that
range constraints cannot be used in Ada applications employing the SAME. The constraint

These constraints do not appear in the current ANSI standard [2] but do appear in the follow-on standard in
development [4].

'8This procedure is not meant to be called directly by application programs. Applications should use only the
Assign function produced by the generic instantiation.

30 CMU/SEI-89-TR-16

generiz
type With Null Type is limited private;
-- derived from Sql Int
type Without Null Type isrange <>;
-- derived from Sqgl_Int Not_Null;
-- for floating point types
-- range is replaced with digits

with function With Null Base(Value : Sql_Int_ Not Null)
return With Null Type Is <>;
with function Without Null Base (Value : With Null Type)
return Sql_Int Not_Null Is <>;
with procedure Assign_With Check (
Left : inout With Null Type: Right : With Null Type;
First, Last : Sql_Int Not_Null) is <;
~- subprograms with the above names
~- appear in Sql_Int_Pkg specification

package Sql_Int_Ops is

function With Null (Value : Without Null Type)
return With Null Type;

function Without Null (Value : With Null_Type)
return Without Null Type;

procedure Rasign (Left : inout With Null Type;

Right : With Null Type);
end sql_Int_Ops;

Figure 3-2: The Generic Subpackage Sqgl_Int_Ops

“all status values are positive,” if applied in the SAME abstract domain definitions as de-
scribed above, should represent a constraint on the real worid. If this constraint is true of the
real world, then any non-positive value of Status is invalid and represents a corruption of the
database. [f this constraint is not supported by the DBMS, the exception Constraint_Error
will be raised when this database corruption is encountered. That may cause the abnormal
termination of one database application due to the improper behavior of a different appli-
cation, that application which inserted the invalid data. The incorrect application could not
have been written in Ada using the SAME.

The conversion functions With_Null and Without_Null are aiso generated by the _Ops
generic subpackages. These functions convert between the two types making up an ab-
stract domain. Ada subprogram derivation rules will not generate functions with these
parameter profiles.

The _Ops generic subpackages were designed to reduce compile-time and runtime space
utilization. Only those subprograms that could not be derived using Ada subprogram deriva-
tion rules are instantiated using generic instantiation.

A Note on Type Derivation and Subtyping

The abstract domains defining the database in Ada can be arranged into type and subtype
hierarchies in the usual way. For example, suppose it is desirable to define preferred sup-
pliers as those suppliers having a status greater than 100. This can be captured in subtype
declarations as follows.
subtype Preferred Status_Not_ Null
Is status_Not _Null range 101 .. Status_Not_Null’LAST;
subtype Preferred Status_Type is Status_Type;
package Preferred_Status_Ops is new SQL Int_Ops
(Preferred_Status_Type, Preferred Status_Not_ Null);

CMU/SEI-89-TR-16 31

However, care must be exercised in naming the subprograms operating on variables of the
subtype. The subprograms generated in the package Preferred_Status_Ops have the same
parameter profiles as those generated in the package Status_Ops defined in Figure 1-7.
This is because parameter profiles depend only on base types, not on subtypes. Consider
the following program fragment.

Preferred_Status_Variable : Proforrod_Status_Type;

begin
Status_Ops. assign (Pref orrod_Statu._Variablo ,
Status_Ops.with_Null(1l));

end;

This will execute without raising an exception and will result in the variable’s having a value
out of range. Further, the subprogram declarations in the packages Status_Ops and
Preferred_Status_Ops hide each other, if both are brought into scope with use clauses.

Warning: Since range constraint checking of objects of the null bearing _Type types is
done by the generated Assign procedures and not directly by the compiler, these constraints
do not behave exactly like Ada constraints. [n particular, if an arithmetic expression resulting
in a _Type object is passed as an actual parameter to a procedure, it will not be range
constrained and may not satisfy the range constraint. For safety, assign the expression to a
temporary variable of the _Type and pass the temporary as the actual.

3.4. Character Data

The SAME treatment of character string data is similar to its treatment of integer and floating
point data. Each abstract character string domain is represented by two type declarations.
One of the types is a visible Ada type; the other is a limited private type with operations
defined on it that simulate the corresponding SQL operations. Character string variables and
database columns do not have associated range constraints, but they do have iengths. The
length of an SQL character string column is part of its definition. Abstract domain definitions
for character string domains also contain a length.

The SQL semantics of character data include the semantics of the null value for strings'® as
described in Section 3.1.2. Unlike the case of integer and floating point data, for which
operations on non-null values have the same effect in Ada and SQL, SQL'’s definition of
assignment and comparison for character strings differs from Ada'’s definition. For example,
when comparing two strings, SQL pads the shorter string with blanks (Database
Language-SQL, paragraph 5.11.5 [2]).

The comparison of twa character strings is determined by the comparison of
‘<character>s with the same ordinal position. If the strings do not have the same
length, then the comparison is made with a working copy of the shorter string that
has been effectively extended on the right with <space>s so that it has the same
length as the other string.

'9The null string value is distinct from the null string, i.e., the string of length 0.

32 CMU/SEI-89-TR-16

H B I T I R N B O T I T e W

Very similar behavior governs the assignment of character strings to database columns in
SQL INSERT and UPDATE commands (cf. Database Language— SQL, general rule 7.b of Sec-
tions 8.7, 8.11 and 8.12 [2]).

The SAME standard package SQL_Char_Pkg defines the the type SQL_Char_Not_Null as
a derived type of SQL_Standard.Char (see Figure 2-2) with no added constraints.
SQL_Char_Not_Null is therefore an unconstrained one dimensional array whose component
type is specified when SQL_STANDARD is compiled. SQL_Char_Pkg also declares a limited
private, discriminated record type SQL_Char and comparison and assignment operations on
that type which simulate the SQL operations. The discriminant is named Length and is of
type SQL_Char_Length, a subtype of INTEGER declared in SQL_Char_Pkg. The dis-
criminant value is used to specify the character string length.

SQL_Char_Pkg also contains a generic subpackage, SQL_Char_Ops. As before, it
generates conversion functions between a type derived from SQL_Char_Not_Null type and
a type derived from SQL_Char. Together the two type definitions make up the abstract
domain definition. (There is no need for the generic subpackage to create an Assign proce-
dure. The version derived by the derived type declaration will suffice.) Notice, however, that
the _Not_Null type is not the Ada predefined type, string. Rather, the _Not_Null type is a
derived type of SQL_Char_Not_Null, itself a derived type of SQL_Standard.Char. That type
may or may not be a renaming of the predefined type string (that is, Standard.string), as the
DBMS character set may or may not be ASCIl. SQL_Char_Pkg exports functions which
convert between each of the _Not_Null and the limited private type and the predefined type
string. These functions will perform character set conversions if necessary. (The identity of
the character set conversion function is set during SAME installation. See the installation
guide [14] for more details.)

The remainder of this section is as follows. The generic subpackage is displayed and ex-
plained. Abstract domain definitions for character data, which difter slightly from the integer
and floating point case, are then described and explained. The functions which convert to
an< irom the predefined string type are then explained. Finaily, a function for extracting sub-
strings from character strings of the limited private type and an operator for concatenating
two such strings are described.

The specification of the generic subpackage SQL_Char_Ops appears in Figure 3-3. This
generic subpackage is to be instantiated in the same manner as the integer and floating
point subpackages: only the types are passed as actuals, the formal subprograms are
meant to default.

The functions With_Null and Without_Null generated by instantiation of this package have
the same intended meaning as before: to convert between the two types of an abstract
domain. The function Without_Null_Unpadded returns the value of its input with trailing
blanks removed; the last character in the result of this function is never blank. If the input
string is all blank, the output is an array of length zero. SQL_Char_Pkg exports the function -
Unpadded_Length with operand SQL_Char and result type SQL_Unpadded_Length, a sub-
type of NATURAL. The defining property of the function is

CMU/SEI-83-TR-16

generic
type With Null_Type is limited private;
-- derived from SQL Char
type Without Null Type isarray (positive range <>)
of soL_sTaNDARD.Character Type:
-- derived from SQL__Chax-_th_Null
with function With Null Base (Value: SQL Char Not_Null)
return With Null Type is <>;
with function Without Null Base (Value: With Null Type)
return SQL_Char Not_Null Is <;
with function Without Null Unpadded_Base (Value: With Null Type)
return SQL_Char Not_Null Is <;
package SQL Char Ops Is
function With Null (Value : Without_Null Type)
return With_Null Type:
(<n-Mon Witloul_Null (Value : Wach Nulli_ Jype)
return Without Null Type:
function Without_Null Unpadded (Value : With Null Type)
return Without Null Type:
end SQL_Char_ Ops:

Figure 3-3: The Generic Subpackage SQL_Char_Ops

CMU/SEI-89-TR-16

Without_Null Unpadded(x)’'LENGTH = Unpadded_ Length(x)

Notice that (assuming x is not the null vaiue)
Without_Null (x)’LENGTH = x.LENGTH

It shouid be noted that Without_Nuil, Without_Nuli_Unpadded, and Unpadded_Length raise
Null_Value_Error when given the null value a. input.

The generic SQL_Char_Ops explains to some extent the structure of abstract domain defini-
tions for character data. A character string abstract domain definition contains twm type
declarations and two subtype declarations, along with the instantiation of the generic sub-
package. The following declaration of the abstract domain PNO is copied from Figure 1-7.

type PNONN Base IS new SQL Char Pkg.SQL | Cbu: Not_Null;

subturs i) Mot v 11 is :L:OW Raa-~ (1.

type PNO_Base iSNew SQL Char Pkg.SQL_ Chax:

subtype PNO _Type IS PNO_Base (PNO_Not Null'Length);

package PNO_Ops Is new

SQL_Char Pkg.SQL Char_ Ops (PNO_Base, PNONN_Base) ;

The type definitions, whose type names have the suffix _Base, declare unconstrained types.
The subtypes complete the domain definition by supplying the string length. The subtype
declarations are to be used in declaring variables of the abstract domain. Thus the subtype

declarations have the suffixes _Not_Null and _Type as appropriate.

The pattern of the above exampie should aiways be followed in the definition of character
string abstract domains. The length of the character strings as they are stored in the data-
base should be encoded as an index constraint on the _Not_Nuli subtype. The value of the
discriminant in the definition of the _Type subtvpe is the Length attribute value of the
_Not_Null subtype. This pattern guarantees that the _Type and _Not_Null subtypes are con-
sistent.

The formal type parameter Without_Null_Type of the generic package SQL_Char_Ops (see
Figure 3-3), is an unconstrained array type. Therefore, the actual type parameter must aiso
be unconstrained (see LAM[15] 12.3.4(2)). This explains the division of the declaration of
the _Not_Null type into two pieces. Notice that, as the unconstrained types are passed to
the generic instantiation, the functions it generates return objects of the unconstrained
types. This is particularly important in the case of Without_Null_Unpadded, which returns
objects whose length cannot be determined at compile time. These objects may not meet
the _Not_Null subtype constraint, but they are valid objects of the _Base type. (Similar state-
ments apply to the substring function described below.)

The functions To_SQL_Char and To_SQL_Char_Not_Null, exported by the SQL_Char_Pkg,
take an operand of the predefined type string and return a value of either the limited private
type SQL_Char or the one dimensional array type SQL_Char_Not_Null (or types making up
an abstract domain definition derived from these). The length of the result is the length of
the input. Both functions raise Constraint_Error if the input is the string of length zero.

There are two versions of the function To_String and To_Unpadded_String, one taking ob-
jects of type SQL_Char_Not_Null and one taking objects of type SQL_Char (or types de
rived from these). As was the case for Without_Null and Without_Null_Unpadded, the fol-
lowing identities hold (assuming x is of a child type of SQL_Char and is not null)

CMU/SEI-89-TR-16 35

To_String(x)'LENGTH = x.Leangth

To_Unpadded_String(x) ' LENGTE = Unpadded Length (x)
and (assuming x is of a child type of SQL_Char_Not_Null)
To_Stxing(x)’LENGTﬂ = x’' Length

There is no predefined technique for determining the length of To_Unpadded_String(x) if x is
of a child type of SQL_Char_Not_Null.

It is impossible to reproduce exactly the syntax of the Ada slice for extracting substrings of
SQL strings (strings which are objects of the type SQL_Char or a type derived from it).
Therefore, there exists a function substring in SQL_Char_Pkg which simulates the substring
function of the follow-on version of the SQL standard, SQL2 [4], in preparation. Its definition
s

function substring (Value : SQL_Char;
Start, Length : SQL Char_Length) return SQL Char;
where substring(str, k, m) evaluates to the substring of str starting at the k' ordinal position
(relative to 1) and containing m characters, unless (i) stris null, in which case substring(str,
k, m)is also null; or (i} k<=0 or m<-0 or k+m-1>str. LENGTH in which case substring(str, k,
m) causes Constraint_Error to be raised.

SQL_Char_Pkg also exports a concatenation operator, “&", tor 3GL_Char. Its definition is
function "&" (Left, Right : SQL_Char) return SQL Char;

If either operand of "&" is null, the resulit is null; otherwise, the result has length
Left. LENGTH + Right.LENGTH.

36 CMU/SEI-89-TR-16

3.5. Decimal Fixed Point Arithmetic

Among the data types recognized by ANSI SQL is the type Decimal. Like most of the SQL
data types, the decimal type is oriented to a concrete, hardware representation. Although
there is nothing in the standard that requires it, any DBMS which supports the Decimal type
is likely to do so by storing values of the type in the machine’s packed or binary coded
decimal (BCD) representation. This section describes the support software providecd b the
SAME for numeric data coded in BCD.

it should be noted immediately that ANSI standard SQL as described in [2), [4], and

[16] does not support decimal data in Ada programs. Therefore, this section describes
SAME functionality outside of standard SQL. It may be that future versions of the ANS! stan-
dard will corrent this deficiency in a manner that is not compatible with the software
presented in this section. It is to be hoped that the transition to any such future standard will
be relatively easy.

It is possible to read or write database values stored in decimal without any support for the
type in Ada by taking advantage of SQL's weak typing. !f, within an SQL statement, a
decimal value is stored into or read from a parameter of some other numeric type (such as
Real or Int), SQL will perform the necessary conversion automatically. The disadvantages of
this approach are the time taken to do the conversion and the loss of accuracy as a resuit of
the conversion. Decimal fractions cannot in general be accurately represented in binary
notation. Furthermore, decimal representations generally allow for more digits of precision
than do binary integer or floating representations. It is, as always, up to the application’s
designers and engineers to determine the best strategy for decimal quantities. The form of
the support for BCD in the SAME is that of an abstract data type whose tundamental opera-
tions (arithmetic, comparison, etc.) are provided by assembler-ievei routines. It shouid ve
noted that this software is very inefficient in comparison to the software that might be pro-
ducea direstly by a compiler which supported BCD. As there are no such compilers at this
time 20 the software prosented here will at least allow Ada programs access to BCD coded
data.

The package SQL_Decimal_Pkg provides basic support for a non-null bearing and a it
bearing type. The package defines an Ada type for BCD objects and aritrmetic and com-
parison operators for that type. It then builds on that concrete type to provide the null bear-
ing type with its associated operators.

20No modification to the Ada language is needed to support BCD. All that is needed is an impiementation of a
pragma Decimal, which instructs the compiler to represent values of its (fixed point type) operand in BCD.
Compilers are free to add such pragmas (LAM 2.8(8)).

CMU/SE!-89-TR-16 37

3.5.1. Basic Support

The package SQL_Decimal_Pkg provides the Ada programmer access to the machine's
BCD representation and instruction set. All of the basic operations provided by this pack-
age, arithmetic, comparison and conversion operators and functions, are implemented in as-
sembler. Sample implementations for the VAX and 1BM 360/370 instruction sets can be
found in Appendix C.2

All of the operations are done with the maximuin precision possible on the target hardware.
The constant MAX_DIGITS defined in the specification of SQL_Decimal_Pkg is the number
of digits in such a maximum precision number on the target machine. SQL_Decimal_Pkg
defines an Ada type, SQL_Decimal_Not_Null, for Ada objects whose contents are BCD
numbers of maximum precision. The type is a limited private record type with dtscriminant.
The component type of the record type is a fixed length array. SQL_Decimal_Not_Null is a
limited type so as to prohibit the formation of aggregates of the type in the Ada code. This
ensures that the contents of an object of the type are in valid BCD format.

The length of the array component of SQL_Decimal_Not_Null is calculated at compile time.
The comments within the private part of the specification of SQL_Czcimal_Pkg explain how
and why tie calculation is done.

The discriminant of SQL_Decimal_Not_Null specifies the number of scale digits, that is,
digits assumed to the right of the decima! point, in objects of the type (or types derived from
it). The Assign procedure justifies its input value around the decimal point. If a value v1 with
scale (discriminant) s1 is assigned to an object with scaie s2, then the value v1 is shifted left
(s1>s2) or right (s1<s2) as needed. In the case of a right snift, trailing digits are lost and the
result is rounded. in the case of a left shift, trailing zeroes are supplied. If significant high
order digits would be lost by a left shift, the excention Constraint_Error is raised.

The scale of the result of an arithmetic operator can be calculated as follows. For the ad-
ditive operators (+, -) the resuit scale is the larger of the input scales. (Justification is per-
formed automatically by the additive operators.) The result of a multiplication has scale
which is the sum of the scales of its operands. The result of a division has the maximum
scale possible given the values of its operands and the nature of the hardware decimal di-
vide instruction.22 All four of the arithmetic operators raise Constraint_Error if the result has

definitions of arithmetic are modeled after the treatment given to decimal arithmetic by SQL

[2].

Other noteworthy features of SQL_Decimal_Pkg appear in the following list. They are ce-
scribed with respect to the non-null bearing type SQL_Decimai_Not_Null. The next subsec-
tion descibes the support for the null bearing type.

21These implementations are reentrant. Therefore, tisey are safe for use within Ada multi-tasking programs or
other environments in which reentrancy is a requirement.

ZThe VAX decimal divide instruction performs integer division on its operands and returns the guotient with
the full width, i.e., precision, of the dividend. The IBM decimal divide alss does integer division but returns a
quotient and a remainder in the location of the dividend. Therefore a division which operates successtully on the
VAX may raise Constraint_Error on an IBM machine.

38 CMU/SEI-89-TR-16

R N N IE I ER N A - B BE I R e

» The parameterless functions Zero and One return the appropnate decimal con-
stants.

« The function Shift performs multiplications by powers of ten. A positive value k
for the Scale operand of Shift results in a left shift by k digit positions (an effec-
tive multiplication by 10%); a negative value results in a right shitt by k digit posi-
tions (an effective multiplication by 10°K). Constraint_Error is raised if a loss of
significance would result from a left shift. Right shifts always succeed.

» There is a rich collection of functions for converting numeric values between
decimal and other representations. All of the other database domain classes,
except for Real and Smaliint but including database character strings, can be
interconverted with decimal representations (subject, of course, to constraints).
There is also a function to convert to the type Standard.String, but none to con-
vert from Standard.String. To convert a Standard.String object to decimal, first
convert it to SQL_Char_Not_ Nuil.

The reasoning behind this selection of types for interconversion of decimal data
is as follows. Conversion between other numeric and character types can be
accomplished through Ada explicit type conversions and the Image and Value
functions and predefined attributes for the integer types. The predefined func-
tions do not exist for interconversion with decimal data, and must be created.
The inclusion of SQL_Int_Not_Null in the set of types for which conversion
functions exist and the exclusion of SQL_Smallint_Not_Null and
Standard.Integer (and the similar choices with respect to the floating point and
character string types) from that set is a consequence of the ruies of Ada im-
plicit type conversions (see LAM 4.6(15)). Consider the expression
To_SQL_Decimal_Nect_Null(1). The literal 1 has type <universal integer>. it
must be converted, impiicitly, to a type for which Tc_SQL_Decimal_Not_Null is
defined. Were there more than one such integer type, the implicit conversion
would be ambiguous and could not proceed. It would be necessary to write
To_SQL_Decimal_Not_Null(Integer (1)), say. As it is assumed that literal
operands are common for these functions, since the direct formation of decimal
constants is impossible, the inclusion of only one type from each class (integer,
floating point, and character string) makes these expressions easier to write.

The conversion functions are described in the following list. Use of these func-
tions will require type conversions to or from SAME base types, as the rules of
Ada program derivation do not produce functions with thc appropriate
parameter profiles. Sections 3.8 and 5.6.2 describe these type conversions.

» The function To_SQL_Char_Not_Null returns a printable form of a
decimal value as an object of the type
SQL_Char_Pkg.SQL_Char_Not_Null. The function is modeled after the
'Image functional attribute and the Float_io put routines. Leading zeroes
to the ieft of the decimal point are suppressed, unless all such digits are
zero, in which case a single zero appears; a leading position is reserved
for a sign character which is blank for non-negative values and ‘-’ for neg-
ative values; all digits to the right of the decimal point appear for all
values; a decimal point does not appear for integers, i. e., for objects with
a scale of zero.

* The function To_String is modeled after the To_SQL_Char_Not_Null
function, but returns an object of type Standard.String.

CMU/SEI-89-TR-16

39

- The functions To_SQL_Double_Precision_Not_Null and
To_SQL_Int_Nct_Null return objects of types
SQL_Double_Precision_Pkg.SQL_Double_Precision_Not_Null and
SQL_iInt_Pkg.SQL_Int_Not_Null. Conversion to integer rounds to the
nearest integer; it raises Constraint_£Error if the decimal value is too large
in absolute magnitude to be stored as an object of type
SQL_int_Pkg.SQL_Int_Not_Null. Conversion to float truncates, but does
not raise any exceptions.

The function To_SQL_Decimal_Not_Null taking an operand of type
SQL_Char_Pkg.SQL_Char_Not_Nuli requires its operand to be in a spe-
cial format. The first character must be either a blank, “+" character. a
numeric chaiacter (i.e., a character in the range 0" .. "9"), a decimal
point or period {"."), or the character “-.” The last possibility signifies a
negative quantity; the remaining possibiiities signify a non-negative quan-
tity. {The strings "+0.0" and "-0.0" are acceptable and indicate the vaiue
zero.) The remaining characters must all be numeric, with the possible
exception of a period. There can be no more than one period any where
in the string, although there may be none. Violation of any cf these
restrictions will cause Constraint_Error tc be raised. The scale of the
result is the number of characters appearing after the period, if present.
Thus the strings "9." and "9" both have scale zero, whereas "9.0" has
scale one. All three strings represent the same quantity. This function i
such that To_SQL_Decimal Not_Null{ To_SQL_Char_Not_hult (x)) = x,
for x of tha ROL_Decimal_Not_Null type.

The function To_SQL_Decimal_Not_Null taking a parameter of type
SQL_Int_Pkg.SQL_int_Not_Null always returns an object of scale zero.
The equality To_SQL_int_Not_Null{ To_SQL_Decimal_Not_Null (x}) = x.
where x is of type SQL_Int_Pkg.SQL_Int_Not_Null, is valid. On the other
hand, the equality To_SQL_Decimal_Not_Null{ To_SQL_Int_Not_Null (x;
) = x holds only if x has an integral value and Constraini_Error is not
raised on the conversion to integer.

The function To_SQL_Decimal_Not_Null taking
SQL_Double_Precision_Pxg.SQL_Double_Precision_Not_Null raises
Constraint_Error if its input 's too large in absoiute magnitude to be
represented by the SQL_Decimal_Not_Nuli type. The scale for inputs
with negative exponents is calculated as the exponent of the input value
(in Ada normat form, LAM 14.3.8) minus the quantity
SQL_Double_Precision_Not_Null'Digits - 1. The scale for results with
positive exponents is 0. These conversion functions are inaccurate and
the equalities To_SQL_Decimal_Not_Nuli(
To_SQL_Double_Precision_Not_Null{ (x)) = x and
To_SQL_Double_Precision_Not_Null{ To_SQL_Decimal_Not_Null (x)) =
x do not in general hold.

e The function Width assists in printing decimal values. The equality Width(x) =
To_SQL_Char_Not_Null{x)'Length is valid.

« The function Integral_Digits (Scale) returns the number of digits to .~ e left
(right) ot the decimal point as defined by the type of the operand. These
functions’ values depend only on the type, not the value, of their operands. The
function Fore (Aft) returns the number of significant digits to the left (right) of the
decimal point. These functions consider leading (trailing) insignificanrt zeroes.

CMU/SEI-83-TR-16

i----------

.

Fore returns one if there are no significant digits in the integer portion of the
input value. Aft returns one if there are no significant digits in the fractional por-
tion. Thus Fore(To_Decimal_Not_Null("0.0")) =
Aft{To_Decimal_Not_Null("0.0")) =

e The functions Machine_Rounds and Machine_Overflows mimic the predefined
Ada floating point type attributes. They are both the constant function true on
VAX and IBM machines.

3.5.2. SQL Support

The SQL_Decimal_Pkg defines a null bearing type, SQL_Decimal, in the usual way. Arith-
metic and comparison operators are defined for this type with their usua! semantics. Con-
version functions are likewise defined. The semantics of the conversion functions are the
same as their counterparts defined with respect to SQL_Decimal_Not_Null for non-null
values. Conversion functions for SQL_Decimal exist with respect to all of the non-nuli bear-
ing types described in the list given above and also their null bearing counterparts. For the
conversions from SQL_Decimal, these functions are distinguished by name. Thus
To_SQL_Char as defined in SQL_Decimal_Pkg takes an operand of a type derived from
SQL_Decimal and returns an object of type SQL_Char_Pkg.SQL_Char; whereas
To_SQL_Char_Not_Null returns an object of type SQL_Char_Pkg.SQL_Char_Not_Nuill.
Symmetricaiiy, there are overloadings of To_SQL_Decimal taking
SQL_Char_Pkg.SQL_Char, SQL_Char_Pkg.SQL_Char_Not_Null, SQL_Int_Pkg.SQL_lInt,
and SQL_Int_Pkg.SQL_Int_Not_Null, etc. These functions are distinguished by their
parameter profiles. For the conversion functions interconverting SQL_Decimal with other
null bearing types, if the input is the null value, the result is the null value. The functions
which convert SQL_Decimal object to non-null bearing types raise Null_Value_Error on the
nult input.

An abstract domain based on a BCD concrete representation is constructed from two type
definitions, two subtype definitions, and a package instantiation in the standard manner.
The types are defined without a discriminant constraint, which is provided by the subtype
definitions. The discriminant specifies the scale of the type. Just as SQL character string
cclumns have fixed length, SQL decimal columns have fixed scale. Therefore objects are
declared to be of the subtypes.

Example

Suppose the Weight of a part is stored, in decimal, in tenths of some weight unit. The
Weight abstract domain is defined by the following set of definitions, assumed to appearin a
domain definition package within the scope of a use for SQL_Decimal_Pkg.

Weight Scale : constant decimal digits := 1;
type Wo.x.ghtNN Base is new SQL Decimal Not Null;
subtype Weight Not_Null is WeightNN_] Basa (scale =:> Weight_Scalae);
type Weight Base is new SQL_Decimal;
subtype Weight_Type is Wo:.ght Base (scale => Weight_Scale):
package Weight Ops is new SQL Decimal Ops

(Woight__Bas. ,

WeightNN Basa,

:Ln_-calo_=> Wcight_Scalc) ;

CMU/SEI-E9-TR-16 41

Notice the use of a constant to define the scale value for the two subtypes. There is no way
to define one of those values in terms of the other, as there was for character string based
domains. Notice also that the unconstrained types, not the constrained subtype, are passed
as the actual type parameter. The generic formal in_scale will be described below, as part
of the discuscion of range constrained assignment.

3.5.3. Range Constraints for Decimal Types

Range constrained assignment is implemented in a novel way for decimal types. This is
because the type SQL_Decimal_Not_Null is not a visible Ada numeric type, as the other
numeric _Not_Null types are. Thus, types derived from SQL_Decimal_Not_Null cannot be
directly constrained. Range constraints for decimal types are provided by parameters
passed to the instantiation of the generic _Ops package. As can be seen from inspection of
the generic specification shown in Figure 3-4, there are seven such parameters. (The proce-
dure parameters should default, as they do for the other generic _Ops pdackages.) The use
of these parameters is as follows.

« in_scale: gives the scale of the high and low values of the range. That scale
need not be the same as the scale of the type. However, it is good practice to
assign this parameter the scale of the type. For types without explicit range
constraints, this is all that need be done.

o first_sign, first_integral, first_fractional: gives the sign ("-", "+") of the low
value of the range, the (unsigned) value of the integral portion of the low value
of the range (the portion to the left of the decimal point) and the value of the
fractional portion of the low value of the range, the portion to the right of the
decimal paint.

o last_sign, last_Integral, last_fractional: as above, but for the high order vaiue
of the range.

The defaults for these parameters are arranged to be the smallest (most negative) and
largest values which can be represented in the underlying decimal representation. Thus if no
values are given for these parameters, the domain is unconstrained.

The four parameters making up the two unsigned values defining the range are defined as
restricted strings (Numeric_String). This type allows only character strings containing
decimal digits. It is dafined in SQL_Decimal_Pkg as is the type Sign_Character, an
enumeration type having the values “-" and “+.” The format of the generic parameters was
chosen to avoid runtime errors. Were these values passed as two objects of type string,
then malformed values could not be detected at comg:.e time.

The actual parameters are converted to decimal format during the elaboration of the instan-
tiated package by the sequence_of_statements in the package body. This means that the
conversion is done at run time, but only once during program execution. The objects into
which they are convented are local.

Example

Suppose that we wished to constrain the Weight domain defined earlier to allow only non-
negative values. We might then code the package instantiation with

42 CMU/SEI-89-TR-16

package Weight_ Ops is new SQL Decimal Ops
(Weight Base,
WoightﬁN Base,
in_-cal.—=> Weight Scalae,
first_sign => ‘+',
first_integral => "0",
first_fractional => "oy ;

The remaining parameters may be allowed to default.

There is no check performed that the value defined L, the combination first_sign,
first_integral, first_fractional is in fact less than or equal to the value defined by last_sign,
last_integral, last_fractional. If that relation does not hold, any attempt to use the generated
assign procedures will cause a runtime Constraint_Error.

Instantiation of the generic _Ops package creates membership test functions, Is_in, on the
types SQL_Decimal and SQL_Decimal_Noct_Null. These functions may be used to prevent
assign procedure calls from raising constraint_error. Supposing that an object
A_Decimal_Object has some type derived from SQL_Decimal. To ensure that it can be
safely assigned to the object A_Weight, of type Weight_type, one can code

it Is_In(Weight_Type (A_Decimal Object)) then

assign (A_Weight, Weight Type (R_Decimal Object));

end if;
The syntax of the Ada membership test is <object_identifier> in <type_mark>. As the mem-
bershig test cannot be overloaded, this syntax cannot be duplicated. The allowed syntax is,
however, a close approximation. The test that an object x may be safely assigned to an
object of type T is coded Is_In(T(x)), which is self-explanatory.

The Is_In tunction which takes the null bearing type SQL_Decimal returns Boolean, not
Boolean_With_Unknown. If the object passed to the function is in fact null, then Is_In returns
true. This is because assignment of the null value to a null bearing object will not raise
constraint_error.

CMU/SEI-89-TR-16 43

generic
type With Null Type(scale : decimal_digits) is limited private;
type Without_Null Type(scale : decimal digits) is limited private;
in_scale : decimal digits :=
first_sign : Sign_Character := 't
first integral : Numeric_String :=
B (1..decimal_digits’last-in_scale => '9');
first_fractional : Numeric_String :=
(1. .in_acalo => '9');
l‘st_-ign : Sig-n_cbuact.-r = 4
last integral : Numeric_String :=
- (1..decimal digits’'last-in_scale => '9');
last_fractional : Numaric_String :=
(1. .in_tcalc => '9’);
with function Is_In Base (Right : Without_Null_Type;
Lower, Upper : SQL_Doc:'.mal_Not_NulJ.Z)

- o)

return boolean is <;
with function Is_In Bare (Right : With_Null Type;
Lower, Upper : SQL Decimal Not_ Null2)
return boolean is <;
with procedure ARssign_with check
(Left : in out Without_Null Type;
Right : Without Null Type;
Lower, Upper : SQL_Dociml_Not_NullZ)
is <©;
with procedure Assign_with_check
(Left : Jn out With Null Type:
Right : With Null Type;
Lower, Upper : SQL_D.ci.nnl_Not_NullZ)
is <;

return SQL Decimal Not_ Null2 is <>;
with function To_SQL Decimal Not_Null2 (Value : With Null Type)
return SQL Decimal Not_Null2 is <;
with function To_SQL_Decimal Not_Null (Value : SQL_Decimal Not_Null2)
return Without Null Type is <>;
with function To_SQL Decimal (Value : SQL Decimal Not Null2)
return With Null Type is <>;
package SQL Decimal Ops is
procedure Assign (Left : In out Without Null Type;
Right : Without_Null_Type);
procedure Assign (Left : in out With Null_Type;
Right : With Null Type):
function Is_In(Right : Without_Null Type)
return boolean;
function Is_In(Right : With_Null_ Type)
return boolean;
function With Null (Value : Without_Null Type)
return With_Null_Type: B
function Without Null (Value : With Null_ Type)
return Without Null Type; -
end SQL_Decimal Ops;

Figure 3-4: The Generic Subpackage SQL_Decimal_Ops

CMU/SEI-89-TR-16

with function To_SQL Decimal Not_Null2 (Value : Without Null Type) l

3.6. Data Types Not in the SQL_Standard

The previous sections deal with the data types supported by ANSI standard SQL [2]. Many
database management systems extend the standard to other types and some support the

standard types, particularly the string type, in non-standard ways. This section outlines the
way in which a user of the SAME can extend the data typing facilities. This is done by pro-
viding a package which supports the new type.

To design a new support package, one must first decide on the database representation of
the type and on the method by which null values of the type will be represented. It is likely
that the database representation can be simulated by one of the types in SQL_STANDARD. |f
this is not possible or desirable, a new package, with the name DBMS_Standard,23 should
be constructed to contain the concrete, database representation as an Ada type.

It is strongly recommended that the null value representation be safe, in the sense that null
values cannot inadvertently and incorrectly be used as though tney were not null. This sug-
gests an abstract, private type to represent domain values at the abstract interface. If that
route is chosen, the support package should include null testing functions Is_Null and
Not_Null and conversion functions With_Null and Without_Null. A nulf value for the type
should also be available in the package specification. In the SAME sicndard packages dis-
cussed so far, the nu!l values Null_SQL_Int, Null_SQL_Char, etc., are defined as
parameteriess functions, rather than as private constants. This treatment causes a null
value to be created for each type derived from the types in the SAME standard packages. In
every case, a function for converting a non-null value from the concrete representation to
the abstract one should be proviaed to the buiiders ot abstract modules.

If the model of the previous sections is followed, i. e., if each abstract domain has two type
representatives, a _Not_Null visible Ada type and a private _Type supporting nulis, gener-
ating the conversion functions With_Nuil and Without_Null by generic instantiation will tie the
two types together. Other functions supplied by the package will depend on the nature of
the type being defined and the designer’'s choice.

3.6.1. Ada Enumeration Types

This section illustrates user extensions to the SAME typing model with an implementation of
Ada enumeration types. Enumeration types can be represented in the database as either an
ilneger or as a character string. The integer encoding will save space but will be incom-
prehersible to any non-Ada database applications. The character string representation will
cost space, but wiil make the type meaningful to other applications, such as any interactive
SQL tool or report writer supplied by the database vendor. The representation decision must
be made at database design time, so that the proper column definitions can be made. This
decision can be made separately for each enumeration type to be stored in the database.

The treatment chosen for the null value parallels the treatment in the standard packages. A
limited private record type definition encapsulates the enumeration type with a Boolean. As
the type is private, the enumeration value can be accessed only through the functions pro-
vided.

Re g., Ingres_Standard, Oracle_Standard, DB2_Standard, etc.

CMU/SEI-89-TR-16 45

The treatment uses the enumeration type itself as the _Not_Null type. it defines both the
three-valued (Boolean_with_Unknown) and the two-valued (Boolean) comparison operators
(Equals, Not_Equals, (or =, /= (implicitly)) <, <=, etc), and the functions Succ, Pred, Pos,
Val, Image and Value for the limited private _Type. These last two functions (Image and
Value) are also defined for the _Not_Null type. These functions take (Value) and return
(Image) objects of the SAME predefined types SQL_Char (or SQL_Char_Not_Null when ap-
plied to the _Not_Null type). This usage is to accommodate character set independent pro-
grams.

The specification for the package SQL_Enumeration_Pkg appears in Figure 3-5. It is a
generic package with the enumeration type as the formal parameter. Even if the limited
private type were declared with no operations other than the test and conversion functions, it
would still be necessary to make this package a generic. The bedy of the package appears
in Appendix C.

Example

Suppose the Status of a supplier has only a small number of legal vaiues. This can occur
even if the database design was not developed with Ada in mind. It may be known to appli-
cation developers that a Status of zero indicates an unacceptable supplier, five an accept-
able supplier and ten a preferred supplier. This information will be hidden in the application
code. Ada allows this knowledge to be made visible in the type definition while freeing the
application programmer from the need to know it. The Status abstract domain may be en-
coded as foliows.

type status_Not Null iS (Unacceptable, Acceptable, Preferrad);
for status_Not_Null use
(Unacceptable => 0,
Acceptable => 5,
Preferred =>10); ,
package Status_Pkg is new SQL Enumeration_Pkg(Status_Not Null);
type status_Type isnew Status_Pkg.SQL Enumeration;)
Notice that the _Type is derived from the private type generated from the package instan-
tiation. This gives the two types making up the abstract domain similar, conventional names.
It also means that the package instantiation need not be made visible to the application
program (see Chapter 5).

The task of converting from the database representation, in this case SQL_Standard.Int (or
possibly SQL_Standard.Smallint), to the abstract representation, the types Status_Not_Null
or Status_Type, is the responsibility of the abstract module. Section 4.2 describes these
modules. In this case, the integer representation to be used on the database is that given by
the for ... use representation clause. It is necessary to use Unchecked_Conversion to ac-
complish this.24 Unchecked_Conversion is a predefined generic function. Its use is il-
lustrated in the following template.

24Unchecked_Conversion is a Chapter 13 feature. Care must be taken in its use.

46 CMU/SEI-89-TR-16

with Unchecked_Conversion;

function Cnvrt_Status_In is new

Unchocked_Converlion (Integer, Status_not Null);
function Cnvrt_Status_Out is new

Unchecked Conversion (Status_not_Null, Intaeger):

begin
<Application Variable> :=
Witk Null (Gnvrt_Statun_In (<Database Variable>)):;

<Database Variable> :=
Cnvrt_ Status_Out (Without_Null (<Application Variable>));

end;

These assignment statements assume that the database value involved is not null. See
Section 4.2 for more details.

It is possible to use the position (POS) of an enumeration literal within the enumeration type
instead of its representation as the database encoding, if the database is being defined with
the Ada applications. Use of the representation encoding may help prevent inadvertent
changes in the enumeration type definition from destroying the meaning of the datapase.

If the character string representation is chosen, the mapping between database and internal
representations is accomplished with the Image and Value functions created by the instan-
tiation of SQL_Enumeration_Pkg. Care must be taken to ensure the database columns stor-
ing these strings are long enough to accommodate growth. Care must aiso be taken to strip
or pad blanks as needed and to ensure the case of the database string is such that non-Ada
programs, which may be case sensitive, can recognize them. Although character string rep-
resentation takes more space, it hzs the advantage of being readable by non Ada programs
and is relatively impervious to changes in the enumeration type, provided enough space has
been reserved initially.

3.6.2. Date Time Types

Many database management systems extend the ANSI standard by offering a date - time
data type. The follow-on standard, SQL2, under development by ANSI [4], aiso provides a
date - time data type. This section develops support for date - time types as yet another
example of user extensions to the SAME. As no standard treatment of date - time has been
established, two distinct support packages are presented here. One of the packages sup-
ports the SQL2 date - time data type; the other supports Ingres date - time.

The two support packages have a lot in common. In both cases, values appear at the con-
crete intertace as character strings. Therefore, in both cases, the concrete type used to
store dates is a derived type of SQL_Char_Not_Null. In both cases, limited private types are
declared which support

» Null values for date - times. The test and conversion functions and three-
valued logic and arithmetic are supported (see Section 3.1).

» Date time arithmetic. The DBMS date time arithmetic is defined by appropriate
functions and operators.

CMU/SEI-89-TR-16 47

with SQL Boolean Pkg; use SQOL_Boolean_Pkg;
generic

type SQL Enumeration Not_Null is (<>);

package SQL_ Enumeration_Pkg

is
---- Possibly Null Enumeration ----
type SQL Enumeration is private;
function Null SQL Enumeration return SQL Enumeration;

- conversion functions

function Without Null(Value : in SQL Enumeration)
return SQL_ Enumotat:.on Not | Null;

~-- raises Null Value Errox on the null input

function With | Null (Valug : in SQL_Enumeration_Not_Null)
return SQL_Enumor‘t.xon,

procedure Assign (Left : inout SQL Enumeration;
Right : in SQL_Enumeration);

-- ree-valued comparison operators; raise no exceptions
function Equals (Left, Right : SQL Enumeration)
return Boolean with Unknown;
function Not _Equals (Left, Right : SQL Enumeration)
return Booclean_ with Unknown,
function "<" (Left, Right : SQL Enumeration)
return Boolean with Unknown;
function ">" (Left, Right : SQL Enumeration)
return Boolean ! with _Caknown;
function "<=" (Left, Right : SQL_| Enumornt:.on)
return Boclean_with Unknown;
function ">=" (Left, Right : SQL Enumrat:.on)
return Boolean_with Unknown;

function Is_Null (Value : SQL Enumeration) return Boolaean;
function Not_Null (Value : SQL Enumerstion) return Boolean;

-- 'Pred, ’‘Succ return the null value on the null input
- ' Image, 'Pos raise Null_V;luo_Error on the null input
tunction Pred (Value : in SQL Enumeration)
return SQL Enumeration;

function suce (Value : in SQL Enumeration)

return SQL Enumeration;
function Pos (Value : in SQL Enumeratien)

return Integer:;
function Image (Value : In SQL Enumeration)

return String;
function Val (Value : in Integer)

return SQL Enumeration;
function Value (Value : in String)

return SQL Enumeration;

private

type SGiL_Enumeration Is record
Is_Null: Boolean := true;
Value: SQL Enumeration Not Null;
end record;

end SQL_Enumeration_Pkg;

Figure 3-5: The Package Specification SQL_Enumeration_Pkg

The definitions of the limited private types are optimized for doing arithmetic. The visible,
_Not_Null types, derived from SQL_Char_Not_Null, are optimized for displays. Both
packages contain _Ops generic subpackages for generating conversion functions between
the _Not_Null and _Type types. Both packages also contain functions for converting be-

48

CMU/SEI-89-TR-16

—

tween the _Type and the most nearly appropriate predefined Ada types, Calendar.time and
Standard.duration. These conversions are necessarily inexact.

Support for the SQL2 date - time type is provided by the package SQL_Date_Pkg, the spec-
ification of which can be found in Appendix C. SQL2 defines two date - time types, Date and
Interval. A date is a specific moment in time; an interval is a period of time. Both of these
types can be modified by a so-called “date-time qualifier.” This qualifier specities the preci-
sion of a date or interval. Date-time qualifiers specify the most and least significant portions
of a date or interval to be recorded. A database table column having date or interval type
has an associated date time qualifier. Thus, all values in the column have the same format.
See [4] for more details.

The declaration of an abstract domain for date or interval types must also include date-time
qualifier information. The discriminants of the types SQL_Date and SQL_!ntervai capture
that information. The discriminants are specified in the associated type declarations within
the abstract domain declaration, as exemplified by the following domain package.

with SQL Date_Pkg; use SQL Date_Pkg;
package Date Domain Is

type DateNN Base is new SQL Date_Not Null:

subtype Dato Not_Null is DatoNN Base (1..10);

type Date Typo is new SQL Date (From=>year, To=>Day,
Fractional=>0);

package Date _Ops Is new SQL Date_Ops (Date_ Type, DateNN_Basae):

type MonthsNN_Base is new SQL Date_Not Null;
subtype Months Not_Null Is MonthaNN Base(l .2);
type Months Type is new SQL_Interval (From=>Month, leading=>2,
To=>Month, Fractional=>0);
package Months Ops is new SQlL Date Ops
(Months__’lypo, MonthsNN Base)

package Date Months_Ops |s new
SQL_Date_Interval Ops (Date_Type, Months_Typel:

end Date_Domain;

Here objectc ~7 Nate _Tvpe record a vear, a month, and a day. The _Not_Null string version
of Date is ten characters long, as SQL2 defines the character representation of such dates
to have the form yyyy-mm-dd. Objects of Months_Type are intervals recorded in months.
Intervals from O to 99 months can be recorded as objects of Months_Type.

As before, the generic subpackage SQL_Date_Ops generates conversion functions be-
tween the _Not_Null and _Type types of a domain. The generic subpackage
SQL_Date_lInterval_Ops generates arithmetic functions on the date and interval types which
are the actual type parameters. in order for the application program to do date arithmetic
such as adding or subtracting an interval to or from a date and subtracting two dates to form
an interval, an instantiation of SQL_Date_Interval_Ops for the types must exist in the
domain package. This “cross product” will not require very many package instantiations, as
there are likely to be very few distinct date or interval domains. Most dates and intervals are
inherently comparable.

CMU/SE!I-89-TR-16 49

The following example shows how the Date_Domain can be used.

with Date Domain; use Date_Domain;
with text io; use text_io;
procedure use_dates is

use Date_Ops, Months_Ops, Date_M.nths_Ops;

Today Not Null : Date_Not_Null := to_sql_char not_null("1988-10-25");;
Today : Date Type;

Tvo_Months_N;t_Null : Month:_Not_Null = to_-ql_cha:_not_null(" 2");
Two_Months : Months_Type;

begin
Plroo And Ass:.gn (Two_! Months, Two_Months _Not Null) ;
Par-o And Assign (Today,'l‘oday Not Null)
put_ line (to_string (without Null (Today + Two Months)))
end use_dates;
Notice that, as a derived types of SQL_Char_Not_Null, Date_Not_Null and
Months_Not_Null inherit conversion functions from and to the predefined type string. The
procedure Parse_And_Assign replaces the functions With_Null in other support packages.
This procedure uses the discriminants of the left, output operand to determine the meaning
of the right, character string input operand. Parse_And_Assign can raise Constraint_Error if
the output discriminants are not legal according to the rules of SQL2.

The Ingres date time data type is supported by a package Ingres_Date_Pkg, the specifi-
cation of which can be found in Appendix C. Ingres dates are markedly different from SQtL2
dates. There is only one type, rather than two, and row columns of date type may contain
either dates or intervals. Further, the dates and intervals have varying formats. Thus, to de-
termine the meaning of a given value of a date column, it is necessary to examine the value.
See [13] for details.

Ingres_Date_Pkg defines a single limited private type, Ingres_Date, for holding values of
Ingres date columns. As earlier, this type is optimized for date ariihmetic; whereas
ingres_Date_Not_Null is optimized for display. The discriminant of the type Ingres_Date is
used to record the nature of a value in an object of the type. The type of the discriminant,
Ingres_Date_Format, is an enumeration type having the value set (Datetime, Interval,
Unknown). The Ingres_Date type definition specifies a default of Unknown for the dis-
criminant. Variables of Ingres_Date type can be declared without discriminant constraints.
Such variables can contain either dates or intervals, just as Ingres database columns of type
date can contain either class of values. The declaration of an abstract domain based on an
Ingres date type is illustrated by the following.

with Ingres Date_Pkg; uUse Ingres_Date_Pkg;
package Ingres_ Date Domain is

type Date_Not_Null isnew Ingres Date_ Not_Null;
type Date_Type iS New Ingres_Data;
package Date_Ops is New Ingres Date_Ops (Date_Type, Date_Not Null):

end Ingres Date Domain;

Notice that the _Not_Null type is already constrained by the definition of
Iingres_Date_Not_Null. All Ingres dates and intervals are exactly 25 characters in length.
There is no need for a cross product package as there was for SQL2. The following program
uses Ingres dates.

50 CMU/SEI-83-TR-16

with Ingres Date Domain; use Ingies_pato_Domain;
with Text IO; use Text IO;
procedure Use_Ingres_Dataes is

use Date_Ops;

Date_Stringl : string(Date_Not_Null’'Range) := "1988-oct-25" &
(12..Dato_Not_Null’Last = ' ');
Date_String2 : string (Date_Not_Null'Range) := "2 mm" &

(5..Dato_§ot_ﬂull'Last => ' ');
Datol_Not_Null : Dato_Not_Null 1= to_sql char_pot_gull(Dato_Stringl);
Date2 Not Null : Date Not Null := to_-ql:char_not_null(Dato_StringZ);
Datel, Date2 : Date Type;

begin
assign (Datel, With_ﬂull(Datcl_ﬂot_ﬂull));
assign (Date2, With_ﬂull(Datoz_pot_ﬂull));
put_line(to_string(without_null(Date2 + Datel))):

end Use_Ingres Dates;

Both treatments of the date - time type presented in this section have as their design goal
the creation of an abstract type which simulates a database type. Thus the types and opera-
tions in SQL_Date_Pkg simulate SQL2's treatment of dates; the types and operations in
Ingres_Date_Pkg simulate Ingres’ treatment of dates. Applications using these packages
can operzate on dates in the same way that the DBMS does.

In constructing new data type support packages, the user of the SAME is free to substitute
other design goals for that of DBMS simulation. For exampie, it may be desirable to con-
struct a type support package for use with Ingres that makes its date type more closely
resembie the emerging SQL2 standard. Such a support package may improve the portability
of applications which use it. (Of course, it will not make the ingres SQL portion of the appli-
cation treat dates in the style of SQL2.) The user is permitted to extend the SAME with
non-standard data types in any way that he or she sees fit. It is strongly suggested that such
extensions maintain the safe treatment of nulls which is a defining characteristic of the
SAME standard packages.

3.7. Packaging the Type Definitions

Prior sections deal with data definition at the level of the individual abstract domains. This
section begins the process of describing the database at higher level of granularity. The
ievel of the tuple or row is not described until Chapter 4; the level of the relation or table is
never reached, as Ada programs do not deal with tables as a whole, but only with rows
within tables, one at a time.

The identification of the abstract domains over which a database is defined occurs during
the database design process. Most database design methodologies lose this information
however, as database technology has evolved without regard to the needs of strongly typed
languages such as Ada. In developing the Ada description of the database for use with the
SAME, it may be necessary to retro-fit this information. This section assumes that the Ada
description is developed from the SQL description.

CMU/SEI-89-TR-16 51

The first problem to be addressed is the re-identification of the abstract domains. In the ex-
ample developed in the introduction (see Figure 1-6), the abstract domains are identified by
the attribute or column names. Thus the columns named PNO in the tables P and SP have
the same abstract domain; so do the columns named CITY in the tables S and P. Reliance
on column names is not recommended. There is no rule in database design methods norin
SQL that enforces or even suggests such column-naming practices. In general, the problem
is determining whether any given pair of columns share an abstract domain.

The number of columns in a real world database description is generally quite large and the
task of examining each pair is overwhelming. Most such pairs are obviously not over the
same domain, making the task simpler than this crude analysis suggests. There is one case
in which columns rrom two distinct table definitions are obviously over the same domain:

the foreign key. A foreign key is a column of one table, the values of which are keys of
another table. These columns clearly have the same domain. In the example, SNO and
PNO are foreign keys in the SP table. It is for this reason that the PNO columns of P and SP
have the same domain. ’

Once the foreign keys are recognized, remaining column pairs must be decided on a case-
by-case basis. The rule to foflow is the comparison rule: “Does it make sense to ccmpare
values of these columns?” If the answer is yes, the columns probably have the same
domain. For this reason, the columns CITY in § and P of the example can be seen to have
the same domain. This rule frequently applies to fields containing dates. The Date_Created
and Date_Modified columns of a record describing a product are probably over the same
domain. On the other hand, the Birth_Date column of an employee record may well have a
different domain. It is the designer’'s responsibility to make these determinations.

Once the abstract domains have been identified and the Ada type definitions have been
written, the definitions are assembled into packages, calied domain packages, and compiled
into Ada libraries for the use of programmers. The essential rule of these packages is that
they must be disjoint; that is, no abstract domain should be declared in more than one
domain package.?® The reason for this rule is obvious. If the type and package declarations
making up an abstract domain declaration are duplicated in more than one package, the
result is the declaration of two distinct domains.

There are no hard and fast rules for determining which abstract domain decfarations to col-
lect into domain packages. The rule which places each domain declaration into its own
package satisfies the disjointness rule, but may result in excessively many packages.

A useful technique is to begin by collecting abstract domains into possibly overlapping sets
and then reducing the sets by intersection until a disjoint collection is obtained. The initial
collection can be created by letting each base table definition create a set in the collection.
An alternative has each set in the original collection correspond to an application view, that
is, be the collection of abstract domains of interest to a given application. This alternative
requires that the designer have knowledge of the applications to be run against the data-
base. Such information is often available during the database design. The advantage of
using application views is that they map naturally to the application programs.

25The declaration of an abstract domain is the declaration of the two types, and for character string data two
subtypes, plus the package instantiation, as described in the preceding subsections.

52 CMU/SE!-88-TR-16

Example
In the Parts Suppliers example, assume the existence of three application views.

1. A Parts view, concerned only with information about Parts.

2. A Suppliers view, concerned only with information about Suppliers.

3. An Orders view, concerned with all the information in the Database.
From these views, the initial collection of sets of domains is as follows.

1. For Parts, the set containing the domains PNO, PNAME, COLOR, WEIGHT
and CITY.

2. For Suppliers, the set containing the dornains SNO, SNAME, STATUS, and
CITY.

3. For Orders, the set containing the domains PNO, SNO, PNAME, SNAME,
STATUS, COLOR, WEIGHT, CITY and QTY.

To complete the design of the domain packages, take intersections of these sets. The final
design appears in Figures 3-6 and 3-7. The Parts application will bring into context (with)
the packages CITY_Definition_Pkg and Parts_Definition_Pkg. The Supplier application will
need CITY_Definition_Pkg and Suppliers_Definition_Pkg. The Orders application will need
all four packages.

The pattern: of Figures 3-6 anca 3 7 is common. A few domains will be shared by multiple
views. These domains will appear in small packages. The remaining domains will be unique
to an application. Iin most real world relational databases, the majority of the domains are
unique to an application. -

An application may need domains defined specifically for it. If an application deals only with
preferred suppliers, that is, suppliers with Status > 100, the abstract sub-domain
Preferred_Status, illustrated in Section 3.3, is such an application-specific domain. Sii e
application-specific domains may arise from SQL expressions (see Section 4.1.1). For the
sake of exposition, suppose the Parts table were to contain Length, Width and Height
columns and that these columns had the abstract domain Meters. If part volume,
(Length*Width*Height), is returned from an SQL statement, its abstract domain is
Cubic_Meters. There may be no database column with this domain. The definitions of such
application-specific domains can either be included in the package of application-unique
database domain definitions or put into a package by themselves.

Except for the rule that states that domain packages must be disjoint, the other rules for the
wriation of domain packages are heuristics. The smaller the domain packages, the more
packages need to be defined and controlled in configuration management. Larger domain
packages may cause unnecessary recompilations. in the Parts-Suppliers example, a given
program or component of the Parts application may need visibility to WEIGHT but not to
COLOR, for example. If, during database evoluticr, the definition of the COLOR domain is
changed, that program or component may be unnecessarily marked for recompilation.

CMU/SEI-89-TR-16 53

City Abstract Domain

with SQL_Char_ Pkg; use SQL Char Pkg;
package CITY Definition_ Pkg is
type CIT‘;NN_Baso is hew SQL Char Not_Null;
subtype CITY Not_Null Is CITYNN Base (1..15);
type CITY Base isnew SQL Char:
subtype CITY Type is CITY_Base (CITY Not_Null'Length);
package CITY Ops is new
SQL_Char_Opl (CITY__B..., CITYNN_B:-.) ;
end CITY Definition_Pkg;

QTY Abstract Domain

with sQL_Int Pkg; use SQL_Int_ Pkg;
package QTY Definition Pkg is

type Q'I'Y Not_Null is new SQL_Int Not_Null

range 0 .. SQL_Int_Not_Null’LAST;
type QTY Type is new SQL Int;
package QTY Ops Is new
SQL Int Ops(QTY Type, QTY__Not_Null);

end QTY Definition_ Pkg;

Domains Unique to Parts

with SQL_Char Pkg; use SQL Char_Pkg;
with SQL Int Pkg; use SQL Int_Pkg:
package Parte Definition Pkg is

type PNONN_Base is new SQL Char _Not_Null;
subtype PNO Not_Null is PNONN Ba-o (1 .5):
type PNO__Base is new SQL_Char,
subtype PNC_Type is PNO_Base (PNO Not Null'Length);
package PNO_Ops is new
: SQL_Char_Ops (PNO_B&;., PNONN_B;.-) H

type PNAMENN Base iS new SQL Char Not Null;
subtype PNAME _Not_Null is PNAMENN Base (1..20);
type PNAME | Base is new SQL Char;
subtype PNAME _Type Is PNAME _Base (PNAME Not_Null’Length);
package PNAME Ops is new
SQL_Char_Opc (PNA.ME_B;.., PNAMENN_B:-.) ;

type COLCRNN_ Base is new SQL_Char Not_Null;
subtype COLOR Not_Null is COLORN’N Base (1..6);
type COLOR Ba-o is new SQL Char;
subtype COLOR_Type is COLOR Base (COLOR_Not Null'Length);
package COLOR_Ops is new
SQL_Char Ops (COLOR_Base, COLORNN_Base) ;

type Weight_Not_Null is new SQL Int Not Null
range 0 .. SQL Int Not_ Null;
type Weight Type iShew SQOL Int;
package Weight_Ops is new
SQL_Int_ Ops (Weight Type, Weight_ Not Null):
end Parts Dof:.n:.t:.on _Pkg;

Figure 3-6: The Domain Packages for Suppliers-Parts

CMU/SEI-89-TR-16

Domains Unigue to Suppliers

with SQL Char Pkg; use SQL_Char_Pkg:
with SQL Int Pkg; use SQL Int Pkg;

package Suppliers Definition Pkg is

type SNONN_Base is new SQL Char_Not_ Null:
subtype SNO Not Null iS SNONN_] Base (1 5);
type SNO_ Base is new SQL_Char:;
subtype SNO_Typo is SNO_Bas. (SNO_Not Null’'Length):
package SNO_Ops is new
SQL Char Ops(SNO_Base, SNONN_Base);

type SNAMENN Base is new SQL Char Not Null;
subtype SNAME _Not_Null is SNA.MENN Base (1..20);
type SNAME | Base is new SQL Char:;
subtype SNAME_Typ. is SNAME Base (SNAME Not_Null’Length};
package SNAME Ops is new
SQL Char_Ops (SNAME Base, SNAMENN Base)’

type Status_Not_Null IS new SQL Int Not Null
range 0 .. 100;
type status_Type is new SQL Int;
package status_Ops is new
SQL_Int_ Ops (Status_Typae, Status_Not_Null) H
end Suppliexs_Definition_Pkg;

Figure 3-7: The Domain Packages for Suppliers-Parts, cont'd.

3.8. The Package SQL_Base Types_Pkg

The method of abstract domains for database description presented in this section will gen-
erally produce a farge number of distinct abstract types. This is in keeping with good Ada
design practice, in which the type of an object gives some indication as to the semantics of
its values. Due to Ada’s implementation of strong typing, in particular, Ada’s lack of polymor-
phism, this proliferation of types can result in cumbersome programming requirements.
There are parts of many applications in which abstract and strong typing are hindrances.
These are the parts of the application which lie at low levels of abstraction. Examples are
communication protocols and display handiers. These services treat their operands as bit
streams cr character strings, not as Weights or Names or Part Numbers. It is possible, and
may be desirable, to build abstract interfaces to these services for the application. Indeed,
the SAME builds just such abstract interfaces for database services. These interfaces are
the subject of the next section. Whether abstract interfaces taking operands of abstract
types are desirable for other services is a matter for the application designer to decide. It
should be noted, however, that such interfaces merely postpone the problem, moving it from
the realm of the application to the realm of the implementation of the interface. This can
itself be considered an advantage; it is considered an advantage of the SAME.

There are uses, other than the operands of low-level interfaces to low-leve! services, for
operands of concrete types. The result of an SQL COUNT function, for example, often has no
obvious abstract type. Such values are inherently comparable; it makes perfect sense to
ask whether there aie more suppliers in Pittsburgh than there are red parts weighing more
than one ton. (It may not be a very interesting question, but it is weil defined). It makes no

CMU/SEI-B9-TR-16 55

sense to ask whether "Acme’s" supplier number is greater than the part number of
"Widgets." Part numbers and supplier numbers are incomparable.

Highly generalized applications are similar to very low-level applications in that they are un-

concerned with the specific semantics of the data they manipulate. The classic examples of

such generalized applications are ad hoc browsing programs. Such programs can be written
to be independent of the database schema,; hence, they are necessarily independent of the

database semantics. Applications such as these are discussed in Chapter 9.

There is yet another need for concrete types in application programs. Certain of the func-
tions described in previous subsections, the image and Value functions of integer types and
the conversion functions for decimal types, have operands defined in the base packages.
The application may need visibility to the base type for an Ada explicit type conversion.

These problems could be solved by making the base and concrete type packages, e.g.,
SQL_Standard, SQL_Int_Pkg, etc., visible to the application program. However, this resuits
in inconsistencies i1 the set of functions of available to the applications. The types defined in
SQL_Standard are not parts of any abstract domain. Only the Ada predefined operators ex-
ist for them. The types defined in a base type support package have sets of subprograms
defined for them which are slightly different from those in an abstract domain package; the
differences are the subprograms generated by the package instantiation that is part of an
abstract domain definition. Furthermore, the naming conventions for these types is slightly
different from the naming conventions for abstract domain types. To insure consistency in
accessing database values, application programs must view all database values through
some abstract domain. What is needed is an abstract domain package which creates con-
crete domains. The package SQL_Bace_Types_Package is designed to meet this need. It
appears in Figure 3-8.

Notice that the characier and decimal domains in Figure 3-8 do not contain constrained sub-
types. Abstract domains which define database columns are constrained, since SQL charac-
ter strings are fixed length and decimal values have fixed scale, given by the SQL column
definition. Objects of the types in SQL_Base_Types_Pkg are 'ess specific ana more
generalized or concrete. Thus, these objects may have any length or scale.

The subtype declarations which do appear in Figure 3-8 serve a different function. They are
defined to be the same types as are defined in the base packages. No operations are de-
fined within SQL_Base_Types_Pkg for these subtypes; therefore, applications with visibility
to SQL_Base_Types_Pkg do not have visibility to the base operations, but only to the
operations for the types defined in that package. The subtypes can be used as the
typemarks in an Ada explicit type conversion. The type of the operand of those conversions
must be derived from the same base type. Section 5.6.2 illustrates the use of those type
conversions.

56 CMU/SE!-89-TR-16

-

with SQL_Char_Pkg, SQL_Int Pkg, SQL_Smallint_Pkg, SQL_Real Pkg,

SQL Double_Precision_Pkg, SQL_Decimal_Pkg, SQL_Standard;

package SQL Bese _Types_Pkg is

package Character_Set raenames SQL Standard.Character_ Set;

type SQL Int Not_ Null is new SQL Int Pkg.SQL_Int_Not_Null;
type sSQL Int Typo Is new SQL Int Pkg.SQL Int;
package SQL Int Ops iS nNew SQL Int Pkg.SQL Int_Ops(
SQL_Int_Type, SQL_ Int_ Not Null):;
subtype SQL Int_Subtype is SQL Int_Pkg.SQL Int;
subtype SQL_Int Not Null Subtype is SQL_Int_Pkg.SQL Int_Not Null;

type SQL Smallint Not_ Null is new SQL Smallint Pkg.SQL Smallint Not_Null;
type SQL Smallint 'rypo is new SQL Smallint Pkg.SQL Smallint;
package SQL Smallint_Ops is new SQL Smallint_ Pkg. SQL Smallint Ops (
SQL_Smllznt_Typo, SQL_ Smllmt Not_Null);
subtype SQL Smallint Subtype Is SQL _Smallint_Pkg.SQL Smallint;
subtype SQL Smallint Not_Null_Subtype Is
SQL Smallint Pkg SQL Smallint Not_ Null;

type SQL Real Not Null is new SQL Real Pkg.SQL Real Not Null;
type SQL Real Type is new SQL_Real Pkg.SQL Real;
package SQL Real Ops Is new SQL Real Pkg.SQL_Real_Ops(
SQL Real Type, SQL_Real Not_Null);
subtype SQL | Real ._Subtype is SQL Real _Pkg.SQL Real;
subtype SQL_| R.al Not_Null Subtypo is SQL Real Pkg.SQL_Real Not Null;

type SQL Double Precision_Not_Null is
new SQL_Doublo_Procic ion_Pkg. SQL_Doublo_Procision_Not_Null ;
type SQL Double Precision_Type is
new SQL | Dou.ble Precision Pkg. SQL Double_Preciszion;
package SQL | Doublo ‘Precision _Ops is
new SQL Doublo Precisicn _Pkg.SQL | Double Procx:;on _Ops (
SQL | Doubl. “Precision _Type,
SQL Doublo P:oczs:.on Not Null) ;
subtype SQL Double_! Precision Subtypo is
SQL_Dcublo_Procxu.on_Pkg SQL_Dou.blo_Procision ;
subtype SQL Double Precision Not_Null Subtype is
SQL Double Precision_Pkg. SQL_Doublo_Procision_Not_Null ;

type SQL_Char Not_Null IS new SQL Char Pkg.SQL_Char_ Not_Null;
type SQL Char Typo fs new sQL Char _Pkg.SQL_ Char;
package SQL_Char Ops is new SQL Char Pkg.SQL Char_ Ops (
SQL Char_ Type, SQL_ Char _Not_RNull);
subtype SQL Char_ Subtype is SQL Char _Pkg.SQL_Char:
subtype SQL_¢ Char Not_Null Subt.ypo is SQL_ Char _Pkg.SQL_Char Not_Null;

type SQL Decimal Not_ Null is new SQL Decimal Pkg.SQL Decimal Not Null'
type sSQL | Decimal ' Typo is new SQL Decimal Pkg.SQL_| Decimal;
package SQL Decimal Ops is new SQL Decimal_Pkg. SQL Decimal Ops(
SQL Decimal Type, SQL | Dcc:.mal Not_Null);
subtype SQL_Decimal Subtype is SQL Decimal _Pkg.SQL_Decimal;
subtype SQL_Docml_Not_Null_Su.btypo is
SQL Decimal Pkg. SQL Decimal Not Null;

end SQL Base_Types_Pkg;

Figure 3-8: The Package SQL_Base_Types_Pkg

CMU/SEI-89-TR-16 57

CMU/SEI-89-TR-16

58

4. The SAME Operational Model

The previous sections specify the data definition process within the SAME. That process
results in a description of the database contents in Ada terms, thereby allowing the Ada
programmer to manipulate database data under the contro! of Ada’s strong typing paradigm.
The Ada descriptions do not require any conversions of data representation a1d the treat-
ment of incomplete information prevents any use of null values as though they were not null.

This chapter describes the construction of abstract interfaces and abstract modules.
Whereas the data definitions are used by all applications, an abstract interface and its imple-
mentation, an abstract module, are soecific to a given set of applications.

Applications implemented using the SAME divide the problem: into two parts: the part to be
solved in Ada and the part to be solved in SQL. The SQL portion of the solution is a collec-
tion of procedures the bodies of which are individual SQL statements. This collection is
called a module in ANSI standard SQL [2]. In the SAME, it is called a concrete module, to
distinguish it from the abstract module which the Ada programmer sees.

4.1. Constructing an Abstract Interface

For expository purposes it suffices to think of an abstract interface as a package specifi-
cation and an abstract module as a package body. In practice it is frequently advantageous
to construct an abstract interface as a collection of packages. The concrete interface is the
Ada package specification of the SQL concrete module. !t should be noted that the ANS;i
standard requires that there be only one concrete module in any application program ([2)
Section 4.8).

The abstract interface contains two kinds of declarations: declarations of row record types
and declarations of procedures. The procedure declarations of the abstract interface are one
for one with the procedures of the concrete module. For each SQL statement in the concrete
module there is a procedure declaration in the abstract interface and, in the body, a call to
that SQL statement.

A higher level, more abstract and application-oriented interface than that of the abstract in-
terface is conceivable. The application designer may very well wish to create such an addi-
tional layer that defines such an interface for his application. The SAME abstract interface
does not attempt to “improve” SQL. An abstract module should deal only with the details of
database interaction and should never contain application logic.

A procedure declared in the abstract interface has a parameter profile which differs from that
of the procedure in the concrete interface that it calls. Parameters deciared in the concrete
interface have types defined in the package SQL_Standard (see Figure 2-2, [5], [16]). The
types of parameters and parameter components of procedures declared in the abstract in-
terface are the abstract types described in the previous sections of these guidelines.

Beyond that change are two other significant differences in the parameter profiles of proce-
dures at the concrete and abstract interfaces.

1. At the abstract interface, rows being returned from the database or inserted
into it are transmitted as record objects rather than individual fields. These

CMU/SEI-89-TR-16 59

records are called row records and their types are the row record types
declared in the abstract interface. Every component of the record type must
have its value set, either in the abstract module or in the application program,
as appropriate. in the case of data being transmitted from the databacz ¢ the
program, i.e., from an SQL FETCH or SELECT statement, the components of the
row record type are one for one with the elements of the <target list> of the
statement. Similar comments apply to the INSERT ... VALUES SQ. statement.

2. The SQLCODE parameter does not appear at the abstract interface. An op-
tional result parameter appears instead. A full description of this parameter
can be found iri Section 4.3.

For concreteness, Figure 4-1 lists each executable statement of ANSI Standard SQL [2] anc
gives the parameters such statements take as abstract procedures along with the parameter
modes. Parameters listed as having mode In out are logically out parameters of a limited
type. (They are row records whose components will be of limited types.) Each such proce-
dure may also take, in addition to those listed, a result parameter as the last parameter. The
result parameter’'s mode is always out. The phrase Individual Parameters indicates that the
sequence of individual parameters in the concrete SQL module interface appears as a se-
quence in the abstract interface, albeit with different types. This treatment is usec primarily
for runtime parameters of SQL where and having clauses. Notice that only the select state-
ment may take both a row record (for the retrieved row) and a sequence of ind'vidual
parameters (for the where or having clause).

SQL Statement Ada Parameter Kinds Mode
close none
commit none
delete - positioned none
delete - searched Individual Parameters in
fetch row record in out
insert values row record in
insert (subquery) Individual Parameters in
open Individual Parameters in
roliback none
select row record in out
Individual Parameters in
update - positioned Individua! Parameters in
update - searched Individual Parameters in

Figure 4-1: Parameter Kinds (with Modes)

4.1.1. A Note on Typing Parameters

It should not generally be difficult to determine the types of the individual parameters and
row record components at the abstract interface. If the values of that parameter or compo-
nent are in transit between the application program and a database column or are compared
to a database columnin a where or having clause, the type to be used is one ot the ab-
stract types describing the abstract domain underlying that column. If the null value is per-
missible in the given context, a type supporting nuil values must be used.

60 ‘ CMU SEI-89-TR-16

In the case that the vaiue involved is the result of an expression in the SQL statement, par-
ticularly one involving more than one database column, the appropriate abstract type may
not be obvious. It may be necessary and desirable to create a new type for such an expres-
sion (see Section 3.7). The class of that abstract tvpe, e.g. INT RFAL, etc., can be estab-
lished from the concrete type of the parameter that holds values of the expression at the
concrete interface. The general problem of typing parameters whose values are set by SQL
expressions is an instance of the “dimensional analysis” problem. The SAME does not pro-
vide its own solution to that problem.

Example

Consider the following problem: “Calculate the total weight of all orders for a given part
number.” The SQL module specification for this query is:

MODULE Concrete_ Mod
LANGUAGE Ada

Procedure Calculate_ Weight
PNUMBER Char (5)
Total Weight Int
TW_Indic Smallint
SQLCODE;

select sum(QTY * WEIGEHT)

into Total Weight INDICATOR TW_Indic
from P, SP
where P.PNO
and P.PNO

SP.PNO
PNUMRBER;

The concrete interface, that is, the Ada specification of that SQL module is:

with SQL Standard; use SQL Standard;
package Concrete Mod is

procedure Calculate Weight (PNUMBER : Char;
Total_ﬁoight : out Int;
TW_Indic out Indicator_Type:
SQLCODE : Out SQLCODE_Type);

end Concrete_Mod;

The abstract interface for this procedure (without the package deciaration and context
clauses and assuming no result parameter) is:

type Weight Raecord is record
Total : Weight_ Type;
end record;

procedure Calculate_Weight (PNUMBER : in PNO_Not Null;
Waight: in out Weight Record);

In this case, the expression clearly results in a Weight, an abstract domain already identi-
fied. For uniformity, a row record is used for the output, even though the record contains
only one component. The type of the component must allow for nulls, that is, must be
Weight_Type rather than Weight_Not_Null, since, if PNUMBER is not the number of some
part for which some orders are recorded in SP, the result of this query is the null value ({2]
Section 5.8, general rule 4.c).

CMU/SEI-89-TR-16 61

4.1.2. A Note on Naming and Packaging

The SAME does not mandate any specific packaging of abstract interface procedures. As
mentioned, the rules of SQL require the concrete interface to be a single package. The ab-
stract interface can be partitioned as fits the needs of the application. To prevent unnec-
essary recompilations, the concrete interface should be imported into the context of the
bodies, not the specifications, of the abstract module packages.

in general, the SAME does not specify the names of the procedures at the abstract interface
nor the names of their parameters. This naming is the responsibility of the application
builder. However, the SAME suggests that the set of procedures associated with a given
cursor declaration, the OPEN, FETCH, CLOSE and if needed, positioned UPDATE and DELETE
procedures, be placed in a separate package or subpackage of the abstract interface. The
name of the package can be the name of the cursor. The open procedure for a given cursor,
for example, is then referred to as CURSOR_NAME.OPEN.

4.2. Constructing an Abstract Module

The bodies of the procedures declared in the abstract interface form the abstract module.
Each of these procedure bodies has much the same form.

1. The concrete module procedure is called.

2. The status code field (SQLCODE) is processed according to the procedures
described in Section 4.3.

3. Type conversions are applied to the parameters at the concrete interface,
transforming them to objects of the types at the abstract interface.

For procedures that take input parameters, step 3 occurs first and in the other direction. If a
procedure takes no parameters, step 3 does not occur at all. The type conversions of step 3
generally take the form of a test for null, followed by an Assign procedure call.

Example

The body of the procedure Calculate_Weight (of the prior example) is displayed in Figure
4-2, with the package declarations and context clauses omitted for brevity.

The input parameter, PNUMBER, must be converted tc a type (Char) defined in
SQL_Standard, using an Ada explicit type conversion. Had PNUMBER had type
PNO_Type, a _call to Without_Null would be necessary and Null_Value_Error might be
raised. The concrete module, as given earlier, made no provision for null values in PNUM-
BER, there being no INDICATOR for it. The raising of an exception here conforms to ANSI
specifications Database Language - SQL, Sections 8.6 and 8.10, general rule 8) for this
situation.

The processing of the output is typical. A negative indicator value indicates a null value. A
non-null value must be transformed, using an explicit Ada type conversion, from a type in
SQL_Standard (in this case, Int), to the _Not_Null type and then, it necessary, to the output
type, via With_Nuil.

Iy} CMU/SEI-89-TR-16

|

procedure Calculate_Weight (PNUMBER : in PNO Not_Null;
Weight : inout Weight Record) is
Weight Indic : SQL_Standard.Indicator_Type:;
Weight Buffer : SQL Standard.Int;
begin
Concrete_Mod.Calculate Weight (
SQL_Standard.Char (PNUMBER),
Weight Buffer,
Weight Indic,
SQL_Comunicationc_Pkg .SQLCODE) ;
if SQL_Cemmunications Pkg.SQLCODE /= 0 then
<see section 4.3>
end if;
if Weight Indic < 0 then
assign (Weight.Total, Null_ SQL Int);
else
assign (Weight.Total,
With Null (Weight_ Not Null (Weight_ Buffer))});
end Calculate_Weight;

Figure 4-2: The Abstract Module Procedure Calculate_Weight

4.3. Database Exceptional Conditions

Every database interaction is capable of failing. Application programmers frequently forget
this, and assume that some database interaction will always succeed. Frequently, they as-
sume that a given interaction can fail in one of a small set of predictable ways (e. g., no
record found) and forget to check for unpredictable, unrecoverable failures (e. g., disk
errors). The net result is that in the presence of failure, the application program behaves in
ways that cannot be predicted or analyzed. The SAME provides a robust treatment of data-
base exceptional conditions which allows the average application to assume a failure free
database while allowing more sophisticated applications the freedom to do their own error
recovery.

ANSI standard SQL systems signal the presence of an exceptional condition through a
status parameter called SQLCODE. The values of this parameter are not set by the stan-
dard and therefore differ from implementation to implementation. The number of distinct er-
ror values is usually in the hundreds. The overwhelming majority of these values signal fatal
errors from which the average application will not be able to recover. The SAME is oriented
to the needs of such an average application.

The following steps constitute the treatment of database exceptional conditions in the
SAME: .

1. As each SQL statement is designed and written for the application program,
the set of DBMS error conditions which the application will tolerate must be
identified. in the most frequently occurring cases, this set will either be empty
or will be the singleton “no record found” condition.

2. If the set identified in the prior step is not empty, the abstract interface specifi-
cation of the procedure that executes that statement will include the optional
result parameter. That parameter has an enumeration type, frequently, but not
necessarily, BOOLEAN. If the application is sensitive to failure but not to failure
mode (or in the case that the set identified above is a singleton), a Boolean is
sufficient. The mapping of status code values to enumeration values must be

CMU/SEI-89-TR-16 63

determined. (For example, a "no record found™ condition returned from a
DELETE may Le considered a successful termination.)

3. The body of this procedure in the abstract module body will then, upon return
from the concrete procedure, examine the SQLCODE variable (see Section
4.3.1). The value of the result parameter is set correctly, in the case of suc-
cess or of a fail'.re mode anticipated in the set described above. in the case of
a failure mode outside that set, the procedure Process_Database_ Error
declared in package SQL_Database_Error_PKg is called and the exception
SQL_Database_Error declared in SQL_Communications_Pkg is raised.

This treatment allows the application programmer to ignore exceptional database conditions
that are not germane to the application and from which it cannot recover. Raising an exce-
tion makes the condition difficult, although not impossible, to ignore. When desired, an error
recovery routine can be coded as a handler for the SQL_Database_Error exception.

4.3.1. The Packages SQL_Communications_Pkg and

SQL_Database_Error_Pkg

The SAME standard packages SQL_Communications_Pkg and SQL_Database_Error_Pkg
support the authors of abstract modules and of those applications which do more sophis-
ticated error recovery processing. The specification of these packages can be found in
Figure 4-3. Both of these packages must be tailored by the user. The specifications in
Figure 4-3 are the basic skeletons, which may be modified as needed.

SQL_Communicaticns_Pkg is specific to the platform; it must be tailored to the specific
DBMS in use at a site. There need be only one copy of SQL_Communications_Pkg at a site.
SQL_Database_Error_Pkg is specific to the application. There may be more than one copy
of this package at a site. In the most likely case, many applications will share a copy of
SQL_Database_Error_Pkg. The package is best described as being specific to an applica-
tion class.

Every module language procedure must contain an <sqicode parameter> (Database Lan-
guage - SQL, Section 7.3, syntax rule 6). The call to each concrete module procedure frorn
each abstract module procedure uses the globai variable SQLCODE declared in the specifi-
cation of Sgl_Communications_Pkg.2® Given the importance of the status code, it is best not
to duplicate it unnecessarily as that could lead to confusion over which copy is current.

(Only the most recent value of the status code is of interest.)

The procedure Process_Database_Error should perform whatever processing must be done
before the exception is raised and information is lost. This procedure shouid not attempt
error recovery. That should be done by the exception handler. Rather, this procedure
gathers whatever information will be needed by the recovery mechanism. It is legitimate,
and probably desirable, for Process_Database_Error to initiate a transaction rollback. For
that to be the case, the procedure must be abie to find, (that is know the name of) a sub-
program that will cause the SQL ROLLBACK WORK command to be executed.

ZMost DBMSs define a communications area which includes a good deal of information beyond SQLCODE.
The SAME allows tor modifications of the specification of SQL_Communications_Pkg to inciude that information.
Populating those variables with data is a DBMS-specific task, not covered by the SAME.

4 CMU/SEI-89-TR-16

F

SQL_Communications_Pkg

with SQL Char Pkg, SQL_Standard;
use SQL Char Pkg, SQL_Standard;
package SQL Communications_Pkg is

SQL_Database Error : exception;
SQLCODE : SQLCODE TYPE; -- Glcbal variable

-- parameterless function returning an error message of type
- SQL_Char_Not_Null

-- the error message is the descriptive string associated with
- the most recent database error

function SQL Database Error Message return SQL Char Not Null;

end SQL_Communications_Pkg;

SQL_Database_Error_Pkg

package SQL_Database_ Error Pkg is

~- The following procedure must be present in every version of

-- SQL Database Error_ Pkg. It’'s purpose is to perform standard

-- processing of unexpected exceptional conditions. It should not
-- attempt error recovery.

procedure Process Database_Error;

end SQL DMatabaea Error_Pkg;

Figure 4-3: Package Specifications for Sqi_Communications_Pkg and
SQL_Database_Error_Pkg

In the most frequently occurring case, there will be no handler for the SQL_Database_Error
exception. The exception is raised only when an exceptionai condition from which the appli-
cation cannot recover arises. Generally, this indicates either a programming error or a cor-
ruption of the database Manualt intervention will usually be required to repair the condition
that caused the exception to be raised. The purpose of Process_Database_Error is to dis-
play a suitable error message on a suitable device or devices so that the nature of the error
will be known. The choice of device may depend upon the class of an application. Batch
applications may wish to notify the system operator, record the message in an error log and
place a copy into the standard application output file. Online applications may do all of those
things and also notify the terminal user.

Most SQL DBMSs provide a routine that converts an SQLCODE value into a meaningful
message. The function SQL_Database_Error_Message in SQL_Communications_Pkg is
meant to interface to that routine. As the ANSI standard does not include this functionality,
the body of this function must be tailored to the DBMS.

CMU/SEI-89-TR-16 65

4.3.2. Handler for SQL_Database_Error

Applications which mus. be fault tolerant, and applications written in accordance with focal
standards prohibiting unhandled exceptions, will provide exception handlers for the
SQL_Datavase_Error exception. These handlers typically appear fairly high in the dynamic
call structure of the application, e.g., in a driver procedure, as they are meant to deal with
errors that are fairly general in nature. Recall that the exception handler deals only with con-
ditions that the application itself could not process.

If an exception handler is to be used in an application, the Process_Database_Error proce-
dure mav need to be specialized to work cooperatively with the handler. For example, if the
procedure initiates a rollback operation, the contents cf the global variable SQLCODE at the
time of failure will be destroyed by the rollback operation. It may be that the handler, not
executed until after the termination of Process_Database_Error, will obviate the need for the
rollback by repairing the error.2” The handler may need information which has been
destroyed by the exception’s being raised. Process_Database_Error may save such infor-
mation for the handler's use. (It will have to do so either in global variables, as its local
variables will have been destroyed when the handler is run, or by cailing subprograms
visible to the exception handler which can accept and store the information.) Specializations
such as these may require modifications to the specifications of the packages
SQL_Database_Error_Pkg and SQL_Communications_Pkg. This is perfectly acceptable,
provided that the giobal variable SQLCODE and the procedure Process_Database Error
appear as shown in Figure 4-3.

As has been stated, the goas!s of the SAME treatment of the SQLCODE status parameter
are:

1. To free the application programmer from any concern with exceptional con-
ditions not meaningful to the application.

2. To make the occurrence of such exceptional conditions known to the people
running the application and difficult for the application to ignore in order to
prevent the eventual application failure from being unanalyzable.

3. To allow fault-tolerant programs the ability to recover from system failures.

It is possible for a software development organization to meet these goals through the
promulgation of programming standards. The SAME treatment of the SQLCODE parameter
ensures that errors are handled in a standard manner specified by the organization, without
the need for standards enforcement. This is because the realization of those standards lies
not with the application programmers, but rather with the system software designers. Most
organizations should find that they need very few distinct copies of the packages invoived in
this processing, which can be shared by the application programs.

27This seems unlikely. More likely is that an exception handler will trap the exception, to prevent abnormal
program termination, and aliow the application to restart (rather than recover). Since the underlying problem has
not been repaired, it may recur.

66 CMU/SEI-89-TR-16

4.4. Note on the Overloading of INDICATOR Parameters

The primary purpose of indicator parameters in the SQL module language is the indication
of nuil values. (See Database Language - SQL, Section 4.10.2.) However, indicator
parameters have a secondary usage, described by general rule 8.a of Sections 8.6 and 8.10
of Database Language - SQL:

[Let V be an output parameter and v be the non null value to be assigned to V.] If
the data type of V is character string of length L and the length M of v is farger
than L, then the indicator is set to M.

In other words, indicators can be used to inform the program that a character string has
been truncated. Interestingly, if L in the above is larger than M, padding occurs and the
program is not informed.

Since the SAME uses Ada’s abstract typing facilities to encapsulate null values, it does not
support indicators at the abstract interface. The SAME-DC felt that the use of indicators
described in the above quotation would be of use to only a small fraction of all database
applications. A means of satisfying those applications without penalizing the majority of ap-
plications was developed.

An abstract procedure that corresponds to a concrete FETCH or SELECT statement may
declare an additional record parameter. This record will have components all of type
SQL_Standard.indicator_Type (or a type derived from this, if desired). Each component of
this indicator record corresponds to a string component of the row record. The name of each
component in the indicator record is the name of the component in the row record, and they
appear in the same order although some string componénts may be missing. The body of
the abstract procedure copies the indicator values from the concrete indicator parameters to
the components of ine indicaror record for those string components that have indicators.

The SAME-DC felt that this solution was the cleanest availabie. Altering the row record type
definitions to include indicators seemed inappropriate. Altering the abstract types,

SQL_Char and SQL_Char_Not_Null, would have penalized all appiications to support oniy a
few.

CMU/SEI-89-TR-16 67

CMU/SEI-89-TR-16

5. Notes on Writing Application Programs Using the
SAME Method

This chapter contains hints and suggestions tor the designer and programmer using the
SAME for an Ada database application.

5.1. Design Rules

The SAME method of constructing database applications divides the problem into two parts:
the part to be solved in Ada and the part to be solved in SQL. A rule of thumb to use in
determining this division is: If a part of the problem can be soived in either the Ada or the
SQL portion of the application, solve it in SQL. The rationale for this rule is that the more the
database management system knows, the more it can optimize its behavior. For example,
suppose an application is interested in all “red” parts. It is possible to write an SQL state-
ment which returns all parts and an Ada program which finds the red ones. However, it is
also possible to write an SQL statement which returns only red parts. In that case, at the
very least, there will be fewer calls from the Ada application to the DBMS at runtime. If an
index on COLOR exists in the database, the total runtime can be drastically reduced.

5.2. Visibility and the Use of use

The application program will need visibility to the domain packages that define the relevant
types and to the abstract interface. The domain packages have been designed to be used.
The domain packages contain instantiated subpackages that are likewise meant to be used.
This use of use allows the operators (comparison and arithmetic) defined in the support
package to be used in their normal infix notation. These domain packages typically declare,
either by generic instantiation or subprogram derivation, numerous versions of subprograms
with the same name. Tinese subprograms can be distinguished by their parameter profiles
and often can be distinguished only in that way. Giving their compiete names will not
uniquely identify them.

There is a situation in which use shouid not be used in the SAME. If two subtypes of a type
are declared in a domain package and generic cubpackages instantiated for them, the sub-
programs generated in those subpackages will have the scme parameter grofiles. If only
one of the subtypes is needed in the application, it can be used in the norrnal way. How-
ever, if both subpackages are used, they will effectively hide each other. In this case, nei-
ther subpackage should be used; subprograms within them should be referred to as
<subpackage name>.<subprogram name>. Be careful to use the corrent subpackage with
the correct subtype (see Section 3.3).

(The instantiated generic package which forms part of the declaration of an enumeration
type abstract domain [see Section 3.6] is also not meant to be used. Use of the domain
package will bring the derived function names into scope.)

Application programs should not have visibility to any of the SAME standard packages. They
should depend only on the domain packages and abstract interface packages which have
been developed tor them.

CMU/SEI-89-TR-16 - ' - 69

5.3. Using Non-ASCIl Character Sets

The SAME support for character database columns is designed to allow SAME application
programs to be portable across machines with different native character sets. As a by-
product, SAME applications can eliminate unnecessary character set conversions.

if the charater set native to the machine on which a SAME application is running is not
ASCII, then SQL_Standard.Character_Set is not set to Standard.Character (see Figure 2-2).
Rather, SQL_Standard.Character_Sat is a renaming, that is a subtype, of an enumeration
type which defines the native character set. String literals over that character set can be
formed in the normal way, provided that the name of the enumeration type specifying the
character set is in scope. The context in which the literal appears must be sufficient to deter-
mine which character set is to be used, since the predefined package Standard cannot be
taken out of the scope of any Ada compilation unit.

If, for example, the host character set is supported by a package named
Host_Character_Pkg, then the application can use Host_Character_Pkg if it heeds to con-
tain string literals over the host characters. Let String_Var and String_Var_Not_Null be vari-
ables of types derived from SQL_Char and SQL_Char_Not_Nuil, respectively. If the name of
the DBMS character type is in scope, then both

Equals (String Var, With_Null ("A String”))
and

String_Var Not Null = "A String"

are syntactically correct and behave as expected.

If the character set native to a machine on which a SAME application is to be run is ASCI|,
that is, if SQL_Standard.Character_Set is SQL_Standard.Char, then the predefined Ada
type string anrd the type SQL_Char_Not_Null (and types derived from it) are structurally
identical (they are both unconstrained one dimensional arrays with the same component
type), and are interconvertible using Ada explicit type conversions. if such conversions are
used, however, the resulting code is not portable to a machine whose native character set is
not ASCII. The functions To_String (and To_Unpadded_String) and
To_SQL_Char_Not_Null (and To_SQL_Char) are modified at the time of SAME software
installation to make them aware of the native character set and to properly perform the type
conversion. Use of these functions exclusively for the purpose or such conversions results in
an application that 1s portabie across machines with different character sets. However, one
further step is needed to complete this portability. If the advice given to use
Host_Character _Pkg to enable string literal formation is followed, the resulting code will not
compile on a machine whose native character set is ASCIl and on which, presumably,
Host_Character_Pkg does not exist. To ensure carrect behavior on both ASC!l and non-
ASC!! machines, the program should use the package SQL_Standard.Character_Set.

SQL _Standard is not meant to be visible to application programs. The package
SQL_Base_Types_Pkg describec in Section 3.8 contains a renaming declaration of that
package. Therefore, a character set independent program shouid use
SQL_Base_Types_Pkg.Character_Set to enable formation of literals of types derived from
SQL_Char_Not_Nuil.

Altnough one speaks of a given machine’'s native character set, it is neither the CPU nor the
magnetic storage media that are sensitive to character set encodings. These encodings are

70 ' CMUSEI-89-TR-16

—

properties of the display devices, printers, and terminals attached to the system. in many
DBMS applications. "haracter strings are retrieved from the database and displayed on a
display device, often without being examined by the software. it is highly inefficient to con-
vert such data from the native character set to ASCII as the data is read from the catabase,
and then from ASCII to the native character set as the data is displayed on the output de-
vice. The conversion is time-consuming and does nothing to forward the application’s
progress. If all character string vanables within an application are of types derived from
SQL_Char_Not_Null (or SQL_Char), those conversions will not occur.28

5.4. Handling the Null_Value_Erior Exception

The exception Null_Value_Error is raised by subprograms of the SAME standard packages
when an invalid use of a null value is detected. Typically, this is an attempt to convert the
null value to a type which does not support nulls. The exception is defined in the SAME
standard package SQL_Exceptions. In order to provide a handler for that exception, the
package must be brought into scope.

5.5. Simulating Predefined Attributes

The limited private types which the SAME standard packages use to simulate SQL data
semantics have operations which allow objects of those types, and the types derived from
them that appear in abstract domain declarations in domain packages, to appear very much
ike visible Ada types. For example, variables of the SQL_int lypes Weight_Type,
Status_Type, and Qty_Type (see Figure 3-7) support arithmetic and comparison operators
identical to the Ada integer operators whenever the values of those variabies are not null.
Since the types are limited private, however, the attributes predefined for integer types are
not available. Most of the those attributes can be simulated.

Those attributes which are properties of the type, rather than properties of objects of the
type or functions defined on objects of the type, can be applied to the _Not_Null type. That
is, Weight_Type'First is not defined but Weight_Not_Null'First is defined and is the smallest
non-null value that can stored in a variable of type Weight_Type.

Many of those attributes which are properties of objects or functions on objects are dupli-
cated by functions defined on the limited private type. Examples of these are Succ, Pred,
tmage, and Value for enumeration types, and Image and Value for integer types. The lengin
attribute for strings is simulated by the discriminant, Length, of the SQL_Char type. Recall
that the discriminant of a limited type is visible outside the package defining the type. The
attributes 'Range, 'First, and 'Last are not simulated for SQL _Char, nor is it possible to ac-
cess individual characters of a string object of a type derived from SQL_Char. Suppose, for
example, some processing is to be done if a variable String_Var, of a null beuring type de-
rived from SQL_Char, contains the character “X." The following code fragment is correct.

%There =re Ada contexts in which t: . 3redefined type string is mandatory: the subprograms within the
package TeXT_IO and the parameters ot *he 'lmage and 'Value attribute functions. The latter functic.s are
duplicated by functions defined in the SAME support software. The SAME does not provide a repl-cament for
TEXT IC.

CMU/SEI-89-TR-16 71

for i in 1..String Var.Length loop
it Is_True (Equals(substring(String_Var, i, 1)),
With Null("X")) then
-~ process as needed -
exit;
end If;
end loop;
At the expense of a temporary variabie assignment, the above code could be rewritten as:

String_Var Not Null := Without Null(String Var);
for i in Stz‘mg Var Not Null’Range loop
if String Var | Not Null (i) = X’ taen
-~ procos- as needed
exit;
end if;
end loop;

but this code is correct only if String_Var is known not to be null. The original code is cor-
rect, in the sense that the process is executed only if String_Var contains the character X",
in all cases. The following version is robust and more efficient, particularly when the string
of trailing blanks in String_Var is long.
if Not_Null(String Var) then
String Var Not Null := Without_ Null (String Var);
for 1 in 1. Unpaddcd Lcngth(strzng Var) Ioop
-- Since String Var Not _Null has the Not Null type
-- of some abstract doma:.n, String Var Not Null'First = 1.
f string Var Not_Null (i) = ’'X’ then
~- process asz needed
exit;
end if;
end loop;
end if;

The extended example of Chapter 8 contains further examples of this kind of processing.

5.6. Doing Type Conversions

It sometimes becomes necessary in Ada programs to convert an object from one type to
another. This section contains some details to be kept in mind when type converting data-
base objects.

5.6.1. Ada Explicit Type Conversions

For all domainz, except those based on a binary coded decimal (BCD) concrete represen-
tation, the non-nu!l bearing _Not_M Jes are visible Ada types. Therefore, type conver-
sion for objec.s i these typec . in the ordinary way. The nuil bearing _Type objects
are of a limited private type. (This is also true of the _Not_Nuil decimal objects.) Objects of
these types are interconvertibie with other objects derived from the same base type, directly
or indirectly. This is to say, any object the type of which is based on SQL_Int can be con-
verted by an Ada explicit type conversion to any other type based on SQL_Int. Such an
object cannot be converted by such a conversion to an object of a _Type aerived from
SQL_Smallint, SQL_Real, etc. The following code fragment demonstrates a conversion of
ar. object of a nuli bearing type derived from SQL_Int to an object of a null bearing type
derived from SQL_Real. (It assumes appropriate visibility.)

72 CMU/SEI-B3-TR-16

N T O S G O G SR B o U e

i Is_Null (Integer_Object) then
Assign (Real Cbject, Null SQL Real);
else - -
Assign (Real Object,
With_Null(Real_pbject_ﬂot_ﬂull(Without_Null(Integer_object))));
end if;
(Real_Obiject is assumed to be of type Real_Object_Type. Real_Object_Not_Null is the

corresponding non-null bearing type.)

Special care must be taken when the objects involved are of a character or decimal domain
class. These domain class declarations contain subtypes which serve to introduce con-
straints, string lengths for character domains, and scaie for decimal domains. If the subtype
names are used as the typemarks for the explicit type conversions, then the domains in-
volved (that is, the source and target domains of the conversion) must specify the same
value for these constraints. The procedures for these domain classes allow for inter-type
operations. For example, the character Assign will change the length of a string object, pad-
ding with blanks or truncating silently; the decimal Assign will change scale, rounding when
scale is decreased, providing zeroes when scale is increased. To access this functionality
and prevent runtime errors, use the type names of the domain declaration rather than sub-
type names. (These have the suffix _Base rather than _Type. Note: These rules apply to
decimal objects and nuil bearing character string objects. Mon-null bearing character string
objects are visible, one dimensional Ada arrays. The standard rules of Ada assignment ap-
ply to them.)

5.6.2. Using Conversion Functions

The support for integer and decimal types in the SAME includes functions that convert be-
tween objects of those types and objects of unrelated types. (All abstract domains have
functions that convert between the null bearing and non-null bearing types within the domain
definition.) There is no such support for the floating point types. For the integer types, this
support consists of the Image and Value functions. These are semantically equivalent to the
'Image and 'Value predefined attributes for integer types, but their character string operands
are over the database character set; that is, they take or return objects of type SQL_Char or
SQL_Char_Not_Null defined in SQL_Char_Pkg. Applications do not have visibility to that
package and cannot directly declare objects of those types. The package
SQL_Base_Types_Pkg, displayed in Figure 3-8, can be used to circumvent this problem.

When taking the image of a database integer value, the resulting object can be immediately
converted to a type visible and meaningful to the application. The foliowing is an example. It
is coded within the scope of use clauses for SQL_Base_Types_Pkg,
SQL_Base_Types_Pkg.SQL_Char_Ops, Parts_Definition_Pkg, and
Parts_Definition_Pkg.Weight_Ops.

Integer As Character Object : SQL_Char Type (SQL_Int_ Not_ Null'Width};
Weight Object : Weight Type;

begin
Assign(Integer Rs Character Object, SQL Char_Type (Image (Weight Object)));
end;

Notice the use of the 'Width attribute of the database integer type to set the length of the
output type as large as needed. Since Weight_Obiject is of the nul! bearing Weight_Type,
the Image function applied to it returns an object of the null bearing type

CMU/SEI-89-TR-16 73

SQL_Char_Pkg.SQL_Char. This is immediately converted to the visible type
SQL_Base_Types_Pkg.SQL_Char_Type. The proper overloading of the Assign procedure,
in SQL_Base_Types_Pkg.SQL_Char_Ops, is then found by the compiler. (The base type
SQL_Char_Type was used for Integer_As_Character_Object under the assumption that it
serves a general role of preparing values for display, rather than a role specific to weights.)

In order to execute the Value function to perform the inverse conversion, the operand must
be converted to the appropriate character base type. The subtype names defined in
SQL_Base_Types_Pkg can be used as typemarks for this conversion. The inverse of the
assignment above is:

Assign (Weight Object,Value (SQL Char_Subtype (Intogo:_h_ctm:.actor__Objoct))y

The decimal support package provides an extensive coliection of conversion functions.
These convert between the database integer, floating point and character string types, both
null and non-null bearing, and the null and non-null bearing decimal types. Use of these
conversion functions follows the pattern described for image and Value. Functions which
convert to the other (non-decimal) types are called within the context of a type conversion to
a locally visible, appropriate type. Functions which convert from those types to a decimal
type take operands which are of the form of a type conversion to the appropriate base type,
using the subtypes declared in SQL_Base_Types_Pkg as the typemark. For exampie, sup-
pose integer_Obiject is of a type derived from SQL_Int_Not_Null and its vaiue is to be as-
signed to Decimal_Object, of a type derived from SQL_Decimal. The following Assign pro-
cedure call accomplishes this:

Assign (Doci.mal_Objoct,
Tc_SQL__Docimal (SQL_Int_Not_Null_Subtypo (Intogoz;Object) Y):

5.7. Using Three-Valued Logic

The SAME's treatment of null vaiues (see Section 3.1) replicates the SQL semantics. Data-
base objects which might be null can be operz.ed on with arithmetic and comparison opera-
tions in place. They do not have to be converted to visible Ada types. To do this success-
fully, however, the programmer must understand SQL semantics for the null value.

Briefly, any operator that is not a conversion function, other than comparisons, returns the
null value when at ieast one of its inputs is the null value. The comparison operators return
the truth value UNKNOWN if one of the comparands is the null value.

The SQL null value represents missing or unknown information. The expressions "2 + null”
means “add two to a- unknown number.” The answer is an unknown number, that is, the
null vaiue. Similarly, the comparison “2 > null” means “is two greater than an unknown
number.” The answer is the new truth value, UNKNOWN.

When using SQL arithmetic, the programmer or analyst must decide whether the null an-
swer is acceptable. The null answer indicates that some of the input was missing ana that
an accurate calculaticn is impossible. if the null answer is not acceptable, then a strategy for
deaiing with nuil values in the input must be chosen. SQL will filter out null values, but this
may not be acceptable within the context of the application, because it may cause other
information to be lost. Null values can be detected with the Is_Null and Not_Null Boolean-
valued tunctions that every SAME standard package exports. The application must decide
what to do with those values.

74 CMU/SEI-89-TR-16

SQL arithmetic and three-valued logic are most useful in short calculations leading to tests.
For example, suppose a process is to be applied in case a Status variable (of type
Status_Type. which may be null) has a value in excess of one hundred. This can be written
as:

if Status > W.th Null(100) then

<perform process>
end if;
The operator ">" is resolved to the Boolean-valued operator taking objects of type
Status_Type which operator is created as part of the derivation of Status_Type from
SQL_Int_Pkg.SQL_Int. This operator returns “false” if either operand is null. Were the proc-
ess to be apptied in case Status might be in excess of one hundred, it would be written as:

i not (Status <= With Null(100)) then
<perform process>
end if;
or as:

if not Is_False(Status > With Null(100)) then
<perform process>
end if;
In either case, the process is performed for a Status value of null, as well as known values
over one hundred.

Three-valued logic can be most heipful in evaluating compound predicates. One can think of
the versions of or and and exported by SQL_Boolean_Pkg as being symmetric versions of
Ada's or eise and and then. Thus the process in this statement

if Is_True (Status > With Null(100) or
~ Equals(City, With Null("Pittsburgh"))) then
<perform process>
end If;
will be performed if at least one of the two conditions is known to be true. Unlike Ada's or
else, the first condition may be non-computable, that is, UNKNOWN, and the second True.
The example can also be written as:

it status > With_Null(100) or eise
City = With Null ("Pittaburga") then
<perform process>

end If;
in which case, the second comparison will not be made if the first comparison returns “true.”

The package SQL_Boolean_Pkg defines the type Boolean_With_Unknown and the func-
tions which operate on it. The application program must have visibility to that package to use
those functions. As discussed above, the package is meant to be used.

5.8. Commenting Procedure Ctlls

To improve the readability of SAME applications, it is good practice to annotate the calls to
abstract interface procedures with an English descnption of the call's effect. This annotation
should also appear on the declaration of the procedure in the abstract interface. It is bad
practice to use the SQL statement as the annotation. An advantage of the SAME is that the
SQL statements in the concrete module can be modified without modification, indeed, with-
out recompilation, of the application. Further, proper understanding of the SQL statement
requires an understanding of the database structure and semantics. If the comnent is in

CMU/SEI-89-TR-16 75

English and not in SQL, it may be understood by readers who are ignorant of the database
structure.

The SQL statement as comment may be very uninformative. The SQL FETCH statement
says very little about what is being fetched. In so far as that is present in the concrete mod-
ule, it is the associated DECLARE CURSOR statement. It is better to use an English description
such as ‘retrieves the next pair of part numbers and cities meeting the run time restriction
on supplier status” (see the example in the introduction) rather than “fetch x into
Part_Number, City INDICATOR City_Indic.”

It is likewise good practice to comment the definition of a row record type with an explana-
tion as to the meaning of objects of the type. This practice is illustrated in the examples of
Chapter 8.

76 CMU/SEI-B9-TR-16

6. The SAME Method Summarized

The SAME is a modular approach to Ada SQL interfacing that builds on the capabilities of
the ANSI standard module language. The value added by the SAME beyond the module
language itself includes:

e a safe treatment of null values

» a robust treatment or exceptional conditions
o full Ada typing

« decimal arithmetic in Ada

s SQL string operations in Ada

« extensibility to data types not in the SQL standard (such as Ada enumeration
types)

There exist standard SAME packages which implement the~e features. They appear in Ap-
pendix C of this report. This support includes an implementation of three-vaiued logic which
conforms to SQL definitions.

The SAME is used in the foliowing way:

» During the database design process the abstract domains occupying the data-
base columns must be identified and described as Ada types. These type
definitions are stored as domain packages.

» During the design of an application, the services needed from the database are
identified and coded as SQL statements. They are collected into a module. This
is called a concrete module.

¢ For each data item at the abstract interface, the type within the abstract domain
definition for that item must be determined. If the cata item is logically capable
of taking on the null value, an Ada type capable of taking on a nuli value, e. g.,
the _Type rather than the _Not_Null type, must be used.

¢ An abstract interface is created. This is a set of package specifications declar-
ing whatever record type definitions are needed to describe row records and
whatever procedure declarations are needed to access the relevant concrete
module procedures.

e The abstract module, the hodies of the procedures declared in the abstract in-
terface, is created. The procedures in the abstract moduie ha the following
structure:

1. The corresponding concrete procedure is called; the global parameter
SQLCODE in the package SQL_Communications_Pkg is used as the
<sqlcode parameter>.

2. The SQLCODE value is processed as appropriate. When unanticipated
errors occur, a standard routi~e, Process_Database_Error in the pack-
age SQL_Database_Error_Pkg, is called. This routine is specialized to a
class of applications, e.g., batch, online, etc. Upon return from that
routine, the exception SQL_Database_Error is raised.

CMU/SEI-89-TR-16 77

3. Assuming the exception is not raised, data values are examined for null
(indicator values) and assigned to output parameters for type conver-
sion and range checking. (If data is flowing from the applicatior: 1« the
database, as for UPDATE and INSERT commands, this step occurs first. If
data is flowing in neither direction, as for e.g., close, this step is
omitted.)

* The application program can be wtitten while the abstract module is being writ-
ten. It will need access tc the relevant domain packages and to the abstract
interface. It can treat incomplete information (null values) in either a “test and
convert” fashion or with the full three-valued logic and arithmetic of SQL. It can
ignore all database errors from which it cannot recover.

Figure 6-1 diagrams the package structure of a complete SAME application. Although only
one domain package and abstract interface module are shown, these may be divided into
muitiple packages at the designer's discretion. The shaded areas indicate those parts of an
application which are unique to it. The arrows represent visibiiity (with) relationships, not call
structure. The dashed arrows indicate optional visibility. An application needs visibility to
SQL_Boolean_Pkg and SQL_Exceptions only if it executes three-valued Boolean operations
or provides an exception handler for the Null_Value_Error exception, respectively.

The packages within the support layer are in the SAME standard packages and are never
modified. The package SQL_Database_Error_Pkg may be specialized for classes of ap-
plications. The packages SQL_System, SQL_Standard, and SQL_Communications_Pkg are
specialized for the DBMS being used.

28 CMU/SEI-89-TR-16

Application “
Program

Application Layer

SQL_Dalabase_Error_Pkg

Support Layer

SQL_Boolean_Pkg

SQL_Int_Pkg,
SQL_Char_Pkg,
Etc.

v

I SQL_Exceptions

Figure 6-1: SAME Appiication Package Structure

CMU/SEI-B9-TR-16

79

s ey
BE IR N I N In I BE EE B BN BE S BE S T S S ..

CMU/SELI-89-TR-16

80

N TN N I B S P B IR B BN B EE ..

7. Building a SAME Application Without a Module
Compiler

The presentation of the SAME in these guidelines has assumed the existence of a compiler
for the moduie language. The SAME can be used in environments for which no such com-
piler exists. All that is needed is DBMS support for some programming language. With such
support, the module language compiler can be simulated.

The simulation of the module language compiler need not be exact. if the DBMS vendor
supplies an SQL preprocessor for Ada, it is reasonable to use it and put SQL statements in
place of tne calls to the concrete procedures in the bodies of the procedures in the abstract
module. The division into abstract and concrete modules is not an essential part of the
SAME. It is used primarily for purposes of exposition. It is the interface to the application, the
abstract interface, which is the hallmark of the SAME.

If the DBMS vendor supplies no support for Ada, but supplies support for other programming
languages, those foreign language processors can be used in place of the module language
compiler. This is easiest if the DBMS vendor allows database access from a language to
which the Ada compiler interfaces.

The details of foreign language calls are compiler dependent. In general terms, a procedure
declaration is followed by a pragma INTERFACE statement indicating that the procedure is
coded in a foreign language. This pragma may appear in the body of abstract module proce-
dures. When using a foreign language, it is not essential that the concrete module appear as
an object.

Example

The example Concrete_Mod displayed earlier is reneated here coded in C. It is shown in
Figure 7-1 with its Ada call coded for an Alsys Ada compiler (Release 3.0, running on a
Sun) [1]. In Figure 7-2 it is shown for a Verdix compiler (Release 5.41, running on a
VAXStation) [17]. Both examples are written for Ingres Release 5.0.2°

Pingres 5.0 does not support null values. Therefore, the indicator parameters are missing from the SQL
statements.

CMU/SEI-89-TR-16 81

Concrete_Mod In ‘C’ for Alsys

exec sql include sglca;

ingcalc (pnumber, totalw, sglcode)

exac sql begin declare szztion;
long pnumber;
long *totalw:

exac sql end declare section;
long *sqlcoda;

{

axec &ql selact sum (qty*waight)

into :*totalw

from p, sp

where p.pno = sp.pno

and p.pno = :pnumber;

*sqlcoda = sqglca.sqlcode

}

The Alsys Ada declaration

procedure Calculate_Waight (PNUMBER : SQL Standard.iInt;
Total Weight : out SQL Standard.Int;
SQLCODE : out SQL_Standard.SQLCODE_ Type);
pragma INTERFACE (c, Calculate Weight);
pragma Interface Nama (Calculata_Weight, "ingcalc");

Figure 7-1: Concrete_Mod for Alsys

Concrete_Mod in ‘C’ for Verdix
axac sql include sqglca;

ingcale (pnunber, totalw, sglcode)

exac 8ql begin declare section;
long *pnumber:;
long *totalw;

exec sql end declare section;
long *sglcoda;

{

axac sql salect sum (gty*weight)

into :*totalw

from p, sp
vhere p.pno = sp.pno
and p.pno = :*pnumber;

*sqlcoda = sqlca.sqglcoda
}

The Verdix Ada Declaration

procedure Calcilate Waight (PNUMBER : Systaem.Address;
Total Weight : System.Addrass;
SQLCODE : Systaem.Address);

pragma INTERFACE (c, Calculate Weight, "_ingcalc"):;

Figure 7-2: Concrete_Mod for Verdix

82

CMU/SEI-89-TR-16

Notice that use of a foreign language makes the abstract module compiler dependent; if the
application is moved to a different compiler, the abstract module must be recoded. The ab-
stract interface is not affected; therefore, neither is the application program.

As illustrated in Figures 7-1 and 7-2, the foreign language routines should do only the mini-
mum required. They should contain almost nothing but SQL statements and dzata declara-
tions. In particular, any differences between the Ada data representation and the foreign
language representation should be resolved in the Ada code. For examp!'2, C character
strings are terminated with the ASCII null. Ada strings are not. The removal and addition of
the ASCII null can be done in the Ada abstract module.

One must be careful in using foreign language routines in an Ada program. There is no type
checking across the boundary between Ada and the foreign language. Be sure to verify the
types by hand. Be sure to leave enough room in character strings to accommodate the AS-
Cli null at the end of C strings, for example.

If the set of languages which the compiler recognizes is disjoint from the set of languages
which the DBMS supports, it will be necessary to write an extra interface procedure. This
has not been attempted as of this writing; thus, little guidance can be offered.

CMU/SEI-B3-TR-16 83

CMU/SEI-89-TR-16

84

N N NE N A BE O BN N T S M BN B D EE B T E.

8. Some Detailed Examples

This section presents an example of the use of the SAME, illustrating features of a SAME
application and a SAME abstract module. Details of the application which are irrelevant to
the database interaction are not shown; in particular, the details of user interaction are sup-
pressed. Only those fragments of the application which acquire and manipulate database
data will be presented.

The design decisions in the examples are contrived to illustrate the coding aspects of ab-
stract modules and application programs. The example should not be taken as an example
of good program design.

The example accesses the Parts-Supplier database described in Figure 1-6. The abstract
domains describing that database are to be found in Figures 3-6 and 3-7. The overall struc-
ture of the application is shown in Figure 8-1. The DRIVER block is responsible for user com-
munication. Based on user input, the DRIVER block determines which application service has
been requested and calls the appropriate subprogram, the blocks labeled EXAMPLE_A
through EXAMPLE_C in Figure 8-1. The DRIVER program will not be shown. Each of the ex-
ample blocks has an associated DISPLAY facility which is responsible for displaying the
module’s results on the user terminals. These display facilities will also not be shown. The
complete text of the example subprograms and of the abstract modules will be presented.
(This architecture was chosen so that complete subprograms could be shown and irrelevant
details could be suppressed.)

Notice that there is anly one concrete module in Figure 8-1, labeled
EXAMPLE_CONCRETE_MODULE. There are three abstract modules, one for each of the distinct
parts of the application. They contain just those database procedures and definiticns which
are relevant to the application services they support. The bodies of the abstract modules
depend on (with) the concrete module. Modifications to and recompilation of the concrete
module will, in general, require recompilation of the bodies of the abstract modules, but not
their specifications and, therefore, not those parts of the application which are unaffected by
the changes to the concrete module.

Example_A

In Example_A, the user enters the number of a part and requests the number of outstanding
orders for that part and the total weight of those shipments. The SQL module procedure
which retrieves this information is given in Figure 8-2.3% The corresponding abstract module
specification is given in Figure 8-3.

The single procedure PartWeight in the Ada abstract module Example_A_Module takes a
part number as its single input parameter and returns a record containing the part number,
the requested weight and count, and a Boolean result parameter. (The part number is added
to the output row record type so that objects of that type have a well defined meaning. The
comments on the row record definition in Figure 8-3 give that meaning. It is good practice to
comment row record type definitions in this way.) The Boolean takes the value false when
the requested part number does not have any shipments in the database, in which case the

YFigures containing SQL or Ada code appear at the end of each example.

CMU/SEI-83-TR-16 85

Driver

D D D

i i i

S S S
Example_A | p Example B | p Example_C | p

[[!

a a a

y y y

Exampie_A_Module Example_B_Module Example_C_Module

Example_Concrete_Modtile

Figure 8-1: A Block Diagram of the Example

value of the record object is unreliable. Althcugh the SQL statement references the quantity
(Qty) column of the SP table, the abstract module does not need visibility to the QTY
domain defined in QTY_Definition_Pkg (see Figure 3-6) since no values of the QTY domain
are passed across the abstract interface.

The Weight component of the result record takes a null bearing type, Weight_Type, as the
value returned from the SQL statement may be null. (It will be null when the Weight column
of the P table entry for the given Pno is null.) Notice that the SQL statem¢ . ries an indicator
variable attached to the cutput target specification for Weight_Out, signalii. * ta null
result is possible. The Count component of the result record takes a non-null oearing type
as the corresponding value of the SQL statement cannot be null and therefore does not
have an attached indicator variable.

The type of the Count component, SQL_Int_Not_Null, is one of the “base domains” defined
in the package SQL_Base_Types_Pkg. The package is cescribed in Chapter 3.8.

The bulk of Example_A reformats the database input for the purpose of display. The details
of the communication with the display device, including screen formats, are hidden in the

86 CMU/SEI-89-TR-16

separately compiled subprogram Display_The_Line_A. Among other things, Example_A
must convert integers into character strings. It uses the SAMC tunction Image, not the Ada
predefined attribute function 'Image, as the former returns its vaiue in the underlying ma-
chine character set whereas the latter returns its value in ASCII. In this and the other ex-
amples, each item to be displayed has an associated length field. {The component Pno of
the Display_Line type does not have a length fieid, as this component is fixed length. The
other fields have an associated length, as the lenagth of an integers’s image depends on its
value.) Because the Count component within the Weight_Count_Record has a _Not_Null
type, the Image function applied to it returns a character string of the unconstrained array
type SQL_Char_Pkg.SQL_Char_Not_Null. The length of that string is returned by the
'Length predefined Ada attribute. The Weight component has a null bearing _Type, so the
Image function applied to it returns an object of the limited, discriminated type
CQL_Char_Pkg.SQL_Char. The length of that object is the value of the discriminant,
Length. The character strings themselves must be converted to the type
SQL_Base_Types_Pkg.SQL_Char_Not_Null. These conversions should consume no run-
time resources. (This usage of the SQL_Char domain in SQL_Base_Types_Pkg is illustra-
tive of interfaces to low-level services. Section 3.8 discusses these seivices and various
strategies for using them.)

The body of Example_A's abstract module is presented in Figure 8-6. Its structure is typical
of abstract procedures whose SQL statement is a <select statement> (SELECT ... INTO).
Since concrete procedures use the types in SQL_Standard as parameter types, the input
and output part numbers must be converted, using an Ada-explicit type conversion, to
SQL_Standard.Char. (Notice that the output part number is deposited directly into the
application’s buffer from the concrete module's output. Every component of a row record
object must te set from a parameter of the concrete module, even in a case like this one, in
which an output value is by definition identical to an input value.) This conversion consumes
no runtime resources. After the concrete procedure is called, the SQLCODE value is
analyzed according to the needs of the application. Condition codes other than Not_Found
or successful completion (zero) invoke standard error processing.

If the input part number exists in the database, the data returned must be converted to the
abstract application types. Since the Count component of the output is a _Not_Null type,
that is, a visible Ada integer type, the value returned from the concrete module can be
deposited directly in the output component. Thus, with respect to the Count component, the
abstract module introduces no runtime cverhead.

Since the Weight component may be null, the abstract moduie must examine the indicator
variable for weight to determire if the actual value is null. The package Conversions was
written to facilitate this. Its specification and body are presented in Figure 8-7. The use of
the Convert functions declared in package Conversions simplifies the writing of abstract
module bodies. Those functions return objects of the base null bearing types, SQL_Int,
SQL_Char, etc. Abstract modules do not have visibility to the packages in which those
types are declared, for reasons discussed in Section 3.8. Thus the values returned by these
functions must be immediately converted to the output abstract type, as shown. (Notice the
use of pragma Inline iff package Conversions to eliminate the expense of a procedure call.)

CMU/SEI-89-TR-16 ' 87

PROCEDURE PartWeight
Pno_In Char (I
Pno_Out Char (5)
Weight Out Int Weight_ Indic Smallint
Count_Out Int
SQLCODE;

SELECT DISTINCT P.Pno, Weight * Sum(Qty), Count (SP.SNO)
INTO Pno_Out
Weight_ Out INDICATOR Weight_ Indic,
Count_Out
FROM P, SP
WHERE P.Pno = SP.Pno and P.Pno = Pno_In;

Figure 8-2: The SQL Procedure for Example_A
with SQL Base Types Pkg, Parts Definition Pkg;
use SQL_Base_Types Pkg, Parts_Definition_Pkg;
package Example A Module is

type Weight Count_Record_Type is record

Pno : Pno_Not Null; -- all the shipments for this part
Weight : Weight_ Type; -- have this combined weight.
Count : SQL Int Not Null; -- there are these many

end record;

procedure PartWeight (Pno : in Pno_Not_Null;
Weight_Count : in out Weight_ Count_Record Type;
Exists : out boolean);

-- the result weight is the combined gross weight
-- of all shipments of the input Weight
~- Exists is False when Pno not in database

end Example A Module:

Figure 8-3: The Abstract Module for Example_A

88

CMU/SEI-BS-TR-16

HE N TN Sy EE I G I TS W gE =

with Parts_Daefinition Pkg, SQL Base Types_Pkg, Example A Module;
use Parts_pefinition_Pkg, SQL_Base_Types_PL;, Example_};yodule;
separate (Driver)
procedure Example_ A (Pno : Pno_Not Null) is
use SQL Char Ops, SQL_Int Ops; -- Base type subpackages
use Character_Set; ~- For literal formation
-~ literals for display
No Data : constant SQL_Char Not Null :=
"Part Number Not in Database";
Rul' Weight : constant SQL_Char Not_Null :=
"Null Weight";
-~ types used for display
type Message_ Type Is (Error Msg, Data Mag):
type Display_Line (Message : Message_Type) is record
Pno : SQL Char Not Null (Pno_Not Null’'Range);
case Message iS
when Data Msg =>
Weight Length, Count_Length : Integer:
-- these are lengths of the data in the
-~ next two fields, which are declared to be
-- of a maximum length, which in most cases is
-- much too large
Weight : SQL Char Not Null({l ..
Weight Not Null’Width);
Count : SQL Char Not Null(l
A_Database_Integer Not Null’'Width):;
when Error_Msg =>
-- when the part number doesn’t exist, this
-- variant is used
Mssg : SQL Char Not_ Null (No_Data’Range) := No Data;
end case;
end record;

-- objects used for display

Data_Line : Display Line (Message => Data Msag);

Error_Line : Display Line(Message => Error Msg)};

~- objects used for communication with Abstract Module
Tuple : Weight Count Record Type; -- holds the output
Is Found : Boolean;

-~ the display procedure, which will not be shown

procedure Display The_Line_A (Line_To_Display : Display_Line)

is separate;

Figure 8-4: Example_A (Part [)

89

begin
PartWeight (Pno, Tuple, Ie Found): -- The Abstract procedure
if Is_Found then T -- part Nbr good: prepare output
Data_Line.Pno := SQL Char Not_Null(Tuple.Pno):
Data_Line.Count_Long{h :=_Image(Tupla.Count)’Length;
Data lLine.Count (Data Line.Count’First
Eata_lin..Count'Eirnt + Data_Line.Count_Length - 1)

SQL_Char_Not_Null(Imago(Tuple.Count));
if Not_Null (Tuple.Weight) then -- for non null weights
~- prepare outputs
Data_Line.Weight Length := Image (Tuple.Weight) .Length;
Data_ Line.Weight (Data_Line.Weight’'First ..
Data Line.Weight'First + Data_Line.Weight Length - 1)
=
Without_Null (SQL Char_ Type (Image (Tuple.Weight))):
else -- for null weights, prepare a messade
Data Line.Weight_Length := Null Weight’Length;
Data_Line.Weight := Null Weight;
end If:
Display The_Line_ A(Data_Line); -- put out a line of data
eise -- the Part Nbr not in DB
Error_Line.Pno := SQL Char Not Null (Pno);
Display The_Line A (Error Line); -- a message about missing Part
end if; B
end Example_RA;

Figure 8-5: Example_A (Part !l)

90 CMU/SEI-89-TR-16

—

with Conversions. SQL Standard, SQL_Communications_Pkg,
SQL Database_ Error Pkg:

use Convars;bns, SQL_Stand;}d, SQL_Communicaticns_Pkg,
SQL Dat base_Error_ Pkg:

with Example_Concrete_Module:

package body Example R Module is

package Conc renames Example_Concrete Module;
use Weight Ops;
procedure PartWeight (Pno : in Pno_Not_Null:
Weight Count : INn OUt Weight Count Record_Type;

Exists : out boolean) is

Weight Temp : Int:
Weight_Indic : Indicator_Type:

begin

Conc.PartWeight (Char (Pno),
Char (Weight_Count.Pno},
Weight Temp, Weight Indic,
Int (Weight_Count.Count),

SQLCODE) ;
it SQLCODE in Not_Found then -- no such part no
Exists := false;
elsif SQLCODE /= 0 then -- unrecoverable error

Process_Database_Error;
raise SQL_Database_Error;

else
Exists := true; -- record retrieved as expected
Assign (Weight Count.weight,

Woigbt_Typo(Conv.rt(Wcightﬁ?emp, Weight Indic))):
end If;
end PartWeight;
end Example A Module;

Figure 8-6: The Abstract Module Body for Example_A

CMU SEI-89-TR-16

91

with SQL Standa::. SQL Int Pkg, SQL Smallint Pkg,
SQL Char Pkg, SQL_Roal Pkg.
SQL_DoubIe_Procision_P;g;

use SQL_Standard, SQL Int Pkg, SQL Smallint Pkg,
SQL_Char_Pkg, SQL_Real Pkg,
SQL_Double Precision_Pkg/

package Conversions is

function Convert (Input : Int; Indicator : Indicator_Type)

return SQL Int;

function Convert (Input : Sma.llint; Indicator : Indicator_Type)

return SQL Smallint;

function Convert (Input : Char; Indicator : Indicator_Type)

return SQL Char;

function Convert (Input : Real; Indicator : Indicator_Type)

return SQL Real;
function Convert (Input : Double Precision; Indicator
return SQL _Double Precision;
pragma inline (Convert);
end Conversions;

package body Conversions is

Indicator_Type)

subtype Null_ Indication IS Indicator Type -- Negative value

signals Null
range Indicator_ Type'First .. -1;

function Convert (Input : Int; Indicator : Indicator_Type)

return SQL_ Int is
begin
f Indicator in Null Indication then
return Null SQL Int;
else -
return With Null Baase (SQL_Int_ Not_Null(Input));
end if:
end Convert;

function Convert (Input : Smallint; Indicator : Indicator_Typs)

return SQL Smallint Is
begin
f Indicator in Null Indication then
return Null SQL Smallint;
eise

return With_ﬁull_B&-o(SQL_Smallint_Not_Null(Input)):

end if;
end Convert:

function Convert (Input : Real: Indicator : Indicator_Type)

return SQL Real is
begin
if Indicator in Null Indication then
return Null SQL Real;
else
return With Null Base (SQL _Real Not Null(Input));
end if;
end Convert:

function Convert (Input : Double Precision; Indicator
return SQL Double Precision is
begin - -
if Indicater in Null_Indication then
return Null_SQL_Doublo_Proci-ion;
else

Indicator_ Type)

92

CMU/SEI-89-TR-16

return With Null Base (SQL Double Precision Not_Null (Input)):

end if;
end Convert:
function Convert (Input : Char; Indicater : Indicator_ Type)
return SQL Char is
begin
i Indicator in Null Indication then
return Null-SQL_Char;
else
return With Null Base (SQL_Char Not_Null (Input)):
end If;
end Convert;

end Conversiona;

Figure 8-7: The Conversions Package

CMU/SEI-89-TR-16

Example_B

Example_B accepts a part number from the user and returns information about each ship-
ment ot the part: the part number, the name of the supplier, and the total weight of the
shipment. As there are, in general, = Jltiple shipments for a part, a cursor-oriented retrieval
is needed. The SQL text of the cursor declaration and its associated procedures is given in
Figure 8-8 and the abstract module specification in Figure 3-9. In the abstract moduie, the
cursor procedures appear in a subpackage whose name is the cursor name, Detail. This
usage is inessential, in this case, as the abstract module contains only these procedures.
For applications which manipulate multiple cursors, the use of abstract module subpackages
in this way will improve the readability of the code and prevent name conflicts.

Example_B, which is displayed in Figure 8-10, declares a display-oriented record type con-
taining a variant for part numbers which have no shipments. The body of Exampie_B opens
the cursor, passing the part number into the open procedure, and then retrieves each row of
the result, formatting and displaying each of them. Notice that the initial fetch is done outside
of the loop, as an end of file condition, for this fetch means the part was not found. There-
fore, the loop body first displays the current tuple and then fetches the next tuple. This is a
typical paradigm for cursor-oriented uatabase retrieval

The body of the while loop illustrates two new features. The SNAME character string value
has its trailing blanks removed by the Without_Null_Unpadded function generated by the
instantiation of the SNAME_Ops subpackage. (Hence, the use for that subpackage.) The
length of that function result is returned by the Unpadded_Length function.

The loop body also contains an example of mixed mode arithmetic. Recall that Exampie_8
returns to the user the total weight of each shipment, the product of the weight of a part, and
the quantity of items shipped. This value could have been produced by the SQL statement,
which would in reality have been preferable. It was not done in order to illustrate mixed
mode arithmetic operations in the SAME.

The quantity vaiue is converted to the weight type, as the target value has weight type. Be-
cause the null bearing _Type(s) are in use, this Ada explicit type conversion will not produce
any runtime exceptions. If the _Not_Null types were in use and were range constrained,
care would be needed to ~nsure that a runtime constraint_error is not raised.

The body of Example_B_Module, the abstract module for Example_B, appears in Figure
8-11. Neither the Open nor the Close procedures will accept any SQLCODE values other
than success, e.g., the value zero. These procedures take no resuii parameter, therefore.
The fetch procedure signals end of file by returning the false Boolean value in its . 2sult
parameter.

When a tuple is returned, its values must be converted to the applicai'an's abstract types.
Again the Pno value, which cannot be riull, is deposited directly into the application's buffer.
The values of those items which may be null are read into intermediate variables in the
abstract module’s data space. They are tested for null and converted to the application’s
types using the assign and convert functions shown in Example_A's abstract module.
Notice the use statement for the generic subpackage instantiations of the integer domains,
Weight, and QTY. This use statement makes the assign preccedures for these domains
visible.

94 CMU/SEI-89-TR-16

|

Again, the values returned by the Convert functions have the SAME base types (SQL_int,
SQL_Char, etc.) and must therefore immediately be converted to the application's types.
This is done with an Ada-explicit type conversion. For the character string based SNAME
domain, the target of the type conversion is SNAME_Base and not the SNAME_Type sub-
type. Recall that the definition of a character string domain consists of two type declarations,
two subtype declarations, and a package instantiation. The type declarations declare uncon-
strained types; the subtypes specify the constraint, i. e., the string length. Now if a given
value is null, the Convert function will return Null_SQL_Char, an obia=t cf type SQL_Char.
This object must, of course, have a discriminant constraint (a Length). Since Convert works
only with base types, it cannot know how “long” to make this null vaiue. Thus the length of
Null_SQL_Char is one. If this object were converted to the subtype SNAME_Type, a
constraint_error (discriminant_error) would occur. Since the type SNAME_Base is uncon-

strained, the type conversion to it avoids the runtime exception.
DECLARE Detail CURSOR FOR
SELECT P.Pno, S.Snama, SP.Qty, P.Weight
FROM S, P, SP
WHERE S.Sno=SP.Sno AND P.Pno = SP.Pnoc and
P.Pno = Pno_In;

PROCEDURE DetailOpen
Pno_In Int
SQLCODE;

OPEN Detail;

PROCEDURE FetchDetail
Pno Char (5)
Sname Char (20) Sname_Indic Smallint
ty Int Qty_Indic Smallint
Weight Int Weight Indic Smallint
SQLCODE;

FETCH Detail

INTO Pno,
Sname INDICATOR Sname Indic,
Qty INDICATOR Qty Indic,
Weight INDICATOR Weight Indic;

PROCEDURE CloseDetail
SQLCODE;

CLOSE Detail;

Figure 8-8: The Cursor Declaration and SQL Procedures for Example_B

"CMU/SEI-89-TR-16 95

with QTY Definition_Pkg, Suppliers_Definition Pkg, Parts Definition Pkg;
use QTY_D-finition_Pkg, Suppliorc_Dofinition_Pkg, Parts_D.finition_Pkg;
package Example B Module is

type Detail Record Type is record

Pno : Pno_Not Null; -~ this part shipped by

SName : SNAME Type; -- this supplier

oty : QTY Type: -- in this quantity

Weight : Weight Type; -- each part weighs this much
end record;

package Detail Is
procedure Opesn (¢Yno : in Pno_Not_Null);

-~ Creates a file of Detail Records for the part
-- whose number is given

procedure Fetch (Tuple : in out Detail Record Type;
Found : out Boolean);

-- returns the records created by the open
-- found becomes false at ecf

procedure Closae;
end Detail;

end Example B _Module;

Figure 8-9: The Abstract Module for Example_B

96 CMU/SEI-89-TR-16

with Example B_Module, Parts Definition Pkg, Suppliers_Definition Pkg,
CTY Definition Pkg, SQL Base_Types_Pkg:

use Examplo:B_Modulo, ITart:_Definition_Pkg, Suppliers_Definition_Pkg,
QTY Definition_Pkg, SQL Base_Types_Pkg:

separate (Driver)

procedure Example B (Pno : Pno_Not Null) Is

use Character_Set, SNAME Ops, Woigbt__Op., SQL_Chaz_C;p-;

-- literal for error message display
No Data : constant sSQL Char Not Null :="Part Number " &
SQL_CI-;ar_Not_Null (Pno) & " has no shipments”;
-- Strings For Printing Null values
Null_ Sname : constant SQL Char Not Null := "No Supplier Name";
Nuil Weight : constant SQL_Char Not_Null := "No Weight";
-= types for display
type Line_Type iS (Brror_ Line, Data_Line);
type Display Line (Kind : Line_Type) Is record
case Kind is
when Error Line =>
-- this is used when the part has no shipments
Mssg : SQL Char Not Nuli(No Data’Range) := No_Data;
when Data_Line =>
-- this is used when the part can be found
-~ each field (except Pno)
-~ has a length field. The field is big enough
-- for the largest possible value. The length field
-~ contains the gize of the actual value.
Pno : SQL_Cha.x:__Not_Null (Pno_Not Null’Range);
Sname Length : integer;
Sname : SQL_Cha:_th_Null(Snamo_Not__Null’Range);
Total Weight_ Length : integer;
Total Weight : SQL Char Not_Null(l ..
Weight Not Null’Width);
end case;
end record;

~~ Put the display line out (not shown)
procedure Display The Line B (A Line : in Display Line)
is separate;

-- body of Example B

begin
declare
Tuple : Detail Record Type:
Found : Boolean; -~ true signals EOF
Error_Message : Display Line (Error_Line); -- displayed no ship
Data_Message : Display_ Line(Data_Line); -- if ahipments
Total Weight Temp : Weight_ Type;
begin
Detail .Open (Pno) ;
Detail .Fetch (Tuple, Found); -- get first line of result
if not Found then -- no such part
Display The lLine B{2iror_Message);
end if; -
while Found loop
Data Message.Pno := SQL Char Not_ Null(Tuple.Pno);
it Is_Null (Tuple.Sname) then
Data Message.Sname (Null Sname’'Range) := Null Sname;
Data Message.Sname Length := Null Sname’lLength;
else
Data Message.Sname_ Length := Unpadded Length(Tuple.Sname):
CMU/SEI-89-TR-16

97

Data_Message.Sname (Data_Message.Sname’'First
Data_Message.Sname First + Data_Message.Sname_Length - 1)

SQL_Char_ﬂot_Null(Without_Null_pnpaddod(Tupl..Snamo));
end if;

-- An example of mixed mode arithmitic
aseign (Total Weight Temp,
Tuple .Weaight * Weight Type (Tuple.Qty)):

f Is_Null (Total Weight Temp) then
Data_Message.Total Weight (Null Weight'Range) := Null Weight;
Data Message.Total Weight Length := Null Weight’Length;

eise

Data_Message.Total Weight Length :=
Image (Total_ Weight Temp) .Length;
Data_uo-sago.Total_ﬁoight(Dcta_y-cscgo.Total_Woight’Fir-t
Data Message.Total Weight'First +
Data Message.Total Weight_ Length -1)

Without Null (SQL_Char Typs (Image (Total Weight Temp))):

end If;
Display The Line B (Data_ Message) ; -- display this line
Detail.Fetch (Tuple, Found); -~ get next line

end loop;

Detail .Close;

end;
end Example_ B;

Figure 8-10: Example_B

CMU/SEI-89-TR-16

with Conversions, SQL Standard, SQL_Communications_Pkg,
SQL_Data.ba-e_Error_Pkg, Exa.mple_Concrete_Modulo;

use Conversions, SQL_Stmdard, SQL_".OI.’:""nic_dt;-.‘.-_Pkg,
SQL Database_Error_ Pkg;

package body Example B Module is

package Conc renames Example Concrete Module;
use Weight Ops, QTY Ops;
package body Detail is

procedure Open (Pano : in Pno Not_Null) Is

begin
Conc.DetailOpen (Char (Pno), SQLCODE);
if SQLCODE /=0 then
Process Database_Error;
raise SQL Database Error;
end If;

end Open;

procedure Fetch (Tuple : in out Datail Record Type:
Found : out Boolean) is

Sname : Char (Snm__Not_Null’ngo);
Weight, Qty : Int;
Sname_Indic, Weight_Indic, Qty_Indic : Indicator Type:;
begin
Conc .FetchDetail (Char (Tuple.Pno),
Sname, Snmo_Indic,
Qty, Qty_Indic,
Weight, Weight_ Indic,

SQLCODE) ;
If SQLCODE In Not_Found then -- end of file
Found := False;
elsif SQLCODE In SQL_Error then -- unrecoverable errcr

Procoac_Dat-bat._Erro: ;
raise SQL Database Error:
else -- a tuple is returned
assign (tuple.Sname,
SNAME Base (Convert (Sname, Sname_Indic)});
assign (tuple.Qty,
QTY Type (Convert (Qty, Qty_Indie)));
assign (tuple.Weight,
Weaight Type (Convert (Weight, Weight_ Indic))):
Found := true;
end if;
end Fetch;
procedure Close is
begin
Conc.ClosaDetail (SQLCODE) ;
if SQLCODE in SQL Error then
Ptocc-c_batabnso_grror H
raise SQL_Database_ Error;
end If;
end Close;
end Detail;
end Example_ B Module;

Figure 8-11: The Abstract Module Body for Example_B

CMU/SEI-89-TR-16

99

Example_C ,

Example_C illustrates a database update. The user enters a supplier number and a signed
«teyer. If a supplier wiih that number exists in the database, and if that supplier's status is
not null, the integer is added to the suppilier’s status. If the supplier's status is null, it is re-
placed by the value of the integer. In other words, for this update, the nuli vaiue is treated as
though it were zero.

The SQL statements for Example_C appear in Figure 8-12 and the abstract module specifi-
cation in Figure 8-13. In the current SQL standard, two SQL update statements are needed.
One statement is used for the case that the original status is null; the other statement is
used in the remaining case. (In the SQL2 standard, this update can be performed by a
single statement.) Hence, it becomes essential that the application first read the relevant
supplier data to determine which case applies. Thus Example_C requires three SQL state-
ments. (Since it is necessary to read the initial status, it is possible, and simpler, to calculate
the updated status value in the Ada application. This would eliminate the need for one of the
two update procedures, the procedure IncrStatus. An attempt to set status to an invalid
value, one not in the range of the Status domain, would then be trapped in the Ada appli-
cation. Example_C has been designed so that the DBMS will trap illegal updates, in order to
illustrate a method by which the SAME can handle that phenomenon.) The text of
Example_C is found in Figure 8-14.

A new abstract domain, Increment, has been defined for this example. This domain does
not describe any database data, but it does describe data passed across the abstract inter-
face. (The package Increment_Definition_Pkg is given in Figure 8-15.) The new domain has
been placed in a domain package by itself. It could have been placed in a domain package
with other domains, had there been any reason to do so.

Although only the _Not_Null type within the domain definition is used, the domain is fully
defined, with a null bearing type and a generic subpackage instantiation. There is some con-
crete benefit from that. The designer may be certain that there will never be a need for a
null Increment, but such certainties are nctoriously fallible. More importantly, for uniformity,
consistency, and clarity, all data crossing the abstract interface must be of a type defined
within an abstract domain in an abstract domain package. There is no time penalty for doing
this, but there is a space penalty. If indeed there are never any null Increments, then the
space occupied by the generic subpackage is wasted. (Some compilers may be intelligent
enough to recover the wasted space.) If the space is available, the benefits of uniformity are
worth the price.

The AcquireSupplier procedure returns an entire S tuple, even though, apparently, only the

status value is of interest. This is acceptable, although it may negatively affect performance.
This may be an artifact of reuse. It is likely that a software development organization writing
database applications will develop procedures for accessing single tuples by key. Such pro-
cedures can be reused, as may be the case here.

The abstract procedures representing the two SQL UPDATE statements have an attached
result parameter that has a locally defined enumeration type. As can be seen, these proce-
dures can terminate in four possible ways: successtully, indicating that the requested up-
date occurred; with a constraint violation, indicating that the update did not occur due to the
new status’s being out of range; with a permission violation, indicating the user does not
have permission to update supplier statuses; and with no record found. The last condition is

100 CMU/SEI-89-TR-16

a logical impossit Iy, since the update is preceded by an acquisition of the record to be
updated. It may be argued that this condition should not be returned tc the application, but
rather trigger the st :ndard error-processing path, as it indicates some unrecoverable error.

The Boolean-valued function Choose filters the suppliers based on a static property con-
tained in the function body. This function is admittedly a contrivance designed to illustrate
aspects of the SAME’s logical processing. Its discussion is deiayed until after the discussion
of the abstract module body for Example_C. That code can be found in Figure 8-16.

The two update procedure bodies in Figure 8-16 are essentially identical, differing only in
the concrete procedure which they call. Their function is to analyze the SQLCODE value
returned in one of the four allowab'e cases. Constraint and permission violations are not
thoroughly covered by the current SQL standard. That standard describes user authoriza-
tions, but does nct describe the result of an authorization violation. The current standard
does not cover data integrity constraints at all, although most SQL DBMSs do. Thus, the
SQLCODE values to be looked for are dependent upon the DBMS in use. The code in
Figure 8-16 is designed for use with RTl's Ingres DBMS. If this code were to be ported to a
different DBMS. the constants Constraint_Violation and Permission_Violation would have to
be redefined. (Notice that to Ingres, a constraint viotation is signalled as a no-record-found
condition. The abstract module code has been deliberately written to check for
Constraint_Violation first. Had this code been written for some other DBMS and ported to
Ingres, some recoding might have been necessary.)

CMU/SEI-89-TR-16 101

PROCEDURE AcquireSupplier
Sno_In Char (5)
Sno_Out Char (5)
Sname Char Sname_Indic Smallint
Status Int Status Indic Smallint
City Char City Indic Smallint
SQILCODE;

SELECT Sno, Sname, Status, City
INTC Sno_Out,
Sname INDICATOR Snam‘_Indic,
Status INDICATOR Status_Indic,
City INDICATOR City_Indic
FROM S
WHERE Sno = an_In;

PROCEDURE IncrStatus
Increment Int
Sno_In Char (5)
SQLCODE; '

UPDATE S
SET Status = Status + Increment
WHERE S.Sno = Sno_In;

PROCEDURE SetStatus
Increment Int
Sno_In Char (5)
SQLODE;

UPDATE S
SET Status = Increment
WHERE S$.Sno = Sno_1In;

Figure 8-12: The SQL Procedures for Exampie_C

102

CMU/SE!-89-TR-16

with Increment Definition Pkg, Suppliers_Definition_Pkg,
City Definition_Pkg;

Use Increment Definition Pkg, Suppliers_Definition Pkg,
City Definition_Pkg;

package Example C_Module is

type Supplier_Record Type is record
Sno : SNO_Not_Null:
SName : SNAME Type;
Status : Status_Type;
City : City Type.;
end record;

type Update_Status_Result Type IS (Success,
No_Supplier,
Constraint_Violatcd,
Permission Denied);

procedure AcquireSupplier (Sno_In : N Sno_Not_Null;

Supplier Record : in out Supplier_ Record Type;

Found : out Boolean);
procedure IncrStatus (Sno : in Sno_Not Null;
Increment : in Status_Increment Not Null:

Result : out Update Status_Result Type);

-~ adds Increment (signed quantity) to Status

-- of Supplier Sno. Result is Constraint Violated if
-- updated status viclates constraint on Statua. Result is
-- No_Supplier is Sno is not in database or its Status

-- is Null. Result is Success if the Suppliex
-- with number Sno has had
-- his Status incremented by the value of Incraement

procedure SetStatus (Sno : IN Sno_Not_Null:
Increment : iN Status_Incremant Not_Null;
Result : out Update_Status_Result_Type);

-- Sets Status of Suppler Sn~ Lo lncrement

-- Result is Congtiaint Violated if updated Status
~= viciates constraint (e.g., is negative).

-- Result is No_Supplier if Sno is not in database
-- or its Status is not Null. Result is Success if
-- the Supplier with number Snc has had his Status
-- set to the value of Increment.

end Example C_Module;

Figure 8-13: The Abstract Module for Example_C

CMU/SEI-89-TR-16

103

with suppliers Definition Pkg, Parts_Definition_Pkg,
QTY Definition_Pkg, Incrementi Definition Pkg, Example C Module,
SQL_Base Types Pkg;

use Suppliers Dafinition_Pkg, Parts Definition_Pkg,
QTY Definition Pkg, Increment Definition Pkg, Example C Modulae,
SQL_Base_Types Pkg:

separate (Driver)
procedure Example C (Sno : Sno_Not Null;
Increment : Status Incromont Not_Null) Is

-~ A filter on suppliers. Serves to illustrate SAME logic.
function Choose (A_Supplier : Supplier_ Record Type)
return boolean IS Separate;

-~ The display procedure will not be showr
procedure Display The Line C (Message : SQL Char Not_Null)
is separate;

begin
declare

-- Messages to be displayed to user indicating status of update
No_Supplier Msg : constant SQL Char Not_ Null :=

"The Supplier " & SQL Char Not Null(Sno)

& " Does Not Exist in the Database";

Constraint Violation : constant SQL_ Char Not_Null :=

"Your attomptod. status modification " &

"violates database constraints";

Update_Successful : constant SQL_Char_Not_Null 1=

"Status successfully updated"”;
Not_Chosen : constant SQL Char Not Null :=

"You may not Update the Status of Supplier " &

SQL Char Not_null(Sno);

Permission_Denial : constant SQL_Char Not Null :=

"You do not have permission to update Supplier data";
Unknown_Error : constant SQL Char Not Null :=

"The Supplier " & SQL Char Not_Null(Sno) &

"has inexplicably disappeared from the database." &

" Contact a service representative.";
~- objects for concrete module communication
Supplier : Supplier_Record Type:;
Exists : Boolean;
Results : Update_Status_Result Type;

begin

AcquireSupplier(Sno, Supplier, Exists); -- get initial status
ff not Exists then

Display The Line C(No_Supplier Msg): -- no such supplier

eisif Choose (Supplier) then -- filter suppliers
if Is_Null (Supplier.Status) then -- decide which SQL statement
SetStatus (Sno, Increment, Rasults); -- to call
else
IncrStatus (Sno, Incremant, Results);
end If;
case Results is -~ tell user status of update

when No_Supplier =>
Display The_: Line C {Unknown _Error);
when Conctramt Violated =>
D:.cplny_Tho_L;.no__C (Constraint_ Violation); -
when Permission Denied =>
Display_ The_Line C(Permission Denial):;
when sSuccess =>
Display_The Line_ C(Update Successful);
end case;

104

CMU/SEI-89-TR-16

-I

else
Display The_Line_C(Not_ Choaen); -~ status when filtered out
end if;
end;
end Example_C;

Figure 8-14: Example_C

with Suppliers_Definition Pkg, SQL_Int_ Pkg:;
use Suppliers Definition Pkg, SQL Int Pkg:
package Increment Definition Pkg is

type Status_Increment_Not Null is new SQL Int_Not Null
range -SQL Int Not Null(Status_Not_Null'Last)
SQL_Int Not Null (Statu._Not_Null’ Last) ;
type Status_Increment_Type IS new SQL Int;
package Status_Increment Ops is new
SQL_Int_Op- (Status_Increment_Type, Status_Incramont_Not_Null)

end Increment Definition Pkg;

Figure 8-15: The Package Increment_Definition_Pkg

CMU/SEI-89-TR-16

105

with Conversions, SQL Standard, SQL_Communications_Pkg,

SQL_Databa-o_Error Pkg, Examplo_Concrote_ Module;

use Conversions, SQL Stand;rd SQL_Communications_Pkg,

SQL Database_Error_ Pkg;

package body Example_ K _Module is

package Conc renames Example Concrete Module;
use SNAME Ops, Status_Ops, City_Ops;

Constraint Viclation : constant := 100; -- implementation defined
-- the value of SQLCODE
-- when an update would viclate
~- a constraint
Permission_Violatien : constant := -1; -- implementation defined
-~ the value of SQLCODE
-- when a user does not have
-- update permission

procedure AcquireSupplier (Sno_In : in Sno_Not Null;
Supplier_Record : in out Supplier_Record Type;
Found : out Boolean) is

Sname_c : Char(Sname_ Not Null’Range);

Status_c : Int;

City_c : Char(City Not Null’Range):;

Sname_Indic, Status_Indic, City_Indic : Indicator_ Type:

begin

Conc.AcquireSupplier (Char(Sno_1In),

Char(Supplier_Kacord.Sno),
anmo_c, Snamo_Indic,
Status_c, Statu-_Indic,
City ¢, City_Ind.ic,
SQLCODE) ;

if SQLCODE in Not Found then
Found := Fal—so;
eisif sQLCODE /= 0 then
Process _Database Error;
raise SQL Database _Error;
else
Found := True;
assign (Supplier_ Record.Sname,
SNAME Base (Convert (Sname_c, Sname_1Indic))):
assign (Suppl:.or Record.Status,
Status_Type (Convert (Status_c, Status_Indic)});
assign (Supplier Record.City,
CITY Base(Convert (City ¢, City Indic))):
end If; - - -
end AcquireSupplier;

procedure IncrStatus (Sno : iN Sno_Not_Null:
Increment : in Status_Increment Not Null;
Result : out Update_Status_Result_Type) is

begin
Conc.IncrStatus (Int (Increment),
Char (Sno),
SQLCODE) ;

H SQLCODE = Constraint_Violation then
-- update refused: constraints

106

CMU/SEI-89-TR-16

Result := Conatraint Violated;
elsif SQLCODE = Permission Violation then
-- update refused: permission

Result := Permission Denied;
elsif SQLCODE in Not_Found then
Result := No Supplier; ~- Sno not in database
- -- or Status Null
elsif SQLCODE /= 0 then ~- unrecoverable error
Proc--s_Databa-o_;rror;
raise SQL Database_Error:
else
Result := Success; -- successful completion
end If;

end InczStatus;

procedure SetStatus (Sno : In Sno_Not_Null;
Increment : IN Status_Increment Not Null;
Result : out Update_Status_Result_ Type) is
-~ This logic is identical to IncrStatus except
-- concrete procedure SetStatus is called

begin
Conc.SetStatus (Int (Increment),
Char (Sno),
SQLCODE) ;

if SQLCODE = Constraint Violation then
-~ update refused: constraints
Result := Constraint Violated;

elsif SQLCODE = Permission_Violation then
-~ update refused: permission

Result := Permission_Denied;
eisif sQLCODE in Not_Found then
Result := No_Supplier; ~- Sno not in database

eisif SQLCODE /= 0 then -- unrecoverable error
Prococ-_Databasc_Error;
raise SQL_Database_ Erxror;

eise
Result := Success; ~- successful completion

end If;

end SetStatus:
end Example C_Module;

Figure 8-16: The Abstract Module Body for Example_C

CMU/SEI-89-TR-16

107

with City Definition Pkg; USe City Definition Pkg:
separate (Driver.Example C)
function Choose (A_Supplier : Supplier_Record_Type) return boolean is

use City Ops;
use Character_Set:;

begin
’ -- this version rejects any supplier known to be in Pittsburgh
if A_Supplier.City = With Null ("Pittsburgh") then
return false;
else
return true;
end if;
end Choose;

Figure 8-17: Choose - Version 1

with City Definition Pkg, SQL_Boolean Pkg;

use City Definition_Pkg, SQL_Boolean_Pkg;

separate (Driver.Example C)

function Choose (A_Supplier : Supplier_ Record_Type) return boolean is

use City Ops;
use Character_Set;

begin
-- this version rejects any supplier that might be in Pittsburgh

case Equals(A_Supplier.City, With_ Null ("Pittsburgh")) is
when True | Unknown =>
return false;
when False =>
return true;
end case;
end Choose;

Figure 8-18: Choose - Version 2

lllustrations of Three-Valued Logic

This section concludes with a discussion of the Choose function in Exampie_C. As men-
tioned, this function has been contrived for the purpose of illustrating logical processing
within the SAME. Five separate versions of Choose, illustrating differeat aspects of that
processing, will be presented. The first two versions appear in Figures 8-17 and 8-18. These
two versions are both concerned with the city of Pittsburgh. In the first version, the function
returns false for any supplier whose city value is Pittsburgh. The second version returns
talse for suppiiers whose city is either unknown (nuil) or Pittsburgh. This version needs
visibility to SQL_Boolean_Pkg in order to have the enumeration literals in the case alter-
natives correctly identified. The first version deals only with known information, with the abil-
ity to establish a fact; the second version deals with uncertainty, with the inability to disprove
a fact. In other worris, the version in Figure 8-17 looks for suppliers whose city is definitely
Pittsburgh, the so-called minimal result; whereas, the version in Figure . -18 looks for sup-
pliers whose city may be Pittsburgh, the so-calied maximal result.

108 CMU/SEI-89-TR-16

in the third and fourth versions of Choose, displayed in Figures 8-19 and 8-20, suppliers are
selected based on their status values. The third version, in Figure 8-19, resembles the first
version, in Figure 8-17, in that it rejects only those suppliers whose status is known to not
exceed the specified value. Similarly, the fourth (Figure 8-20) resembles the second (Figure
8-18), in rejecting those suppliers whose status values might not exceed the given value.
The fourth version works by the double negation principle; suppliers are rejected if it is not
known that their status values exceed the given vaiue. The fourth version could have been
coded in the style of the second version, using a case statement whose alternatives are
guarded by literals of the Boolean_with_Unknown enumeration type. However, the second
example (Figure 8-18) cannot be coded in the style of the fourth, since Ada will not allow
explicit overioadings of the negation of the equality operator.

The final version of Choose, shown in Figure 8-21, exemplifies mixed mode comparisons for
string based values and the substring operation. This version rejects suppliers whose name
contains their city as a substring. Only the definite information version is shown. Points to
be noticed about Figure 8-21 are:

« The search excludes the sequence of trailing blanks in the supplier's name
field.

« The search avoids the exception constraint_error in the Substring function.
This and the previous point explain the upper bound on the for loop.

» The search does not require the string of trailing blanks, if any, in the city field
to be present in the name field. This explains the length parameter in the Sub-
string function call.

« It is not necessary to actually remove the trailing blanks from the City field.

» For the comparison to be syntactically valid, one of its operands must be con-
verted to the other's type. The city operand is converted to the type of suppliers’
names. The unconstrained type, SNAME_Base, is used. Were the constrained
type, SNAME_Type, used here, a constraint_error would be raised due to the
conflict in discriminant values, i. €., string lengths.

CMU/SEI-89-TR-16 109

A

separate (Driver.Example C)
function Choose (A_Supplier : Supplier Record Type) return boolean is

use Status_Ops;
use Charactoz_S.t;

begin
-- this version rejects any supplier
-- whose status is known to be less than or equal to 20

It A_8upplior.statu. <= Witb_Null(ZO) then
return false;
eise
return true;
end If;
end Choose;

Figure 8-19: Choose - Version 3

separate (Driver.Example C)
function Choose (A _Supplier : Supplier Record_Type) return boolean is

use Status_Ops;
use Charactor_Sot;

begin
-~ this version reajects any supplier
~- whose status is not known to be greater than 20

if not (R_Supplier.Status > With Null(20)) then
return false;
else
return true;
end If;
end Choose;

Figure 8-20: Choose - Version 4

110

CMU/SEI-89-TR-16

-------------------J

with City Definition_ Pkg, Suppliers_Definition_Pkg:

Use City Definition_Pkg, Suppliers_ Definition_Pkg;

separate (Driver.Example C)

function Choose (A_Supplier : Supplier_ Record Type) return boolean is

use City Ops, SNAME Ops;

begin

-- this version rejects any supplier whose name contains
-- its city as a substring
for i in

1..

(Unpadded_Length (R _Supplier.Sname) -
(Unpadded Length(R_Supplier.City) - 1))

loop ’

if substring(A_Supplier.Sname, i, Unpadded Length(RA Supplier.City))

SNAME Base (A_Supplier.City) then
return False;
end if;
end loop;
return True;
end Choosae;

Figure 8-21: Choose - Version 5

CMU/SEI-88-TR-16

1

CMU/SEI-89-TR-16

112

9. Advanced DBMS Applications

This chapter deals with specialized applications of SQL DBMS technology; in particular, with
applications that require dynamic SQL services and those Ada DBMS applications which
use Ada tasking. It should be noted that ANSI standard SQL [2] supports neither of these
features.3! There are DBMS implementations on the market which provide support for one
or both of these facilities. The discussion in this section cannot take the details of these
implementations into account. The reader will need to adapt the methods of this section to
the target DBMS.

A second note of caution must be introduced into this section. Whereas the ideas in other
sections of these guidelines have been verified, and all of the code has been compiled and
executed, the author did not have at his disposal a DBMS which supported either of the
classes of applications discussed in this section. Therefore, the code presented here has
not been executed, although it has been compiled, and the ideas have not been directiy
tested against any DBmIS.

9.1. Dynamic SQL

As has been shown in previous sections, SQL statements can take runtime parameters.
This parameterization is limited to those parts of an SQL statement in which a constant may
appear. In the examples of Chapter 8, SQL statements were parameterized with Supplier
and Part numbers. If a needed DBMS service is to be parameterized by something other
than a constant, this can be done with dynamic SQL. If, for example, an update application
allows for the modification of various sets of dynamically specified columns using various
sets of dynamically specified update expressions and various sets of dynamically specified
search conditions, it may choose to use dynamic SQL. If the amount of variation is very
small, it may be preferable for the application designer to produce a small set of static SQL
update statements and choose the statement to execute at runtime. Dynamic SQL applica-
tions are harder to write than static SQL applications and add runtime overhead. A good
heuristic to follow is to avoid the use of dynamic SQL whenever feasible.

A full description of dynamic SQL is inappropriate for these guidelines. There follows a brief
description of dynamic SQL based on the proposals in [3].

The SQL statement to be dynamically executed is created by the application as a character
string. This string is presented to the DBMS as the operand of a PREPARE statement. If the
statement is not a SELECT statement, i.e., if it is an INSERT, UPDATE, DELETE or one of a
handful of other, bookkeeping statements (see [3]), it may then be EXECUTEd. A cursor must
be declared for SELECT statements. Once declared, the cursor is OPENed, FETCHed and
CLOSEd as in static SQL. Thus, the mental model of dynamic SQL operation is very much
the same as for static SQL.

Dynamic SQL applications can be placed along a continuum whose end points may be
called “fully dynamic™ and “slightly dynamic.” Fully dynamic applications are generalized
system software utilities. They typicaily provide an ad hoc browsing and updating capability.

3'The follow-on ANSI standard [3] has support for dynamic SQL.

CMU/SEI-89-TR-16 113

(Most SQL DBMS offer an interactive version of SQL. However, SQL is probably not a good
end user language.) These applications are often supplied by the DBMS vendor or by third
parties and are written with no knowiedge of the schema of the database against which they
execute. Slightly dynamic applications offer more restricted services to their users. They are
written with full knowledge of the target database schema, its semantics, and the abstract
domains invoived.

The central distinction between static and dynamic SQL statement execution is the manner
in which runtime parameters are passed. SQL2 offers three distinct methods of passing
parameters to dynamically prepared statements. Each dynamic statement32 has a USING
clause whose operand specifies the manner in which parameters are being passed. in the
simplest case, this operand is a list of identifiers. This alternative can and should be used
whenever the number and type of the parameters of the statement, i.e., its parameter
profile, do not vary and the dynamically varying parts of the statement lie elsewhere (e.g., in
the use of these parameters in a search condition). Such applications lie at the slightly
dynamic end of the continuum. When the list of identifiers option of the USING clause ap-
pears, the abstract procedure declaration corresponding to the dynamic statement is iden-
tical to its static counterpart in its use of row records, abstract domain types, and resuit
parameters.33

Example

Suppose a program wishes to execute an UPDATE statement which aiways takes a part num-

ber, a color, and a weight, sometimes updating the color and sometimes updating the

weight. Assuming this is to be done with dynamic SQL, two dynamic statements are

needed: PREPARE and EXECUTE. (In practice, an EXECUTE IMMEDIATE, which performs both

functions, could be used. Two statements are used here for purposes of illustration.) The
module procedures are:

PROCEDURE STMT_PREP
STMT_TO_PREP CHAR(100)
SQLCODE

PREPARE ST FROM STMT_ TO_PREP;

PROCEDURE UPDATE_EXEC
PNO CHAR (5)
WEIGHT INT WEIGHT INDIC SMALLINT
COLOR CHAR (6) COLOR_INDIT SMALLINT

EXEC ST USING PNO,
WEIGHT INDICATOR WEIGHT_ INDIC,
COLOR INDICATOR COLOR_INDIC;

32Dynamic SQL statements, e.g., PREPARE, EXECUTE, dynamic OPEN, and dynamic FETCH, are distinct from
dynamically prepared SQL statements, e. g., SELECT, UPDATE. INSERT. The dynamic SQL statements are those
which are executed by a dynamic SQL program to accomplish the database operations specified by the dynami-
cally prepared SQL statements.

335QL2's notions of extended statement identifier and extended cursor name, 10 be described, are runtime
parameters which may be needed at the abstrdct interface, even in this case.

114 CMU/SEI-89-TR-16

The abstract module procedure declarations corresponding to these module procedure are:
procedure Stmt Prep (Stmt_To_Prep : iNn SQL Char Neot_ Null);

procedure Update_Exec (Pno : in Pno_Not Null;
Weight : in Weight_ Type;
Color : In Color_Type);

Result parameters can, of course, be attached to either or both of these procedures.

Applications which require SQL statements whose parameter profiles vary dynamically must
be "polymorphic,” that is, able tc dea! with a variety of types at runtime. Although Ada is not
a polymorphic programming language, the Ada variant record construct can be used to sim-
ulate polymorphism, provided that the set of possible runtime types is known at compile
time. Furthermore, each variant will typically require path segments unique to it. It is best if
the number of types is kept small.

SQL2 offers two methods of passing parameters to dynamically prepared statements whose
parameter profiles vary dynamically. Both methods are based on the <dynamic using
descriptor area structure> or SQLDA. In the first of the two methods the SQLDA is allocated
by the application program and exists in its name space. In the second method, the SQLDA
is allocated by the DBMS and exists in its name space. In Ada terms, the distinction is that
between visible and private declarations of the SQLDA type. The first of these alternatives,
the visible SQLDA, will be described first, as the second alternative, the functional approach,
is defined in terms of it.

The definition of the SQLDA structure in PU/I can be found in Figure 9-1. The ANSI proposal
does not allow this structure in Ada. This is subject to change before the standard is ap-
proved and, of course, there are no implementations conformant with the SQL2 proposal. As
was mentioned, the reader will need to adapt the discussion in this section to the target
DBMS in any case. A proposed definition for an SQLDA in Ada appears in Figure 9-2. The
package SQL_Standard_Dynamic is like the package SQL_Standard in that it describes
data crossing the concrete interface.

DCL 1 SQLDA
2 SQLN BIN FIXED,
/* max nbr of parameters*/
2 SQLD BIN FIXED,
/* actual nbr of parameters */
2 SQLVAR (SQLSIZE REFER (SQIN)),
3 SQLDATA PTR,
/* points to the data */
3 SQLIND PTR,
/* points to the indicator parm */
3 SQLTYPE BIN FIXED,
/*integer encode of type */
3 SQLNULLABLE BIN FIXED,
/* is there an indicator parm? */
3 SQLLEN BIN FIXED,
/* character length, numeric precision */
3 SQLSCALE BIN FIXED,
/* numeric scale */
3 SQLNAME CHAR (k) VAR;
/* column name if applicable */
DCL SQLSIZE BIN FIXED:;

Figure 9-1: SQLDA in P/

CMU/SEI-89-TR-16 115

The implementation-specific type SQL_Dynamic_Datatypes_Base is used to choose the ap-
propriate integer type as defined by the DBMS. The constants of this type, Dynamic_Char,
etc., define the integer encoding of types as specified by ANSI [3]. The constant
Not_Specified is used as the default for the discriminant of the SQL_Dynamic_Parameter
type. The subtype SQL_Dynamic_Datatypes is used as the type of the discriminant to ob-
viate the need for an others variant.

The type of the SQLDATA component of the SQLVAR_Component_Type
(SQL_Dynamic_Parameter) is a variant record of access types. The objects accessed by
these variants are of types declared in SQL_Standard (or the not nuli decimal type in
SQL_Decimal_Pkg). The SQLLEN and SQLSCALE fields, which give length, precision, and
scale information, are no longer present as fields, but are now attributes (or discriminants) of
the accessed objects.

The dynamic SQL DESCRIBE statement takes a statement identifier and an SQLDA object
and fills in the type information in the SQLDA from the prepared statement identified by the
identifier. When issued in conjunction with the definitions of Figure 9-2, the DESCRIBE state-
ment must also allocate the space for the vaiues of the dynamic parameters described by
each SQLVAR_Component_Type object, in order to return length, precision, and scale infor-
mation. The values themselves may be left undefined by DESCRIBE. This behavior is slightly
different from the behavior of DESCRIBE in [3], Section 12.7.

The types Extended_Cursor_Type and Extended_Statement_Type are used for the
<extended cursor name> and <extended statement identifier> of SQL2 [3]. Briefly, the con-
nection between dynamic statements operating on a dynamically prepared statement (e.g.,
PREPARE and EXECUTE) is via a <statement identifier> which may be either a constant or a
variabie. In the example given earlier, the token ST is a constant statement identifier.
Similarly, the connection between dynamic open, close, and fetch and the prepared select
statement on which they operate is via a <cursor identifier>, which may be either a constant
or a variable. (When a cursor is a runtime variable, a <dynamic declare cursor> statement
must be executed to form the connection between the prepared select statement and the
cursor.) An object containing an extended statement identifier has type
Extended_Statement_Type; an object containing a dynamic extended cursor has type
Extended_Cursor_Type.

118 CMU/SEI-89-TR-16

I

with SQL_Standard, SQL Decimal Pkg;
use SQL_Standa.rd, SQL_Dccimal_Pkg;
package SQL_ Standard Dynamic IS

type Extended Cursor_Type is implementation defined:
type Extended_Statement_Type Is implementation defined;
type SQL Dynamic_Datatypes_Base Isrange implementation defined;

Maybe Null Indic : constant Indicator_Type := 1;
~- value of SQLNULLABLE if nulls allowed
subtype Null_ Indication IS Indicator_ Type range
Indicator Type’First .. -1;
-- value of indicator if value is null

-- types to describe cclumn names
SQL Column Name Length : constant := 18; -- set in SQL2 standard
subtype SQL Column Name_Length Type s
positive range 1..SQL Column Name_Length;
suptype SQLNAME Type is Char(SQL Column Name_Length_Type) ;

~- These constants capture the encoding of SQL Types as integers
-- as given by SQL2.

Not Specified : constant SQL Dynamic_Datatypes_Base := 0;
Dyn:.mic_Cha: : constant SQL Dynamic_Datatypes_Base := 1;
Dynamic_Numeric : constant SQL Dynamic_Datatypes_Base := 2;
Dynamic_Decimal : constant SQL Dynamic_Datatypes_Base := 3;
Dynamic Int : constant SQL_Dynamic_Datatypes_Base := 4;
Dynamic_Smallint : constant SQL_Dynamic_Datatypes_Base := 5;
Dynamic Float: constant SQL Dynamic_Datatypes_Base := §;
Dynamic_Real : constant SQL_Dynamic _Datatypes_Base := 7;

8

Dynamic_Double Precision : constant SQL Dynamic_Datatypes_Base

subtype SQL_Dynamic Datatypes is SQL_Dynmamic Datatypes_ Base
range Not_Specified .. Dynamic_Double_Precision;

-- access types for components of SQL Dynamic_Parameter
type Char Rccess is access Char;
type Docual Access |s access SQL_Decimal Not_ Null;
type Int_. Access is access Int;
type smllmt_hocaos Is access Smallint;
type Real Access Is access Real:
type Double _Precision_Access is access Double Precision;
type SQL Dymmc Parameter (SQLTYPE :SQL Dynun:l.c Datatypes:=Not_Specified)
Is record
case SQLType s
when Not_Specified =>
null;
when Dynamic_Char =>
Char Value : Char Rccess;
when Dynamic_Decimal | Dynamic_Numeric =>
Decimal Value : Decimal Rccess;
when Dynamic Int =>
Int_Value : Int Access;
when Dynanu.c Smallint =>
Smallmt_Valuo : Smnllint_hcc.-- :
when Dynamic Real =>
Real_Value : Real Access;

when Dyna.nu.c Double Proc:..xon | Dynamic Float =>
Double Procxn.on Value : Double Precision Access;
end case; - -
end record;

type SQLVAR Component_Type is record

CMU/SEI-89-TR-16 117

_—*

SQLDATA : SQL_Dyamic_Parmtcr;
SQINULLABLE : Indicator_Type;
SQLIND : Indicator_Type’
SQLNAMEL : SQL_polumn_Namo_Lcngth_Typo;
SQLNAME : SQLNAME Type;

end record;

type SQLVAR_Type Is
array (Int range <>) of SQLVar Component_Type;

type SQLDA (SQLN : Int) Is record

SQILD : Int;
SQLVAR : SQLVAR_Typc (1 .. SQLN):
end record:;

end SQL Standard Dynamic;
Figure 9-2: The Package SQL_Standard_Dynamic

118

CMU/SEI-89-TR-16

The package SQL_Standard_Dynamic is like the package SQL_Standard in describing data
at the level of the concrete interface. Before describing an abstract interface for dynamic
SQL, it is first necessary to consider what the goals of an abstract interface design for
dynamic SQL shouid be.

As mentioned earlier, fully dynamic SQL applications are general system software support-
ing ad hoc user interactions. As such, these programs are independent of any database
schema, which is to say, of the semantics of the stored data. These programs do not deal
with Part Numbers, Supplier Names, Weights, etc. They deal with character strings, in-
tegers, etc. For this reason, the suggested definition of an abstract SQLDA in Figure 9-3
does not allow for user defined types. However, fully dynamic SQL applications can be pro-
vided with the standard SAME treatment of null values and the standard SAME treatment of
database exceptional conditions.

The package SQL_Dynamic_Pkg in Figure 9-3 presents a set of abstract types closely
modeled on the set of concrete types in SQL_Standard_Dynamic. The underlying, “scalar"
types have been changed to types suitable for an abstract interface. These types are de-
fined in the abstract domain package, SQL_Base_Types_Pkg, which was introduced in
Figure 3.8. The types of the objects accessed by components of SQL_Dynamic_Parameter
in SQL_Dynamic_Pkg are all of null bearing types. It is possible to introduce the non-null
bearing types, or a set of abstract types, into this list of components, but at the expense of
increased application complexity. Each variant of SQL_Dynamic_Parameter will require an
execution path segment of its own. There is good reason to keep the number of such
variants small.

CMU/SEI-89-TR-16 119

with SQL_Base_Types_Pkg, SQL_Standard_Dynamic;
use SQL Base_Types_Pkg;
package sSQL Dynamic_Pkg is

~- These next definitions deal with names of columns
subtype SQL Column Name Length Type is

positive range 1..SQL_Standard Dynamic.SQL_Column_Name Length;
subtype SQLNAME Type is SQL Char Not_ Null (SQL_Column Name_Length Type);

-- The discriminant is now an enumeration type
type SQL Dynamic Datatypes is
(Not_Specified,
Dynamic_Char, Dynamic_Decimal,
Dynamic_Int, Dynamic_Smallint,
Dynamic Real, Dynamic Double Precision);

-- access types access null bearing types in Base_Type Pkg
type Char_ Access is access SQL Char Type;

type Doc:.ml Access iS access SQL | Decimal _Type;

type Int_. Access is access SQL_ Int _Type:

type Smllxnt_hccoss is access SQL_Smallint_’!ypc;

type Real Access is access SQL_Real Type;

type Double Precizion_Access is access SQL Double_ Precision_Type:

type SQL Dynamic Parameter (SQLTYPE :SQL Dynamic_Datatypes := Not_Specified
is record
case SQLType is
when Not_Specifiaed =>
null;
when Dynamic_Char =>
Char Value : Char Access;
when Dynamic_Decimal =>
Decimal Value : Dcciml_hcc.-. :
when Dynamic_Int =>
Int_Value : Int Access;
when Dy‘nmc_Smllint =>
Smallint Value : Smallint Access;
when Dynmc Real =>
Real anuo : Real Acu...,
when Dynamc Double Proc:.n.on =>
Double_] Proc.\.u.on Value : Double Precision_Access’
end case;
end record;

type SQLVAR Component Type is record
SQLDATA : SQL__Dymm.x c__P arameter;
SQLNAMEL : SQL Column Name Length Type;
SQLNAME : SQLNAME_Type: -

end record;

type SQLVAR Type lIs
array (SQL Int Not Null range <) of SQLVar_ Component Type;

type SQLDA (SQLN : SQL Int Not_Null) is record
SQLD : SQL_Int_Not_Null;
SQLVAR : SQLVAR Type (1 .. SQLN);

end record;

end SQL Dynamic_Pkg:

Figure 9-3: The Package SQL_Dynamic_Pkg

120 CMU/SEI-89-TR-16

With the definitions of Figures 9-3 and 9-2 at hand, it is possibie to write an abstract module
supporting a dynamic application. The module allocates and maintains a loca! object of the
concrete SQLDA type, as defined by the package SQL_Standard_Dynamic in Figure 9-2,
and exports to the application subprograms which take parameters of the abstract SQLDA
type, given by Figure 9-3. The module then transiates between the two formats on each
subprogram call. Although such modules are possible, they may not be desirable, partic-
ularly when built for a DBMS which does not directly support either SQLDA type. (Of course,
there are no DBMSs which support these types at this time.) A module which operates in
this way requires an excessive amount of data movement. The information in the SQLDA
would first be stored in an SQLDA structure local to the DBMS (probably in either C or PUI,
the only languages currently supporting an SQLDA in SQL2), translated to the concrete Aaa
SQLDA, and then translated to the abstract SQLDA. These translations are done fieid by
field. Since the purported advantage of an SQLDA structure is runtime efficiency, the over-
head of these translations is unacceptable. The remaining alternative to dynamic parameter
passing, the functional approach,3* eliminates much of this data transiation.

The functional approach treats the SQLDA as a private type declared, from the application
program’s point of view, behind the abstract interface. The application program allocates
objects of the SQLDA type using an SQL-defined aliocation procedure whose syntax is:

ALIOCATE SQLDESCRIPTOR <sqlda descriptor name>
WITH MAX <occurrences>

where <sqlda descriptor name> is a character string parameter and <occurrences> is an
integer parameter. This statement appears at the abstract interface as the following proce-
dure declaration:3%

procedure Allocate (SQLDA Name : SQL Char Not_Null;

Max : SQL_Int_Not_Null) ;

A call to this procedure having the form:

ARllocate (SQLDA Name => "SQLDA Object",

Max => 10);

creates an SQLDA structure with 10 occurrences of the SQLVAR component (i.e., an SQLN
value of 10). This structure can be referenced by the name "SQLDA_Object" as in the pro-
cedure call:

Deallocate (SQLDA_Name => "SQLDA_Obj.ct") H
which calls a procedure defined by the SQL syntax:

DEALLCCATE SQLDESCRIPTOR <sSqlda descriptor names

There is no need for more than one Allocate or Deallocate statement in any module.

The type information within an SQLDA is supplied as the result of a DESCRIBE (or DESCRIBE
INPUT) statement. These statements take a prepared statement identifier and an SQLDA
object name. (This information can also be modified, to within implementation-defined limits,

34The functional approach does not appear in [3]. It is contained in an accepted change to SQL2, which can
be found in [10]. The ensuing discussion is based on (10}, which may differ from the description of the tunctional
approach that will appear in the final standard. The differences should be minor and shouid not affect an abstract
interface providing a functional approach to an Ada application.

35The Ada code in these following examples uses types in SQL_Base_Types_Pkg. It may be desirabie to use
specially designed types, declared in a package similar in purpose, but not design, to SQL_Dynamic_Pkg, for the
parameters in these examples.

CMU/SEI-89-TR-16 121

by an application, thereby effecting runtime data conversion.) Since the SQLDA is itself hid-
den, two functions, GET and SET, are provided to access or modify ine type information and
the values of the parameters. These functions have two forms which are described by the
following combined syntax:

(GET | SET) <sqlda descriptor name>

[VALUES <sqlvar number>] <parameter associations>

The <parameter associations> determine what information is to be extracted from (or set
into) the SQLDA. The form without the VALUES <sgivar number> phrase is used to access
the SCLD field, which determines the actual number of parameters used by the dynamic
statement. Thie is the only field of an SQLDA which is not a subcomponent of the SQLVAR
component. The form with the VALUES phrase accesses suocomponents of the SQLVAR
component with index, relative to one, of <sqlvar numbers.

Within [10], the <parameter associations> are of the form <parameter> = <identifier> where
<identifier> is the name of an SQLDA field as shown in the PL/! description in Figure 9-1.
(When VALUES is absent, only SQLD may appear as an <identifier>.) Notice that the GET
(SET) statement is not itself dynamically preparable; therefore calis to these statements
hzve parameter profiles that can be determined at compile time.

Figure 9-4 contains fragments of a “fully dynamic” Ada application using the functional inter-
face. The example is based on [10]. The app'ication is fully dynamic in that it uses the data
types in SQL_Base_Types_Pkg.

The abstract module used by the program in Figure S-4 contains the procedure deciarations
for the SQL statements which implement the functional approach to dynamic parameter
passing. It 1s not essential that the concrete interface used by the abstract module also im-
plement the functional approach; an SQLDA-based concrete interface is permissibie. The
decision can be made on performance grounds alone. Tha abstract module retains respon-
sibility for null value encapsulation and SQLCODE processing. (SQLCODE processing is
not explicitly used in Figure 9-4, in order to control its size. Comments indicate what might
be done in a realistic setting.) The procedure Set_SQLDATA (Get_SQLDATA) gives values
to (accepts values from) the DBMS. These procedures have oveiloaded declarations in the
abstract module, one declaration for each of the null bearing types in Weak_Types_Pkg.
The abstract module procedure bodies are responsible for processing the null value. For
example, the body of a Set_SQLDATA procedure might be:

it Is_Null (SQLDATA) then
Conc.Sot_SQLNull(SQLVAR_Nbr => SQLVAR_Nbr,
SQLDA Name => SQLDA Name,
SQLNULLABLE => Maybe Null Indic,
SQLIND => Null_Indication’Last);

else
Conc.Set_SQLDATA (SQLVAR Nbr => SQLVAR Nbr,
SQLDA_Namo => SQLDA_Nam.,
SQLIND => 0,
SQLDATA => SQLDATA) ;
end If;

Similarly, the Get_SQLDATA procedure needs a concrete Get_SQLNull procedure to deter-
mine if an output value is null. These are examples of concreie procedures which do not
appear at the abstract interface. Generally, that is to say, in static SQL applications, there
are no such procedures. (Note: In the above if statement, the object Maybe_Null_indic and
the subtype Null_Indication are as defined in the package SQL_Standard_Dynamic shown
in Figure 9-2.)

122 CMU/SEI-B9-TR-16

It is possible to envision an abstract module and application program which are less fully
dynamic and use abstract domains for parameter values. Dynamic SQL requires the data-
base to access its data dictionary at runtime. This processing could be extended tc access
an Ada data dictionary as well.36 This would allow the application program access to the
abstract domain of the parameters. However, such access would increase the complexity of
the application and the runtime overhead of the abstract module. It is unclear whether the
benefits of abstract typing outweigh the costs, for dynamic applications. (Note: If the abstract
domain definitions are used to constrain, via range constraints, database objects in a man-
ner which is not also supported by the DBMS, then fully dynamic update programs which do
not use the abstract domain definitions may violate database constraints.)

38As mentioned in the introductory chapter, the SAME - Design Committee is working on a language for
automation of SAME application development. The processor for this language, whatever its final form, will
certainly need an Ada data dictionary.

CMU/SEI-89-TR-16 123

Max_SQLVAR : constant := 10; -- this limit on SQLVAR occurrences is
-- a property of the application and of
-- the DBMS implementation

Input SQLDA : constant SQL_Char_Not_Null := "Input_SQLDA";
Outpv _SQLDA : constant SQL_Char_Not__Null := "Output_SQLDA";

SQLTYPE : SQL Dynamic_Datatypes; -- type declared in SQL Dynamic_Pkg

SQLD Out, SQLD In : SQT Int Not Null;
Is_Fetched : booclean; -- result parameter for fetch
begin
~-- assume the dynamic statement is available in object STMT,
-- of type SQL Char Not Null. Assume alsc it is the only statement
-- which will be in use at any cne time. This allows for constant
-- statement identifiers and cursor names.
Prepare (STMT) ;
-- a failure here is probably a badly formed statement. This can
-- be trapped here, using an SQLCODE result mapping and parameter.
Allocate (SQLDA Name => Input_SQLDA, Max => Max SQLVAR):
Allocate (SQLDA Name => Output_SQLDA, Max => Max SQLVAR);
-- Failure here is irrecoverable.
Describe_In(Input_SQLDA); -- Inputs to the prepared Statement
Dosc:ibo(Output_SQLDA); -- Outputs. The statement identifier
-~ is statically known to the modula.
-- Failure here is irrecoverable.
Get_ SQLD (SQLDA Name => Input SQLDA, SQLD => SQLD In):
-- Failure here is irrecoverable.
if SQLD In > 0 then
for i in 1 .. SQID In loop
Get SQLTYPE (SQLVAR Nbr => i,
SQLDA Name => Input_SQLDA,
SQLTYPE => SQLTYPE);
~-- Failure hexe is irrecoverable.
case SQLTYPE is
when Dynamic_Char =>
~- get the character string from the user.
-~ assume it is in an object called Char Obj of type
-= SQL Char Type in SQL Base_Types_Pkg.
Set_SQLDATA (SQLVAR Nbr => i,
SQLDA_Name => Input_ SQLDA,
SQLDATA => Char_Obj):’
-- Include an alternative
-- for each element of SQL Dynamic_Datatypes.
-- The object containing the input value will be distinct
-~ in each alternative, as it will have a distinct type.
end case;
end loop;
end if;
Get_SQLD (SQLDA_Name => Cutput SQLDA, SQLD => SQLD Out);
if SQLD Cut = 0 then -~ if no outputs, not a select
Execute (SQLDA Name => Input_ SQLDA);
-- There are many non successful statuses which might be
-- trapped here: permission or constraint violation,
-- record not found, etc. This is omitted here, as it has been
-~ fully illustrated elsewhera.
else -~ if it does have outputs, it is a selaect
-~ cursor does not need to be declared, as both cursor name
-~ and statement identifier are statically known to the module
Open_Cursor (SQLDA Name => Input_SQLDA);
-~ Failures on Op:n are irrecoverable.

124

CMU/SEI-89-TR-16

Fctch(SQLDA_Nam‘ => Output_SQLDA, Result => Is_Fetched):
if not Is_Fetched then
-- perform ‘no records were retrieved’ processing
else
while 1s _Fetched loop
for i in 1 .. SQLD Out loop
Get SQLTYPE (SQLVAR Nbr => i,
SQLDA_Nam. => Output_SQLDA,
SQLTYPE => SQLTYPE):;
case SQLTYPE is
when Dynamic_Char =>
Get_ SQLDATA (SQLVAR_Nbx: => i,
SQLDA Name => Input_SQLDA,
SQLDATA => Char_ Obj):
-= process Char Obj as needed
-- An alternative is needad
-- for for each type in SQL_Dynamic_Datatypes.
end case;
end loop:;
-- end of tuple processing
end loop;
-~ end of file processing
end if;
-~ end of cursor processing
Close_Cursor;
end If;
~- end of statement processing

Figure 9-4: Dynamic SQL Application Fragments

CMU/SEI-89-TR-16

125

9.2. SQL and Ada Tasks

This section delineates issues arising from the use of SQL within an Ada application using
Ada tasking. The issues stem from both practical and theoretical aspects of concurrency
control.

The tasks within an Ada multi-tasking program form a set of mutually cooperating sequential
programs. The cooperation is mediated by shared variables and rendezvous. The trans-
actions executing concurrently against a shared database form a set of mutually non-
interfering sequential programs. The non-interference is mediated by the DBMS's concur-
rency control protocol, typically focking. The difference between these two views of concur-
rency is profound. Whereas the purpose of an Ada task control monitor is, in par, to ensure
that inter-task communication and cooperation proceed smoothly, the purpose of a DBMS
concurrency control monitor is to ensure that inter-transaction communication does not oc-
cur at all. The difference in the meaning of correctness of concurrent execution of Ada tasks
and DBMS transactions requires that Ada multi-tasking DBMS applications be carefully de-
signed. In particular, the mapping between Ada tasks and DBMS transactions must be care-
fully considered.

A task is said to be directly associated with a transaction if the task executes a statement of
the transaction,3” by way of an abstract procedure call. A task is indirectly associated with a
transaction if it causes the execution of such a statement within a task that is directly associ-
ated with the transaction. (There may be tasks which are neither directly nor indirectly asso-
ciated with any transaction.) A mapping between tasks and transactions is a relation which
gives the tasks and their associated transactions at some point during the execution of the
program. (An application may terminate and restart transactions during its execution. Such
sequences of transactions which do not overlap in time present no difficulties. The design
and coding difficulties arise in connection with sets of concurrent transactions associated
with a single Ada program.) This mapping can be of one of four classes.

1. One-to-one. A task is associated, directly or indirectly, with at most one trans-
action; a transaction is associated with exactly one task.

2. Many-to-one. A task is associated with at most one transaction; a transaction
is associated with any (positive) number of tasks.

3. One-to-many. A task is associated with any number of transactions; each
transaction is associated with exactly ore task.

4. Many-to-many. The mapping between tasks and transactions is uncon-
strained.

Since a DBMS considers a transaction to be a sequential program, it cannot tolerate concur-
rent execution of multiple requests on behalf of a single transaction.38 In other words, if
either of the relations many-to-one or many-to-many between tasks and transactions is de-
sired, the many tasks associated with any transaction must all use a synchronization or ser-

¥The means by which a DBMS identifies the transaction on behalf of which a statement is to be executed is a
central issue which will be discussed.

38There are research DBMS prototypes which allow overlapped execution of database operations within the
context of a single task. It is highly probable that no commercially available DBMS supports such processing.

126 CMU/SEI-89-TR-16

vice task to control database operations for that transaction. If an Ada multi-tasking pro-
gram is to appear to the database as a single transaction at every point in its execution,
provision of this synchronization task is all that is required.

The synchronization task can be designed so as to contain the abstract module(s) for all of
the tasks associated with the synchronization task’s transaction. This may well be a poor
design choice. In particular, it may give rise to an inordinate number of task entries. Alter-
natively, each task within the transaction may contain its own abstract modute. The
synchronization task provides a semaphore service. Calls to the semaphore task's entries
beiong in the application, as the abstract module deals only with database interagtion and
should not be aware of task structure. The semaphore should be acquired before each call
to the abstract module’s procedures and released upon return. This will ensure that the
global SQLCODE variable in SQL_Communications_Pkg, which will be shared by the tasks,
is accessed in the critical region deli..eated by the get and release calls to the semaphore.

If an Ada program is designed to present multiple, concurrent transactions to the DBMS,
careful consideration must be given to the semantics of this situation. For simplicity, assume
exactly two tasks, T1 and T2, each associated with exactly one transaction, N1 and N2.

The DBMS will schedule the operations of N1 and N2 such that they are serializable. This is
to say that, given the information available to the DBMS, which is exactly the sequence of
DBMS operations within N1 and N2, the DBMS will schedule those operations so that their
net effect is identical to the effect of executing one of those sequences in its entirety fol-
lowed by the entirety of the other sequence. In shor, serializabilty provides to each DBMS
transaction the illusion that it is running by itself, without competing, concurrent transactions.
Now suppose that T1 and T2 share information, through global variables or rendezvous: that
the information they share is derived from the database operations they execute; and that
the database operations they execute are determined by the information they share. In this
case, T1 and T2 cannot be serialized; their net effect is not equivalent to their complete,
non-parallel execution in any order. However, that fact is unknown to the DBMS. It may well
be that this scenario is not erroneous. That will depend on the semantics of the tasks' inter-
action. But it must be carefully reviewed.

Cooperating tasks presenting distinct transactions to the DBMS, such as T1 and T2 in the
prior paragraph, must be able to deal with each other's abnormal termination. A DBMS may
abnormally terminate a well formed, semantically correct transaction in order to resolve a
detected deadiock. If, for example, T2 has given information derived from the database to
T1, and its associated transaction, N2, is abnormally terminated by the DBMS, the DBMS
will not abnormally terminate N1, since it does not know that the communication has taken
place. T1 must be able to detect that situation and take whatever action is appropriate.39

The discussion so far has centered on the theoretical issues involved in forming seman-
ticaily correct multi-tasking, multi-transaction Ada DBMS applications. An example of such a
weli-formed application is the case of multiple task executions of the same task type, each
execution operating on behalf of a distinct user, without inter-task-object communication.
The remainder of this section deals with the practical aspects of constructing such well-
formed applications.

33This situation is not unique to DBMS applications. Any set of cooperating tasks must be able to deal with
each other's abnormal termination.

CMU/SEI-89-TR-16 127

it must be noted immediately that neither the current ANSI standard [2], nor the follow-on
standard [3], allow for the construction of multi-transaction programs. This is because there
is no way in the standard to associate a statement execution with a particular transaction
among a concurrent set of transactions. This topic will be addressed below.

The ability to construct multi-transaction Ada programs depends in large measure on the
target DBMS. There are many things to consider. Every Ada DBMS application will contain
in its executable image some code supplied by the DBMS. This code will be called the
DEBMS stub. The function of this stub is to accept the DBMS call from the concrete module
and transfer control to the DBMS, which, in a multi-user operating environment, may be ex-
ecuting as a separate process, in a separate address space, or even on a separate ma-
chine. It must be the case that either this stub code is reentrant, that is, capable of executing
multiple, parallel threads of control, or that each task associated with each transaction has
its own, private copy of that code. If neither of these things can be done, multi-transaction
programs cannot be written. The same reasoning holds for the concrete module, if distinct
tasks, directly associated with distinct transactions, are to share an abstract, and therefore
also a concrete, module.

If the reentrancy requirements of the previous paragraph are met by the target DBMS, the
final obstacle is the means by which the DBMS identifies the transaction on whose behalf a
given statement is to be executed. In the case of a single user DBMS, as might be found on
a PC class machine, all statement executions are part of the same transaction, and multi-
transaction programs cannot be written. If a multi-user DBMS identifies transactions on the
basis of the identity of the program executing the statement, using operating system fea-
tures to make that identification, multi-transaction programs are again impossible. If the
DBMS identifies the transaction by some parameter of the call itself, such as the address of
a “communication area,” then this parameter can be called a transaction identifier. Trans-
action identifiers do not appear in SQL statements. Dynamic modification of that parameter
requires understanding of, and possibly modification to, the code generated by an SQL
preprocessor or concrete module compiler, particulariy in the case where that concrete mod-
ule code is to be shared by task objects. This is a tricky and dangerous business, which can
result in engineering nightmares. 40

One way to ensure that task objects do not share abstract or concrete modules is to place
these moduies within the bodies of the tasks. If the task objects are to logically (but not
physically) share an abstract module, the module can be made into a parameterless generic
which is instantiated into the task body. If the DBMS identifies transactions via a transaction
identifier generated by the SQL processor, this solution may work, at the expense of in-
creased object code size on most compilers. This solution will probably not work to solve
reentrancy probiems for the DBMS stub code referenced earlier. That code is usually
brought into the executable by the system linker, which normally resolves references by
name, thereby sharing one copy of the stub among all the tasks.

If multi-transaction programs are not prohibited by any of these considerations, then such
programs can be written if a minor modification is made to the standard SAME support

packages. In particular, the package SQL_Communications_Pkg presents a difficulty as it
exports a global variable, SQLCODE. This variable can be made local to a task object by

4%t may be that a DBMS extends SQL to provide a transaction identifier. The author knows of no such DBMS.

128 CMU/SEI-89-TR-16

the method of the prior paragraph, i.e., by placing this package, along with the abstract and
concrete modules and the package SQL_Database_Error_Pkg, into the body of the tasks. If
that is otherwise not necessary or desirable, then the package SQL_Communication_Pkg
and the calling conventions at the abstract module level (and the concrete level as well, in a
non-standard way, see the previous discussion), can be modified as follows: Remove the
variable SQLCODE from the specification of SQL_Communications_Pkg and replace it with
the following type definition:

type Transaction_ Id_Type is record
SQLCODE : SQLCODE_Type:
<implementation dependent private record type>
end record;
(The implementation-dependent portion of the type Transaction_Id_Type is meant to accom-
modate an implementation defined “communications area.” Such an object may also be
added to the definition of SQL_Communications_Pkg in the singie transaction case.) Each
task object directly associated with a transaction must allocate an object of this type in a
manner which will allow it to persist across all abstract moduie procedure calls. The
parameter lists of such calls are extended to include that object, which is a transaction iden-
tifier. The procedure Process_Database_Error in SQL_Database_Error_Pkg is also
amended to include this parameter. Any handler for for the SQL_Database_Error exception
must be able to find the appropriate transaction identifier.

CMU/SEI-88-TR-16 129

CMU/SEI-89-TR-16

130

References

(1]

(2]

(3]

[4]

(3]

(€]

Alsys Ada Sun Workstations Appendix F Version 3.0
Alsys Inc., Waltham, MA, 1987.

Database Language - SQL
American National Standards Institute, 1986.
X3.135-1986.

American National Standard Embedding of SQL Statements into Programming Lan-
guages (proposed draft)

Technical Committee X3H2 - Database, 1988.

X3.168-198x.

ISO-ANS!I Working Draft Database Language SQL2
American National Standards Institute, 1987.
X3.135-1986.

American National Standard for information Systems Database Language Em-
bedded SQL (proposed draft)

Technical Committee X3H2 - Database, 1988.

X3H2-88-320.

ANSI/X3/Sparc.
Interim Report from the Study Group on Data Base Management Systems.
Builletin of the ACM SIGMOD 7(2), 1975.

(7] Chen, P. P-S.
The entity-relationship model; toward a unified view of data.
ACM Transactions on Database Systemns 1(1), 1976.
(8] Clemons, Eric K.
Data Models and the ANSI/SPARC Archltecture
In S. Bing Yao (editor), Principles of Database Design, pages 66-114. Prentice Hall,
1985.
9 Date, C. J.
An Introduction to the ANSI SQL Standard.
Addison-Wesley Publishing Co., Reading, MA, 1988.
[10] Felts, Steve.
X3H2 SQL2 Change Proposal: Dynamic SQL Functional Interface.
ANSI X3H2, 1988. ‘
X3H2-88-318 corrected.
[11] Engle, C; Firth, R.; Graham, M.; Wood, W.
Interfacing Ada and SQL.
Technical Report CMU/SEI-87-TR-48, DTIC: ADA199634, Software Engineering In-
stitute, December, 1987.
{12] Brykczynski, W.; Friedman, F.; Hilliar, K; Hook, A.
Level 1 Ada/SQL Database Language Interface User's Guide.
Technical Report M-30, Institute for Defense Analyses, September, 1987.
[13] Ingres/SQL Reference Manual
Relational Technology, Inc., 1986.
CMU/SEI-89-TR-16 131

(14]

9]

[16]

[17]

Graham, Marc H.

SAME Standard Package Installation Guide
Software Engineering institute, 1988.
CMU/SEI-89-SR-5.

Reference Manual for the Ada Programming Language
United States Department of Defense, ANSI/MIL-STD-1815A-1983.
American National Standards Institute.

Shaw, P.

Ada-SQL Interface: Changes in the SQL module language for Ada and deletion of
the Ada-SQL embedded syntax.

Technical Report ANSI X3H2-88-182, SQL Ada Module Extensions Design Com-
mittee (SAME - DC), May, 1988.

VADS UNIX Implementation Reference (Including Ada RM Appendix F)
Verdix Corporation, 1987.

132

CMU/SEI-89-TR-16

l

A SAME Quick Reference List

A.1 Example Domains

smalliint, real, and double_precision.

with SQL_<type> Pkg; Use SQL_<type>_Pkg;

type Dom Not_Null is new SQL <type> Not Null;
type Dom_Type is new SQL <type>;

domain.

with SQL Char Pkg; use SQL Char Pkg:

type DomNN Base is new SQL_Char Not_ Null:
subtype Dom Not_Null is Dormn Bau(l .ny;
type Dom Ba.o is new SQL Char;

Let Dom be an abstract domain name for the SQL <type> domains for int,

package Dom_Ops is new SQL_<type>_Ops(Dom_Type, Dom_Not_Null);

Let Dom be an abstract domain name for the SQL Character domain. In the foliowing
example, n represents the number of characters in the _Not_Null portion of the

subtype Dom _Type is Dom Ban(Dom Not_Null’Length):
package Dom _Ops Is new SQL Char op-(Dom _Type, Dom Net Null);

Let Dom be an abstract domain name for an SQL enumeration domain.

with SQL_Enumeration_Pkg;:

type Dom Neot_Null is (literal, literal, ..., literal);
package Dom Pkg Is new SQL Enumeration _Pkg (Dom_Not_Null):
type Dom_Type is new Dom_Pkg.SQL_Enumeration;

Let Dom be an abstract domain name for an SQL Decimal domain. Let
the scale of the domain be s.

with SQL Decimal Pkg, Ada_BCD_Pkg;
use SQL Decimal Pkg, Ada_BCD Pkg;

Dom_scale : constant decimal digits := s;
type DomNN Base is new SQL Decimal Not Null;
subtype Dom Not_Null is DormiN Baso (scale => Dom _Scale);
type Dom Ba.o is new SQL_Char;
subtype Dom _Type is Dom Base (scale => Dom Scale);
package Dom _Ops is new SQI. Char_Ops(Dom_Type,

in .calo => Dom_Scalo),

See Chapter 3 for further details.

CMU/SEI-89-TR-16

A.2 Functions Available to the Application

Operand Type Exceptions
Left Right Result

All Domains
*ull_ SQL <type> _Type
With Null _Not_Null _Type
Without Null _Type! _Not:___NulJ.2 Null Value Error
Is_NullT Not_Null _Type Boolean
Assign3 _Type _Type Constraint_Error
Equals, Not_Equals _Type _Type B_W_Ut
<, > <=, >= _Type _Type B_W U
=, /=, > <, >=, <= _Type _Type Boolean

Numeric Domains
unary +, -, Abs _Type _Type
+, =, [/, * _Type _Type _Type
**x _Type Integer _Type

Int and Smallint Domains
Mod, Rem _Type _Type _Type
Image _Type SQL Char
Image _Not_Null SQL_ChrNN®
Value SQL Char _Type
value SQL ChrNN _Not_Null

Decimal Domains
=, [=, > <, >=, <= _Not_Null _Not_Null Boolean
unary +, -, abs _Not_Null _Not_Null
+, =, * / _Not_Null _Not_Null _Not_Null Constraint_ Error
*, /8 _Not_Null SQL IntNN _Not_Null Constraint_Error
*, / _Type SQL _IntNN _Type Constraint Error
*, / _Type SQL Int _Type Constraint_Error
* SQL_IntNN _Not Null _Not_Null Constraint_ Error
* SQL IntNN _Type _Type Constraint Error
* SQL_Int _Type _Type Constraint Error
Zero, One _Not_Null
Zero, One _Type
Assign3 _Not_Null _Not_Null Constraint_ Error
Shift _Not_Null Integer _Not Null Constraint_Error
Shift _Type Integer _Type Constraint_Error
Width _Not_Null Integer
Wwidth _Type Integer Null Value Error
Fore, Aft _Not Null Integer
Fore, Aft _Type Integer Null Value Error
Integral, Scale _Not_Null Integer
Integral, Scale _Type Integer Null Value Error
Is_In _Not_ Null Boolean
Is In _Type Boolean

134 CMU/SEI-89-TR-16

|

Left

Decimal Domains (cont.)

Machine Rounds
Machine_Rounds

Machine Overflows
Machine Overflows
To_SQL Decimal_ Not_Null
To_SQL Decimal_ Not_Null’
To_SQL Decimal Not Null
To_SQL Decimal
To_SQL_Decimal

To_SQL Decimal
To_SQL__Decimal8

To_SQL Decimal

To_SQL Decimal
Tq_SQL_Int_Not_Null
To_SQL Int Not_Null

To_SQL Int

To_SQL Double Precision Not_Null
To_SQL_Double Precision Not_Null

To_SQL Double Precision
To_SQL Char_ Not_Null
To_SQL Char_ Not_Null
To_SQL Char

To_String

To_String

Character Domains

Without Null Unpadded
To_String

To_String
To_Unpadded_String
To_Unpadded_string
To_SQL Char_ Not_Null
To_SQL Char
Unpadded_Length
Substring!®

& _Type

Enumeration Domains

Pred, Succ
Image
Image

Pos

vVal

Value
Value

Right

_Not_Null
_Type
_Not_Null
_Type
SQL_IntNN
SQL DblNN
SQL_ChrNN
SQL IntNN
SQL Int
SQL Db1NN
SQL Dbl
SQL ChrNN
SQL Char
_Not Null
_Type

_Type
_Not_Null
_Type
_Type
_Not_Null
_Type
_Type
_Not_Null
_Type

_Type
_Not_Null
_Type
_Not_Null
_Type
String
String
_Type
_Type
_Type

_Type
_Type

_Not_Null SQL_ChrNN

_Type
Integer
SQL Char
SQL_ChrNN

Operand Type

Result

Boolean
Boolean
Boolean
Boolean
_Not_Null
_Not_Null
_Not_Null
_Type
_Tyve
_Type
_Type
_Type
_Type

SQL IntNN
SQL IntNN

SQL Int
SQL DbINN
SQL_Db1NN
SQL Dbl
SQL _ChrNN
SQL_ChrNN
SQL_Char
String
String

_Not_Null
String
String
String
String
_Not_Null
_Type

sQL u_1?
_Type
_Type

_Type
SQL_Char

Integer
_Type
_Type
_Not_Null

Exceptions

Constraint_ Error
Constraint_Error

Constraint Error
Constraint_Error
Constraint_Error
Constraint_Error
Constraint_Error
Constraint_Error
Nuil Value_ Error
Constraint Error

Null vValue_ Error

Null Value_Error

Null Value_Error

Null Value_Error

Null Value Error

Null Value_ Error

Null _Value_ Error
Constraint_Error

Null Value Error

CMU/SEI-89-TR-16

135

Operand Type Exceptions
Left Right Result
Boolean Functions
not BWU Boolean
and, or, xor BWU B WU Boolean
To_Boolean BWU Boolean Null Value Error
Is_True, B WU BWU Boolean
Is_False, BWU B WU Boolean
Is Unknown BWU BWU Boolean

|
|
[
(

1. "_Type" represents the type in the abstract domain of which

objects that may be null are declared.

2. "_Not Null" represents the type in the abstract domain of which

objects that are not null may be declared.

3. "Assign" is a procedure. The result is returned in object

"Left."

4. "B_W U" is an abbreviation for Boolean With_ Unknown.

S. "SQL ChrNN" is an abbreviation for SQL Char_ Not_ Null.

6. "SQL IntNN" is an abbreviation for SQL Int Not_ Null.

7. "SQL_Db1NN" is an abbreviation for

SQL Double Precision_Not_Null.

8. "SQL Dbl" is an abbreviation for SQL Double_Precision.

9. "SQL _U_L" is an abbreviation for the SQL Char_Pkg subtype
SQL Unpadded Length.

10. Substring has two additional parameters: Start and Length,
which are both.of the SQL Char Pkg subtype
SQL_Char_Length. -

136 B CMU/SEI-89-TR-16

B Glossary of Terms

Abstract domain. A real world collection of values. Differs from both an Ada type and an
SQL type in that it is a real world object, not a programming object. An abstract domain is
represented in an Ada program by a pair of type definitions and a generic package instan-
tiation. One of the types, the _Not_Null type, can represent any value in the abstract domain
except the null value. The other type, the _Type, can represent the null value as well. The
two types are syntactically connected through the convention of having the same prefix.
That is, the abstract domain Domain is represented by the two Ada types Domain_Not_Null
and Domain _Type. The two types are semantically connected through the instantiation of
an _Ops package. See _Not_Null type, _Type type, _Ops package, and Visible Ada type.

Abstract interface. The specification of the abstract module. Contains the declarations of
row record types and of abstract procedures. See Abstract module, Abstract procedure,
Row record type.

Abstract module. The body of the abstract interface. Contains the bodies of the abstract
procedures. See Abstract interface and Abstract procedure.

Abstract procedure. The procedure called by the application program to perform database
interaction. The abstract procedure calls the concrete procedure to perform the interaction.
The abstract procedure does error checking by examining the SQLCODE variable and takes
action as necessary. It also does data conversion from concrete to abstract types. See
Abstract interface, Abstract module, Concrete procedure, SQLCODE, and Standard error
processing.

Ada semantics. Refers to the operations predefined in Ada for arithmetic, comparison, etc.

Ada typing model. The ability, in Ada, for the programmer to define new types from exist-
ing types. The phrase also refers to Ada's use of name equivalence, rather than structural
equivalence, to determine object typing. As two integer types with the same integer range
constraint being nonetheless distinct. Ada's typing mode! also includes so-calied “strong”

typing.

Application program. The part of the complete application which contains that part of the
application logic that is written in Ada. It contains none of the application logic written in
SQL, nor any of the bookkeeping logic for executing the SQL. See Concrete module and
Abstract module.

Attribute. See Column.

_Base type. Within the definition of a string-based abstract domain, the unconstrained
types. The _Not_Null and _Type types are subtypes of the _Base types. See SQL String
processing, _Not_Null type, and _Type type.

Column. A field of a row within a table. Corresponds to Ada's scalar variable in that a field
must hold an atomic value and may not contain a composite value. (Character strings are
thought of as atomic in this sense.)

CMU/SEI-83-TR-16 13/

Concrete interface. Specification of the concrete module. Contains the declarations of the
concrete procedures. See Concrete module and Concrete procedure.

Concrete module. Contains the bodies of the concrete procedures. See Concrete inter-
face and Concrete procedure.

Concrete procedure. A procedure in the concrete module. Concrete procedures perform
database interaction. Each concrete procedure corresponds to a single SQL statement.

Concrete types. The types defined in SQL_Standard. These types describe the represen-
tation of data in the database.

Comparison rule. A heuristic for determining if two values, variables, or columns have the
same type or abstract domain. The rule: /f it makes sense to compare the values, variables
or columns, then they have the same type or abstract domain. If it makes no sense to com-
pare them, then they have different types or domains.

Cursor. Used by SQL to communicate with application languages. A cursor is associated
with a Select...From...Where block. A cursor may be opened, fetched, and closed. See an
SQL description (e.g., Database Language - SQL [2]) for details. A cursor is a quasi-object
in that it can be updated and it has state, but it is not available for any programming opera-
tions other than SQL statements. The state of a cursor is closed or open; an open cursor
records a current position (row) within the associated table. The current row may be deleted
or updated.

Database exceptional condition. Any condition which causes SQLCODE to be setto a
non-zero vaiue upon return from a concrete procedure. Includes “no record found.” Excep-
tional conditions may be expected or unexpected. See Result parameter and Standard error
processing. ‘

Data integrity constraints. Statements made about the contents of the database that are
enforced by the database management system.

Data semantics. The meaning of the operations defined on a set of values. See Ada
semantics and SQL semantics.

Derived type. A type whose operations and values are replicas of those of an existing type.
The existing type is called the parent type of the derived type. LAM glossary [15].

Domain package. An Ada package specification containing only declarations of abstract
domains. No abstract domain declaration may appear in more than one domain package,
and no abstract domain declaration may appear outside of a domain package. See Abstract
domain.

Dynamic SQL. A form of SQL in which the statement to be executed is created by the
application at run time. Dynamic SQL is used when a database interaction takes parameters
which are not constants. These can be search conditions, table names, etc.

Full SQL treatment of nulls. The discipline of handling null values in Ada programs that
use SQL semantics for arithmetic and comparison operators. This discipline treats variables
of _Type type as regular variables, using the versions of arithmetic and comparison
operators exported by the SAME standard packages.

138 CMU/SEI-B9-TR-16

Indicator parameters. Special integer-typed parameters used at the concrete intertace to
record information about other parameters. A negative indicator parameter value indicates a
null value in the associated parameter. Indicator parameters do not appear at the abstract
interface.

Minimalist treatment of nulls. The discipline for handling nuli values in an Ada program
that uses only test (Is_Null, Not_Null) and conversion (With_Null, Without_Null) functions.
Treats variables of _Type type as value repositories only. See _Type type, Full SQL treat-
ment of nulls.

Modular approach. Any technique for constructing DBMS application software which phys-
ically separates the database interaction statements and the programming language state-
ments.

Module. A related set of procedures which perform database interaction. See Abstract
Module, and Concrete Module.

Module Language. The language in which SQL moduies are written. Part of ANSI stan-
dard SQL. The mcdule language describes procedures, the bodies of which are single SQL
statements.

_Not_Nuli type. One of the two types making up an abstract domain definition; so-called
because the set of objects of this type does not include the null value. Usually, the
_Not_Null type is a visible Ada type. See Abstract domain and Visible Ada type.

Null value. SQL's means of recording missing information. A null value in a column in-
dicates that nothing is known about the value which should occupy the coiumn.

_Ops generic package. Each of the SAME standard packages contains a generic sub-
package which generates, by package instantiation, those functions or procedures that can-
not be produced by subprogram derivation. The subpackage name is formed by replacing
the _Pkg suffix in the containing package name with _Ops. In use, the _Ops package takes
two types as formal parameters, the _Type and _Not_Null types, which together make up
the abstract domain definition.

Platform, or platform specific. The platform on which a piece of software runs is the com-
bination of the hardware, operating system, DBMS and Ada compiler. Pieces of the SAME
which are platform specific are the database layer, containing the packages SQL_System
and SQL_Standard, to describe concrete DBMS types in Ada, SQL_Communications_Pkg,
for retrieving and storing status information from the DBMS, and SQL_Database_Error_Pkg,
for reporting errors.

Result parameter. An optional parameter, of an enumeration type, frequently Boolean, to
every abstract procedure declaration. If present, the resuit parameter is used by an abstract
procedure to signal the occurrence of an expected exceptional condition. See DBMS excep-
tional condition.

Row. An element of a table. Also called a tupfe. Analogous to a record object. See Column
and Table.

CMU/SEI-89-TR-16 138

Row record. The object returned from an abstract procedure which retrieves data from the
database. Also, the object given to an abstract procedure whict: stores data in the database.
A row record contains a field for each element in the target list of the SQL statement ex-
ecuted by the abstract procedure.

Row record type. The Ada type definition of the row record. Declared in the abstract inter-
‘face.

SAME standard packages. The packages which support the SAME method; particularly,
those packages which support SQL data semantics. Those packages are SQL_Int_Pkg,
SQL_Smallint_Pkg, SQL_Real_Pkg, SQL_Double_Precision_Pkg, and SQL_Char_Pkg,
which provide support for the standard SQL data types. Other standard SAME packages are
SQL_System, SQL_Standard, SQL_Exceptions, SQL_Boolean_Pkg,
SQL_Communications_Pkg, and SQL_Database_Error_Pkg. See Platform, SQL semantics,
Standard error processing, and User-defined semantics.

SQLCODE. The name of the parameter to a concrete procedure which holds the status
code at procedure termination. Also references the values of the parameter.

SQL module. A concrete module written in the module language.

SQL procedure. A procedure defined within the concrete module whose semantics are
given by an SQL statement. See Concrete module, Module language, and SQL module.

SQL semantics. The operations of arithmetic and comparison extended to cover the null
value. Refers also to SQL string processing, in which strings are automatically padded or
truncated during comparisons and assignments. See Three-valued logic and Three-valued
arithmetic.

SQL String Processing. SQL treats character strings as fixed length objects in some cir-
cumstances and varible length objects in others. For example, all string objects within a
given database column have the same length which is given by the column definition. How-
ever, when transporting data between and application and the database, an SQL DBMS will
truncate or blank pad a string vaiue, as appropriate to the length of the programming lan-
guage variable. When comparing strings of different lengths, SQL pads the shorter string
with blanks before the compare. The SAME standard support package SQL_Char_Pkg of-
fers an Ada implementation of these semantics. See _Base type, _Type type, _Not_Nuli

type.

Standard error processing. The process initiated after an unexpected exceptional con-
dition arises: Process_Database_Error in package SQL_Database_Error_Pkg is called and
an exception, SQL_Database_Error, defined in SQL_Communications_Pkg, is raised.

Status parameter. See Resuit parameter.

Three-valued arithmetic. The arithmetic operations within SQL which are defined to cover
the null value. Three-valued arithmetic operations act just like their normal counterparts on
non-null values; they return the null value if any of their operands are null.

140 CMU/SEI-89-TR-16

Gl EE N 4Gy N aE . Em =

Three-valued logic. The extension of comparison and Boolean operations within SQL to
cover null values. SQL comparison operations return the truth value UNKNOWN if either of
their operands are null. SQL defines Boolean operations {and, or, not) on the three-valued
set of Boolean operands [FALSE, UNKNOWN, TRUE].

Transaction. A logic unit of database work. Database transaction control provides
transaction atomicity; i. e., (1) either all of the database modifications performed by any
transaction occur or none of them do, and (2) the effect of every successful transaction is
the same, whether or not other transactions are executing concurrently.

_Type tyne. Onre of the two types making up an abstract domain definition. The set of
objects of this type includes the null vaiue. Usually, the _Type type is a private record type.
See Abstract domain.

User-defined semantics. The semantics of operators supplied by support packages writ-
ten by users. These packages aliow users to the SAME to fit local needs.

Visible Ada type. Opposite of a private type. See _Not_Null type.

CMU/SEI-B89-TR-16 141

CMU/SE!I-89-TR-16

142

C SAME Standard Package Listings

C.1 Introduction

This appendix contains the source code of the SAME standard packages. This code will be
available in machine-readable form from the SEI for a limited time. Please read the
copyright notice in the next section. A copy of this notice appears in each file of the
machine-readable distribution.

Every procedure and function declaration in these packages is followed by a pragma IN-
LINE which has been “commented out.” The explanation for this is as follows. Almost all of
the procedures and functions in these packages are extremely small. Many consist of a
single If or return statement. Therefore they are excellent candidates for procedure inlining
which will decrease their runtime cost by the overhead of a procedure call. Experience in
using this code with various compilers has shown that this degree of inlining tends to uncov-
er compiler errors and produce inexplicable timings. The safest approach, that of not using
inlining at all, has be chosen for the code as distributed. The installer is urged to experiment
with the inlining of this code. Some experiments have shown a tenfold speedup due to iniin-
ing (whereas other experiments, on other compilers and machine architectures, showed
marginal slowdown due to inlining). Recall that inlining will usually make the resulting object
module larger.

CMU/SEI-89-TR-16 143

C.2 Copyright Notice

+++++ b e b e

The following copyright must be included in this software and
all software utilizing this software.

Copyright (C) 1988 by the Carnegie Melion University, Pittsburgh, PA.
The Software Engineering Institute (SEI) is a federally funded
research and development center established and cperated by Carnegie
Mellon University (CMU). Sponsored by the U.S. Department of Dafense
under contract F19628-85-C-0003, the SEI is supported by the

services and defense agencies, with the U.S. Air Force as the
executive contracting agent.

Permission to use, copy, modify, or distribute this software and its
documentation for any purpose and without fee

is hereby granted, provided

that the above copyright notice appear in all copies and that both
that copyright nctice and this permission notice appear in supporting
documentation. Further, the names Scftware Engineering Institute or
Carnegie Mellon University may not be used in advertising or publicity
pertaining to distribution of the scoftware without specific, written
prior permission. CMU makes no claime or representations

about the suitability of

this software for any purpose. This software is provided "as is"
and no warranty, express or implied, is made by the SEI or MU,

as to the accuracy

and functioning of the program and related program material, nor
shall the fact of distribution constitute any such warranty. No
rTesponsibility is assumed by the SEI or CMU in connection herewith.

C.3 SQL_System Specification

~- SQL System is a "platform-specific" package
within the SAME

-—

package SQL System is

MAXCHRLEN is the langth of the longest character string

which the DBMS will store.

It serves as the upper bound on SQL Char Pkg
subtypes SQL Char Length and SQL_Unpadded_Length.

SQL Char Length is a subtype of Natural with a lower bound
of 1.

SQL Unpadded Lencth is a subtype of Natural with a lower
bound of 0.

MAXCHRLEN : constant integer := str_ length’ ~- replace

-

MAXERRLEN is the maximum length of the error message
string returned from DBMS specific error message routine

MAXERRLEN : constant integer := msg_length; -- replace

SQL_Synt-m;

144

CMU/SEI-89-TR-16

C.4 SQL_Standard Specification

package Sql_Standard is
package Character Set renames csp;
subtype Character_ Type is Character_Set.cst;
type Char is array (positive range <>)
of Character_Type;
type Smallint is range bs..ts;
type Int is range bi..ti;
type Real is digits dr:
type Double_Precision is digits dd;
-~ type Decimal is to be determined;
type Sqlcode_Type is range bsc..tsc;
subtype Sql_Error is Sqlcode_Type
range Sqlcode_Type’'FIRST .. -1;
subtype Not Found is Sqlcode_Type
range 100..100;
subtype Indicator Type is t;

- csp is an implementor-dafined package and cst is an

- implementor-defined character type. ba, ts, bi, ti, dr, dd, bsc,
- and tsc are implementor defined integral values. t is int or

- smallint corresponding to an implementor-defined <exact

- numeric type> of indicator parameters.

end sql_ltandard;

C.5 SQL_Communications_Pkg Specification

with SQL Char Pkg; use SQL Char_Pkg;
with SQL_Standard; use SQL_Standard;
package SQL Communications_Pkg is

-- This is an example of the package, providing minimal functionality.
~- This package may be tailored to the needs of a given platform.

SQL_Database Error : exception;
SQLCODE : SQLCODE_TYPE;

—— Parameterless function returning an error message of type
- SQL_phAr_Not_Null.

-- The error message is the descriptive string associated with
- the most recent database error. It is produced by a

- DBMS specific function.

function SQL Database_Error Message return SQL Char Not_ Null;

end SQL Communications_Pkg;

C.6 SQL_Communications_Pkg Body

-~ SQL Communications_Pkg is a "platform-specific" package -
-~ within the SAME

-~ this particular version of the package was developed for

-~ a platform consisting of the Verdix (Version 5.41) Ada compiler

-- and INGRES (Version 5.0) running on a Vax Station

CMU/SEI-89-TR-16 145

with system; use system;

with SQL System; use SQL_ System:

with ingres_c_support; use ingres_c_support;

-- ingres_c_support contains functions Add_Null and Strip_ Null

-- which are used to convert between ‘c’ format strings and

-- Ada format strings. It is not included in the SAME standard packages.
package body SQL Communications_Pkg is

function SQL Database_Error Message return SQL_phar_Not_Null is
N.-.ago_puffot : SQL_;har_Not_Null (1. .MAXERRLEN) ;
Len : integer := MAXERRLEN’

procedure geterrmsg (Message : in Address;
Length : in Address):

pragma interface(C, geterrmsg, "_sglerrmsg");

begin
geterrmsg (Message Buffer’'Address, Len’Address);

-- the assumption here is that no error will occur when
- retrieving the error message from the database

return strip_null (Message Buffer);

end SQL Database_Error_ Message;

end SQL Communications_Pkg’

C.7 SQL_Exceptions Specification

package SQL exceptions
is

¥ull Value Error : exception;

end SQL_’xeoptions;

C.8 SQL_Boolean_Pkg Specification

package SQL_Boolean Pkg
is

type Boolean with Unknown is (FALSE, UNKNOWN, TRUE);

~--- Three valued lLogic ocperations --
~-== three-val X three-val => three-val --
function "not" (Left : Booloan_with_pnknovn)
return Booloan_yith_pnknown;
-- pragma INLINE ("not"); e
function "and" (Left, Right : Boolean_with Unknown)
return Boolean with Unknown;
-- pragma INLINE ("and");
function "or" (Left, Right : Bool.an_yith_Unknovn)
return Boolonn_yith_pnknown;

146 , CMU/SEI-89-TR-16

-- pragma INLINE ("or"):

function "xor" (Left, Right : Boolonn_with_ﬂnknovn)
return Boolean_ with Unknown;

-~ pragma INLINE ("xor'"):;

--- three-val => boocl or exception ---
-- pragma INLINE (To_Boolean):;

—-—- three-val => bool ---

function Is_True (Left : Booclean_with Unknown) return Boolean;

-- pragma INLINE (Is_True);

function Is_False (Left : Boolean with Unknown) return Boolean;
-- pragma INLINE (Is_False):;

function Is_Unknown (Left : Bool-.n_with_pnknown) return Boclean;
-~ pragma INLINE (I._pnknown);

end SQL_Bool.an_Pkg;

C.9 SQL_Boolean_Pkg Body

With SQL_;xccptions;
package body SQL Boolean Pkg is

function "not" (Left : Boolean with Unknown)
return Boolean with Unknown is
begin
case Left is
when true => return false;
when false => returm true;
when unknown => return unknown;
end case; :
end;

function "and" (Left, Right : Boolean with Unknown)
return Boolean_with Unknown is

begin

if (Left = False) or else (Right = False) then
return False;

elsif (Left = Unknown) or else (Right = Unknown) then
return Unknown;

else
return True;

end if;

end;

function "or" (Left, Right : Boolean_with Unknown)
return Booloan_yith_ﬂnknown is

begin

if (Left = True) or else (Right = True) then
return True;

elsif (Left = Unknown) or else (Right = Unknown) then
return Unknown;

else
return False;

end if;

and;

function To_poolonn (Laft : Bcoloan_with_pnknown) return Boolean;

Null Value Error : exception renames SQL Exceptions.Null Value_ Brror;

CMU/SEI-89-TR-16

147

function "xor" (Left, Right : Booloan_with_pnknown)
return Boolean with_ Unknown is
begin
return (Left and not Right) or (not lLeft and Right):
end;

--- three-val => bool or exception --—-

function To_pocloan (Left : Booloan_with_pnknown) return Boolean is
begin

if Left = Unknown then raise null value_ error;

else return (Left = True);

end if;

end;

--- three-val => bool ---
function Is_True (Left : Boolean_with Unknown) return Boolean is
begin
return (Left = True);
and;
function Is_False (Left : Boclean with_Unknown) return Boolean is
begin
return (lL.eft = False);
and;
function Is_Unknown (Left : Boolean with Unknown) return Boolean is
begin
return (Left = Unknown);
and;

end SQL Boolean Pkg;

C.10 SQL_Int_Pkg Specification

with SQL_ Standard;
with SQL Boolean Pkg; use SQL Boolean_ Pkg;
with SQL Char Pkg; use SQL_Char Pkg;
package SQL Int_Pkg

is

type SQL_Int_pot_pull is new SQL_StandA:d.Int;

---- Possibly Null Integer ----
type SQL_Int is limited private;

function Null_SQL_Int return SQL Int;
-- pragma INLINE (Null_SQL_Int);

-=- this pair of functions convert between the

-- null-bearing and non-null-bearing types.

function Without_ﬂull_pa-o(Valuo : SQL Int)
return SQL_Int_Not_Null;

~~ pragma INLINE (Without_ﬂull_paso);

~~ With Null Base raises Null Value Error if the inmput

- value is null

function With Rull Base(Value : SQL_Int_Not_Null)
return SQL_Int;

~- pragma INLINE (With_Null Base);

~- this procedure implements range checking
~- ncte: it is not meant to be used directly
-- by application programmers

~- see the generic package SQL_Int_Ops

148 ‘ CMU/SEI-89-TR-16

I---—--'--—--

~~ raises constraint_error if not

- (First <= Right <= Last)

procedure Assign_with check (
Left : in out SQL_Int; Right : SQL_Int;
First, Last : SQL_Int_Not_Null);

-- pragma INLINE (Assign_with check);

~- the following functions implement three valued

- arithmetic

-~ if either input to any of these functions is null
- the function returns the null value; cotherwise

- they perform the indicated ocperaticn

-- these functions raise no exceptions

function "+" (Right : SQL_Int) return SQL_Int;

-- pragma INLINE ("+");

function "-" (Right : SQL_Int) return SQL_Int;

-- pragma INLINE ("-");

function "abs" (Righc SQL_Int) return SQL_Int;

-- pragma INLINE ("“abs");

function "+" (Left, Right : SQL Int) return SQL_ Int;

-~ pragma INLINE ("+");

function "*" (Left, Right : SQL_Int) return SQL Int;

-- pragma INLINE ("*");

function "-" (Left, Right : SQL_Int) return SQL Int;

-- pragma INLINE ("-"):;

function "/" (Left, Right : SQL_Int) return SQL_Int;

-- pragma INLINE ("/"):;

function "mod" (Left, Right : SQL_Iat) return SQL Int;
-- pragma INLINE ("mod");

function "rem" (Left, Right : SQL Int) return SQL Int;
-- pragma INLINE ("rem");

function "**" (Leaft : SQL_Int; Right: Integer) return SQL_Int;
-- pragma INLINE ("**");

~- simulation of 'IMAGE and 'VALUE that

-- return/take SQL Char[_ Not Null] instead of string

function IMAGE (left : SQL_Int_Not_Null) return SQL_Char Not_ Null;
function IMAGE (Left : SQL_Int) return SQL_Char;

function VALUE (left : SQL_Char_Not_NUll) return SQL Int_ Not Null;
function VALUE (left : SQL Char) return SQL Int;

~- Logical Operations --
-- type X type => Boolean with unknown --
-- these functions implement three valued logic
-- if either input is the null value, the functions
-- return the truth value UNEKNOWN: otherwise they
-- perform the indicated comparison.
-~ these functions raise no exceptions
function Equals (Left, Right : SQL_Int) return Boolean_with Unknown;
-- pragma INLINE (Equals);
function Not_gqu‘l- (Left, Right : SQL_Int)
return Boolean_with Unknown;
-~ pragma INLINE (Not Equals};
function "<" (left, Right : SQL_Int) return Booclean with Unknown;
-~ pragma INLINE ("<");
function ">" (Left, Right : SQL Int) return Boolean with Unknown;
-- pragma INLINE (">");
function "<=" (Left, Right = SQL_Int) return Boolean with Unknown:
~- pragma INLINE ("<=");
function ">=" (Left, Right : SQL_Int) return Boolean vitb_Unknown;
-- pragma INLINE (">=")}; -

-= type => boolean --

CMU/SEI-89-TR-16 149

function Is_Null (Value : SQL Int) return Boolean;
-~ pragma INLINE (It_Null);
function Not_Null(Valuo : SQL_Int) return Boolean:
-~ pragma INLINE (Not Null):

-- These functions of class type => boolean

~- sgquate UNKNOWN with FALSE. That is, they return TRUE
~- only when the function returns TRUE. UNKNOWN and FALSE
-- are mapped to FALSE.

function "=" (Left, Right : SQL_Int) return Boolean;

-- pragma INLINE ("=");

function "<" (Left, Right : SQL Int) return Boolean;

-- pragma INLINE ("<"):;

function ">" (Left, Right : SQL Int) return Boolean;

-~ pragma INLINE (">");

function "<=" (Left, Right : SQL_ Int) return Boolean;
-- pragma INLINE ("<=");

function ">=" (Left, Right : SQL Int) return Booclean;
-~ pragma INLINE (">=");

-- this generic is instantiated cnce for every abstract
- domain based on the SQL type Int.
-- the three subprogram formal parameters are meant to l
- default to the programs declared above.
-- that is, the package should be instantiated in the
- scope of a use clause for SQL Int_ Pkg.
-- the two actual types together form the abstract l
-- domain.
-- the purpose of the generic is to create functions
- which convert betwean the two actual types and a
-- procedure which implements a range constrained
-- assignment for the null-bearing type. .
-- the bodies of these subprograme are calls to
- subprograms declared above and passed as defaults to
- the generic.
generic
type With Null type is limited private;
type Without null_type is range <
with function Hith_Null_Bas. (Value : SQL Int _Not_Null)
return With Null Type is <>;
with function Without Null Base(Value : With Null Type)
return SQL_Int_Not_Null is <>; l
with procedure Assign with_check (
Left : in ocut With Null Type; Right : With Null Type;
First, Last : SQL Int_Not Null) is <>;
package SQL Int Ops is I
fuonction With Null (Value : Without Null_ type)
return With Null type;
-- pragma INLINE (With_Nul‘l);
function Without Null (Value : With Null_ Type) I
return Without Null type;
-~ pragma INLINE (Without_ Null):
procedure assign (Left : in out With_null Type;
Right : in With_null_type)}; '
~- pragma INLINE (assign);
eand SQL_Int_Op. ;

private
type SQL Int is record

Is_Null: Boolean := true;
Value: SQL_Int_Not Null:;

150 CMU/SEI-839-TR-16

end record:;

end SQL_Int_Pkg;

C.11 SQL _Int_Pkg Body

with SQL_,xccptions;
package body SQL Int_pkg is

Null Value_Error : exception renames SQL exceptions.null value_serror;

function Without_ﬂull_gas.(Valuo‘: SQL Int)
return SQL_;nt_Not_ﬂull is
begin
if Valuc.Is_Null then
raise Null_yaluo_,rror;
else
return Value.Value;
end if;
end Without_ﬂull_aas.;

function With Null Base(Value : SQL Int_ Not_ Null)
return SQL_Int is
begin
return (False, Value);
end With_ﬂull_paso;

procedure Assign_with check (
Left : in out SQL Int; Right : SQL Int;
First, Last : SQL_Int_Not_Null) is
begin
if Right.Is_null then Left.is_null := True;
alsif ‘
(Right .Value < First or else
Right.Value > Last) then
raise Constraint Error;
else
Left := Right;
end if;
end A.sign_ﬁith_chock;

function Null_SQL_Int return SQL Int is

Null~§oldor : SQL Int;
begin

return (Null Holder); -- relies on default expression for Is_Null
end Null_SQL_Int;

function "+" (Right : SDL_Int) return SQL Int is

begin

return Right;
end;
function "-"(Right : SQL Int) return SQL Int is
begin

return (Right.Is_Null, -(Right.Value)):;
end;

function "abe" (Right : SQL Int) return SQL Int is
begin
returr (Right.Is_Null, abs (Right .Value)) ;

CMU/SEI-89-TR-16 151

end;

function "+" (Left, Right

begin

if Left.Is_Null or Right.Is_Null then
return Null_SQL_Int;

alse

return (False,

end if;
end;

function "*" (Left, Right : SQL_Int) return

begin

(Laft.Value + Right.Value));

if Left.Is_Null or Right.Is_Null then
returan Null SQL Int;

else
retuzrn (False, (Left.Value * Right.Value));
end if;
end;
function "-" (Left, Righ: SQL_Int) reaturn SQL_Int is
begin
if Left.Is_Null or Right.Is_Null then
return Null SQL Int;
else
return (False, (Left.Value - Right.Value)):
end if;

end;

function "/" (Left, Right

begin

SQL_Int) return SQL Int is

if Left.Is_Null or Right.Is_Null then

return
else
return
end if;
end;

function "mod"
begin

Null_SQL Int;

(False, (Left.Value / Right.Value});

(Left, Right : SQLL}nt) return SQL Int

if Left.Is_Null or Right.Is_Null then

return
else
return
end if;
and;

function
begin

"rem"

Null SQL_ Int;
(False, (Laft.Value mod Right.Value));

{Left, Right SQL_Int) returan SQL_Irt

if Left.Is Null or Right.Is_Null then

return
else
return
end if;
end;

function "wx"

Null_SQL_Int;

(False, (Left.Value rem Right.Value));

SQL_Int) return SQL Int is

SQL_Int is

is

is

(Left SQL_Int; Right: Integer) return SQL Int is
begin e
if Left.Is Null then
return Null SQL Int;
else - -
return (False, (Left.Value ** Right)):
end if;
152 CMU/SEI-89-TR-16

and;

function IMAGE (lLeft : SQL_Int_Not_Null) return SQL_Chnr_Not_Null is
begin

return to_SQL_Char_Not_Null(SQL_Int_Not_Null’IMAGE(cht));
end IMAGE;

function IMAGE (left : SQL_Int) return SQL_phar is
begin
if not Left.Is_Null then
return to_SQL_Char(SQL_Int_Not_ﬁull’IMAGE(Loft.Valu.));
alse
return Null SQL Char;
end if;
end IMAGE;

function VALUE (left : SQL_Char_Not_NUll) return SQL_Int_Not_Null is
begin

return SQL_Int_ Not_Null’VALUE (to_String(lLeft));
end VALUE;

function VALUE (Left : SQL Char} return SQL_Int is
begin
if Not Null (Left) then
return With Null_ Base (SQL Int Not Null’Value(to_String(Left))):
else
return Null SQL Iant’
end if;
end VALUE;

-- Logical Operations --

-- type X type => Boolean with unknown --
function Equal)s (Left, Right : SQL_Int) return Boolean with Unknown is
begin

if Left.Is_Null or Right.Is_Null then
return Unknown;
else
" if (Left.Value = Right.Value) then
return True;
else
return False;
end if;
end if;
end;

function Not_Equals (Left, Right : SQL Int)
return Roolean with Unknown is
begin - -
if Left.Is Null or Right.Is_Null then
return Unknown;
else
if (Left.Value = Right.Value) then
return False;
else
return True;
end if;
end if;
and;

function "<" (Left, Right : SQL_Int) return Boolean_with Unknown is
begin - -
if Left.Is Null or Right.Is_Null then
return Unknown;

CMU/SEI-89-TR-16

153

else
if (Left.Value < Right.Value) then
return True;
else
return False;
end if;
end if;
eand;

function ">" (Left, Right : SQL_Int) return Boolean with Unknown is
begin
if Left.Is Null or Right.Is_Null then
return Unknown;
else
if (Left.Value > Right.Value) then
return True;
else
return False;
end if;
end if;
end;

function "<=" (Left, Right : SQL Int) return Boolean with Unknown is
begin
if Left.Is_Null or Right.Is_Null then
return Unknown;
else
if (Left.Value <= Right.Value) then
return True;
else
return False;
end if;
end if;
end;

function ">=" (Left, Right : SQL_Int)Vroturn Boolean_ with Unknown is
begin
if Left.Is Null or Right.Is_Null then
return Unknown;
else
if (Left.Value >= Right.Value) then
return True;
else
return False;
end if;
end if;
end ">=";

== type => boolean --
function Is_Null (Value : SQL_Int) return Booclean is
begin
return Value.Is Null;
end Is Null;

function Not_XNull (Value : SQL Int) return Boolean is
begin

return not Value.Is_ Null;
end Not_Null:;

function "=" (Left, Right : SQL Int) return Boolean is
begin
if Left.Is_Null or else Right.Is_Null then

154 CMU/SEI-89-TR-16

return FALSE;

else
return Left.Value = Right.Value;
end if;
end "=";
function "<" (Left, Right : SQL Int) return Boolean is
begin

if Left.Is_Null or else Right.Is_Null then
return FALSE:;

else
return Left.Value < Right.Value;
end if;
.nd ll<ll;
function ">" (Left, Right : SQL Int) return Boolean is
begin

if Left.Is_Null or else Right.Is Null then
return FALSE;

else
return Left.Value > Right.Value;
end if;
end ">";
function "<=" (Left, Right : SQL Int) return Boolean is
begin

if Left.Is_Null or else Right.Is_Null then
return FALSE;

else
return Left.Value <= Right.Value;
end if;
end "<=";
function ">=" (Left, Right : 3QL_ Int) return Boolean is
begin

if Left.Is_Null or else Right.Is Null then
return FALSE;
else
return Left.Value >= Right. Valuo,
end if;
.nd l'»" ’.

package body SQL_Int_Ops is
function With Null (Value : Without_Null_type)
return With Null type is
begin
return (With Null Base(SQL_Int Not Null(Value))):
end With Null;

function Without Null (Value : With Null Type)
return Without Null Type is
begin
return (Without_null Type(
SQL_Int Not Null’ (Without_Null Base(Value)})}:
end Without Null;

procedure assign (Left : in ocut With null Type;
Right : in With_null_type) is
begin
Assign_With Check(Left, Right,
SQL Int_Not_Null (Without_Null Type'FIRST),
SQL Int Not_Null (Without_Null Type’'LAST)):
end assign;

eand SQL_Int_ppl;

end SQL Int_ Pkg;

CIAU/SEI-88-TR-16

155

C.12 SQL_Smallint_Pkg Specification

with SQL_Standard;

with SQL Boolean Pkg; use SQL_goolcan_?kg;
with SQL Char_Pkg; use SQL_Char_ Pkg;
package SQL_ Smallint Pkg

is
type SQL_Smnllint_not_pull is new SQL_ﬁtandard.Smallint;

---- Possibly Null Integer --—-—-
type SQL_Smallint is limited private;

function Null_SQL_Smallint return SQL_Smallint;
-- pragma INLINE (Null_ SQL_ Smallint):

-- this pair of functions converts betwean the

-- null-bearing and non-null-bearing types.

function Without Null Base (Value : SQL_Smallint)
return SQL_Smallint_Not_Null;

-~ pragma INLINE (Without Null_Base);

-- With Null Base raises Null Value_ Error if the input

- value is null

function With Null Base(Value : SQL_Smallint_Not_Null)
return SQL Smallint;

-- pragma INLINE (With Null Base);

-- this procedure implements range checking

-- note: it is not meant to be used directly

- by application programmers

-= see the generic package SQL Smallint Op

-- raises constraint error if not

- (First <= Right <= Last)

procedure Assign_yith_chock (
Left : in out SQL Smallint; Right : SQL Smallint;
First, Last : SQL Smallint Not_ Null);

-- pragma INLINE (Assign_with check);

-- the following functions implement three valued

- arithmetic

-- if either input to any of these functions is null

- the function returns the null value; otherwise

- they perform the indicated cperaticn

~= these functions raise no exceptions

function "+" (Right : SQL Smallint) return SQL Smallint;

-- pragma INLINE ("+"):;

function "-" .ight : SQL Smallint) return SQL Smallint;

-- pragma INLINE ("-"):

function "abs" (Right : SQL_Smallint) return SQL_Smallint;

-- pragma INLINE ("abs"):

function "+" (Left, Right : SQL_Smallint) return SQL_Smallint;
-~ pragma INLINE ("+");

function "*" (Left, Right : SQL Smallint) return SQL Smallint;
-- pragms INLINE ("*");

function "-"(Left, Right : SQL Smallint) return SQL Smallint;
-- pragma INLINE ("-");

function "/" (Left, Right : SQL_Smallint) return SQL Smallint;
--'ﬁrugm‘ INLINE ("/"):

function "mod" (left, Right : sql;ﬁm.llint) return SQL_Smallint;

~- pragma INLINE ("mod");

function "rem" (Left, Right : SQL_Smallint) return SQL_Smallint;

-- pragma INLINE ("rem");

function "**" (Left : SQL_Smallint; Right: Integer) return SQL_Smallint;

156

CMU/SEI-89-TR-16

-- pragma INLINE ("#**");

-- simulation of 'IMAGE and ‘'VALUE that
-- return/take SQL Char[Not_Null] instead of string

function IMAGE (Leaft : SQL Smallxnt) return SQL Charx;

function VALUE (left : SQL_phar) raturn SQL_SmAllxnt,

-- Logical Operations --

== type X type => Boolean with unknown --
~- these functions implement three valued logic
~= if either input is the null value, the functions
- return the truth value UNKNOWN; otherwise they
- perform the indicated comparison.
-- these functions raise no exceptions

-- pragma INLINE (Equals);

function Not_?qpals (Left, Right : SQL_Smallint)
return Boolean with Unknown;

~- pragma INLINE (Not Egquals):;

-~ pragma INLINE ("<");
-- pragma INLINE (">");
-- pragma INLINE ("<="});
-- pragma INLINE (">=")

-- type => boolean --
function Is_Null(Value : SQL Smallint) return Boolean;
-- pragma INLINE (Is_Null):
function Not_Null (Value : SQL_Smallint) return Booclean;
-- pragma INLINE (Not_Null); ‘

—— These functions of class type => boolean

-- equate UNKNOWN with FALSE. That is, they return TRUE
-- only when the function returns TRUE. UNEKNOWN and FALSE
~- are mapped to FALSE.

function "=" (left, Right : SQL Smallint} return Boolean;
-- pragma INLINE ("=");

function "<" (Left, Right : SQL_Smallint) return Boolean;
-- pragma INLINE ("<");

function ">" (Left, Right : SQL Smallint) return Boolean;
-- pragma INLINE (">");

-- pragma INLINE ('<=");
-- pragma INLINE (">=");

~- this generic is instantiated once for every abstract
- domain based on thﬂ SQL type Smallint.

-- the three subprogram formal parameters are meant >
- default to the programs declared abovae.

-- that is, the package should be instantiated in the
- scope of a use clause for SQL_Smallint Pkg.

~- the two actual types together form the abstract

- domain.

~- the purpose of the generic is to create functions
-~ which convert betwaen the two actual types and a
- procedure which implements a range constrained

function IMAGE (Left : SQL Smallxnt Not Null) return SQL_Char Not Null;

function VALUE (Left : SQL Ch;r Not Null) return SQL_. Smallint Not Null

function Equals (Left, Right : SQL Smallint) return Booclean with Unknown;

function "<" (Left, Right : SQL Smallint) return Boolean_with Unknown;
function ">" (Left, Right : SQI Smallint) return Boolean with Unknown;
function "<=" (Left, Right : SQL_Smallint) return Bocloan_yith_pnknown;

function ">=" (Left, Right : SQL Smallint) return Boolean_with Unknown;

function "<=" (Left, Right : SQL_Smallint) return Boolean;

function ">=" (Left, Right : SQL_Smallint) return Boolean;

CMU/SEI-89-TR-16

157

-- assignment for the null-bearing type.
-~ the bodies of these subprograms are calls to
- subprograms declared above and passed as defaults to

-- the generic.
genaric

type With Null type is limited private;

type Without null type is range <;

with function With Null Base(Value
return With Null Type is <>;

with function Without Null Base(Value

SQL_Smallint Not_Null)

: With_Null_ﬂyp.)

return SQL Smallint Not Null is <;

with procedure Assign_with_check (
Left : in out With_Null Type; Right : With Null Type;
First, Last : SQL_Smallint_ﬂct_ﬂull) is <;

package SQL_Smallint_pP- is

function With Null (Value : Without Null type)

return With Null type;
-- pragma INLINE (With Null);
function Without Null (Value
return Without Null type:;

—-- pragma INLINE (Without Null):
procedure assign (Left : in out With null Type;
Right : in With null type):

-- pragma INLINE (assign):
end SQL Smallint ops;

private

type SQL_Smallint is record
Is_Null: Boolsan := true;

Valua: SQL_Smallint_pot_Null;

end record;

end SQL Smallint_ Pkg;

C.13 SQL_Smallint_Pkg Body

with SQL exceptions;
package body SQL Smallint pkg is

: With Null Type)

Null Value Error : exception renames SQL_exceptions.null value_error:

function Without Null Base(Value

returnm SQL_SmalIint_Not_pull
begin
if Value.Is Null then

raise N;ll_Valuo_’rror;

else
return Value.Value;
end if;
end Without_ﬁull_pa-.;

function With_Null_p.-o(Valuc
return SQL_Smallint is
begin
return (False, Value);
end With Null Base;

procedure Assign_with check (

Left : in out SQL_Smallint;

is

SQL_Smallint)

SQL_SmAllint_Not_ﬂull)

Right

SQL_Smallint:

158

CMU/SEI-B9-TR-16

First, Last : SQL Smallint Not Null) is
begin
if Right.Is_Null then Left.Is_ Null := True;
elsif
(Right .Value < First or else
Right .Value > Last) then
raise Constraint_ Error;
ealse
Left := Right;
end if;
end As.ign_ﬁith_;hock;

function Null_SQL_Smallint return SQL_Smallint is

Null_goldor : SQL Smallint;
begin

return (Null_ﬂoldor); -- relies on default expression for Is_Null
and Null_SQL_Smallint;

function "+" (Right : SQL_Smallint) return SQL_Smallint is

begin
return Right;
end;
function "-" (Right : SQL_Smallint) return SQL_Smallint is
begin
return (Right.Is Null, -(Right.Value)):
end;

function "abs" (Right : SQL_Smallint) return SQL_Smallint is
begin

return (Right.Is_Null, abs (Right.Value));
end;

function "+" (Left, Right : SQL_Smillint) return SQL Smallint is
begin]
if Left.ls_Null or Right.Is_Null then
return Null_SQL_Smnllint;
else
return (False, (Left.Value + Right.Value)):
end if;
end;

function "*" (Left, Right : SQL Smallint) return SQL_SmAllint is
begin -
if Left.lIs Null or Right.Is_Null then
return Null SQL Smallint;

else
return (False, (Left.Value * Right.Value)):;
end if;
end;
function "-" (Left, Right : SQL Smallint) return SQL_Smallint is
begin

if Left.lIs_Null or Right.Is_Null then
return Null_SQL_Smallint;

else

return (False, (Left.Value - Right.Value));
end if;

end;

function "/" (Left, Right : SQL_Smallint) return SQL Smallint is
begin
if Left.Is Null or Right.Is Null then

CMU/SEI-89-TR-16

159

return Null_SQL_Smallint;

else
return
end if;
end;

function "mod"
begin

(False,

(Laft, Right

(Left .Value / Right.Valua));

SQL_Smallint) return SQL_Smallint is

if Left.Is Null or Right.Is Null then
return Null SQL Smallint;

else
return
end if;
end;

function "rem"
begin

(False,

(Laft, Right

(Left .Value mod Right.Value});

SQL Smallint) return SQL Smallint is

if Left.Is Null or Right.Is Null then
return Null_SQL_Smallint;

else
return
end if;
end;

function "®*"
begin

(Left

(False,

if Left.Is_Null then
return Null_SQL_Smallint;

else

return (False,

end if;
end;

function IMAGE (Left

(Ireft .Value rem Right.Value)):

SQL Smallint; Right: Integer) return SQL Smallint is

(Left.Value ** Right));

SQL_Smallint_Not_Null)

return SQL Char Not Null is

begin

return to_SQL Char Not Null(
SQL Smallint Not_ Null’ IMAGE (Left)) ;

end IMAGE;

function IMAGE (lLeft

begin

if not Left.Is Null then

return to_SQL_Char(
SQL_Smallint Not Null’ IMAGE (Left.Value));

else

return Null_SQL_Qhar;

end if;
end IMAGE;

function VALUE (Left

SQL Smallint) return SQL Char is

SQL_Fhar_ﬂot_ﬂull)

return SQL Smallint Not Null is

begin

return SQL_SmaLant_yot_Null'VﬂLUE(to_String(Loft));

end VALUE;

function VALUE (Left

begin

if Not_Null(Left) then

return With Null Base(

else

SQL Char) return SQL Smallint is

SQL_Smallint_Not_Null’'Value(to_String(Left))):

return Null_SQL_SmAllint;

160

CMU/SEI-89-TR-16

end if;
end VALUE;

-- Logical Operations --
-~ type X type => Boolean_with Unknown --
function Equals (Left, Right : SQL Smallint)
return Boolean_with Unknown is
begin
if Left.Is Null or Right.Is Null then
return Unknown;
else
if (Left.Value = Right.Value) then
return True;
else
return False;
end if;
end if;
end;

function Not_Equals (Left, Right : SQL Smallint)
return Boolean with Unknown is
begin
if Left.Is_Null or Right.Is Null then
return Unknown;
else)
if (Left.Value = Right.Value) then
return False;
else
return True;
end if;
end if;
end;

function "<" (Left, Right : SQL_SmAllint) return Boolean with Unknown is
begin
if Left.Is_Null or Right.Is_Null then
return Unknown;
else
if (Left.Value < Right.Value) then
return True;
else
return False;
and if;
end if;
and;

function ">" (Left, Right : SQL Smallint) return Boolean with Unknown is
begin - - T
if Left.Is_Null or Right.Is_Null then
return Unknown;
else
if (Left.Value > Right.Value) then
return True;
else
return False;
end if;
end if;
and;

function "<=" (Left, Right : SQL_Smallint) return Boolean_with Unknown is
begin
if Left.Is Null or Right.Is_Null then

CMU/SEI-89-TR-16

161

o

return Unknown;

else
if (Left.Value <= Right.Value) then
return True;

else
return False;
end if;
end if;
end;
function ">=" (Left, Right : SQL_Smallint) return Boolonn_yith_pnknovn is
begin .
if Left.Is_Null or Right.Is_Null then
return Unknown;
else
if (Left.Value >= Right.Value; then
return True;
else
return Falsa;
end if;
end if;
end;
function "=" (Left, Right : SQL_SmAllint) return Boolean is
begin
if Left.Is_Null or else Right.Is_Null then
return FALSE;
else
return Left.Value = Right.Value;
end if;
end "=";
function "<" (Left, Right : SQL Smallint) return Boolean is
begin -
if Left.Is_Null or else Right.Is_Null then
return FALSE;
else
return Left.Value < Right.Value;
end if;
‘nd "<“;
function ">" (lLeft, Right : SQL_Smallint) return Boolean is
begin
if Left.ls_Null or else Right.Is_Null then
return FALSE;
else
return Left.Value > Right.Value;
end if;
and ">";
function "<=" (Left, Right : SQL Smallint) return Boolean is
begin - .
if Left.Is Null or else Right.Is_Null then
return FALSE;
else
return Left.Value <= Right.Value;
end if;
end "<=";
function ">=" (1 , Right : SQL Smallint) return Becolean is
begin -
if Left.Is_Null or else Right.Is_Null then
return FALSE;
else
return Left.Value >= Right.Value;
end if;
end ">=";
162 CMU/SE!I-89-TR-16

-- type => boolean --
function i._ﬂull(Valua : SQL Smallint) return Boolean is
begin
return Value.Is Null;
end;

function Not_Null (Value : SQL Smallint) return Boolean is
begin

return not Valuo.Ic_ﬂull;
end;

package body SQL Smallint Ops is
function With Null (Value : Without Null type)
return With_Null type is
begin
r-tu:n(With_ﬂull_Bn-o(SQL_Smallint_ﬂot_Null(Valuo)));
end With Null;

function Without Null (Value : With Null_ Type}
return Without Null Type is
begin
return (Without_Null Type(
SQL Smallint_Not_Null’ (Without_ Null Base (Value))));
end Without_ﬂull

procedure assign (Left : in out With Null Type;
Right : in With Null_type) is
begin
Assxgn_ﬂzth Check (Left, Right,
SQL Smallxnt Not Null(W;thout Null Typo’FIRST),
SQL_Smalant_Not_ﬂull(Wzthout_ﬂull_Typo’LAST)),
end assign;

end SQL Smallint_ops;

eand SQL_Smallint_Pkg;

C.14 SQL_Real_Pkg Specification

with SQL Standard;
with SQL Boclean Pkg, use SQL Boolean Pkg,
package SQL Real Pkg

is

type SQL_Real Not Null is new SQL Standard.Real;

~--- Possibly Null Real ----
type SQOL Real is limited private;

function Null_SQL_Roal return SQL_Boal;
-- pragma INLINE (Null_SQL_Boal);

-- this pair of functions converts between the

- null-bearing and non-null-bearing types

function Without Null _Base (Value : SQL_Real)
return SQL | Roal Not Null;

-- pragma INLINE (ﬁ;thout Null Base);

== With Null Base raises Null_Valu._Error if the input

- value is null

, func¢tion With_Null_pase(Valu. ! SQL_Real Not Null)

return SOL_Real;

CMU/SEi-89-TR-16 163

~- pragma INLINE (With Null Base);

~- this procedure implements range checking

~- note: it is not meant to be used directly

- by application programmers

~- see tha generic puckage SQL Real Ops

~- raises ccnstraint error if not

- (First <= Right <= Last)

procedure Assign_with Check (
Left : in out SQL Real; Right : SQL Real;
First, Last : SQL Real Not Null);

~- pragma INLINE (Assign_with Check);

~- the following functions implement three valued

~- arithmetic

~— if either input to any of these functions is null
- the function returns the null value; otherwise
~= they perform the indicated operation

~- these functions raise no exceptions

function "+" (Right : SQL_B.al) reaturn SQL_B.;l;

~- pragma INLINE ("+");

function "-" (Right : SQL Real) return SQL_Rcal;

~- pragma INLINE ("-"):

function "abs" (Right : SQL_Bcal) return SQL Real;

~- pragma INLINE ("abs"):;

function "+" (Left, Right : SQL Real) retuzn SQL_B.al;
~- pragma INLINF ("+");

function "*" (Left, Right : SQL Real) return SQL Real;
~- pragma INLINE ("*");

functio: "-" (Left, Right : SQL Real) return SQL_Boal;
~- pragma INLIRE ("-");

function "/"(Left, Right : SQL Real) return SQL Real;
-- pragma INLINE ("/");

function "**" (lLeaft : SQL_B.al; Right : Integer) return SQL_Boal;
~- pragma INLINE ("**");

-- Logical Operations --

-- type X type => Boolean _with unknown --
~- these functions implement three valued logic
~- if either input is the null value, the functions
~- return the truth value UNKNOWN; otherwise thLey
-- perform the indicated compariscn.
~- these functions raise no exceptions
function Equals (Left, Right : SQL Real) return Boolean with Unknown;
~- pragma INLINE (Equals):;
function Not_;quall (Left, Right : SQL Real)

return Boolean with Unknown;

-- pragma INLINE (Not Equal.);
function "<" (lLeft, Right : SQL Real) return Boolean with Unknown;
~~ pragma INLINE ("<");
function ">" (Leaft, Right : SQL Real) return Boolean_with Unknown;
-- pragma INLINE (">"):
function "<=" (Left, Right : SQL Real) return Booloan_yith_pnknown;
-- pragma INLINE ("<=");
functicn “>e” (Left, Right : SQL Real) return Boolean with Unknown;
-- pragma INLINE (">=");

-- type => booclean --
function I-_Null(Vlluo : SQL Real) return Boolean;
~- pragma INLINE {Is_Null):
function Not_ﬂull(Valuo : SQL Real) return Boolean;
~=- pragma INLINE (Not Null):;

CMU/SE!I-89-TR-16

R R R

-- These functions of class type => boclean

-- equate UNKNOWN with FALSE. That is, they return TRUR
-- only when the function returns TRUE. UNRKNOWN and FALSE
-- are mapped to FALSE.

function "=" (Left, Right : SQL_R-al) return Boolean:
-- pragma INLINE ("=");

function "<" (Left, Right : SQL’Roal) return Boolean;
-- pragma INLINE ("<"):

function ">" (Left, Right : SQL’Rcal) reatun Boolaan:
~- pragma INLINE (">");

function "<=" (Left, Right : SQL _Real) return Boolean;
-- pragma INLINE {("<=");

function ">=" (Left, Right : SQL_R-al) return Boolean;
-- pragma INLINE (">="):;

-- this generic is inatantiated once for every abstract
-- domain based on the SQL type Real.
-- the three subprogram formal parameters are meant to
-- default to the programs declared above.
-- that is, the package should be instantiated in the
- scope of the use clause for SQL Real Pkg.
-— the two actual types together form the abstract
-- domain.
-- the purpose of the gencvic is to create functions
- which convert betwean the twe actual types and a
- procedure which implements a range constrained
- assignment for the null-bearing type.
== the bodies of these subprograms are calls to
- subprograms declared above and passed as defaults to
- the generic.
generic
type With Null type is limited private;
type Without null type is Aigita <>;
with function With Null Base (Value : SQL_Real Not_Null)
return With_ Null Type is <>;
with function Without_ Null Base(Value : With Null Type).
return SQL_Ro:l_Not_Null is <;
with procedure Assign_with check (
Left : in out With Null Type; Right : With Null Type;
First, Last : SQL_R.Al_ﬂot_Null) is <;
package SQL Real Ops is
function With Null (Value : Without_Null type)
return With_Null_pyp-;
-~ pragma INLINE (With Null);
function Without Null (Value : With_ﬂull_jypo)
return Without Null type;
-~ pragma INLINE (Without Null);
o Procedure assign (Left : in out With Null Type;
Right : in With Null_type):;
-- pragma INLINE (assign):
end SQL Real Ops;

private
type SQL Real is record
I-_Null: Boolean := true;
Value: SQL_gcnl_Not_Null;

end record;

end SQL Real Pkg;

CMU/SEI-89-TR-16 165

C.15 SQL_Real_Pkg Body

with SQL exceptions;
package iody SQL Real pkg is

Null_Value Error : excepti~ renames SQL exceptions.null value_ error;

function Without_ Null Base(Value : SQL Real)
return SQL_Bonl_ﬁot_Null is
begin
if Value.Ic Null then
raise Null Value error;
else
return Value.Value;
end if;
end Without_ Null Base;

function With“ﬂull_ﬁa-a(Valuo : SQL_Real_ﬁot_ﬂull)
return SQL Real is
begin
return (False, Value);
end Witdb_Null Base;

procedure Assign_with check (
Left : in ocut SQL Real; Right : SQL Real:
First, Last : SQL Real Not Null) is
begin
if Right.Is null then Left.is_null := Tru~;
algif
(Right .Value < First or else
Right.Value > Last) then
raise Constraint Error;
else
Left := Right;
end if;
and As-ign_ﬁity_Chock;

function Null_SQL_Rncl return SQLLg.nl is

Null_ﬂold.r : SQL Real;
begin

return (Null_goldcr); -- relies on default expression for Is_Null
and Null_SQL_gcal;

function "+" (Right : SQL Real) return SQL Real is

begin
return Right;
eand;
function "-"(Right : SQL Real) return SQL Real is
begin -
return (Right .Is Null, - (Right.Value})};
eand;

function "abe" (Right : SQL Real) return SQL_ Real is
begin

return (&ight.Is Null, abs{Right.Value));
end;

function "+" (Left, Right : SQL_Ro.l) return SQL_B.al is
begin
if Left.Is Null or Right.Is_Null then
return Null SQL Real;
ealse -

166 CMU,3EI-89-TR-16

return (False, (Loft.Vaiu- + Right.Valuo)L;
end if; t
end;

function "*" (Left, Right : SQL_B.al) return SQL Real is
begin
if Left.Is_Null or Right.Is_Null then
return Null_SQL Real;

else
return /False, (Left.Value * Right.Value));
end if;
end;
function "-" (Left, Right : SQL Real) return SQL Real is
begin

if Left.Is Null or Right.Is_Null then
return Null_SQL_Rcal;
else
return (False, (Left.Value - Right.Value));
end if;
end;

function "/" (Laft, Right : SQL Real) return SQL Real is
begin -
if Left.Is_Null or Right.Is_Null then
return Null SQL Real;
else -
return (False, (Left.Value / Right.Value));
end if;
end;

function "**" (Laft : SQL Real; Rigkt: Integer) return SQL Real is
begin - -
if Left.Is_Null then
return Null SQL Real;
else - -
return (False, (Left.Value ** Right)):
end if;
end;

-~ Logical Operations --
-- type X type => Boolean_with Unknown --
function Equals (Left, Right : SQL Real) return Booclean_ with Unknown is
begin - -
if Left.Is_Null or Right.Is Null then
return Unknown;
else
if (Left.Value = Right.VELuo) then
return True;
else
return False;
end if;
end if;
end;

function Not_Equals ‘~.eft, Right : SQL Real)
return Boolean_with Unknown is
begin
if Left.Is_Null or Right.Is_ Null then
return Unknown;
else
if (Left.Value = Right.Value)} then

CMU/SEI-89-TR-16

return False;
else
return True;
end if;
end if;
end;

function "<" (Left, Right : SQL Real) return Boolean_with Unknown is
begin
if Left.Is_Null or Right.Is_Null then
return Unknown;
elae .
if (Left.Value < Right..Value) then
return True;
alse
return False;
end if;
end if;
end;

function ">" (Left, Right : SQLLBoal) return Boolcan_wit@_Unknovn is
begin
if Left.Is_Null or Right.Is_Null then
return Unknown;
else
if (Left.Value > Right.Value) then
return True;
alse
return False;
end if;
end if;
end;

function "<=" (Left, Right : SQL Real) return Booloan_yith_pnknown is
begin
if Left.Is_Null or Right.Is_Null then
return Unknown;
else
if (Left.Value <= Right.Value) then
return True;
else
return False;
end if;
end if;
end;

function ">=”" (Left, Right : SQL Real) return Boolean w.th Unknown is
begin - - -
if Left.Is_Null or Right.Is Null then
return Unknowﬁ?
else
if (Left.Value >= Right.Value) then
return True;
else
return False;
end if;
end if;
end;

function "=" (Left, Right : SQL Real) return Boolean is
begin
if Left.Is Null or else Right.Is_Null then
return FALSE;

168 CMU/SE!I-89-TR-16

else
return Left.Value = Right.Value;
end if;
end "=";
function "<" (Left, Right : SQL_Roal) return Boolean is
begin
if Left.Is Null or else Right.Is_Null then
return FALSE;
else
return Left.Value < Right.Valuae;
end if;
end "<";
function ">" (Left, Right : SQL Real) return Boolean is
begin

if Left.Is Null or else Right.Is_Null then
return FALSE;

else
return Left.Value > Right.Value:;
end if;
eand ">";
function "<=" (Left, Right : SQL Real) return Boolean is
begin

if Left.Is_Null or else Right.Is_Null then
return FALSE;

else
return Left.Value <= Right.Value;
end if;
end "<=";
function ">=" (Left, Right : SQL Real) return Booclean is
begin
if Left.Is_Null or else Right.Is Null then
return FALSE;
else
return Left.Value >= Right.Value;
end if;
end ">=";

-~ type => boolean --
function Is_Null (Value : SQL Real) return Booclean is
begin
return Value.Is_ Null;
end;

function Not_ Null (Value : SQL Real) return Boolean is
begin

return not Value.Is Null;
and;

package body SQL Real Ops is
function With Null (Value : Without_ﬂull_typ.)
return With Null type is
begin
return (With Null Base (SQL Real Not_Null (Value))):
end With Null;

function Without Null (Value : With_Null Type)
return Without Null Type is
begin
return (Without null Type(
SQL_Rcll_Not_ﬂull'(Without_ﬂull_ﬂa.o(Valuo))));
end Without Null:

procedure assign (Left : in out With_null Typae;

CMU/SEI-8S-TR-16 " o9

R

Right : in With_null type) is
begin
hAssign_With Check(Left, Right,
~ SQL Real Not_Null(Without_ Null_Type’FIRST),
SQL_Real Not_Null (Without_Null Type’LAST));
end assign;

end SQL_Real Ops;

end SQL Real Pkg;

C.16 SQI._Double_Precision_Pkg Specification

with SQL Standard;
with SQL Boolean_ Pkg; use SQL Boolean Pkg;
package SQL Double_ Precision_Pkg

is

type SQL Double_Precision_ Not Null is new SQL Standard.Double_Precision;

--=-- Possibly Null Double Precision ----
type SQL_Double Precision is limited private;

function Null SQL Double_Precision retura SQL_Double_Precision;
-- pragma INLINE (Null SQL Double Precision);

-- this pair of functions converts between the

- null-bearing and non-null-bearing types.

function Without _Null Base(Value : SQL Doubla _Precigion)
return SQL_| Double _Precision Not Null;

-- pragma INLINE (W;thout Null Baso),

-- With Null Base raises Null Value_Error if the input

- value is null

function Witk_pull_pa.o(Valug : SQLLPouBlo_Procicion_ﬂot_ﬂull)
return SQL_poubl._?:ocision;

-- pragma INLINE (With_Null Base);

-- this procedure implements range checking
-- note: it is not meant to be used directly
- by application programmers
-~ see the generic package SQL Double Precision Op
-~ raises constraint_ error if not
- (First <= Right <= Last)
procedure Assign_with Check (
Left : in out SQL Double Precision;
Right : SQL ! Double Procxn;on,
First, Last : SQL_poublo_Procx-ion_ﬂot_yull);
-- pragma INLINE (Pssign_with Check);

-- the following functions implement three valued

- arithmetic

-~ if either input to any of these functions is null

- the function returns the null value; otherwise thaey

- perform the indicated operation

-- these functions raise no exceptions

function "+" (Right : SQL Double_Precision) return SQL_Doublo_Proci.ion;
-~ pragma INLINE ("+");

function "-" (Right : SQL_poublo_Prociaion) reaturn SQL_poublo_Prc:i-ion;
-- pragma INLINE ("-");

function "abs" (Right : SQL_poublo_?roci-ion) return SQL_poublo_?rocision;
~- pragma INLINE ("abs"):;

170 CMU/SE!-B9-TR-16

function "+" (Left, Right : SQL_poublo_Proci-ion)

return SQL Double Precision;

-- pragma INLINE ("+"):;

function "*" (Left, Right : SQL Double Precision)
return SQL Double Precision’

-- pragma INLINE ("*");

function "-"(Left, Right : SQL Double Precision)
return SQL_poublo_Pr-cision;

-- pragma INLINE ("-");

function "/" (Left, Right : SQL_Poublo_Procicion)
return SQL Double Precision’

-- pragma INLINE ("/"):

function "**" (Left : SQL Double Precision; Right : Integer)
return SQL_poublo_P:eci-ion;

~=- pragma IMLINE ("**"};

-- logical Operations --
-= type X type => Boolean_with unknown -~

-- these functions implement three valued logic

-- if either input is the null value, the functions

-- return the truth value UNKNOWN; otherwise they

- perform the indicated comparison.

-- these functions raise no exceptions

function Equals (Left, Right : SQL Double Precision)
return Boolean_with Unknown;

-~ pragma INLINE (Equals);

function Not_Equals (Left, Right : SQL Double_Precision)
return Boolean with Unknown;

-- pragma INLINE (Not Equals);

function "<" (Left, Right : SQL Double Precision)
return Boclean_with Unknown;

-- pragma INLINE ("<");

function ">" (Left, Right : SQL Double Precision)
return Boolean_with Unknown;

-- pragma INLINE (">"):;

function "<=" (Left, Right : SQL Double Precision)
Teturn Boolean _with Unknown;

-~ pragma INLINE ("<=");

function ">=" (Left, Right : SQL_Poublo_Proci-ion)
return Boolcan_vith_Unknown;

-- pragma INLINE (">=");

-- type => boolean -~
function Is_Null (Value : SQL Double_ Precision) return Boolean;
-- pragma INLINE (Is_Null):;
function Not_Null (Value : SQL Double Precision) return Boolean;
—-- pragma INLINE (Not Null);

-- These functions of class type => boolean

-~ equate UNEKNOWN with FALSE. That is, they return TRUE

-~ only when the function returns TRUE. UNEKNOWN and FALSE

~- are mapped to FALSE.

function "=" (Left, Right : SQL Double Precision) return Boolean;
function "<" (Left, Right : SQL Double Precision) return Boolean;
function ">" (Left, Right : SQL Double_Precision) return Boolean;
function “"<=" (Left, Right : SQL_poublo_Proci-ion) return Boolean;
function "><=" (Left, Right : SQL_poublo_Proci-ion) return Boolean;

-~ this generic is instantiated once for every abstract
- domain based on the SOL type Double Precision.

-- the three subprogram formal parameters are meant to
-- default to the programs declared above.

CMU/SEI-89-TR-16

171

-~ that is, the package should be instantiated in the
- scope of the use clause for
- SQL Double_Precision_Pkg.
~- the two actual types together form the abstract
-- domain.
-- the purpose of the generic is to create functions
- which convert between the two actual types and a
-- procedure which implements a range constrained
- assignment for the null-bearing type.
-~ the bodies of these subprograms are calls to
- subprograms declared above and passed as defaults
- to the generic.
generioc
type With Null type is limited private;
type Without null type is digits <;
with function With Null Base(Value : SQL Double Precision_Not Null)
Teturn With Null Type is <>;
with function Without Null Base(Valuae : With_Null Type)
return SQL Double Precision Not Null is <
with procedure As-ign_vith_chnck (
lLeft : in out With Null Type; Right : With Null Type:
First, Last : SQL_poublo_?:oci-ion_ﬂot_ﬁull) is <;
package SQL Double Precision_Ops is
function With Null (Value : Without_ﬁull_;ypo)
return With Null type;
-- pragma INLINE (With Rull);
function Without_ﬂull (Value : With_Null_?ypo)
return Without Null type:;
-- pragma INLINE (Without Null);
procedure assign (left : in ocut With _null Type:
Right : in With_null_;ypc);
-- pragma INLINE (assign):
end SQL Double_Precisiocn_Ops;

private

type SQL Double Precision is record

Is Null: Boolean := true;

Value: SQL_poublo_Procision_ﬂot_ﬂull;
end record:

end SQL Double_Precision_Pkg:

C.17 SQL_Double_Precision_Pkg Body

with SQL_exceptions;
package body SQL Double_Precision_pkg is

Null Value_Error : exception renames SQL exceptions.null value_error;

function Without Null Base (Value : SQL_Doublo_?rocinion)
return SQL Double Precision_ Not_Kull is
begin
if Value.Is_Null then
raise Rull Value_error;
else
return Value.Value;
eand if;
end Without Null Base:

172 CMU/SEI-89-TR-16

|

function With Null Base(Value : SQL_Doublo_Proci-ion_ﬂot_ﬂull)
return SQL_poublo_Procision is
begin
return (False, Value);
end With Null Base;

procedure Assign with check (
Left : in out SQL Double Precision; Right : SQL _Double_ Precision;
First, Last : SQL_poublo_Proci-ion_ﬁot_pull) is
begin
if Right.Is_Null then Left.Is_Null := True;
elsif
(Right .Value < First or else
Right.Value > Last) then
raise Constraint Error;
alse
Left := Right;
end if;
and Aslign_ﬁith_chock;

function Null_SQL_Doublo_Procision return SQL_poublo_?r.cicion is
Null_ﬂoldar : SQIchublo_Procision;
begin
return (Null Holder); -- relies on default expression for Is_Null
end Null_ﬁQL_pcublo_Procision;

function "+" (Right : SQL_poublo_Prcci-ion)
return SQL_poublo_Proci-ion is

begin
return Right;
end;
function "-"(Right : SQL Double Precision)
return SQL Double Precision is
begin
return (Right.Is_null, - (Right.Value));
end;

function "abs" (Right : SQL_poublo_Procicicn)
return SQL_poublo_Prcci-ion is
begin
return (Right.Is_null, abs(Right.Value)):;
end;

function "+" (Left, Right : SQL_Double Precision)
return SQL_poubls Precision is
begin -
if Left.Is Null or Right.Is Null then
return Null SQL Double_ Precision;
alse -
return (False, (Left.Value + Right.Value));
end if;
end;

function "*" (Left, Right : SQL Double_Precision)
return SQL Double Precision is
begin -
if Left.Is Null or Right.Is Null then
return Null SQL Double Precision;
else - - -
return (False, (Left.Value * Right.Value));
and if;
end;

CMU/SEI-89-TR-16

173

function "-" (Left, Right : SQL Double Precision)
return SQL_poublo_Procision is
begin

if Left.Is_Null or Right.Is Null then
return Null_SQL_Doublo_Proci-ion;
else
return (False, (Left.Value - Right.Value)):
end if;
end;

function "/" (Left, Right : SQL Double_ Precision)
return SQL_poublo_P:ocision is
begin
if Left.Is_Null or Right.Is_Null then
return Null_SQL_poublo_Procision;
else
return (False, (lLeft.Value / Right.Value)):
end if;
end;

function "**" (Left : SQL Double_ Precision; Right: Integer)
return SQL_poublo_Procision is
begin
if Left.Is_Null then
return Null_SQL_poublo_Procision;
else
return (False, (Left.Value ** Right)):
end if;
end;

-- Logical Operations --
-- type X type => Booclean_with unknown --
function Equals (lLeft, Right : SQL_poublc_Proci-ion)
return Boolean_with Unknown is
begin
if Left.Is_Null or Right.Is Null then
return Unknown;
else
if (Left.Value = Right.Value) then
return True;
else
return False;
end if;
end if;
end;

function Not_Equals (Left, Right : SQL Double_Precision)
return Boolean with Unknown is
begin
if Left.Is_Null or Right.Is_Null then
return Unknown;
else
if (Left.Value = Right.Value) then
return False;
else
return True;
end if;
end if;
end;

function "<" (Left, Right : SQL_Double_Precision)
return Booloan_yith_ﬂnknovn is

174

CMU/SEI-89-TR-16

begin
if Left.Is_Null or Right.Is_Null then
return Unknown;
else
if (Left.Value < Right.Value) then
return True;
ealse
return False;
end if;
end if;
end;

function ">" (lLeft, Right : SQL Double Precision)
return Boolean with Unknown is
begin
if Left.Is Null or Right..Is_ Null then
return Unknown;
else
if (Left.Value > Right.Value) then
return True:
else
return False;
end if;
end if;
and;

function "<=" (Left, Right : SQL Double_ Precision)
return Booloan_yith_Unknown is
begin
if Left.Is Null or Right.Is_Null then
return Unknown;
else
if (Left.Value <= Right.Value) then
return True;
else
return False;
end if;
end if;
end;

function ">=" (lLeft, Right : SQL_Doublo_Proci.ion)
return Booloan_yith_annovn is
begin
if Left.Is_Null or Right.Is_Null then
return Unknowr:;
else
if (Left.Value >= Right.Value) thaen
return True;
ealse
return False;
end if;
end if;
end;

-- type => boolean --
function Is_Null (Value : SQL Double Precision) return Boolean is
begin
return Value.ls Null;
end; -

function Not Null (Value : SQL _Double_ Precision) return Boolean is
begin

CMU/SEI-89-TR-16

175

return not Value.Is Null;
end;

function "=" (lLeft, Right : SQL_Doublo_Prcci-ion) return Boolean ic
begin
if Left.Is_Null or else Right.Is_Null then
return FALSE;

else
return Left.Value = Right.Value;
eand if;
end "=";
function "<" (Left, Right : SQL_poublo_Proci-ion) return Boolewn is
begin

if Left.Is_Null or else Right.Is_Null then
raturn FALSE;

else
return Left.Value < Right.Value;
end if;
end "<";
function ">" (Lerft, Right : SQL Double Precision) return Boolean is
begin

if Left.Is_Null or else Right.Is_Null then
return FALSE;

else
return Left.Value > Right.Value;
end if;
and ">":
function "<=" (Left, Right : SQL_poublo_Procision) return Boolean is
begin

if Left.Is_Null or else Right.Is_Null then
return FALSE;

alse
return Left.Value <= Right.Value;
end if;
end "<=";
function ">e=" (Left, Right : SQL_poublo_Procinion) return Boolean is
begin

if Left.Is Null or else Right.Is_Null then
return FALSE;
else
return Left.Value >= Right.Value;
end if;
eand ">=";

package body SQL_Doublie_Frecision Ops is
function With Null (Value : Without Null type)
return With Null type is
begin -
return (With Nu!"~ Sase(SQL Double_ Precision_Not_Null (Value}));
end With Null;

function Without Null (Value : With Rull Type)
return Without Null Type is
begin
return (Without_null Type(
SQL Double_Precision Not Null’' (Without_Null Base(Value))));
and Without Null;

procedure assign (Left : in out With null Type:
Right : in With null type) is
begin -
Assign With Check(Left, Right,
SQL_Doublc_Proci-ion_ﬂot_ﬂull(Without_ﬂull_?ypa'FIRST),

176 CMU/SEI-89-TR-16

n N O .

SQL_Doublo_Pzucilion_Not_Null(Without_ﬂull_?ypo’LAST));
end assign;

end SQL_Doublo_Proci-ion_Op-;

end SQL_poublo_Procision_?kg;

C.18 SQL_Decimal_Pkg Specification

with SQL Boolean Pkg’ use SQL_Booloan_Pkg;

with SQL Int Pkg; use SQL Int_ Pkg;

with SQL Char Pkg; use SQL Char Pkg;

with SQL:boubIo_Procision_fkg; ;so SQL_poublo_?rocision_?kg;
package SQL Decimal Pkg is

-- MAX DIGITS is implementation defined

-- It ;.proconts the maximum number of digits that can be

-- stored in the underlying hardware’s representation of
-- a BCD number

MAX DIGITS : constant integer := 31;

subtype decimal digits is natural range 0..MAX DIGITS;

type SQL Decimal Not Null(scale : decimal digits := 0) is limited private;
type SQL Decimal (scale : decimal digits) is limited private;

subtype Num-riq_ChaLsctor is Character range ‘0’ ..’'9’;
type Numeric String is array (decimal digits range <>) of Numeric_Charactaer;
type Sign_Character is ('+', '-');

-- the following type is used for purposes of creatling generic

- assign and :is_in functions....DO NROT USE THIS TYPE to

-- create the abstract domains.....

type SQL Decimal Not_Null2(scale : decimal digits := 0) is limited private;

function To_SQL Decimal Not Null (Value : SQL Dacimal Not Null2)
return SQL Decimal Not_ Null;

function To_SQL Decimal (Value : SQL_pccimal_Not_ﬂullZ)
return SQL Decimal:

function To_SQL Decimal Not Kull2 (Value : SQL_Decimal Not Null)
return SQL_Docimal_ﬂot_Nullz;

function To_SQL_D.cimal_ﬂot_ﬂullz (Value : SQL_pccimal)
return SQL Decimal Not Null2:;

-- pragma INLINE(To_SQL Decimal Not Null2);

== this function returns a null value of the SQL Decimal type
function Null_SQL_pocimal return SQL Decimal;
-- pragma INLINE(Null_SQL_p-cim;l);

-- The following functions shift the value of the cbject
-- without changing the scala. Effectively, the operaticn
-= mutiplies the value in the object by 10**Scale.
-- The following functions raise Constraint Error if the left
- shift causes a loss of significant digits
function Shift (Value : SQL_pocimal_Not_ﬁull;

Scale : integer) return SQL Decimal Not Null:;
function Shift (Value : SQL_Dccimal;

Scale : integer) return SQL Decimal;
-- pragma INLINE (Shift);

-- The following functions return cbjects with the appropriate

CMU/SEI-89-TR-16

177

- values

function Zero return SQL Decimal Not Null;
function Zero return SQL_p.cimal;

-~ pragma INLINE (Zero);

function One return SQL_p.cimal_Not_Null;
function One return SQL_D-cimal;

-~ pragma INLINE (One);

-~ The following Assignment procedure is provided for the

-~ SQL_Decimal Not_ Null type:

-~ The following Assignment procedure raises Constraint_ Error

-- if the value of Right does not fall within the range

- of lower..upper

procedure Assign With Check (Left : in out SQL_DocimAl_Not_Null;
Right : SQL Decimal Not Null:
Lower, Upper : SQL Decimal Not Null2);

-~ The following Assign_with check procedure will be used
- in the generic Assign produced in SQL Decimal Ops
-~ this procaedure raises the Constraint Error exception if
-- the "Right'" input parameter falls outside the range
-- defined by Lower..Upper
procedure Assign_With Check

(Left : in out SQL_Pocimal;

Right : SQL Decimal:

Lower, Upper : SQL_p-cimal_Not_NullZ);
-~ pragma INLINE (Assign_with check);

-~ The following comparison operators are provided:

function "=" (Left, Right : SQL Decimal Not Null) return boolean;
function ''=" (Left, Right : SCL Decimal) return boolean;

-~ pragma INLINE("=");

function Equals (Left, Right : SQL_pccimal) return Boolonn_Wit@_Unknown;
-- pragma INLINE (Equals);

function Not_Equals (Left, Right : SQL_D-cimal) return Booloan_ﬁith~0nknown;
-~ pragma INLINE (Not_Equals):

function "<" (Left, Right : SQL Decimal Not Null) return booliean;
function "< (l.eft, Right : SQL_Docim;l) return boolean;

function "<" {Left, Right : SQL Decimal) retuzrn Bcolonn_With_Unknown;
-~ pragma INLINE("<");

function ">" (Left, Right : SQL Decimal Not Null) return booclean;
function ">»" (Left, Righct : SQL_Decimal) return boolean;

function ">" (Left, Right : SQL_Decimal) return Booloan_ﬂith_Unknown;
-- pragma INLINE(">");

function "<=" (Left, Right : SQL Decimal Kot Null) return boclean;
function "<=" (Left, Right : SQL Decimal) return booclean;

function "<=" (Left, Right : SQLQDocimal) return Booloan_With_Unknovn;
-~ pragma INLINE ("<="});

function ">=" (Laft, Right : SQL Decimal Not_ Null) return boolean;
function ">=" (Left, Right : SQL_pocimal) return boolean;

function ">=" (Laft, Right : SQL Decimal) return Booclean With Unknown;
~- pragma INLINE (">=");

-- the .ollowing functions are membership tests
-- the value of the ocbject is tested to see if
- if it falls within the range of Lower..Upper
function Is_In Base (Right : SQL Decimal Not Null;
Lower, Upper : SQL Decimal Not Null2)
return boolean; - - -
function Is_In_Base (Right : SQL Decimal;
Lower, Upper :@ SQL Decimal Not Null2)
return boolean; - -

CMU/SEI-89-TR-16

-- pragma INLIN: (Il_In_Bll.)i

function Is_Null (Value : SQL_Docxmal) return boolean;
-~ pragma INLINE (Is_Null):
function Not_Null(V.lu. : SQL_Doc;nal) return boolean:
-- pragma INLINE (Not_Null);

-- The following unary arithmetic operators are provided:

functaion "+" (Right : SQL Decimal Not Null)
return SQL Decimal Not_ Null:
function "+" (Right : SQL_Docxnnl) return SQL Decimal:

function "-" (Right : SQL Decimal Not_Null)

return SQL_pocxnal_ﬁct_ﬁull:
function "-" (Raght : SQL Decimal) return SQL Decimal:
function "abs” (Right : SQL_Docxnnl_Not_Null)

return SQL Docxnnl_ﬂot_ﬂull:
function ".bo"-(n;qh: : SQL Decimal) return SQL Decimal:
-- pragma INLINE ("abe"):

-- The following binary arithmetic operators are provided:

-- The "+" and "-" functions return a result with a scale of
-- max (Left.scale, Right.scale)
-- If the operation produces s result that is too large to
-- be represented in an object that has this scale, a
- Constraint_ Error will be raised
function "+" (lLeft, Right : SQL_Docxnal_Not_Null)

return SQL Decimal Not Null:
function "+" (lLeft, Right : SQL_D.anAl) return SQL_Docinnl:
-- pragma INLINE("+"):
function "-" (Left, Right : SQL_Dccinnl_Not_Null)

return SQL Decimal Not Null;
function "-" (lLeft, Right : SQL_Docinnl) return SQL_D.canl:
-- pragma INLINE("-");
-- The "*" function returns a result with the scale
-- Left.scale + Right.scale
== If the result is too large to be represented in an cbject
-- that has this scale, Constraint Rrror will be raised
function "*" (lLeft, Right : SQL Decimal Not_Null)

return SQL Decimal Not_ Kull:
function "*" (lLeft, Right : SQL_Doci-nl) return SQL Decimal:
-~ The "/" function returns a result with as much scale as
- poesible, given the nature of the result
~~ If the result is too large to be represanted in the
-- the underlying hardware or in an object with no scale,
-- or if an attempt is made to divide by xero, the
- Constraint Error exception will be raised
function "/” (left, Right : SQL_Docizal_pot_ﬂull)

return SQL Decimal Not_ Null:
function "/" (lLeft, Right : SQL_Docinnl) return SQL_Docinnl:

~- The following mixed mode operators are provided:

function "*" (left : SQL_p.cin.l_Fot_ﬁull: Right : SQL_Int_Fot_Null)
return SQL_pocinal_ﬁot_ﬂull:

function "*" (laft : SQL_pocin;l: Right : SQL_Int_Not_ﬁull)
return SQL Decimal;

function "*" (Left : SQL Decimal; Right : SQL Int)
return SQL Decimal;

function "*" (Left : SQL Int_Not_Null; Right : SQL_Decimal Not_Null)
return SQL_pocinal_ﬂot_ﬁull;

function "*" (Laft : SQL_Int_Fot_Full: Right : SQL Decimal)
return SQL Decimal;

function "*" (Left : SQL Int; Right : SQL Decimal)

CMU/SEI-89-TR-16

179

return SQL_D.cimal;
-- pragma INLINE ("*");

function "/" (Left : SQL Decimal Not_Null; Right : SQL_Int_Not_Null)
return SQL_| Docxmal Not Null

function "/" (Left : SQL_Docxmal; Right : SQL_Int_Not_ﬂull)
return SQL Decimal;

function "/" (Left : SQL Decimal; Right : SQL_Int)

return SQL Decimal;
-- pragma INLINE("/");

-~ The following functions convert to SQL Decimal Not Null;

function To_SQL Decimal Not Null (Right : SQL_Int_ Not_ Null)
return SQL Decimal Not_ Null;

-- the following function raises Constraint Error

- if the SQL | Doublo P:oc;sxon Not Null v;luo is too large

-- to be :eproc.ntod in BCD format

function To_SQL_Docimal_Not_Null (Right : SQLLpoublc_?roci.ion_ﬂot_ﬂull)

return SQL_pocimal_th_Null;
-- the following function raises Constraint Error
-= if there are more than MAX DIGITS number of digits;
-- if there are two or more decimal points;
-- if there are two or more sign designations;
-- if there exiats a character other than '0'..’9' or ’.'
- or '+, '~', ' ' for the sign
- if the order of the characters is anything other than
- sign designation followed by the number
function To_SQL Decimal Not Null (Right : SQL Char Not_Null)
return SQL_Pocimal_Not_ﬂull;
~- pragma INLINE(To_SQL_Docimal_Not_Null);

~~ The following functions convert to SQL_Decimal;

function To_SQL Decimal (Right : SQL Int Not _Null) return SQL Decimal;

function To_SQL_pocimal (Right : SQL_Int) return SQL Decimal;
~~ the following two functions raise Constraint Error

- if the SQL 1 Doublo Prcc;sxon Not] Null value is too large
- to be :oproccntod in BCD format

function To_SQL_Pocxmal (Right : SQL_poublo_Procilion_Not_pull)

return SQL Decimal;

funotion To_SQL Decimal (Right : SQL_poublo_P:ocision) return SQL Decimal;

~- the following two functions raise Constraint_ Error

~- if there are more than MAX DIGITS number of digits;

-- if there are two or more decimal points;

~= if there are two or more sign designations:

~- if there sxists a character other than 0'..'9' or '.’
- or '+', '~", +'' for the sign

- if the order of the characters is anything other than
- sign designation followed by the number

function To_SQL_DocimAl (Right SQL_Chat_Not_Null) return SQL Decimal;

function To_SQL Decimal (Right : SQL~ChA:) return SQL Decimal;

~- pragma INLINE(To_SQL_D.cimal);

~- The following functions counvert from Decimal to Integer
function To_SQL Int Not Null (Right : SQL Decimal Not Null)
return SQL_Int _Not_| Null;
function To_SQL Int Not Null (Right : SQL Decimal)
return SQL_Int) Not Null
-~ pragma INLINE(To_SQL_Int_Not_Null);
function To_SQL_Int (Right : SQL_pccimal) return SQL_Int;
-- pragma INLINE(TO_SQL_Int);

-- The following functions convert from Decimal to Float:

function To_SQL_Double Precision_Not_Null (Right : SQL Decimal_Not_Null)

return SQL_poublo_Pr.ci-ion_Not_Null;

180

CMU/SEI-89-TR-16

function To_SQL_Poublo_Ptoc;.;on_ﬂot_Null (Right SQL_D.cunAl)
return SQL_Doub!o_Procx-;on_Not_Null:

-- pragma INLINZ(To_SQL_Doublo_Pr-cxlxon_NoC_Null),

function To_SQL_Doublo_Procx.;on (Right SQL_DocxmAl)
return SQL Double Precision:

-- pragma INLINE(To_SQL_Doublo_Procxlxon);

-~ The following functions convert from Decimal to Strang:
function To_String (Right : SQL Decimal Not Null) return string:
function To_String (Right : SQL Decimal) return string:
~- pragma INLINE (To_String):
function To_SQL_Char Not_Null (Right : SQL_Decimal Not_Null)
return SQL_ChA:_Not_Null;
function To_SQL_Char Not Null (Right : SQL Decamal)
return SQL Char Not Null;
~-- pragma INLINE (To_SQL_ Char Not_ Null):
function To_SQL_ChA: (Raight : SQL_D.cxnnl) Teturn SQL_Cb;::
-- pragma INLINE(TO_SQL_ChA:):

-- the following functions return the length of the strang

- value returned by the “"To_Stxing"” function

function Width (Right : SQL Dec-:mal Nct Null) return integer:
-- The following function raises the Null Value Rrror exception
-— on the null input

function Width (Right : SQL _Decimal) return integer:

-- pragma INLINE (Width) .

-~ The following functions implement some of the Ada Attributes
-~ of the BCD type

~- The number of BCD digits be ‘ore the decimal point for the

-~ type of the given object:

function Intogrll_pigitl (Right : SQL_Docxnnl_Not_Null} return docxnal_dxgzt.:
functica Intcgral_bigit- (Right : SQL Decimal) return decaimal digits:

~- pragua INLINE (Integral Digits):

-- The number of BCD digits after the decimal point for the

-~ type of the given cbject:

function Scale (Right : SQL_Decimal Wot Null, revurn decimal digits;
function Scale (Right : SQL_Decimal) return decimal digits;

-- pragma INLINE (Scale)‘;

-- The actual number of BCD digits before the decimal point for

-- a given cbject of a given type:

function Fore (Right : SQL_Decimal Not Null) return positive;

-- The following function raises the Null Value Error on the null input
function Fore (Right : SQL_pocimal) return positive;

-- pragma INLINE (Fore):;

~- The number of BCD digits after the decimal point for a

~- given object of a given type:

function Aft (Right : SQL Decimal Not Null) return positive;

~~ The following function raises the Null Value Error on the null input
function Aft (Right : SQL Decimal) return positive;

-- pragma INLINE(Aft);

function Machine_Rounds (Right : SQL_D.cimal_pot_ﬂull)'roturn boolean;
function Machine Rounds (Right : SQL_Decimal) return boolean;
-- pragma INLINE(Machin._Found-):

function Machine Overflows (Right : SQL_Decimal Not_ RNull) return boolean:
function Machino_pvorflow- (Right : SQL_Docimnl) totugn boolean;
-- pragma INLINE (Machine_ Overflows);

CMU/SEI-89-TR-16 ' 181

e

generic

type With Null Type (scale : decimal digits) is limited private;
tyvoe Without Nu'l Tvve(acale : decimal digits) is limited private;

in_scale : decimal digits := 0;
first_sign : Sign_Character := ’'-';
first_integral : Numeric_String :=

(1..docimal_gigits’la-t—in_-calo => '9');
first fractional : Numoric_String =

(1..in_scale => '9'});
last_sign : ngn Chaxnctor =
last_integral : Numeric_String :=

(1..decimal digits’last-in_scale => '9');
last fractional : Numeric String :=

(1..in_scale => '9');
with function Is_In_Base (Right : Without_Null Type:
Lower, Upper : SQL_D.cimal_Not_ﬂullZ)
raturn booclean is <
with function Is_In_Base (Right : With Null Type:
lLower, Upper : SQL_pocimal_Not_pullZ)
return boolean is <;
with procedure Assign with check
(Lef:- : in out Without Null_ Type;
Right : Without Null Typo,
Lowar, Upper : SQL Decimal Not Null2)
is <>;
with procedure Assign with check
(lLeft : in out With Null Type;
Right : With Null Type
Lower, Upper : SQL_Dccimal_Not_ﬂulIZ)
is <>;
with function To_SQL_pocimal_Not_Nullz (Value : Without_ﬂull_?ypo)
return SQL_Pocimal_Not_ﬁullz is <O
with function To_SQL Decimal Not Null2 (Value : With Null Type)
return SQL | Docxmal Not | Null2 is <;

with function To _SQL_| D‘cxmnl Not Null (Value : SQL Decimal Not Null2)

return Wxthout_ﬂull_}yp. is <;)
with function To_SQL_pocimAl (Value : SQL_D-aim;l_Not_ﬂullZ)
return With Null Type is <>;

package SQL Decimal Ops is

procedure Assign (Left : in out Without_Null Type:;
Right : Without_Null Type);
procedure Assign (Left : in out With Null Type:
Right : With_Null Type):
~- pragma INLINE (Assign);
function Is_In(Right : Without Null Type)
return boolean;
funiction Is_In(Right : With N1 Type)
return boolean;
~-~ pragma INLINE (Is_In):
function With_Null (Value : Wity :_Null_Typc)
return With Null Type;
~- pragma INLINE(WLth Null);
function Without] Null (Value : With Null Type)
return Without _Null Type;
~- pragma INLINE (W:.thout Rull Type);

end SQL_P.chAl_pps,
private
-~ The requirement here is to ptovxd.
-~ at least enocugh space for the machano rcpronontntxon of the
-~ SQL Decimal Not Null operands. :
182 CMU/SEI-B89-TR-16

~- type Digit is picked to be an integer type with a range
-- that will force the Ada compiler to pack a
- pre-defined integer type from package Standard.

type Digit is range -(2*%*7).. (2%*7)-1:

-~ the following object is declared so that the true size

- (in actual number of bitse allocated) is assignec to the

-— "size" object, rather than the number of bits used of

-- t:cse which are allocated. In othexr words, using 'size

- on the type Digit yields 4 bits (nuaber bits used),

-- whereas using the 'size on "object” (of type Digit) yields
- 8 bits (number bits allocated)

object : Digit:;

-- size is the number of bits used by each object of type Dagit
-- it is used in the calculation of MAX SIZE (below)

size : constant integer := object’'size;

-~ MRAX SIZE is the number of array positions needed for the

-- Max Decimal type below

-- since each BCD digit can fit into 4 »its of storage, the

- total number of bits can be calculated by MAX DIGITS * 4:
-- this result is divided by the number of bits that an object
- of type Digit will comprise, which yields the number of
- array positions needed for the BCD number

~- the result is incremented by one to accomodate the sign

MAX SIZP : constant integer := ((4 * (MAX_DIGITS)) / size) + 1;

-- Max Decimal is the array type definition used by the
- SQL Decimal Not Null type definition (below) to allocate maximum
-- storage for its BCD value

type Max Decimal is array (1..MAX_SIZR) of Digit;

-~ SQL Decimal Not Null is the Ada BCD type. It is comprised of a BCD
- value which resides in an ocbject which reserves maximum

-- space for BCD values, and a scale which indicates how

- many digits exist to the right of the decimal point in the

- BCD value

type SQL Decimal Net Null (scale : decimal digits := 0) is record
Value : Max Decimal;
end record;

type SQL_Decimal Not Null2 (scale : decimal digits := 0) is record
Value : Max Decimal;
end record;

type SQL Decimal (scale : decimal digits) is record
Is_pull : boolean := true;
Value : SQL Decimal Not Null (scale);

end record; -

SQL_P.cimal_Pkg;

CMU/SEI-83-TR-16

183

C.19 SQL Decimal_Pkg Body

with text_ io; use text io;

with unchecked conversion;

+ith SQL Exccpt;ons,

with SQL_Standard:

package body SQL Decimal Pkg is

-~ the following type is used to corvert all other integer

-- types to the underlying hardware integer representation
-- used by the computer to convert between integers

- and packed decimal numbers

type BCD_Int_Type is range - (2**31)..(2**31)-1;

Null value Error : excepticn renames SQL Exceptions.null value_error;

packago fio is new float _io(float); use fio;

package SQL DPNN ioc is new float_;o(SQL_Doublo_Proci-ion.ﬂot_Null);

use SQL_pPNN_;o;
use SQL_Standard.Charactcr_Sot;

-~ interfaced assembler routines

-- this procedure converts the integer in Right to a BCD value
procedure integer_to_decimal (Value : in ocut Max Decimal;
Right : BC™_Int Type);
pragma interface (assembler, integer_to doc;mal),
pragma import_ procedure (integer to_ doc;mal "I2D",
(Max_poc;mal BCD_Int_Type),Reference);

-~ thisé procedure converts the BCD value in Right to an integer
procedure decimal to_integer (Value : in out BCD_Int_T;pe;
Right : Max Decimal;
error : inm out boolean);
pragma interface (asrembler, decimal to_intajer);
pragma import_procedure (decimal to_integer, "D2I",

(BCD_Int_Typo,Max_pocimal,boolonn),Rcforonco);

-- this procedure converts a string representation of a BCD value

- into a BCD value

procedure numeric_string to decimal (Value : in out Max Decimal;
Right : SQL_Char Not Null);

pragma interface (assembler, numeric_string_to_decimal);

pragma import_procedure (numeric_string to_decimal, "NS2D",
(Max_pocimal,SQL_Char_Not_ﬁull),
Refarence);

-- this procedure converts a BCD value to a string representation

- of that value

procedure decimal to_numeric_string (Value : in out SQL Char Not Null;

Right : Max Docxmal),
pragma interface (assembler, docimal_po_numorzc_ct:xng),
pragma import_ procedure (docimal_;o_pum.ric_atzing,"DZNS",

(SQL_Char_ﬂot_ﬂull,Max_Docimal),R.foronco);

-~ this procedure returns the number of leading zerces in the
- first "integ" digits of the BCD value
procedure leading_zeroces (Value : Max Decimal;
inteqg : integer;
digs : in out integer);
pragma interface (assembler, leading_zeroces)’
pragma import_procedure (leading_zerces, "LZ",

184

CMU/SEI-89-TR-16

(Max_Decimal, integer, integer),
Reference) ;

~- this procedure returns the number of trailing zeroces in the
-- last "scal" digits of the BCD value
procedure trailing zerces (Value : Max Decimal;
scal : decimal digits;
digs : in out integerx):
pragma interface (assembler, trniling_zoroos);
pragma import procedure (trailing zerces,K "TZ",
(Mag_Dccimal, docimal_digitc,
integer), Reference);

-- this procedure interpret= the sign of the BCD value, and
-- negates it
procedure inverse (Valus : in out Max Decimal;
Right : Max Decimal);
pragma interface (assembler, inverse);
pragma import procedure (inverse, "INV",
(Max_D.cimal,Max_Docimal),
Referencae);

== this procedure returns the absolute value <f the BCD value
procedure absv (Value : in out Max Decimal;
Right : Max Decimal):
pragma interface (assembler, abav);
pragma import procedure (absv, "ABSV",
(Max Dacimal, Max Decimal),
Reference) ;

-~ this procedure shifts the input value by "scale" poisrs of 10
~=- if "scale" is positive, the shift is left; else the shift is

-- right .
procedure shft (Result : out Max Decimal;
Value : Max Decimal;
scale : integer;
error : in out boolean):;

pragma interface (assembler, shft);

pragma import_ procedure (shft, “SHFT",
(Nax_Docimnl,Max_Docimal,intog-:,booloan),
Reference);

—= this procedure determines if left and Right are equal
procedure equal (Left, Right : Max Decimal;
result : in out boolean);
pragma interface (assembler, equal);
pragma import procedure (equal, "EQ",
(Mnx_Docimal,Max_Dccimal,booloan),
Reference) ;

== this procedure determines if lLeft is < Right
procedure less_than (Left, Right : Max Decimal;
result : in out boolean);
pragma interface (assembler, less than):;
pragma import procedure (1-.-_;ha;,"LT",
(Max_Docimal,Max_Docimal,booloan),
Refarence);

== this procedure determines if Ieft > Right
procedure greater_than (Left, Right : Max Decimal;

result : in out boolean):
pragma interface (assembler, greater_than);
pragma import procedure (greater than, "GT",

CMU/SEI-89-TR-16

185

{Max Decimal, Max_Decimal,boclean),
Reference);

-- thisz procedure determines if Left <= Right
procedure less_than equal (Left, Right : Max Decimal;
result : in out boolean);
pragma interface (assembler, less_than_equal)’
pragma import_ procedure (loc-_phan_’qual,"LEQ",
(Max_pocimal,Max_P.cimnl,bool.ln),
Reference);

-- this procedure determines if Left >= Right
procedure greater_ than equal (Left, Right : Max Decimal;
result t in out boolean);
pragma interface (assembler, greater_than_equal);
pragma import procedure (greater_ than equal, "GEQ",
’ {Max Decimal, Max Decimal, 6 boclean),
Reference);

-~ this procedure adds Left and Right, and stores the result
- in Result
-- the "error" booclean is set to true on overflow
procedure add (Result : in out Max_pocimal;
Left, Right : Max Decimal;
error : in out boolean)’
pragma interface (assembler, add);
pragma impott_procoduro (add, "ADD",
(Mag_Docimal,Max_Docimal,
Max_Docimal,boeloan),Roforcnc.);

-- this procedure subtracts Right from Left, storing the
- result in Result
-- the "error" booclean is set to true on overflow
procedure subtract (Result : in out Max Decimal;
Left, Right : Max Decimal;
error : in out boolean);
pragma interface (assembler, subtract):;
pragma import_procedure (subtract,"SUB",
(Max_pceimal,MA;_Docimal,
Nag_Docimal,hooloan),Roforcnco);

~- this procedure multiplies Left by Right, and stores the
- result in Result
-- the "error" booclean is set to true on overflow
procedure muliiply (Result : in out Max Decimal;
Left, Right : Max Decimal;
error : in out boolean);
pragma interface (assembler, multiply):
pragma import procedure (multiply, "MUL",
(Ma;_Docim:l,Max_Docimal,
Max Decimal,boolean),Reference);

-- this procedure divides left by Right, storing the result
- in Result
procedure divide (Result : in out Max_D.cimal:
left, Right : Max Decimal;
Shift : in out integer;
error : in out boolean):;
pragma interface (assembler, divide);
pragma impo:t_p:ocoduxo (divide, "DIV",
(Ma;_Docimal,Nag_Docimal,
Max Decimal, integer,boolean),
Reference) ;

186

CMU/SEI-BS-TR-16

function max (Left, Right : docima;_digits) return
decimal digits is
begin
if Left >= Right then
return Left;
else
return Right;
end if;
end max;

function To_SQL_pocimal_Not_ﬂull (Value : SQL Decimal Not_Null2)
return SQL_pocimal_Not_ﬂull is

begin
return (Value.scale, Value.Value):

end To_SQL Decimal Not Null;

function To_SQL_pocimal (Value : SQL_pocimal_ﬂot_NullZ)

return SQL Decimal is
begin

return (Value.scale, False, To_SQL_pocimal_Not_ﬂull(Valuc));
end To_SQL Decimal;

function To_SQL Decimal Not_ Null2 (Value : SQL Decimal Not Null)
return SQL_pocimal_ﬁot_Null2 is

begin
return (Value.scale, Value.Value):;

end To_SQL Decimal Not Null2;

function To_SQL_p.cimal_Not_NullZ (Value : SQL Decimal)
return SQL Decimal Not Null2 is
begin
if Value.Is_Null then
raise null value_error;
else
return To_SQL Decimal Not_ Null2(Value.Value):;
aend if;
end To_SQL_p.ciaal_Not_NullZ;

function Null_ SQL Decimal return SQL Decimal is
Null Holder : SQL Decimal(0):;

begin
return Null Holder;

end Null_SQL Decimal;

function Shift (Value : SQL‘Docimal_Not_Null;
Scale : integer) return SQL Decimal Not_ Null is
Holder : SQL Decimal Not Null := Value;
error : boolean := false:;
begin
shft (Holder.Value, Value.Value, Scale, errorx);
if error then
raise Constraint_ Error;
end if;
return Holder;
end SLift;

function Shift (Value
Scale

SQL Decimal;
integer) return SQL Decimal is

begin
if Valuo.Il_ﬁull then
return Null_SQL_Docimal;

CMU/SEI-89-TR-16 187

else
return (Value.scale, False, Shift (Value.Value, Scale)):
end if;
end Shift;

function Zerc return SQL_Docimal_Not_ﬂull is
begin

return To_SQL Decimal Not_ Null(0);
end Zero;

function Zero return SQL Decimal is
begin

reaturn (0, False, Zero);
end Zero;

function One return SQL_Docimal_ﬂot_Null is
begin

return TO_SQL Docimal_Not_Null(l);
end One; -

function One return SQL_Docimal is

begin
return (O, False, One):
end One:
procedure Anlign_ﬁith_chock (Left : in out SQL_Docimal_Not_Null;

Raight : SQL_pocimal_Not_Null;
Lower, Upper : SQL_D.cimal_Not_NullZ) is
Holder : SQL Decimal Not Null;
error : booclean := false;
begin
if Right >= To_SQL_pccimal_Not_Null(Lowor) and then
Right <= To_SQL_pocimal_Not_Null(U;por) then
if not (left _scale = Right.scale) then
shft (Holder.Value, Right.Value, (Left.scale - Right.scale),
error):;
left . Value := Holder.Value;
else
Left := Right;
end if;
ealse
raise Constraint Error;
end if;
end Assign With Check;

procedure Assign_with_check
(Left : in out SQL Decimal;
Right : SQL_p-cimAl;
Lower, Upper : SQL Decimal Not_ Null2) is
Holder : SQL*DQcimal_Not_Null;
error : boclean := false:
begin
if Right.Is_Null then
Left.Is Null := Truae;
else
if Right.Value >e= To_SQL_pccimal_Not_ﬂull(Lov.r) and then
Right .Value <= To_SQL Decimal Not Null (Upper) then
Left.Is Null := False;
if not (left.Value.scale = Right.Value.scale) then
shft (Holder.Value, Right.Value.Value,
(Left .Value.scala - Right.Value.scale),
error) ;
left.Value.Value := Holder.Value;

188 CMU/SE!I-89-TR-16

—

elae
Left .Value := Right.Value;
end if;
else
raise Constraint Error;
end if;

end if;
end Assion_with check:

digs : integer;
Holder : SQL_pocimal_Not_Null;
error, result : boolean := false;
begin
if Left.scale /= Right.scale then
digs := abs(integer(Left.scale - Right.scale)):
if Left.scale > Right.scale then
shft (Holder.Value, Right.Value, digs, erzor);
if error then
return False;
and if;
equal (Left.Valiue, Holdsr.Valus, rssult):
alse
shft (Holder.Value, Left.Value, digs, error);
if error then
return False;

end if;
equal (Holder.Value, Right.Value, result);
end if;
else
equal (Left.Value, Right.Value, result);
end if;
return result;
eand "=";

function "=" (Left, Right : SQL Decimal)
return boolean is
begin
if Left.Is Null or else Right.Is_Null then
return False;
ealse
if (Left.Value = Right.Value) then
return True;
else
return False;
end if;
end if;

end "=

function Equals (Left, Right : SQL Decimal)
return Boolean With Unknown is
begin - -
if Left.Is Null or else Right.Is_Null then
return Unknown;
else
if (Left.Value = Right.Value) then
return True;
else
return False:
end if;
end if;
end Equals:

€.~ .cion "=" (Left, Right : SQL Decimal Not Null) return boolean

is

CMU/SE!I-89-TR-16

o I - .

189

function Not_Equals (Left, Right : SQL_p-cimAl)
return Boolcan_ﬂith_pnknovn is
begin
if Left.Is_Null or else Right.Is Null then
return Unknown;
else
if (Left.Value /= Right.Value) then
return True;
else
return False;
end if;
end if;
and Not_Equals;

function "<" (Left, Right : SQL_pocimal_Not_ﬂull) return booclean is
digs : integer;
Holder : SQL_Decimal Not_Null;
error, result : boclean := false;

begin
if Left.scale /= Right.scale then
digs := abs(integer(left.scale - Right.scale));
if Left.scale > Right.scale then
shft (Holder.Value, Right.Value, digs, error):
if arror then
if Right > Zero then
return True;
else
return False;
end if;
end if;
less_than (Laft.Value, Holder.Value, result);
ealse
shft (Holder.Value, lLeft.Value, digs, error);
if error then
if Left < Zero then
return True;
else
return False;
eand if;
end if;
less_than (Holder.Value, Right.Value, result):
end if;
else
lo.-_phan (L.aft.Value, Right.Value, result);
end if;
return result;
end "<";

function "<" (L.eft, Right : SQL Decimal)
return boolean is
begin
if Left.Is_Null or else Right.Is Null then
return False;
else
if (Ieft.Value < Right.Value) then
return True;
else
return False;
and if;
end if;
end "<";

function "<" (Left, Right : SQL_p.cimal)

190 CMU/SEI-B9-TR-16

aE am - e

]

return Boolean With Unknown is
begin
if Left.lIs Null or elase Right.Is Null then
return Unknown;
else

if (Left.Value < Right.Value) th .
return True;
else
return Filse;
end if:
eand if;
end "<";

function ">" (Left, Righi : SQL Decimal Not Null) return boolean is
digs : integer;
Holder : SQL Decimal Not Null;
error, result : boclean := false;
begin
if Left.scale /= Right.scale then
digs := abes(intege-(Left.s:ale - Right.scale)):
if Left.scale > Riyat.scale then
shft (Holder.Value, Right.Value, digs, error);
. exrror then
if Right < 2ero then
return True;
else
return False;
end if;
end if;
g eater_than (Laft.Value, Holder.Value, result);
elae
shft (Eclder.Value, Left.Value, digs, error);
if error then
if Left > Zero then
retu.mn True:

else
return False;
end if;
end if;
greater than (Holder.Valu¢, Right.Value, result):
end if;
else
greacer than (Left.Value, Right.Value, result);
end if;
return result;

and ">" ;

function ">" (Left, Right : SQL_Decimal)
r1eturn boole1n is
begin
if Left.Is_Null or else Right.Is_Null then
return False;
alse
if (Left.Value > Right.Value) then
return True:;
else
return False:
end if;
end if;
and ">";

function ">" (lLeft, Right : SQL Decimal)
return Booloun_"ith_onknown is

CMU/SEI-89-TR-16 191

begin
if Left.lIs Null or else Right.Is Null then
roturn-bnknOWn;
else ’
if (Left.Value > Right.Value) then
return True;
else
return False;
end if;
end if;
.nd n>n :

function "<=" (Left, Right : SQL Decimal Not Null) return boolean
digs : integer;
Holder : SQL Decimal Not_Null;
error, result : booclean := false;
begin
if Left.scale /= Right.scale then
digs := abs(integer(left.scale - Right.scale));
if Left.scale > Right.scale then
shft (Holder.Value, Right.Value, digs, errer);
if error then
if Right > Zero then
return True;
else
return Falrae;
end if;
end if;
less_than equal (Left.Value, Holder.Value, result);
else
shft (Holder.Value, left.Value, digs, error);
if error then
if Left < Zero then
return True;
else
return False;
end if;
end if;
less_than_equal (Holder.Value, Right.Value, result);
end if; -
else
less_than equal (Left.Value, Right.Value, result);
end if;
return result;
end "<=";

function "<=" (Left, Right : SQL Decimal)
return boolean is :
begin
if Leaft.Is Null or else Right.Is Null then
return rs-lse;
else
if (Left.Value <= Right.Value) then
return True;
else
return False;
end if;
end if;
end "<=";

function "<=" (Left, Right : SQL_pocimAl)
return Boolcan_ﬁith_ﬂnknown is "5 ¢
begin

is

192 i CMU/SEI-89-TR-16

if Left.Is_Null or else Right.ls_Null then
return Unknown;
else
if (Left.Value <= Right.Value) then
return True:;
elss
return False:
eand if;
end if;
end "<=";

function ">=" (Left, Right : SQL Decimal Not Null) return boolean is

diga : integer:

Holder : SQL Decimal Not_Null;

erxor, result : boolean := false:
begin

if Left.scale /= Right.scale then

digs := abs(integer(left.scale - Right.scale)):

if Left.scale > Right.scale then

shft (Holder.Value, Right.Value, digs,

if error then
if Right < Zero then
return True;
else
return False;
end if;
end if;

greater_than equal (Left.Value, Holder.Value, result):

else

shft (Holder.Value, Left.Value, digs,

if error then
if Left > Zeroc then
return True;

else
return False;
end if;
end if;
greater_than equal (Holder.Value, Right.Value, result);
end if;
else
greater_than equal (Left.Value, Right.Value, result):;
end if;
return result;
.nd ">=" '.

function ">=" (Left, Right : SQL Decimal)
zeturn boolean is -
begin
if Left.Is_Null or else Right.Is Null then
return False;
else
if (Left.Value >= Right.Value) then
return True;
else
retuzrn False;
end if;
end if;
eand ">e";

function ">e" (Left, Right : SQL Decimal)
return Boolcan_ﬁith_onknovn is

begin
if Left.Is_Null or else Right.Is_Null then

CMU/SE!-89-TR-16

193

return Unknown;
ealse
if (Left.Value >= Right.Value) then
return True;
else
return False;
end if;
and if;
end "D>=";

function Is_In_Base (Right : SQL_Decimal Not Null;
Lower, Upper : SQL Decimal Not_ Null2)
return boolean is
begin
if Right >= To_SQL Decimal Not_Null(Lower) and then
Right <= To_SQL Decimal Not_ Null (Upper) then
return True;
else
return False’
end if;
end I._In_ﬁa-o;

function Is_In Base (Right : SQL Decimal:
Lower, Upper : SQL Decimal Not_Null2)
return boolean is
begin
if Right.Is_Null then
return True’
else
if Right.Value >= To_SQL_Decimal Not Null (Lower) and then
Right .Value <= To_ SQL Decimal Not_Null (Upper) then
return True:
else
return False’
end 1if;
end if;
end Is_In_Base;

functicn Is_Null (Value : SQL Decimal) return boclean is
begin

return Value.ls Rull;
eand Is_Null:

function Not_Null(Value : SQL Decimal) return boolean is
begin

Teturn not Value.ls Null;
end Not_RNull;

function "+" (Right : SQL_Docinnl_Not_Null) return SQL_P.cinal_Not_Null is
begin
return Right;

end "+";
function "+" (Right : SQL Decimal) return SQL Decimal is
begin .
return Right;
‘nd "+N;

function "-" (Right : SQL_pocimnl_pot_ﬂull) return SQL Decimal Not Null is
Value : Max Decimal; -

begin
inverse (Value, Right.Value);
return (Right.Scale, Value);

CMU/SEI-B9-TR-16

- N e N I D S W EE T e my am an & i Nam aE .

.“d_ nom

function "-" (Right : SQL Decimal) return SQL Decimal 1is
begin
if Right.Is Null then
return Null_SQL_Docinnl;
else
return (Right.scale, False, -(Right.Value)):
end if;
and "-";

function "abs" (Right : SQL_pocimnl_Not_Null) return SQL Decimal Not Null is
Value : Max Dacimal;

begin
absv (Value, Right.Value),
return (Right.Scale, Value):

end "abs";

function "abs" (Right : SQL Decimal) return SQL_Docimnl is
begin
if Right.Is Null then
return Null_SQL“pocimal;
else
return (Right.scale, False, abs(Right.Value)):
end if;
end "abs";

function "+" (Left, Right : SQL Decimal Not_ Null)
return SQL Decimal Not Null is
digs : integer;
Result, Holder : SQL_pocimal_Not_ﬂull;
error : booclean := false;
begin
if Left.scale /= Right.scale then
digs := abs(integer(left.scale - Right.scale));
if Left.scale > Right.scale then
Holder := Right;
add (Result.Value, lLeft.Value, Shift (Holder, digs) .Value,
error);
else
Holder := laft;
add (Result.Value, Shift (Holder, digs).Value, Right.Value,

error);
end if;
else
add (Result.Valce, Left.Value, Right.Value, error):;
end if;

if error then
raise Constraint_ Error;

else
return (max(Left.scale,Right.scale), Result.Value);
and if;
and "+";
function "+" (Left, Right : SQL Decimal)
return SQL Decimal is
begin

if Left.Is_Rull or else Right.Is Null then
return Null SQL Decimal;
else = =
return (max(Left.scale, Right.scale), False,
(Left .Value + Right.Value));
end if;

CMU/SEI-89-TR-16 195

end "+";

function "-" (Left, Right : SQL_Docimal_Not_Null)
return SQL_pccimal_Not_Null is
digs : integer;
Result, Holder : SQL_pocimal_ﬂot_Null;
error : booclean := false;
begin
if Left.scale /= Right.scale then
digs := abs(integer (Left.scale - Right.scale));
if Left.scale > Right.scale then
Holder := Right;

subtract (Result.Value, Left.Value, Shift (Holder, digs) .Value,

exrror);
else
Holder := left;
subtract (Result.Value, Shift (Holder, digs).Value,
Right.Value, error):;
end if;
else
subtract (Result.Value, Left.Value, Right.Value, error);
end if;
if error then
raise Constraint Error;

else
return (max(Left.scale,Right.scale), Result.Value);
end if;
end "-";
function "-" (Left, Right : SQL_pocimal)
return SQL_pocimal is
begin

if Left.Is_Null or else Right.Is Null then
return Null SQL Decimal;
else
return (max{lLeft.scale, Right.scale), False,
(left .Value - Right.Value));
end if;
and u_n’.

function "*" (Left, Right : SQL_Docim;l_ﬁot_ﬂull)
return SQL Decimal Not Null is
Result : SQL Decimal Not Null;
error : boolean := false;
begin
if (Left = Zero) then
return Left;
elsif (Right = Zero) then
return Right;
and if;
if (Left.scale + Right.scale) > decimal digits’last then
raise Constraint Error;
end if; -
multiply (Result.Value, left.Value, Right.Value, error):;
if error then
raise Con-traint_xrror:
end if;
return ((Left.scale + Right.scale), Result.Value);
and "*";

function "*" (Left, Right : SQL Decimal)
return SQL_Decimal is
begin
196 CMU/SEI-89-TR-16

- N g W T aE o Ph EE am e

- An = I E D B T

if Left.Is_Null or else Right.Is Null then
return Null SQL Decimal:
else
if Left.Value = Zero then
return Left;
elsif Right.Value = Zero then
return Right;
else
return ((Left.scale + Right.scale), False,
(Left.Value * Right.Value));
end if;
end if;
and u'n'.

function "/" (Left, Right : SQLLpocimal_ﬂot_ﬁull)
return SQL_pccinal_Not_Null is
prec : decimal digits := decimal digits(decimal digits’last);
Left_digs, Right_digs, Result digs : integer;
Right Scale, Result Scale : integer;
Right Holder, Result Holder : SQL Decimal Not_ Null:;
error : boolean := false,
begin
if (Left = 2Zero) then
return Left;
end if;
Right Holder := Right;

-~ shift the BCD value in Right_Holder all the way to the
-- right, eliminating trailing zerces

-- adjust the scale accordingly

~- this will help to yield a result of maximum precision

trailing_zerces (Right_ Holder.Value, prec, Right_digs);
if Right_digs = decimal digits’last then
raise Constraint Error;
else
Right_digs := -Right_digs’
Right_Holder := Shift (Right Holder, Right_digs):
Right_scale := Right.scale + Right_digs’
end if;

-~ perform divide operation

divide (Result_Holder.Value, Left.Value,
Right_Holder.Value, Left_digs, error):;

if error then
raise Constraint Error;
end if; hod

-- if the scale of the result is ocutside the bounds of
-~ the available precision, shift the result left or
- right, accordingly

Rc-ult_pcalo := Left.scale - Right_’calo + Loft_dig-;

if Result_scale > decimal digits’last then
Result digs := decimal digits’last - Result_scale;
Result_scale := decimal digits’last;
Result Holder := Shift (Result Holder, Result digs);

elsif Result Scale < 0 then
Result Holder := Shift (Result Holder, abs(Result_Scale)):
Result Scale := 0;

end if;

CMU/SEI-89-TR-16

197

return (docimal_digito(Ro.ult_.calo), Ro-ult_ﬂoldor.Vlluo);‘

and "/n’.

function "/"

(Left, Right SQL Decimal)

return SQL_Docimal is

begin

if Left.Is_Null or else Right.Is_Null then
return Null SQL Decimal;

else

return ("/"(Left.Value, Right.Value) .scale, False,

end if;
.nd n/n;

function "*

(Left.Value / Right.Value));

(left SQL_P.cimnl_Not_Null; Right SQL_Int_pot_Null)

return SQL_pocimnl_yot_ﬂull is

begin

return (Left * To_ SQL Decimal Not_ Null(Right}):;

end "*'";

function "*"

(Laft SQL Decimal; Right SQL_Int_Not_ﬂull)

return SQL Decimal is

begin

if Left.Is_Null then

return
else
return
end if;
.nd n.u;

function "*"

Null_SQL_PocimAl;

(Left .scale, False, (Left.Value * Right));

(Left SQL Decimal; Right SQL Int)

return SQL_pocimal is

begin

if Left.Is_Null or else Is_Null(Right) then

return
ealse
return

end if;
.nd n*"'.

function "*"

Null SQL Decimal;

(Left .scale, Falsa,
(Left.Value * Without_ Null Base(Right))):

(Left : SQL_Int_Not_pull; Right : SQL_pccimal_ﬁot_ﬁull)

return SQL_pocimal_ﬂot_Null is

begin

return (To_SQL_pocimnl_Not_ﬂull(Loft) * Right);

end n'n;

function "=*"

return SQL_pocimal is

begin

(Left : SQL_Int Not_Null; Right : SQL Decimal)

if Right.Is Null then
return Null_SQL Decimal;

else
return
end if;
and u'u;

function "=%"

(Right.scale, False, (Left * Right.Value));

(Left : SQL Int; Right : SQL Decimal)

return SQL Decimal is

begin

if Right.Is Null or else I-_ﬂull(Loft) then

return
else

Null_SQL_Docimnl;

198

CMU/SEI-B9-TR-16

GE N - R D D N A e T

return (Right.scale, False,
(Without_ﬂull_Ba-o(Laft) * Right.Value));

end if;

and "*";

function "/" (Left : SQL Decimal Not Null; Right : SQL Int Not Null)
return SQL_pocimal_Not_ﬁull is

begin
return (Left / To_SQL Decimsl Not_ Null (Right));

end "/";

function "/" (Left : SQL Decimal; Right : SQL Int Not_ Null)
return SQL_pocinal is
begin
if Left.Is_Null then
return Null_SQL_Docimal;
else
return ("/" (Left.Value, Right).scale, False,
(Left .Value / Right)):

end if;

‘nd "/ll;

function "/" (Left : SQL Decimal; Right : SQL Int)
return SQL_pocimAl is

begin

if cht.I._Null or aelse I-_Null(Right) then
return Null_SQL_Docimal;
else
raturn ("/" (Laft.Value, Without_ﬂull_pa-o(night)).-calo,
False, (Left.Value / Without Null Base(Right))):;
end if;
end "/";

function To_SQL_Decimal Not_Null (Right : SQL_Int_Not_Null)
return SQL_pocimal_ﬂot_ﬂull is
Holder : SQL Decimal Not Null;

begin
integer_to_decimal (Hclder.Value, BCD_Int_Type(Right));
return Holder;

end To_SQL Decimal Not Null;

function To_SQL_Decimal Not Null (Right : SQL_Doublo_Prociaion_ﬂot_ﬂull)
return SQL Decimal Not Null is
Value : Max Decimal;
Scale : decimal digits;
prec : integer := SQL Double_ Precision Not_ Null'digits;
exp : integer;
temp string : string(l..prec+6);
Number_String : SQL Char Not Null(l..decimal digits’last+l) :=
(1 => '+’, 2..decimal digits’last+l => '0');
begin -
put (to => temp_string,
item => Right,
aft => prec - 1,
exp => 3);
exp = integer’value(temp string(prec+4..prec+€));
temp_string(3..prec+l) := temp string(4..prec+2);
if exp < prec-l1 then
if exp-prec+l < -(decimal digits’iast) then

raise Constraint Erxror;
else
Scale := abs({exp - (prec - 1))

"CMU/SEI-89-TR-16 199

Number_ String(decimal digits’last+2-prec..
decimal digits’'last+l) :=
To_SQL_ChA:_Not_Null(tomp_-tring(z..proc+1));
end if;
else
if exp > decimal digits’last-1 then
raise Constraint_ Error;
else
Scile = 0;
Rumber_ String(decimal_digits’'last+l-exp..
decimal digits’last-exptprec) :=
To_SQL_Char Not_ Null (temp_string(2..prec+l));

end if;
end if;
if temp string(l) = '-’ then
Number String(l) := '-';
end if;

num.ric_ct:ing_;o_docim‘l (Value, Number_ String):
return (Scale, Value):;
end To_SQL_pccimal_ﬂot_Null;

function To_SQL_Docimal_Not_Null (Right : SQL Char Not_Null)
return SQL Decimal Not_Null is .
temp : SQL Char Not Null(l..decimal digits’last+l);
frst, lst, indx, lngth : integer;
temp_scale : decimal digits := 0;
decimal found : booclean := false;
Value : Max Decimal;
begin
lst := Rioht’length;
if Right(l) = '-’ or else Right(l) = '+’ then
temp (1) := Right(l);
frat := 2;
elsif Right(l) = ' ’ then
temp (1) := '+/;
frat := 2;
else
temp(l) = '4/;
frst := 1;
end if;
lngth := 1;
for indx in frst..lst loop
ingth := lngth + 1;
if Right(indx) = ’.’ then
if docimal_ﬁound then
raise Constraint Error;
else
docimal_found = true;
temp scale := decimal digits(lst -~ indx):;
lngth := lngth - 1;

end if;
elsif ((Right(indx) = ‘0’') or else
(Right (indx) = '1’) or else
(Right (indx) = '2’) or else
(Right (indx) = '3’) or else
(Right (indx) = '4’) or else
(Right (indx) = 'S’) or else
(Right (indx) = '6’) or else
(Right (indx) = '7’') or else
(Right (indx) = '8‘) or else
{(Right (indx) = '9’)) then
temp (lngth) := Right (indx);
else

200

CMU/SEI-89-TR-16

raise Constraint Error;
end if;
end loop;
if lngth < decimal_digits’last+l then
temp := temp(l..1l) & (2..decimal digits’last+2-lngth => ‘'0') &
temp (2..1lngth);
end if;
numeric_string to_decimal (Value, temp);
return (temp scale, Value);
end To_SQL_pocim;l_ﬂot_ﬂull;

function To_SQL Decimal (Right : SQL Int Not Null) return SQL Decimal is
begin

return (0, False, To_SQL Decimal Not Null(Right));
end To_;QL_pocimal;

function To_ SQL Decimal (Right : SQL Int) return SQL Decimal is
begin
if Is_Null (Right) then
return Null_SQL_Docimal;
else
return (0, False, To_SQL Decimal Not Null(
Without Null Base(Right))):
end if;
end To_SQL_pocimal;

function To_SQL Decimal (Right : SQL_Doublo_Proci-ion_ﬂot_ﬂull)
return SQL Decimal is
begin
return (To_SQL Decimal Not_ Null(Right) .scale, False,
To _SQL | Doc;mal Not Null (Right)):
end To_SQL_Dochal

function To_SQL Decimal (Right : SQL Double_Precision) return SQL Decimal is
begin
if Is_Null (Right) then
return Null SQL Decimal;
else
retumn (To SQL Decimal _Not Null(Wxthout Null Bano(R;ght)) scale,
Flll‘, TTo _SQL | Doc;mal Not Null(Wzthcat Null Base(Right))):
end if;
end To_SQL_pocimal;

function To_SQL Decimal (Right : SQL Char Not Null)
return SQL Decimal is
begin
return (To_SQL_p.cimal_Not_Null(Right).-calo, False,
To_SQL_Docimal_Not_Null(Right));
end To_SQL_pocimal;

function To_SQL_Docimal (Right : SQL_Char)
return SQL Decimal is
begin
if Is_Null (Right) then
return Null SQL Decimal;
else
return (To_SQL_pccimal_ﬂot_pull(Hithout_ﬁull_pa..(Right)).-calo,
False, To SQL Decimal Not Null (Without Null Base (Right))):
end if; - - - - - -
end To_SQL Decimal;

procedure Assign_To_SQL Decimal (bound : in out SQL Decimal Not Null2;
sign : Sign_Character;

CMU/SEI-89-TR-16

201

integral, scale : Numeric_String:’
in_.calo : decimal digits) is
subtype new_char is SQL_ChA:_Not_Null(l..intogrul’l-ngtb+-c;lo’lcnqth);
Length : integer := integral’length + scale’length;
Numbcr'String : SQL_Chax_Not_Null(l..Longth+2);
function unc is new unchockod_convorcicn (source => Numotic_string,
target => new_char);
begin
if Length > decimal digits’last then
raise CQn-traint_Frror;

end if;

Number String := unc(integral & scale) & "00";

if sign = ‘-’ then

Number String(l..Length+2) := "-" &

Numbo:_String(l..Longth-in_scalo) &
"." &
Number_ String(Length-in_scale+l..Length);

else

Number String(l..Length+2) := "+" &

Numbcr_String(l..Lcngth—in_-calo) &
ALY 4
Numbor_String(L-ngth—in_-calo+1..Lcngth);

end if;

bound := To_SQL_pocimal_Not_ﬂullZ(

To_SQL_pocimnl_ﬂot_Null(Numboz_String));
end As-ign_?o_SQL_Docimal;

function To_SQL_Int_pot_Null (Right : SQL Decimal Not_ Null)
return SQL_Int_Not_Null is
Holder : BCD_Int_Type;
Decimal Holder : SQL_pocimal_Not_ﬂull:
error : boolean := false;
begin
if Right.scale > 0 then
Decimal Holder := Right;
dccimnl_}o_}ntogor(Boldor, Shift (Decimal Holder,
-integer (Right.Scale)) .Value, aerror);
else
d.cinl;_tq_intogo:(Boldo:, Right .Value, error);
end if;
if error then
raise Constraint Error;
ealse
return SQL_}nt_Nat_Null(Holdo:);
and if;
end To_SQL_Int_Not_Null;

function To_SQL Int Not Null (Right : SQL_Decimal)
return SQL_;nt_pot_pull is
begin
if Right.Is_Null then
raise Null Value_ Error;
else
return To_SQL_Int_Not_ﬂull(Right.V;luo);
end if;
end To_SQL_Int_pot_ﬂull;

function To_SQL_Int (Right : SQL_pocimal)
return SQu Int iz
baegin
if Right.Is Null then
return Null SQL Int:
else

CMU/SEI-89-TR-16

return Witb_Null_Ba-.(To_SQL_Int_Not_ﬂull(Right.Valuo));
end if;
and To_SQL_Int;

function To_SQL_Doublo_Procition_ﬂot_ﬂull (Right : SQL_Decimal Not Null)
return SQL Double Precision Not Null is
indx, lngth : integer;
Numb.r_st:ing : SQL_Cha:_Not_ﬂull(l..dccim;l_digitl’la-t+1);
temp holder : integer;
prec : integer := SQL Double Precision_Not Null’'digits;

begin
decimal to_numeric_string (Number_ String, Right.Value);
indx := 2;
while ((indx < decimal digits’last+2) and then
(Number_String(indx) = ’0’)) loop
indx := indx + 1;
end loop;

if indx = decimal digits’last+2 then
return 0.0;

end if;
if indx < decimal digits’last+3-prec then
temp_holder := integer’value(To_String (Number String(

indx. .indx+prec-1)));
lngth := prec-1;
else
temp_holder := integer’value (To_String(Number_ String(
indx..decimal digits’'last+l))):;
Ingth := decimal digits’last+l-indx;

end if;

if Number String(l) = ’'-' then
temp holder := -temp_holder;

end if;

if Rigit Scale = 0 then
return (SQL Double Precision_Not Null (temp holder) * (10.0 ** (
decimal digits’'last + 1 - indx - lngth))):
else
return (SQL_Doublo_?rcciaion_ﬂot_ﬂull(tomp_poldcr) * (10.0 =~
(docim.l_ﬁigit-’la-t + 1 - indx - lngth - integer(Right.acale)))):
end if;
end To_SQL_poublo_?:ociaion_ﬂot_ﬂull:

function To_SQL_Doublo_Pr-cicion Not Null (Right : SQL _Decimal)
return SQL_pcublo_Procision_Ebt fall iae
begin -
if Right.Is_Null then
raise Null Value_ Error:
else
return To_SQL_Doublo_Proci-ion Not_ﬂull(Right.Valuc):
end if; -
end Tc_SQL_poublo_Procinion_Not_Null;

function To_SQL Double Precision (Right : SQL Decimal)
return SQL Double Precision is
begin
if Right.Is Null then
return Null_SQL_Doublo~Procition;
else
return With_Null_pa-o(To_SQL_Doublo Prccilion_Not_Null(
Right .Value)) ; -
end if;
end To_SQL_Doublo_Procicion;

function To_String (Right : SQL _Decimal Not Null) return string is

G N EE e

CMU/SEI-89-TR-16

203

Holder : SQL_Char_Not_Null(l..dacimal_digit-'laut+3);
indx : intaeger;

begin
decimal to_numeric_string (Holder, Right.Valua):
if Holder(l) = "4’ then
Holder (1) := ’ /;
and if;

if Right.scale > 0 then
Holder (decimal digits’ last+3-Right.scale..
decimal digits’' last+2) :=
Holder (decimal digits’last+2-Right.scale..
decimal digits’last+l);

Holder (decimal digits’last+2-Right.scale) := ‘.’

Boldcr(3..docimal_digite’lact+3) =
Holdor(Z..docimal_digitl'last+2);

Holdexr(2) := "0’ ;

indx := 2;

while (Holder(indx) = ‘0’) loop
indx := indx + 1;

end loop;

if Holder(indx) = ’.’ then
indx := indx - 1;

eand if;

return To_String(Holder(l..l) &
Holdor(indx..docimal_digit-’last+3));
else
indx := 2;
while (Holder(indx) = ‘0’ and then
indx < decimal digits’last+2) loop
indx = indx + 1;
end loop;
if indx = decimal digits’last+2 then
return " 0"
else
return To_String(Eoldor(l..l) &
Boldor(indx..docimnl_digit.'la-t+1));
and if;
end if;
end To_Strinq;

function To_String (Right : SQL _Decial) return string is
begin
if Right.Is_Null then
raise Null Value Error;
else - -
return To_String(Right.Value);
end if;
end To_String;

function To_SQL_ Char Not Null (Right : SQL Decimal Not Null)
return SQL_Char_Not_iull is
Holder : SQL_Ch&:_Not_Null(l..docimal_digit-’la-t+3);
indx : integer;
begin
docimnl_to_pumoric_ltring (Holder, Right.Value);
if Holder(l) = '+’ then
Holder(l) := ' ' ;
end if;
if Right.scale > 0 then
Holder (decimal digits’'last:!Z fight acale..
decimal digits’ last+2) :=
Holder (decimal digits’ last+2-Right .scale..
decimal digits’ last+l):

~ CMU/SEI-89-TR-16

lolder (decimal digits’ laste2 -Right ecale; =
Holder (3. . decimal digits lastel) =
Bolder (2. .decimal digite laste2):
Holder (2) = 'O’
indx = 2
while (Molder(indx) & '0') loop
indx = indx ¢+ 1.

end loop:
1f Bolder(indx) s ° . then
indx = indx - 1:
end 3£
return Molder(l..l) & lold.r(&ndx,.d.c&-.l_d;gxt.‘kooto!):
else
indx = 2

while (Holder(indx) s ‘0’ and then
indx < decimal _digits’ laste2) loop
indx = indx + 1:

end loop:
1f indx = decimal digite’ last+2 then
return © 0"
alse
return RBoldez(l..1) & Bold.r(sndx.Vd.cxn‘l_dxgatn iastel)
end if:;
end if:

end To_SQL_ChA:_Not_ﬂull:

function To_SQL_ChAx_Hot_Null (Raght SQL_Decimal)
return SQL_phA:_Not_Null e
begin
if Right.Is Null then
raise Null_Valuo_zrtor:
else
return To_SQL Char Not Null(Right.V: Je):
end if;
end To_SQL_ Char Not Null;

function To_SQL Char (Right : SQL Decimal)
return SQL_phA: is
begin
if Right.Is_Null then
return Null_SQL_Ch.r;
else
return With Null Base(To_SQL_Char Not Null (Right.Value)):
end if;
and To_SQL_phar;

function Width (Right : SQL Decimal Not Null) return integer is
begin -
return To SQL Char Not Null (Right)’length:
end Width;
function Width (Right : SQL Decimal) return integer is
begin -

if Right.Is Null then
raise Null Value Error:;
else
return Width (Right.Value);
eand if;
end Width;

function Integral Digits (Right : SQL Decimal Not_Null)
return decimal digits is
begin

CMU/SEI-89-TR-16 205

return decimal_digits(decimal digits’'last-integer(Right.scale}):
end Integral Digits;

function Integral Digits (Right : SQL_Decimal)
return decimal digits is

begin
return Integral Digits(Right.Value):

end Integral Digits;

function Scale (Right : SQL_Decimal Not_Null)
return decimal_digits is

began
return Right.scale:

end Scale;

function Scale (Right : SQL Decimal)
return decimal digits is

begin
return Scale (Right.Value):

end Scale:

function Fozre (Right : SQL Decimal Not Null)
return positive is
integral, digs : integer;
begin
integTral := decimal digits’'last-integer(Right.Scale);
leading zerces (Right.Value, integral, digs):
digs := integral - digs’
if dige = 0 then
retuzrn 1;
else
return positive(digs);
end if;
end Fore;

function Fore (Right : SQOL Decimal) return positive is
begin
if Right.Is_Null then
raise Null Value Brror;
and if;
zeturn Fora(Right.Value):
eand Fore;

function Aft (Right : SQL Decimal Not_Null) return positive is
digs : integer;

begin
if Right.Scale = 0 then
return 1;
else
trailing zerces (Right.Value, Right.Scale, digs);
digs := integer(Right.Scale) - digs;
if digs = 0 then
retuxrn 1;
else
return positive(digs);
end if;
end if;
end Aft;

function Aft (Right : SQL Decimal) return positive is
begin
if Right.Is Null then
raise Null Value Error;

206 CMU/SEI-89-TR-16

L---------\-

end if;
return Aft (Right.Value):;
end Aft;

function Machino_goundc (Right : SQL Decimal Not Null)
return booclean is

begin
return True;

end Machine_Rounds:

function Machino_gounds (Right SQL_Decimal)
return boolean is

begin
return True;

end Machine_ Rounds;

function Machine Overflows (Right : SQL Decimal Not Null)
return booclean is

begin
return True;

end Machine Overflows;

function Machino_pvcrflowc (Right : SQL Decimal)
return boolean is

begin
return True;

end Machine Overflows:

package body SQL Decimal Ops is

lower_bound : SQL_pocimal_Not_Nullz(in_-cal‘);
upper_ bound : SQL Decimal Not_ Null2(in_scale);

procedure Assign (Left : in out Without Null Type;
Right : Without Rull Type) is
begin
Assign_with check (Left, Right, lower_bound, upper_bound);
end Assign;

procedure Assign (left : in out With Null Type:
Right : With Null Type) is
begin
Anoign_yith_;hock (Left, Right, lower_ bound, upper_bound);
end Assign;

function Is_In (Right : Without_ Null Type)

return boolean is -
begin

return Is_ In_ Base(Right, lower_bound, upper_bound); -
end Is_In;

function Is_In (Right : With Null Type)

return boclean is -
begin

return Is_In_Base(Right, lower bound, upper_ bound);
end Is_In; -

function With Null (Value : Without Null Type)

return With Null Type is
begin

return To_SQL Decimal (To_SQL Decimal Not Null2(Value));
end With Null; -

CMU/SEI-89-TR-16 207

function Without_Null (Value : With Null Type)
return Without Null Type is
begin
return To_SQL_Docimal_pot_Null(To_SQL_Docimal_Not_ﬂullZ(Valuo));
end Without Null:
begin

A.-ign_?o_SQL_Docimal(lov.:_pound, first_signm, ti:.t_;ntoqral,
first_fractional, in_scale)’

Assign_To_SQL Decimal (upper_bound, last_sign, last_integral,
last_fractiocnal, in_scale);

end SQL Decimal_ Ops’

end SQL Decimal Pkg;

C.20 SQL_Decimal Assembler Support (VAX)

; PROCEDURE I2D

; procedure integer_ to_decimal (Value : in out Max Decimal;
; Right : integer):

; -~ this procedure converts an integer into a packed decimal
; =~ number 31 digits long

.ENTRY I2D “M<R2, R3>

e e N

PROCEDURE D2I

procedure decimal to_integer (Value : in out integer;
Right : Max Decimal;
error : in out boolean):;

Ne wa Ne

~e

-~ this procedure converts a packed decimal number of 31
-~ digits into an integer

Ne Ne Ne “e

- - - -

.PSECT D2I
.ENTRY D2I ~M<R2, R3>
CVTPL #31,88(AP), Q4 (AP)
BVS D2IERR
RET

D2IERR: MOVL #1,@12(AP)
RET

; PROCEDURE NS2D

; procedure numeric string to_decimal (Value : in out Max Decimal;
H Right : string):

208 CMU/SEI-89-TR-16

; —-- this procedure converts a numeric string of 31 digits and a
; -- sign from leading separate numeric format into a packed
; -- decimal number of 31 digits

.PSECT NS2D
.ENTRY NS2D “M<R2, R3>
CVISP #31,88(AP), #31, 84 (AP)

———— - = S - -

.; PROCEDURE D2NS

; procedure decimal to_numeric_string (Value : in out string;
; Right : Max Decimal);

; =- this procedure converts a packed decimal number of 31 digits
; == into a numeric string in leading separate numeric format

.PSECT D2NS
.ENTRY D2NS ~“M<R2, R3>
CVTPS #31,Q8(AP), #31, @4 (AP)

; PROCEDURE LZ

; procedure leading zerces (Value : Max Decimal;

; integ : integer;
H digs : in out integer);
; —-- this procedure returns the number of leading zerces in the

; == first "integ" digits of the packed decimal number

.ENTRY LZ “M<R2, R3, R4, RS, R6, R7, R8>
MOVL @8 (AP),R4
MOVL 4 (AP),RS
CIRL RS
LOOP: INCL R8
MOVB (R5),Ré
BICL3 #~XFFFFFFOF,R6,R7
oMPB #°X00,R7
BNEQ DONE
DECL R4
CMPB #°X00,R4
BEQL DONE3
INCL RS
BICL3 #~XFFFFFFFO,R6,R7
CMPB §~X00,R7
BNEQ DONE
DECL R4
CMPB #~X00,R4
BEQL DONE3
INCL RS
BRB LOOP
DONE: DECL RS
DONE3: MOVL R8, @12 (AP)

CMU/SEI-89-TR-16

209

; PROCEDURE TZ

; procedure trailing zerces (Value : Max Decimal;
; scal : decimal digits;
H digs : in out integer);

; —-= this procedure returns the number of trailing zerces in
; == the last "scal" digits of the packed decimal number

.PSECT T2
.ENTRY TZ “M<R2, R3, R4, RS, R6, R7, R8>
MOVL @8 (AP),R4
MOVL 4 (AP),RS
ADDL #15,RS
MOVB (RS5),R6
CLRL RS
LOOP1: INCL RS
BICL3 #~XFFFFFFOF,R6,R7
CMPB #~X00,R7
BNEQ DONE1
DECL R4
CMPB #°X00,R4
BEQL DONE2

DECL RS
MOVB (R5),R6
INCL RS

BICL3 #~XFFFFFFFO,R6,R7
CMPB $#°X00,R7
BNEQ DONE1
DECI R4
CMPB #°X00,R4
BEQL DONE2
BRB LOOP1
DONE1l: DECL RS
DONE2: MOVL R8, @12 (AP)

- - - ———————

PROCEDURE INV

procedure inverse (Value : in out Max Decimal;
Right : Max Decimal);

-=- this procedure returns the inverse of Right in Value

.PSECT INV
.ENTRY INV ~M<R2, R3, R4>
MOVC3 §16,88 (AP), @4 (AP)
MOVL 4 (AP),R3
ADDL #15,R3
MOVB (R3),R2
BICL3 §#~XFFFFFFFO,R2,R4
CMPB #°XOF,R4
BNEQ CNTNU
BICL2 #~X00000002, R2

. BRB INVEND

CNTNU: BICL2 #~X000000OE,R4
CMPB #1,R4
BEQL POS
BICL2 #+X0000000F,R2
BISL2 #~X0000000D,R2

210

CMU/SEI-89-TR-16

|

Ne e Sa Ns e

BRB INVEND
POS: BICL2 #~X0000000F,R2
BISL2Z #°X0000000C,R2
INVEND: MOVB R2, (R3)

; PROCEDURE ABSV

; procedure absv (Value : in out Max_pocimal;

Right : Ma;_Docimal);

- —— " - ———— T - -

; == this procedure returns the absolute_value of Right in Value

.PSECT ABSV

.ENTRY ABSV “M<R2, R3>
MOVC3 #16, Q8 (AP), R4 (AP)
MOVL 4 (AP),R3

ADDL #15,R3

MOVE (R3),R2

BICL2 #~X0000000F,R2
BISL2 #~X0000000C,R2
MOVE R2, (R3)

; PROCEDURE SHFT

; procedure shft (Result : out Max Decimal;

; Value : Max Decimal;
; scale : integer;
; error : in out boolean);

EYRRE TR TY

~e e N

~a

.PSECT SHFTDATA

SDATA: .BLKB 16

.PSECT SHFT

.ENTRY SHFT ~M<R2, R3, R4, RS5>
MOVL @12(AP),R4

AsHP R4, §31,88(aAP), #5,#31,84 (AP)
BVS OVFLW

OVFLW: MOVL #1,Q16(aAP)

PROCEDURE EQ

.PSECT EQ

procedure equal (Left, Right : Max Decimal;
result : in out boolean):;

- 2 s s - - —————_———————— T — - - - -

~- this procedure shifts the 31 digits of Value by "scale"
-- digits. if "scale" is positive, the shift is left.

-- if "scale" is negative, the shift is right.
-~ occurs on a left shift, then the error boolean is set to
-- true. The right shift rounds the remaining digits.

If overflow

. o S S o S S - - - - . " D W - - - . - -~

- ———— - " = o T = e A o T - " T = - = -

-- this procedure compares Left and Right, and returns a result
~~ of true if they are equal, or false if they are not equal

CMU/SEI-89-TR-16

211

.ENTRY EQ ~M<R2, R3>
CMPP3 #31,Q4 (AP), 28 (AP)
BEQL EQTRU

RET

EQTRU: MOVL #1,812(AP)

PROCEDURE LT

; procedure less_than (Left, Right : Max Decimal;
result : in out booclean):;

-~ this procedure compares Left and Right. if Left is < Right

-- then result is set to true

.PSECT LT

.ENTRY LT ~M<R2, R3>
CMPP3 #31,Q4 (AP), @8 (AP)
BLSS LTTRU

LTTRU: MOVL #1,012(AP)

PROCEDURE GT

; procedure greater_ than (Left, Right : Max Decimal;
result : in out boclean);

-~ this procedure compares Left and Right. if Left > Right
-- result is set to true.

-PSECT GT

.ENTRY GT “M<R2, R3>
oMPP3 §31,Q84 (AP), @8 (AP)
BGTR GTTRU

GTTRU: MOVL 41,412(AP)

PROCEDURE LEQ

; procedure less_than equal (Left, Right : Max Decimal;
result : in out boolean):;

~-- this procedure compares Left and Right. if Left <= Right
-~ then result is set to true.

.PSECT LEQ

.ENTRY LEQ ~M<R2, B3>
CMPP3 §31, Q4 (AP), @8 (AP)
BLEQ LEQTRO

LEQTRU: MOVL #1,@12(apP)

- " - n " " = - - Y —— — - ———— - ——————

CMU/SEI-89-TR-16

; procedure greater_ than_equal (Left, Right : Max Decimal;
; result : in out boolean);

; == this procedure compares Left and Right. if Left >= Right
; -— then result is set to true.

.PSECT GEQ

.ENTRY GEQ “M<R2, R3>
CMPP3 $#31,84 (AP), @8 (AP)
BGEQ GEQTRU

GEQTRU: MOVL #1,812(aP)

; PROCEDURE ADD

; procedure add (Result : in out Max Decimal;
H Left, Right : Max Decimal;
; error : in out boolean);

; =— this procedure adds Left and Right, and stores the result
; == in Result. if an overflow occurs during the operation, then
; == "earror" is set to true.

.PSECT ADD

.ENTRY ADD ~“M<R2, R3, R4, RS>

ADDP6 §31,812(AP), #31,08(AP), #31, 24 (AP)
BVS ADDERR

ADDERR: MOVL #1,016(AP)

- - — - - " - - - T = > 5 = " - - o T ——————

PROCEDURE SUB

procedure subtract (Result : in out Max Decimal;
; Left, Richt : Mag_pocimnl;
; error : in out boolean);

; —-— this procedure subtracts Right from Left, and stores the result
; == in Result. if an overflow occurs during the operation, thae
; == "error" booclean is set to true.

.PSECT SUB

-ENTRY SUB ~M<R2, R3, R4, RS>

SUBP6 431,812 (AP),#31,88(AP), #31, 84 (AP)
BVS SUBERR

SUBERR: MOVL #1,816(AP)

- et e > = o

PROCEDURE MUL

procedure multiply (Result : in ocut Max Decimal;
Left, Right : Max Decimal;
error : in out boolean);

S8 Na Ne e e NN

~

CMU/SEI-89-TR-16

213

~- this procedure multiplies Left by Right, and stores the result
-— in Result. if an overflow occurs during the operation, the
-- "error" boolean is set to true.

.PSECT MUL

.ENTRY MUL “M<R2, R3, R4, RS>

MOLP #31,Q12(AP),#31,88(AP), #31, 84 (AP)
BVS MULERR

MULERR: MOVL #1,Q16(AP)

~o S N

PROCEDURE DIV

procedure divide (Result : in out Max Decimal;
Left, Right : Max Decimal:
Shift : in out integer;
error : in out boolean):;

-- this procedure divides left by Right, and stores the result
== in Result. no overflow can occur using this instruction.
-- this procedure does not protect the application from the

-- divide-by-zero run-time exception.

————— v ——————— " " e B " T T = = > T = o S = " ———

-PSECT DIV

SHFTMP: .BLKB 16

.ENTRY DIV “M<R2, R3, R4, RS, R6, R7, R8>
MOVL #31,R4

MOVL 8(AP),RS

CLRL RS

LOOPA: INCL RS

MOVE (RS),R6
BICL3 #~XFFFFFFOF,R6,R7
CMPB #~X00,R7

BNEQ DONEA

DECL R4

CMPEB #°X00,R4

BEQL DONEA

INCL Re

BICL3 #~XFFFFFFFO,R6,R7
CMPB $#~X00,R7

BNEQ DONEA

DECL R4

CMPB #°X00,R4

BEQL DONEA

INCL RS

BRB LOOPA

DONEA: DECL RS

ASHP R8, §#31,88 (AP), #5, 31, SHFTMP
DIVP #31,@12(AP), #31,SHFTMP, §31, @4 (AP)
MOVL R8, @16 (AP)

214

CMU/SEI-89-TR-16

C.21 SQL_Decimal Assembler Support (IBM)

Note: At the time this document was published, this code had not yet been fully tested.
Electronically distributed versions of this code will be updated to reflect any changes made
during testing.

ADASUP CSECT

»

*
» yRUCEDURE Ml
®
* procedure mask_interrupts;
*
* -- this procedure turns off bit 37 in the PSW, to prevent
* - the decimal overflow exception from causing an interrupt
*
W o o oo o o e = = ———— o = = T —— - ——— - — " > = ————— ————
ENTRY MI
MI SAVE (2,3)
BALR 3,0
USING *,3
SR 2,2 CLEAR R2
(o} 2,=X'0B000000’ OR IN THE PROGRAM MASK
SPM 2 TURN OFF BIT 37 OF THE PSW
RETURN (2, 3)
T o e o e e e e e e e e o e e e e e e e = = -
*
* PROCEDURE I2D
»*
* procedure integer_ to_decimal (Value : in out Max Decimal;
* Right : integer);
*
* -- this procedure converts an integer intc a packed decimal
* -~ pnumber 31 digits long
*

ENTRY 12D

12D SAVE (2,5)
BALR 5,0
USING *,5
M 2,3,0(1) ADDRESS OF VALUE IN R2; RIGHT IN R3
xc 0(8,2),0(2) CLEAR UPPER 2 WORDS OF DEC RESULT
cvD 3,8(2) CONVERT INTEGER, STORE IN WRDS 3 & 4

RETURN (2,5)

»

*
* PROCEDURE D21
*
* procedure decimal to_integer (Value : in out integer;
* Right : Max Decimal;
* error : in out boolean);
*
* -~ this procedure converts a packed decimal number of 31
* -- digits into an integer
*
* This procedure will cause a numeric urror to occur in the
* application if the number to be converted falls ocutside the
* range -2147483648..2147483647
*
T o o o o o o e e > = - " —— - — -~ — - - —— - - ———
ENTRY D21I
CMU/SEI-89-TR-16 215

D21 SAVE
BALR
USING

“EEAEQRQ"

(2,5)

5,0

.5

3,4(1)

0(16,3), LOWER (16)
D2IRRR
0(16,3),UPPER(16)
D2IERR

4,8(3)

4,0(1)

D2IRET

2,=F' 1’

2,8(1)

D2IRET RETURN (2,5)

*
* PROCEDURE NS2D
*
* procedure numeric_string to_decimal (Value
*
*
*
*
* -~ decimal number of 31 digita
"
*
ENTRY NS2D
NS2D SAVE (2,5)
BALR 5,0
USING *,5
M 2,3,0(1)
PACR 0{9,2),1(16,3)
SRP 0(9,2),1,5
PACK 8(8,2),17(15,3)
CcLC 0(1,3),=X"4E'
BE NS2DPOS
NI 15(2) ,X'FO’
oI 15(2) ,X’' 0D’
B NS2DRET
¥WS2DPOS NI 15(2) .X'FO’
oI 15(2) ,x'0oC’

NS2DRET RETURN (2, 5)

»

ADDRESS OF RIGHT IN R3
COMPARE INPUT TO MAX NEG INTEGER
IF LESS THAN, OVERFLOW WILL OCCUR
COMPARE INPUT TO MAX POS INTEGER
IF GREATER THAN, OVERFLOW WILL OCCUR
CNVT LOWER 8 BYTES OF DECIMAL NUM
STORE RESULT
GO TO D2IRET
SET VALUE OF ERROR BOOLEAN

TO ’'TRUE’

in out Max Decimal;

Right strang) ;

-- this procedure converts a numeric string of 31 digits and a
-- sign from leading separate numeric format into a packed

————— o " T —————— A = i Yo T - - ——

GET ADDRESSES OF PARMS

CK FRST 16 DIGS INTO FRST 9 BYTES
SHFT LFT, SO 16 VALID DIGS IN 8 BYTS
PACK LAST 15 DIGS INTO LAST 8 BYTES
CHECK SIGN
BRANCH TO MAKE RESULT POSITIVE
CLEAR SIGN DIGIT
MAKE RESULT NEGATIVE
RETURN AFTER MAKING RESULT NEGATIVE
CLEAR SIGN DIGIT
MAKE RESULT POSITIVE

*
* PROCEDURE D2NS
*
* procedure decimal to_numeric string (Value in out string;
* Right : Max Decimal);
*
* —- this procedure converts a packed decimal number of 31 digits
* -~ into a numeric string in leading separate numeric format
*
R e e e et em e m e e e —m— e e e — - — e ——————————
ENTRY D2NS
D2NS SAVE (2,5)
BALR 5,0
USING *.,5 .
IM 2,3,0(1) GET ADDRESSES OF PARMS
ONPK 1(15,2),0¢(8,3) ONPACK FIRST 14 DIGITS
UNPK 15(15,2),7(8,3) UNPACK NEXT 14 DIGITS
ONPK 29(3,2),14(2,3) UNPACK LAST 3 DIGITS
SR 4,4 CLEAR R4
IC 4,15(3) GET SIGN OF INPUT
216 CMU/SEI-89-TR-16

4,=X’ 0000000F' AND OUT NUMERIC PORTION OF BYTE

N
cL 4,=X’0000000D’ CHECK THE SIGN
BE D2NSNEG IF NEGATIVE, GO TO D2NSNEG
MVI 0(2),X'4E’ MAKE POSITIVE
B D2NSTR GO TO D2NSTR
D2NSNEG MVI 0(2),X' 60’ MAKE NEGATIVE
D2NSTR OI 31(2) ,X'FoO’ MAKE LAST BYTE EBCDIC

RETURN (2,5)

®
* PROCEDURE LZ
"
* procedure leading_zerces (Value : Max Decimal;
* integ : integer;
» digs : in out integer):;
*
* -- this procedure returns the number of leading zerces in the
* -~ first "integ" digits of the packed decimal number
*
T o o e o o o = 1 = = = - —— —————
ENTRY L2
Lz SAVE (2,8)
BALR 8,0
USING *,8
M 2,3,0(1) GET PARMS IN R2 AND R3
BCTR 2,0 OFFSET ADDRESS BY ONE FOR LOOP
SR 5,8 CLEAR RS
SR 6,6 CLEAR R6
LooP LA 2,1(2) GET NEXT BYTE TO LOOK AT
LA 5,1(5) ADD 1 TO RS (COUNT OF ZERO DIGITS+1)
IC 6,0(2) GET ANOTHER BYTE OF PARML
SR 7,7 CLEAR R7
SRDL 6,4 OPPER NIBBLE OF BYT IN R6, LWR IN R7
c 6, ZERO IF R6 IS ZERO, CONTINUE
BNE DONE IF NOT, DONE
BCT 3, CONT GET NEXT NIBBLE IF MORE TO SCAN
B8 DONE2 NO MORE TO SCAN _
CONT A 5,1(5) ADD 1 TO R5 (COUNT OF ZERO DIGITS+1)
c 7, ZERO IF R7 IS ZERO, CONTINUE
BNE DONE IF NOT, DONE
BCT 3,Lo00P GOTO LOOP IF NOT FINISHED
B DONE2 NO NEED TO SUBRT 1, ALL ZEROES
DONE BCTR 5,0 RS NOW CONTAINS COUNT OF ZERO DIGITS
DONE2 sT 5,8(1) STORE RESULT
RETURN (2, 8)
e e —————
*
* PROCEDURE T2
*
* procedure trailing zeroces (Value : Max Decimal: -
* \ scal : decimal digits;
* digs : in out integer);
x
* -- this procedure returns the number of trailing zerces in
* -- the last "scal" digits of the packed decimal number
*
B o e e e e o e e - - =
ENTRY T2Z
TZ SAVE (2,8)
BALR 8,0
USING *,8
M 2,3,0(1) PARMS IN R2 AND R3
LA 2,15(2) GET ADDRESS OF LAST BYTE OF DEC NUMB
CMU/SEI-89-TR-16 217

1c 6,0(2) GET LAST BYTE OF DEC NUMBER
SRL 6.4 GET LAST DIGIT OF DEC NUMBER
SR 5,5 CLERR RS
LOOP1 LA 5,1(5) ADD 1 TO R5 (COUNT OF ZERO DIGITS+1)
c 6, ZERO IF R6 IS ZERO, CONTINUE
BNE DONE1 IF NOT, DONE
BCT 3, CONT1 GET NEXT BYTE IF MORE TO SCAN
B DONE3 NO MORE TO SCAN
CONT1 BCTR 2,0 GET ADDRESS OF NEXT BYTE OF DEC NUMB
Ic 6,0(2) GET PREV BYTE OF DEC DIGIT
SR 7,7 CLEAR R7 FOR SHIFT
SRDL 6,4 UPPER NIBBLE => R6, LOWER => R7
La 5,1(5) ADD 1 TO RS (COUNT OF ZERO DIGITS+1)
c 7, ZERO IF R7 IS ZERO, CONTINUE
BNE DONE1 IF NOT, DONE
BCT 3,LOOP1 GO TO LOOP1 IF MORE TO SCAN
B DONE3 NO NEED TO SUBT 1, ALL ZEROES
DONE1 BCTR 5,0 RS NOW CONTAINS COUNT OF ZERO DIGITS
DONE3 ST 5,8(1) STORE RESULT

RETURN (2, 8)

* procedure inverse (Value : in out Max Decimal;
o Right : Max Decimal):
*
* -- this procedure returns the inverse of Right in Value
L]
T o o o e = - . S s B A e - = - — - -
ENTRY 1INV
INV SAVE (2,6)
BALR 6,0
USING *,6
M 2,3,0(1) GET ADDRESSES OF PARAMS
MvC 0(16,2),0(3) MOVE INPOT TO OUTPUT
IC 4,15(2) LOAD LAST BYTE OF DEC NUMBER
SR 5,5 CLEAR R5 FOR SHIFT
SRDL 4,4 SHIFT RIGHT SO ONLY SIGN IN RS
c 5,POSZCON IS SIGN AN 'F’
BNE CNTNU GO TO CNTNU IF ROT
L S, NEGCON ELSE MRKE THE SIGN NEGATIVE
B INVEND GO TO END
CNTNU SLL 5,3 SHIFT TO SEE LOW ORDER BIT OF SIGN
c 5, ZERO IF LOW ORDER BIT IS ZERO, NUM 1S POS
BNE POS IF 1OW ORDER BIT IS ONE, NUM IS NEG
L 5, NEGCON DEC NUM IS POS => MAKE NEG
B INVEND GO TO END
POS L S, POSCON DEC NUM IS NEG => MAKE POS
INVEND SLDL 4,4 SHIFT LEFT SO LOW ORDER BYTE IN R4
STC 4,15(2) STORE LOW ORDER BYTE INTO DEC NUM

INVRET RETURN (2, €)

* procedure absv (Value

in out Max Decimal;

*® Right : Max Decimal);
*

* -- this procedure returns the absolute_value of Right in Value
L]

ENTRY ABSV

218 CMU/SEI-89-TR-16

ABSV SAVE (2, 4)

- BALR 4,0
USING *,4
M 2,3,0(1) GET ADDRESSES OF PARAMS
MVC 0(16,2),0(3) MOVE INPUT TO OUTPUT
NI 15(2) ,X'FO’ CLEAR SIGN
oI 15(2),Xx’'ocC’ MARE SIGN POS
RETURN (2,4))

»

PROCEDURE SHFT

procedure shft (Result : out Max Decimai;
Value Max_DocimAl;
scale : integer;
error : in out boolean);

this procedure shifts the 31 digits of Value by "scale"”
-- digits. if "scale" is positive, the shift is left.
-= if "scale" is negative, the shift is right. If overflow
-- occurs on a left shift, then the error boolean is set to
-- true. The right shift rounds the remaining digits.

This subroutine expects that the Decimal Overflow mask in the PSW
has been cleared to prevent the interrupt (bat pos 37).

* % * % % % % % % * % * % % ¥ * %
t
'

»

BALR 6,0
USING *,6
2,4,0(1) GET PARMS IN R2 THROUGH R4
0(16,2),0(3) MOVE THE INPUT TO THE OUTPUT
L 3, =X’ OFS’ LOAD LZNGTH1 AND LENGTH2 FOR EX INST
c 4,=F' 64’ IF SEIFT COUNT > 64
BH SHFTERR THEN COUNT OUTSIDE SHIFT RANGE
c 4,=F' -64’ IF SEIFT COUNT < ~64
BL SHFTERR THEN COUNT OUTSIDE SHIFT RANGE
c 4,=p' 0’ IF SHIFT COUNT >a 0
BNL SHFTCNT THEN CONTINUE, ELSE
L S, =P’ 64’ SHIFT IS TO RIGHT, 2ND OPND IS§
SR 5,4 64 - COUNT
LR 4.5 GET COONT IN R4
SHFTCNT N 4, =X’ 0000OFFF’ ONLY LOWER 12 BITS CONTAINS COUNT
STH 4, INST+4 STORE COUNT INTO SRIFT INSTRUCTION
EX 3, INST EXRCUTE INSTRUCTION
BO SHFTERR IF OVERFLOW, GO TO SHFTERR
B SHFTRET GO TO SHFTRET
SHFTERR LA 4,1 LOAD 'TRUE’ IN R4
. STC 4,12(1) STORE ‘TRUE' INTO ERROR BOOLEAN

SHFTRET RETURN (2, 6)

PROCEDURE EQ

procedure equal (Left, Right : Max Decimal;
result : in out boolean);

-~ thi- procedure compares Left and Right, and returns a result
=~ of true if they are equal, or falee if they are not equal

* % * % ¢ % » % @

»

CMU/SEI-89-TR-16 219

M
I MVC

EQ

* * % % % % 3 % %

*

LT

* % % % % % % % ¥

»

* % % % % % % ¥ »

»

SAVE

(2,5)
5,0
*,5
2,3,0(1)
0(16,2),0(16,3)
EQRET
2,1
2,8(1)

RETURN (2,5)

TROCEDURE LT

procedure looc_than {(Left, Right

result

2,3,0(1)
0(16,2),0(16,3)
LTRET

2,1

2,8(1)

RETURN (2, 5)

PROCEDURE GT

procedure greater_ than (Left, Right
result

*, 5

2,3,0(1)
0(16,2),0(16,3)
GTRET

2,1

2,8(1)

RETURN (2,5)

PROCEDURE LEQ

GET ADDRESSES OF

2ARMS

COMPARE TWO PACKED NUMS
RETURN

LOAD ’'TRUE'
Imugl

STORE

'FALSE’

IF NOT EQ

INTO R2

: Max Decimal;
in out boolean):

-- this procedure compares Left and Right.
-- then result is set to true

GET ADDRESSES OF PARMS
COMPARE TWO PACKED NUMS

RETURN

STORE

* FALSE'
LOAD ' TRUE’
* TRUR'

IF NOT LT
INTO R2

: Max Decimal;

in out boolean);

-~ this procedure compares Left and Right.
-~ result is set to true.

GET ADDRESSES OF PARMS
COMPARE TWO PACKED NUMS

RETURN

LOAD ' TRUE'
Imu'zl

STORE

procedure less_than_equal (Left, Right

result

'FALSE’

IF NOT GT
INTO R2

: Max_Decimal;

-- this procedure compares Left and Right.
-~ then result is set to true.

in out boolean);

INTO RESULT

BOOLEAN

if Left is < Right

- e " - — - — = - ——————

INTO RESULT BOOLEAN

if Left > Right

- ——— — —— A T = — A - - - - ———

INTO RESULT BOOLEAN

if Left <= Right

- = = - - e~ = - —_— " - -

220

CMU/SEI-89-TR-16

»

LEQ SAVE (2,5)
BALR 5,0
USING =*,5
LM 2,3,0(1) GET ADDRESSES OF PARMS
cp 0(16,2),0(16, 3) COMPARE TWO PACKED NUMS
BH LEQRET RETURN ‘FALSE’' IF NO1 LEQ
LA 2,1 LOAD ‘TRUE’ INTO R2
STC 2,8(1) STORE ‘'TRUE’ INTO RESULT BOOLRAN

LEQRET RETURN (2,5)

-
* PROCEDURE GEQ
*
* procedure greater_ than equal (Left, Right : Max Decimal;
* result : in out boolean);
*
* -- this procedure compares Left and Right. if Left >= Right
* -- then result is set to true.
*
N e m e m et e m e e cm e e —————————- - ————
ENTRY GEQ
GEQ SAVE (2,5)
BALR 5,0
USING *,S
M 2,3,0(1) GET ADDRESSES OF PARMS
cp 0(16,2),0(16,3) COMPARE TWO PACKED NUMS
BL GEQRET RETURN 'FALSE’ IF NOT GEQ
LA 2,1 LOAD 'TRUE’ INTO R2
STC 2,8(1) STORE ‘TRUE’ INTO RESULT BOOLEAN

GEQRET RETURN (2,5)

- "

"
* PROCEDURE ADD
»
* procedure add (Result : in out Max Decimal;
* Left, Right : Max Decimal;
* error : in out boolean):;
*
* -- this procedure adds Left and Right, and stores the result
=~ in Result. if an overflow occurs during the operation, then
* -- "error" is set to true.
*
* This subroutine expects that the Decimal Overflow mask in the PSW
* has been cleared to prevent the interrupt (bit pos 37).
*
W e o e o e e e e e A T T o A e o = = = =~
ENTRY ADD
ADD SAVE (2,5)
BALR S,0
OSING *,5
M 2,4,0Q1) GET ADDRESSES OF PARMS
MVC 0(16,2),0(3) MOVE 'LEFT' TO ’‘RESULT’
AP 0(16,2),0(16,4) ADD 'LEFT’ AND ‘RIGHT’ IN PLACE
BO ADDERR GO TO ADDERR ON OVERFLOW
B ADDRET GO TO ADDRET
ADDERR LA 3,1 LOAD ‘'TRUE’ INTO R3
STC 3,12(1) STORE ‘'TRUE’ INTO ERROR BOOLEAN
ADDRET RETURN (2,5)
T o o o o e o = T = = " -~ - - - —
*
* PROCEDURE SUB
*
* procedure subtract (Result : in out Max Decimal;
CMU/SEI-B9-TR-16 221

* Left, Right : Max Decimal;
* error : in out boolean):;
®
* -- this procedure subtracts Right from Left, and stores the result
* -- in Result. if an overflow occurs during the cperation, the
* -- "arror" booclean is set to true.
*
* This subroutine expects that the Decimal Overflow mask in the PSW
* has been cleared to prevent the interrupt (bit pos 37).
®
¥ cmmcrreccccecccrmccer——rrerceec e ceem—— G e— e e — et e— e e —————————————
ENTRY SUB
SUB SAVE (2,5)
BALR 5,0
USING *,5
IM 2,4,01) GET ADDRESSES OF PARMS
MvC 0(16,2),0(3) MOVE ’'LEFT’' TO 'RESULT’
SP 0(16,2),0(16,4) SUBTRACT 'RIGHT’ FROM ‘LEFT’
BO SUBERR GO TO SUBERR ON OVERFLOW
B SUBRET GO TO SUBRET
SUBERR LA 3,1 LOAD 'TRUE’ VALUE INTO R3
STC 3,12(1) STORE ’'TRUE’ INTO ERROR BOOLEAN

SUBRET RETURN (2,S5)

*
* PROCEDURE MUL
*
* procedure multiply (Result : in out Max Decimal;
* Left, Right : Max Decimal;
“ error : in out boolean);
»
* -- this procedure multiplies Left by Right, and stores the result
* -~ in Result. if an overflow occurs during the operation, the
* ~- "error" boolean is set to true.
*
* This procedure will cause a numeric error to occur in the application
* if there are not encugh leading zeros in the multiplicand to
* accomodate the MP instruction.
*
* o S
ENTRY MUL
MUL SAVE (2,10)
BALR 10,0
USING =*,10
1M 2,4,0(1) GET ADDRESSES OF PARMS
BCTR 3,0 OFFSRET 'LEFT’ TO PREPARE FOR LOOPA
LA 5,31 GET NUMBER OF DIGITS TO SCAN
SR 6,6 CLEAR R6
SR 8,8 CLEAR R8
LOOPA LA 3,1(3) GET ADDRESS OF NEXT BYTE TO SCAN
LA 6,1(6) ADD 1 TO R6é (COUNT OF ZERO DIGITS+1)
Ic 8,0(3) GET ANOTHER BYTE OF LEFT
SR 9,9 CLEAR RS9
SRDL 8,4 UPPER NIBBLE OF BYT IN R8, LWR IN R9
c 8, ZERO IF R8 IS ZERO, CONTINUER
BNE DONEA IF NOT, DONE
BCT 5, CONTA CONTINUE IF MORE TO SCAN
B DONERAl NO MORE TO SCAN
CONTA LA 6,1(6) ADD 1 TO R6 (COUNT OF ZERO DIGITS+1)
(o 9, ZERO IF R9 IS ZERO, CONTINUE
BNE DONERA IF NOT, DONE
BCT S, LOOPA GET NEXT BYTE IF MORE TO SCAN
B DONEA1 NO NEED TO SUBT 1, ALL ZEROES
222 CMU/SEI-89-TR-16

DONEA BCTR

SR
BCTR

SR
LOOPB LA
LA

DONEB1

MOLV1 SRL

MOLV2

-

(4)

—~
~
~

~

(4)

~ =~

e POHMHOMOIWO

~

WoOVOddboOesd: I

2

’

=}
§

5, CONTB
DONEB1
7,1(N
9, ZERO
DONEB
5,L00PB
DONEB1
7,0
3,4,4(2)
6,7
MOLV2

?

7

®oO®ONn N
Hd0

14
’
, THTYTWO
MULERR
0(16,2),0(4)
8,32

8,6

8,1

8,1(8)

3,16(3)

3,s

8,0

8, =X’ 000000F0’

0(16,2),0(3)
8,32

8,7

8,1

8,1(8)
4,16(4)

4,8

8,0

8, =X’ 000000F0’
8, MULV2A
MULRET

3,1

3,12(1)

MULRET RETURN (2,10)

* PROCEDURE DIV

R6 NOW CONTAINS COUNT OF ZERO DIGITS
GET NUMBER OF DIGITS TO SCAN
CLEAR R7
OFFSET ’'RIGHT’ TO PREPARE FOR LOOPB
CLEAR R8
GET ADDRESS OF NEXT BYTE TO SCAN
ADD 1 TO R7 (COUNT OF ZERO DIGITS+1)
GET ANOTHER BYTE OF RIGHT
CLEAR RS9
UPPER NIBELE OF BYT IN R8, LWR IN R9
IF R8 IS ZERO, CONTINUE
IF NOT, DONE
SCAN NEXT NIBBLE IF MORE TO SCAN
NO MORE TO SCAN
ADD 1 TO R7 (COUNT OF ZERO DIGITS+1)
IF R9 IS ZERO, CONTINUE
IF NOT, DONE
GET NEXT BYTE TO SCAN IF MORE
NO NEED TO SUBT 1, ALL ZEROES
R7 NOW CONTAINS COUNT OF ZERO DIGITS
GET ADDRESSES OF LEFT AND RIGHT
WHICH OPERAND HAS MORE ZEROES?
GO TO MULV2 IF RIGHT HAS MORE ZEROES
CLEAR LOW ORDER BIT
MAKE ODD §# OF LEADING 0’'S EVEN
LOAD R8 WITH § LEADING 0’'S OF LEFT
ADD IN § LEADING 0’'S OF RIGHT
IF NOT GREATER THAN 31, THEN
MULTIPLY WILL RAISE AN EXCEPTION
LEFT HAS MORE ZEROES: MOVE RIGHT
TO RESULT
R8 CONTAINS NUM DIGITS IN LEFT
DIVIDE NUM DIGS BY 2 TO GET NUM BYTS
ADD IN REM TO GET NUM BYTES IN LEFT
ADD 16 TO LEFT
SUB NUM BYTES TO GET CORRECT OFFSET
OFFSET LENGTH OF LEFT BY 1
OR IN LENGTH OF RESULT
EXECUTE MP INSTR USING LENGTHS IN R9
GO TO MULRET
CIR LOW ORDER BIT, ODD # OF LDNG 0O'S
MAKE ODD # OF LEADING 0'S EVEN
LOAD R8 WITH # LEADING 0’'S OF RIGHT
ADD IN §# LEADING 0'S OF LEFT
IF NOT GREATER THAN 31, THEN
MULTIPLY WILL RAISE AN EXCEPTION
RIGHT HAS MORE ZEROES: MOVE LEFT
TO RESULT
R8 CONTAINS NUM DIGITS IN RIGHT
DIVIDE NUM DIGS BY 2 TO GET NUM BYTS
ADD IN REM TO GET NUM BYTES IN RIGHT
ADD 16 TO RIGHT
SUB NUM BYTES TO GET CORRECT OFFSET
OFFSET LENGTR OF RIGHT BY 1
OR IN LENGTH OF RESULT
EXECUTE MP INSTR USING LENGTHS IN R9
GO TO MULRET
PUT VALUR 'TRUE' INTO R3
STORE R3 INTO ERROR

CMU/SEI-89-TR-16

223

»*
* procedure divide (Result in out Max Decimal;
* Left, Right : Max Decimal;
* Shift in out integer;
* error : in out boolean);
*
* -- this procedure divides Left by Right, and stores the result
* -— in Result. no overflow can occur using this instruction.
* -- this procedure does not protect the application from the
* -- divide-by-zero run-time exceptiecn.
®
* This procedure causes a numeric error exception to occur in
* the application if the result is too large for the space
* set aside for the quotient by the DP (divide packed) instruction,
* or if the actual number in the divisor is larger than 8 bytes.
*
K e e e~ e ————————————————————
ENTRY DIV
DIV SAVE (2,11)
BALR 11,0
OSING =*,11
M 2,4,0(1) GET ADDRESSES OF PARMS
BCTR 3,0 OFFSET R3 TO PREPARE FOR LOOPC
LA 10,31 GET NUMBER OF DIGITS TO SCAN
SR 6,6 CLEAR R6
SR 8,8 CLEAR RS
LooPC A 3,1(3) GET ADDRESS OF NEXT BYTE TO SCAN
LA 6,1(6) ADD 1 TO R6 (COUNT OF ZERO DIGITS+1)
IC 8,0(3) GET ANOTHER BYTE OF LEFT
SR 9,9 CLEAR RS)
SRDL 8,4 UPPER NIBBLE OF BYT IN R8, LWR IN RS
c 8, ZERQ IF R8 IS ZERO, CONTINUE
BNE DONEC IF NOT, DONE
BCT 10, CONTC SCAN NEXT NIBBLE IF MORE LEFT
B DONEC1 NO MORE TO SCAN
CONTC IaA 6,1(6) ADD 1 TO R6é (COUNT OF ZERO DIGITS+1l)
c 9, ZERO IF R9 IS ZERO, CONTINUE
BNE DONEC IF NOT, DONE
BCT 10, LOOPC GET NEXT BYTE IF MORE TO SCAN
B DONEC1 NO NEED TO SUBT 1, ALL ZEROES
DONEC BCTR 6,0 R6 NOW CONTAINS COUNT OF ZERO DIGITS
DONEC1 BCTR 4,0 OFFSET R4 TO PREPARE FOR LOOPD
LA 10,31 GET NUMBER OF DIGITS TO SCAN
SR 7,7 CLEAR R7
SR 8,8 CLEAR R8
LOOPD LA 4,1(4) GET ADDRESS OF NEXT BYTE TO SCAN
LA 7,1(7) ADD 1 TO R7 (COUNT OF ZERO DIGITS+1)
IC 8,0(4) GET ANOTHER BYTE OF RIGHT
SR 9,9 CLEAR RS
SRDL 8,4 UPPER NIBBLE OF BYT IN R8, LWR IN RS
c 8, ZERO IF R8 IS ZERO, CONTINUE
BNE DONED IF NOT, DONE
BCT 10, CONTD CHECK NEXT NIBBLE IF MORE TO SCAN
B DONED1 NO MORE TO SCAN
CONTD LA 7,1(7) ADD 1 TO R7 (COUNT OF ZERO DIGITS+1)
[o] 9, ZERO IF R9 IS ZERO, CONTINUE
BNE DONED IF NOT, DONE
BCT 10, LOOPD GET NEXT BYTE IF MORR TO SCAN
B DONED1 NO NEED TO SUBTRACT 1, ALL ZEROES
DONED BCTR 7,0 R7 NOW CONTAINS COUNT OF ZERO DIGITS
DONED1 1M 3,4,4(1) RESTORE ADDRESSES OF PARMS
c 7, SXTEEN IS DIVISOR BIGGER THAN 8 BYTES
BL DIVERR ERROR IF YES
224 CMU/SEI-89-TR-16

SHFTOP
DIVCONT

DIVCNT1

DODIV
DODIVA

MOVLP1

FINMOV

DIVERR

DIVRET

SR

-4

3
OONNWWY
OHMO®HNO®

DGR

(o]

STC
RETURN
DC

6,7
0(16,2),0(3)
10,10

9,8

DIVCONT

SHFTOP

10,9
0(16,2),9,5
15(2) ,X'FO’
15(2), X’ 0oc’
8,15(4)

9,8

8,=X' FFFFFFFO’
8, =X’ 0000000C’
8,15(4)
0(16,2),0(16,4)
DIVCNT1
10,1(10)
9,15(4)

4,7

2

’
’

L BN BEN Y -4
LK = 2 N |

,10
DIVERR
0(16,2),0(3)
DODIV
0(16,2),7,5
DODIVA

7,7

6,0

€, =X’ 000000F0’
€,DIVISN

9,16

~ o~ 0~

[0}
-~
W
~

+3),0(2)

B

2,0
0(2),X’ 00’

9,0

FINMOV

2,0

MOVLP1

7,12(1)

DIVRET

3,1

3,16(1)

(2,11)
PL16’-2147483648'

GET MAX DIGITS

GET NUM DIGS IN DIVIDEND

GET MAX DIGITS

GET NUM DIGS IN DIVISOR

DIVIDE BY 2 => § BYTES OF QUOTIENT

LOAD R6é WITH 16

R6 CONTAINS § BYTES IN DIVISOR

MOVE DIVIDEND TO RESULT FOR TEMP USE

CLR R10 TO HOLD NUMB DIGS OF RIGHT

COMP LENGTH (LEFT) WITH LENGTH(RIGHT)

GOTO DIVCONT IF EQUAL

GOTO SHFTOP IF LENGTH (L) < LENGTH(R)

MV $§DIGS SHFTD RGHT TO #DIGS IN RES

SHIFT DIVIDEND FOR COMPARE W/DIVISOR

CLERR SIGN OF LEFT

MAKE SIGN OF LEFT POSITIVE

GET SIGN OF RIGHT

SAVE SIGN FOR LATER

CLEAR SIGN OF RIGHT

MAKE SIGN OF RIGHT POSITIVE

STORE SIGN IN RIGHT

COMPARE RIGHT AND LEFT

IF LEFT > RIGHT, THEN RESULT WILL
CONTAIN ONE MORE DIGIT

REPLACE ACTUAL SIGN INTO RIGHT

GET OFFSET INTO DIVISOR OF ACTL NUM

SAVE #BYTES IN QUOTIENT

GET NUM OF DIGITS + 1 OF QUOTIENT

GET NUM OF DIGITS OF QUOTIENT

COMP §DIGS IN QUOTNT TO #DIGS IN RES

OVERFIOW => GO TO DIVERR

RESTORE LEFT IN RESULT

IF EQUAL, THEN PERFORM DIVISION

SHIFT LEFT TO GET MAX PREC OF RESULT

GO TO DODIVA

NO SHIFT TOOK PLACE

OFFSET §BYTES IN DIVISOR BY ONE

ADD LENGTH OF DIVIDEND

PERFORM DIVIDE OPERATION

MOVE 16 INTO R9

RS9 HAS #BYTES OF ZEROS

GET ADDRESS OF RESULT INTO R3

GO TO LAST BYTE

GET LAST BYTE OF RESULT + 1

GET LAST BYTE OF RESULT

MOVE CHARACTER

SUBTRACT 1 FROM TOTAL TO MOVE

FINISHED

GET NEXT BYIE

GET NEXT BYTE

MOVE NEXT BYTE

GET NEXT BYTE

STORE ZERO

SUBTRACT ONE FROM R9

FINISH IF NO MORE TO MOVE

OTHERWISE, DECREMENT ADDRESS

MOVE ANOTHER BYTE OF ZEROES

STORE AMOUNT OF SHIFT INTO PARAM

GO TO DIVRET

PUT VALUE 'TRUR’ INTO R3

STORE R3 INTO ERROR

CMU/SEI-89-TR-16

225

UPPER DC PL16’2147483648"
POSCON DC X’ €0000000’
NEGCON DC X’ D0000000’
POSZCON DC X’ F0000000’
ZERO DC F'0’

ONE jo%e) F'1’

SXTEEN DC F’16’

THTYTWO DC F’32°

MULVIA MP 0(0,2),0(0,3)
MULV2A MP 0(0,2),0(0, 4)

DIVISN DP 0(0,2),0(0,4)
END ADASUP

C.22 SQL_Char_Pkg Specification

with SQL System:; use SQL_System;
with SQL Boolean_Pkg; use SQL_Booloan_Pkg;
with SQL_Standard;

package SQL Char Pkg
is

subtype SQL Char Length is natural
range 1 .. MAXCHRLEN;

subtype SQL_Unpadded_Length is natural
range 0 .. MAXCHRLEN;

type SQL_Char Not Null is new SQL Standard.Char;
type SQL Char(Length : SQL Char_ Length) is limited private;

function Null_SQL Char return SQL_Char;
~- pragma INLINE (Null_SQL_Cha.:);

~- the next three functions convert between

- null-bearing and non null-bearing-types

~=- Without_Null Base and With Null_ Base are

- inverses (mod. null values)

~= see also SQL Char Ops generic package below

function W:.th Null _Base(Value : SQL_ChA.:_Not_Null)
return SQL (Cha:

-=- pragma INLINE (With Null Base):’

-- Without Null Base and Without _Null Base_Unpadded raise

- nul"_vnluo_orrc: on the null xnput

function Without_Null Base (Value : SQL_Char) return SQL Char Not_ Null;

-- pragma INLINE (Without Null Base);

-= Without_RNull Unpadded Base removes trailing blanks from

-- the input

function without_Null_Unpaddod_Ba-o (Value : SQL Char)
return SQI. Ch.lr Not Null'

-- pragma INLINE (Hithcut Null Unpadded ! Ba-o),

-- axiom: unpadded Lcngth(:) =

- Without_Null Unpadded Base(x)’Length

-- both functions raise null_value_error if x is null

-=- the next six functions convert bestween Standard.String
- types and the SQL Char and SQI.. Char Not Null types
function To_String (anuo : SQL ¢ C!nz Not Null)

return String;

226 . CMU/SE!-89-TR-16

function To_String (Value : SQL Char)
return String;

function To_Unpadded_String (Value : SQL_Char Not Null)
return String;

function To_Unpadded_String (Value : SQL Char)
return String;

-- pragma INLINE (To_Unpadded String):

-- this INLINE works for BOTH funci.cns!!

function To_SQL Char Not_Null (Value : Strang)
return SQL_Char Not_Null;

function To_SQL Char (Value : String)
return SQL Char;

-- pragma INLINE (To_SQL_Qhar);

function Unpadded_length (Value : SQL Char)
return SQL Unpadded_ Length;
~-- pragma INLIWE (Unpadded_Length);

procedure Assign(
Left : out SQL_Fhar;
Right : SQL_phar

):

-- pragma INLINE (Assign);

-- Substring(x,k,m) returns the substring of x starting
- at position k (zrelative to 1) with length m.
-- returns null value if x is null
—-- raises constraint error if Start < 1 or Length < 1 or
-- Start + Length - 1 > x.Length
function Substring (Value : SQL_Cha:;
Start, Length : SQL Char Length)
return SQL Char;
-- pragma INLINE (Substring):;

~= "&" returns null if either parameter is null;
- otherwise performs concatenation in the usual way,
- preserving all blanks.
-- may raise constraint error implicitly if result is
- too large (i.e., greater than SQL Char Length’'Last
function "&" (Left, Right : SQL_Char)

return SQL Char;
-- pragma INLINE ("&");

-- Logical Operations --
-- type X type => Boolean with_ unknown --
-- the comparison operators return the boolean value
- UNKNOWN if either parameter is null; otherwise,
- the comparison is done in accordance with
-- ANSI X3.135-1986 para 5.11 general rule 5; that is,
- the shorter of the two string parameters is
-- effectively padded with blanks to be the length of
- the longer string and a standard Ada comparison is
- then made
function Equals (Left, Right : SQL_Char) return Boolean_with Unknown;
-- pragma INLINE (Equals);
function Not_Equals (Left, Right : SQL Char)
return Boolean with Unknown;
-- pragma INLINE (Not_ Equals)’ -
function "<" (Left, Right : SQL_char) return Boolonn_yith_pnknown;
-~ pragma INLINE ("<"):;
function ">" (Left, Right : SQL Char) return Boolean with Unknown;
-- pragma INLINE (">");
function "<=" (Left, Right : SQL Char) return Boolean_with Unknown;

CMU/SE!-89-TR-16

227

-- pragma INLINE ('"<=");
function ">=" (Left, Right : SQL__Char) return Bool.an__with_ﬂnkno‘m;
-~ pragma INLINE ('">="};

-~ type => boolean --
function Is_Null (Value : SQL Char) return Boolean;
-- pragma INLINE (Is_Null):
function Not_Null (Value : SQL Char) return Boolean;
-- pragma INLINE (Not_Null);

-- These functions of class type => boolean

-- equate UNKNOWN with FALSE. That is, they return TRUE
-- only when the function returns TRUE. UNKNOWN and FALSE
-- are mapped to FALSE.

function "=" (Left, Right : SQL Char) return Boolean;
-- pragma INLINE ("="):;

function "<" (Left, Right : SQL Char) return Boolean;
-~ pragma INLINE ("<");

function ">" (Left, Right : SQL Char) return Boolean;
-- pragra INLINE (">");

function "<=" [Left, Right : SQL Char) return Boolean;
~-- pragma INLINE ("<=");

function ">=" (Left, Right . SQL_Char) return Boolean;
-- pragma INLINE (">=");

-~ the purpose of the following generic is to generate
- conversion functions between a type derived from
- SQL_Char_ Not_Null, which are effactively Ada
- strings and a type derived from SQL_Char, which
- mimic the behaviour of SQL strings.
~~ the subprogram formals are meant to default; that is,
- this generic shcould be instantiated in the scope
- of an use clause for SQL_Char_Pkg.
generic
type With Null Type is limited private;’
type Without Null Type is array (positive range <)
of sql_standard.Character_type;
with function With_ﬂull_sa-o (Value: SQL Char Not_Null)
return With Null Type is <>;
with function Without_Null Base (Value: With Null Type)
return SQL_Char Not Null is <;
with function Without_Null Unpadded_Base (Value: With Null_ Type)
return SQL Char Not Null is <;
package SQL Char Ops is
function With_Null (Value : Without_Null Type)
return With Null Type;
~-- pragma INLINE (With Null):
function Without_Null (Value : With Null Type)
return Without Null Type; '
-- pragma INLINE (Without Null);
function Without Null_Unpadded (Value : With Null Type)
return Without Null Type;
-- pragma INLINE (Without_ Null Unpadded);
end SQL Char Ops;

private

type SQL_Char(Length : SQL Char Length) is record
Is_Null: Boolean := true;
Unpadded_Length: SQL Unpadded length;
Text : SQL_Char_Not_Null(l .. Length);

end record:;

228 CMU/SEI-89-TR-16

end SQL Char Pkg;

C.23 SQL_Char_Pkg Body

With SQL Exceptions;
with SQL Standard;
package body SQL Char Pkg is

use SQL S*andard.Character_Set; -- literals to be interpret

ed in

-~ DBMS native character set

Null Value Error : exception renames SQL Zxceptions.Null Value Error;

procedure Assigr/
Left : out SQL Char;
Right : SQL_Char)

is
begin
if Right.Is_Null then Left.Is Null := True;
else
Left.Is_Null := False;
if Left.length >= Right.Unpadded Length then
-- no need to truncate; blank pad
Left .Unpadded_length := Right.Unpadded_Length;
Left.Text := Right.Text(l..Right.Unpadded Length)
& SQL Char_ Not Null’
(Right .Unpadded_length + 1 .. Left.Length => ' ’');
else
-- truncate; may need to strip blanks
Left.Text (1. .Left.Length) := Right.Text (l..Left.Length);
-- remove trailing blanks in truncated string
declare .] ’
unpadded_length_ctr : Natural := Left.length;
begin
for i in reverse 1 .. lLeft.length loop
exit when Right.Text (i) /= ' ’;
unpadded_length ectr := unpadded length_ctr -1;
end loop:
lLeft.unpadded length := unpadded_length ctr:
end;
end if;
end if;
end Assign;

function With;pull_paco (Value : SQL_pha:_Not_ﬂull)
return SQL_Char is

== Calculate the Unpadded Length of the input string

-~ without the trailing blanks

-~ The input is stored in the output

Unpadded_lLength Ctr : Natural := Value'’Length;
subtype Intermed is SQL Char Not Null (1 .. Value’'Length);
begin
for i in reverse Value’'First .. Value'Last
loop
exit when Value(i) /= ' ';
Unpadded_Length Ctr .= Unpadded Length Ctr -1;
and loop;
return (Length => Value’lLength,
Is_ﬂull => False,

-- allows slices

CMU/SEI-89-TR-16

229

Unpadded_Length => Unpadded Length Ctr,
Text => Intermed(Value)):
end With Null Base;

function Without_ Null Base(Value : SQL_Char) return SQLLChA:_Not_Null is
begin
if Value.Is Null then
raise Null Value Error;
ealse
return Value.Text;
end if;
end Without_yull_paao;

function Without Null Unpadded Base(Value : SQL Char)
return SQL_Char_Not_Null is
begin
if Value.Is Null then
raise Null Value Error;
else
return (Value.Text (1..Value.Unpadded Length)):
end if; -
and Without_ﬂull_pnpaddnd_Ba-.;

function Null_SQL_Cha: return SQL_Char is

Null_?oldo: H SQL_Char(l);
begin

roturn(Null_Holdcr); -~ relies on default expression for I-_ﬁull
end Null SQL Char;

function To_String (Value : SQL_Char Not_Null)
return String is separate;

function To_String (Value : SQL_Char)
return String is ’
begin
if Value.Is_Null then
raise Null Value Error;
else
return (To_String(Value.Text));
end if;
end To_String:

function To_Unpadded String (Value : SQL Char Not_Null)

return String is -
begin

return (To_String(Without_Null Unpadded Base (With Null Base(Value)))):;
end To_Unpadded_String;

function To_Unpadded_String (Value : SQL Char)
return String is
begin
if Value.Is Null then
raise Null Value_Error;
else
return (To_String(Value.Text (l..Value.Unpadded Length))):;
end if; -
end To_Unpadded String;

function To_SQL Char Not Null (Value : &tring)
return SQL_FhA:_Not_ﬁull is separate;

function To_SQL Char (Value : String)
return SQL_Chnt is

230 CMU/SEI-89-TR-16

~- Zlalculate the Unpadded Length of the input straing
~~ without the trailing blanks
-- The input is stored in the output

Unpadded_Length Ctr : Natural := Value'Length;
subtype Intermed is SQL Char Not_Null (1 .. Value’'length); -- allows slices
begin
for i in reverse Value’First .. Value’'Last
loop
exit when Value(i) /= ' ‘;
Unpadded Length Ctr := Unpadded Length Ctr -1;
end loop; -
return (Length => Value'Length,
Is_Null => False,
Unpadded Length => Unpadded Length Ctr,
Text => Intermed(To_SQL Char_ Not Null (Value))};
end To_ﬁQL_Chaz;

function Unpadded Length (Value : SQL Char)
return SQL Unpadded Length is
begin
if Value.ls_Null then
raise Null_Valuc_ﬁrror;
alse
return Value.Unpadded Length;
end if;
end Unpadded_Length;

function Substring (Value : SQL Char;
Start, Length : SQL_Chaz_pongth)
return SQL_Cha: is
begin
if Value.Is Null then
return Null_SQL_Cha:;
elsif (Start + Length - 1) > Valve.lLength then
-- no need to check Start and Length here to see that
- they are > 0
-- the range constraints on the subtype SQL Char Length
-- will guarantee that a run-times check is made of
- these values as they are passed into "Substring"”
raise constraint_prror;
else
return With Null Base(Value.Text (Start .. Start + Length - 1))
end if;
end Substring;

function "&" (Left, Right : SQL Char)
return SQL_phar is
begin
if Left.Is_Null or else Right.Is Null then
return Null_SQL_Char; -

else
return
With_Null Base(Without Null Base (Left)
& Without Null Base(Right)):
end if;
end "&";

function Equals (Left, Right: SQL_Cha:) return Boolean With Unknown is
begin
if Left.Is_Null or else Right.Is Null then
return Unknown;
else

CMU/SEI-89-TR-16 231

if Left.Text(l..Left.Unpadded Length) =
Right.Text (1..Right.Unpadded_Length) then
return True;
alse
return False;
end if;
end if;
end Equals;

function Not_Equals (Left, Right: SQL Char) return Bool.nn_ﬁitb_ﬂnknown is
begin
if Left.Is_Null or else Right.Is Null then
return Unknown;
else
if Left.Text (1..Left.Unpadded Length) /=
Right.Toxt(l..Right.Unpaddod_Lcngth) then
return True;
else
return False;
end if;
end if;
end Not_ Equals;

function ">" (Left, Right: SQL_phar) return Booluan_ﬁith_pnknown is
begin
if Left.Is Null or else Right.Is Null then
return Unknown;
else
if Lc!t.Toxt(l..Loft.anaddod_Longth) >
Right.Taurt {? . .Righ*.Unpadded_Length) then
return True;
else
return False;
end if;
end if;
end;

function ">=" (Left, Right: SQL Char) return Boolean With Unknown is
begin
if Left.Is_Null or else Right.Is_Null then
return Unknown;
else
if Left.Text (1..Left.Unpadded Length) >=
Right.Text (1..Right.Unpadded Length) then
return True;
else
return False;
end if;
end if;
end;

function "<" (Left, Right: SQL_phar) return Booloan_ﬂith_pnknown is
begin
if Left.Is_Null or else Right.Is Null then
return Unknown;
else
ig Lgft.Tczt(l..Loft.Unp.ddod_Lonqth) <
Right.Text (1..Right.Unpadded Length) then
return True;
eolse
return False;
end if;

end if; ¢

232 CMU/SEI-89-TR-16

end;

function "<=" (Left, Right: SQL Char) return Boolonn_With_Unknown
begin
if Left.Is Null or else Right.Is_Null then
return Unknown;
else
if Left.Text (1..Left.Unpadded Length) <=
Right.Text (1..Right.Unpadded Length) then
return True;
else
return False;
end if;
end if;
end;

function I-_Null(Valu. : SQL Char) retura Boolean is
begin

return Value.Is Null;
end Is_Null;

function Not Null(Value : SQL Char) return Boolean is
begin

return not Valuo.Is_Null;
end Not Null;

function "=" (Leff, Right: SQL Char) return Boclean is
begin
if Left.Is_Null or else Right.Is Null then
return FALSE;
ealse
if Left.Text (l..Left.Unpadded Length) =
Right.Text (1. .Right.Unpadded_Length) then
return True;
else
return False’
end if;
end if;
end "=";

function "<" (Left, Right: SQL Char) return Boolean is
begin
if Left.Is_Null or else Right.Is Null then
return FALSE; -
else
if Left.Text (l..Left.Unpadded_length) <
Right.Text (1..Right.Unpadded_Length) then
return True;
else
return False;
end if;
end if;
end "<";

function ">" (Left, Right: SQL Char) return Boolean is
begin -
if Left.Is_Null or else Right.Is Null then
return FALSE;
ealse
if Left.Text (1..Left.Unpadded Length) >
Right.Text (1..Right.Unpadded Length) then
return True;
else

18

CMU/SEI-89-TR-16

233

return False;
end if;
end if;
end ">";

function "<=" (Left, Right: SQL_Char) return Boolean is
begin
if Left.Is_Null or else Right.Is_Null chen
return FALSE;
else
if Left.Text (1..left.Unpadded Length) <=
Right .Text (1..Right.Unpadded Length) then
raturn True;
else
return False;
end if;
end if;
end "<=";

function ">=" (Left, Right: SQL Char) return Boolean is
begin
if Left.Is _Null or else Right.Is_Null then
return FALSE;
alae
if cht.Taxt(l..Loft.Unpadd.d_Lcnqth) >
Right .Text (1..Right.Unpadded_Length) then
return True;
else
return False;
end if;
end if;
end ">=";

package body SQL_Char_Ops is
function With Null (Value : Without_Null Type)
return With Null Type is
begin
return With_ﬂull_pa-.(SQ;_Char_Not_Null(Vhluo));
end With Null;

function Without Null (Value : With Null Type)
return Without Null Type is
begin
return Without Null Type(
SQL_Char_Not_Null’ (Without Null Base (Value))):;
end Without Null;

function Without_ Null Unpadded (Value : With Null Type)
return Without Null Type is
begin
return Without Null Type(
SQL_pha:_Not_ﬂull’(Without_ﬁull_pnplddod Base (Value)}))):;
end Without Null Unpadded; -

end SQL_Cha:_Qp.;

end SQL Char_Pkg;

234

CMU/SEI-89-TR-16

C.24 Subunit To_String

-- assuming an ascii host character set
-- that is SQL_Standud.Chuactor_Typ. is Standard.Character
separate (SQL Char Pkg)
function To_String (Value : SQL Char Not_ Null)
return String is
begin
return (String(Value)):;
end To_String;

C.25 Subunit To_SQL_Char_Not_Null

-~ assuming an ascii host character set
-- that is SQL_Standard.Character_Type is Standard.Character
separate (SQL Char Pkg)
function To_SQL_Char Not_Null (Value : String)
return SQL_Char Not Null is
begin
return (SQL_Char_Not_Null (Value));
end To_SQL Char Not Null;

C.2¢ SQL_Enumeration_Pkg Specification

with SQL Boolean_Pkg; use SQL Boolean Pkg;
with SQL Char Pkg; use SQL_Char_ Pkg;
generic
type SQL_Enumeration Not_Null ia (<))
package SQL Enumeration_Pkg
is

---- Possibly Null Enumeration ----
type SQL Enumeration is limited private;

function Null SQL Enumeration return SQL _Enumeration;
-- pragma INLINE (Null SQL Enumeration);

~=- this pair of functions convert between the

- null-bearing and non-null-bearing types.

function Without Null(Value : in SQL_Enumeration)
return SQL Enumeration Not Null:

-- pragma INLINE (Without Null);

-- With_Null raises Null_Value_Rrror if the input

- value is null

function With Null (Value : in SQL_]’.numgration_Not_Null)
return SQL Enumeration;

-- pragma INLINE (With_Null);

procedure Assign (
Left : in out SQL Enumeration; Right : in SQL_Enumeration):
-- pragma INLINE (Assign);

-- Logical Operations --

-~ type X type => Boolean with unknown --
-- these functions implement three valued logic
~= if either input is the null value, the functions
- return the truth value UNKNOWN; otherwise they
-~ perform the indicated comparison. "

CMU/SEI-89-TR-16 235

-- these functions raise no exceptions
function Equals (Left, Right : SQL Enumeration)
return Boolean_with_ Unknown;
function Not Bquals (Loft Right : SQL_Enumoration)
return Boolean_with Unknown;
-- pragma INLINE (Not_lquals);
function "<" (Left, Right : SQL Enumeration) return Boolean with Unknown;
function ">" (lLeft, Right : SQL Enumeration) return Boolean with Unknown;

function "<=" (Left, Right : SQL Enumeration) return Boolean_with Unknown;
function ">=" (Left, Right : SQL Enumeration) return Boolean with_Unknown;

-- type => boolean --
function Is_Null (Value : SQL_Enumeration) return Boolean;
-- pragma INLINE (Ic_Null),
function Not | Null (Value : SQL | Enumeration) return Boolean;
-~ pragma INLINE (Not Null);
function "=" (Left, R.xght : SQL_Enumqrntion) return Boolean:;
-- pragma INLINE ("=");
function "<" (Left, Right : SQL Enumeration) return Boolean:
-- pragma INLINE ("<");
function ">" (Left, Right : SQL_Enumotnt:ion) return Boolean;
-- pragma INLINE (">");
function "<=" (Left, Right : SQL_Enumo:ation) return Boolean;
-- pragma INLINE ("<=");
function ">=" (Left, Right : SQL Enumeration) return Boolean;
-- pragma INLINE (">=");

~- the following six functions mimic the
- 'Pred, ’'Succ, 'lImage, ‘Pos, ’'Val, and ’'Value
- attributes of the SQL Enumeration_Not_Null type, passed
-- in, for the associated SQL_| Enuma:ntxon (null) type
-- they all raise the Null Value_Error exception if a null
-- value is passed in
-- Pred raises the Constraint Error exception if the value
-- passed in is equal to SQL Enumeration_Not Null’'Last
== Succ raises the Constraint Error exceptien if the value
- passed in is equal teo SQL Enumeration Not_Null'First
-- Val raises the Constraint Error exception if the value passed
- in is not in the range P POS(P'FIRST) ..P'POS(P’'LAST) fox type P
== Value raises the Constraint Error exception if the sequence of
-- characters passed in does not have the syntax of an enumeration
- literal for the instantiated enumeration tvpe
function Pred (Value : in SQL_Enumoration) return SQL_gnun.:ation;
-- pragma INLINE (Pred):
function Succ (Value : in SQL Enumeration) return SQL_Enumeration’
-- pragma INLINE (Succ);
function Pos (Value : in SQL Enumeration) return Integer;
-- pragma INLINE (Pos);
function Image (Value : in SQL_Fnum.rntion) return SQL_QhA:;
function Image (Value : in SQL Enumeration Not Null)
return SQL_Char_Not_Null;
-- pragma INLINE (Image):
function Val (Value : in Integer) return SQL Enumeration;
-- pragma INLINE (Val);
function Value (Value : in SQL_| Char) return SQL Enumeration;
function Value (Value : in SQL ¢ Char Not_Null)
return SQL Enumeration_ Not Null
-~ pragma INLINE (Value);

private

type SQL Enumeration is record

236

CMU/SEI-89-TR-16

Is _Null: Boolean := true;
Value: SQL_Fnumoration_ﬂot_ﬂull;
end record;

end SQL_Enumorntion_?kg;

C.27 SQL_Enumeration_Pkg Body

With SQL_;xcoption-;
package body SQL_Enumeration Pkg
is

Null Value Error : exception renames SQL Exceptions.Null Value Error:

function Null SQL Enumeration return SQL_Enumeration is
Null_goldot : SQL_Enumoration:

begin
return Null Holder;

and Null_SQL_;num.:ation;

function Without Null(Value : in SQL Enumeration)
return SQL_Fnum‘ration_Not_pull is
begin
if Value.Is Null then
raise Null Value_ Error;
alse
return Value.Value;
end if;
end Without null;

function With_Null (Value : in SQL Enumeration Not Null)
return SQL Enumeration is
begin
return (Is_Null => false,
Value => Value);
end With Null;

procedure Assign (Left : in out SQL_Enumeration;
Right : in SQL_;numotation) is
begin
Left := Right;
end Assign;

function Equals (Left, Right : SQL Enumeration)
return Booclean With Unknown is
begin - -
if Left.Is_Null or else Right.Is_Null then
return Unknown;
alsif Left.Value = Right.Value then
return True;
else
return False;
end if;

end Equals;

function Not_Equals (Left, Right : SQL Enumeration)
return Boolean With Unknown is
begin
if Left.Is_Null or else Right.Is_Null then
return Unknown;

CMU/SEI-89-TR-16

237

elsif Left.Value /= Right.Value then
return True;
else
return False;
end if;
and Not_;qualn;

function "<" (Left, Right : SQL Enumeration)
return Boolean With Unknown is
begin
if Left.Is_Null or else Right.Is_Null then
return Unknown;
elsif Left.Value < Right.Value then
return Tzue;
alse
return False;
end if;
end "<";

function ">" (Left, Right : SQL_;numcration)
return Booclean With Unknown is
begin
if Left.Is_Null or else Right.Is_Null then
return Unknown;
elsif Left.Value > Right.Value then
return True;
else
return False;
end if;
end ">";

function "<=" (Left, Right : SQL_;numoration)
return Boolean With Unknown is
begin
if Left.Is_Null or else Right.Is Null then
return Unknown;
elsif Left .Value <= Right.Value then
return True;
else
return False;
end if;
‘nd ll<= n ,.

function ">=" (Left, Right : SQL Enumeration)
return Boolean With Unknown is
begin
if Left.Is Null or else Right.Is_Null then
return Unknown;
elsif left.Value >= Right.Value then
return True;
else
return False;
end if;
‘nd ">=" ’.

function Is_Null (Value : SQL Enumeration)
return Boolean is

begin
return Value.Is Null;

end Is_Null;

function Not_Null (Value : SQL_Enumeration)
return Boolean is

238

CMU/SEI-89-TR-16

begin
return not Valuo.Is_ﬂull;
end Not Null;

function "=" (Left, Right : SQL Enumeration)
return Boolean is
begin

if Left.Is_Null or else Right.Is_Null then
return False; .

elsif Left.Value = Right.Value then
return True;

else
return False;

end if;

.nd Il=" ;

function "<" (Left, Right : SQL_Enumeration)
return Boolean is
begin
if Left.Is_Null or else Right.Is_Null then
return False;
elsif Left.Value < Right.Value then
return True;
else
return False;
end if;
end "<";

function ">" (Left, Right : SQL Enumeration)
return Boolean is
begin
if Left.Is_Null or else Right.Is_Null then
return False;
elsif Left.Value > Right.Value then
return True;
ealse
return False;
end if;
end ">";

function "<=" (lLeft, Right : SQL_;num-:aticn)
return Boolean is
begin
if Left.Is_Null or else Right.Is_Null then
return False;
elsif Left.Value <= Right.Value then
return True;
else
return False;
end if;
end "<=";

function ">=" (Left, Right : SQL_Fnumoration)
return Boolean is
begin
if Left.Is_Null or else Right.Is Null then
return False;
elsif Left.Value >= Right.Value then
return True;
else
return False;
end if;
and ">=";

CMU/SEI-88-TR-16

239

function Pred (Value : in SQL_Enumoration)
return SQL_gnumorntian is
begin

if Value.Is_Null then
return Null_SQL_;numoration;
else
return (With Null(SQL Enumeration_Not Null’Pred(Value.Value}));
end if;
end Pred;

function Succ (Value : in SQL Enumeration)
return SQL Enumeration is
begin
if Value.Is_Null then
return Null_ SQL Enumeration;
else
return (With_ﬂull(SQL_Enumcrltion_Not_Null'Succ(Valuo.Valuo))):
end if;
and Succ;

function Pos (Value : in SQL Enumeration) return Integer is
begin
if Value.Is_Null then
raise Null_Yaluo_xrrot;
else
return SQL_Enumeration_Not_Null’Pos(Value.Value):
end if;
end Pos;

function Image (Value : in SQL_Enum-ration_Not_Nul1)
return SQL_phar_Not_pull is
begin
return To_SQL_;hax_Not_pull(
SQL_Enumeraticn_Not Null’ Image(Value));
end Image;

function Image (Value : in SQL_Fnum.:ation)
return SQL Char is
begin
if Value.Is_Null then
raise Null Value Error;
else
return To_SQL_Cha:(SQL_Enum.:ation_ﬂot_Null'Imago(anu..Valuo));
end if;
end Image;

function Val (Value : in Integer) return SQL Enumeration is
begin

Teturn (With Null (SQL Enumeration Not_Null’Val (Value)));
end Val.;

function Value (Value : in SQL_Char_Not_ﬂull)

return SQL_;numozation_Not_ﬂull is
begin

return (SQL_Enumeration Not Null’'Value(To_String(Value))):
end Value;

function Value (Value : in SQL_pha:)
return SQL_Fnumoration is
begin
If Is_Null (Value) then
return Null_SQL_Fnun.:ution;
else

240 CMU/SEI-B89-TR-16

return With Null(SQL Enumeration_ Not Null’ Value(
Ta St:zng(Valuo)))
end if;
end Value;

end SQL Enumeration Pkg;

C.28 SQL_Database_Error_Pkg Specification

package SQL Database Error_Pkg is

-- The following procedure must be present in every version of

-- SQL_Database Error Pkg. It's purpose is to perform standard

-- processing of unexpected exceptional conditions. It should not
-- attempt error recover.

procedure Process_Database_ Error;

end SQL Database_ Error_ Pkg;

C.29 SQL_Database_Error_Pkg Body

with Text_IO, SQL_Communications_Pkg, SQL Base_Types_Pkg;
use Text_ IO, SQL Communications_Pkg, SQL Base_Types_ Pkg;
package body SQL Database Error_ Pkg is

procedure Process Database Error is
begin

-- Procedure Process_Database] Er:or is called in response
- to an unoxpoctcd database exception (an error incident).
== The procedure may be modified per

- the needs of the Abstract Interface developer

-- This is a minimal implementation.

-- Ge’. » descriptive error message from the DBMS
- (through the package SQL Communications_Pkg)
-~ and display it on standard output.

put_line (To_String(SQL_Chn:_Not_yull(SQL_patabaao_prror_yo.sago)));

end Process_Database_Error;

end SQL Database Error Pkg:;

C.30 SQL_Date_Pkg Specification

with SQL Standarxd;
with Calendar; use Calendar;
with SQL_Pool-an_?kg; use SQL_Boolocn Pkg;
with SQL_phar_Pkg; use SQL_;haz_?kg; -
package SQL Date_Pkg

is

type precision is range 0..10;

CMU/SEI-8S-TR-16

241

type SQL Datetime Field is (year, month, day,
hour, minute, second, fractzon)
type SQL Date Not Null is new SQL Cha:_ﬂot_ﬂull,

type SQL Data (From : SQL Datetime Field-
To : SQL Datetime Field;
Fractional : p:cox.;on) is limited private;
type SQL_Interval (From : SQL Datetime Field;
Leading : precision;
To : SQL | D.:ot;mo Field;

Fractional : procz.zon) is limited private;

function Null_ SQL Date return SQL Date;
-- pragma INLINE (Null_ SQL Date);

function Null SQL_Interval return SQL Interval;
-~ pragma INLINE (Null_ SQL Intervszl);

-- these functions return the not-null portion of the null-bearing type
function Without] Null Ba-o(anuo : SQL_Date) return SQL Date_Not Null
function Without Null Ba-o(Valuo : SQL Interval) return SQL | Dato _Not Null
-- pragma INLINE (Without_Null Base);

-- this function returns an cbject of the standard.duration type, after
- converting to it from the imput object of type SQL Interval
function To_Duration (Value : SQL Interval) return duration;

—- pragma INLINE (To_Duration);

-- this functicn returns an cbject of the calendar.time type, after
- converting to it from the input object of type SQL Date
function To_Time (Value : SQL Date) return time;

-~ pragma INLINE (To_Time);

-~ these procedures parse the input of type SQL Date Not Null, and assign
- the datetime and interval field values to the objects of type
- SQL Date and SQL Interval, using discriminants that it determines are
- the correct ones for the cbject. If these discriminants differ from
- the cnes supplied in the abstract domain for the cbject when it was
- declared, a constraint_error will be raised.
procedure Parse_and Assign | B--.(Lozt. in out SQL Date;

Right : SQL Date Not _Null);
procedure Parse_and Rssign Base(lLeft: in out SQL_Intorvnl

Right :SQL Date Not Null):
~- pragma INLINE (Parse_and Assign);

-- this function accepts input of type standard.duration, and

-- Teturns an object of type SQL Interval whose not-null portion
-- has the correct SQL "interval” value specification format,

- (FROM => day, LEADING => 2, TO => fraction, FRACTIONAL => 3)
function To_SQL Interval (Value : durutiog) return SQL Interval;
-- pragma INLINE (To SQL Interval);

-- this function accepts input of type standard.time, and

- Teturns an cbject of type SQL Date whose not-null portion
- bas the correct SQL "datetime" value specification format
function To_SQL Date (Value : time) return SQL Date;

-~ pragma INLINE (To_SQL Date);

== the assign procedure assigns Right to Left

procedure Assign (Left : in out SQL_Date; Right : SQL_p.to);
procedure Assign(Left : in out SQL_Int--val; Right : SQL_Interval);
-- pragma INLINE (Assign);

-~ the following three functions implement unary "+", "-", "abs"

242

CMU/SEI-89-TR-16

-- for the SQL Interval type

function "+"(R1ght : SQL_Interval) return SQL | Intorval
function "-" (Right : SQL_: Intcrval) return SQL Interval;
function "abs" (Right : SQL_Intorval) return SQL Interval;
-- pragma INLINE ("abs"):;

~--~ the following functions implement three valued

- arithmetic

-- if either input to any of these functions is null

- the function returns the null value; otherwise

-- they perform the indicated operation

== these functions raise no exceptions

function "+" (Left, Right : SQL_Interval) return SQL Interval;

function Plus (lLeft SQL_Interval; Right : SQL Date) return SQL _Date;
function Plus(left : SQL Date; Right : SQL_Intorval) return SQL Date;
-- pragma INLINE ("+");

function "-" (Left, Right : SQL_Intorval) return SQL~Intorvnl;

function Minus (Left, Right : SQL Date) return SQL Interval;

function Minus (Left : SQL Date; Right : SQL_Intorval) return SQL Date;
-- pragma INLINE ("-");

function "*" (Left : SQL_Intcrval; Right : integer) return SQL Interval;
-- pragma INLINE ("*");

function "/" (Left : SQLL}ntorval; Right : integer) return SQL_Intcrval;
-~ pragma INLINE ("/");

-- Logical Operations --
-= type X type => Boolean with unknown --

-- these functions implement three valued logic
== if either input is the null value, the functions
- return the truth value UNKNOWN; otherwise they
- perform the indicated comparison.
-~ these functions raise nc exceptions
function Equals (Left, Right : SQL Date) return Booloan with Unknown;
function Equals (Left, Right : SQL_Interval) return Bool.an with _Unknown;
-- pragma INLINE (Equals):
function Not_Equals (Left, Right : SQL Date)

return Boolean with Unknown;
function Not_Equals (Left, Right : SQL Interval)

return Boolean_with Unknown;
-- pragma INLINE (Not Equals);
function "<" (Left, Right : SQL Date) return Boolean with Unknown;
function "<" (Left, Right : SQL_Interval) return Boolean_with Unknown;
-- pragma INLINE ("<"):
function ">" (Left, Right : SQL , Date) return Boolean_with Unknown;
function ">" (Left, Right : SQL Interval) return Boolo-n with ._Unknown;
-- pragma INLINE (">");
function "<=" (Left, Right : SQL _Date) return Boolcan with Unknown;
function "<=" (Left, Right : SQL_ Intorval) return Booloan thh Unknown;
-- pragma INLINE ("<=");
function ">=" (Left, Right : SQL _Date) return Boolean_with Unknown;
function ">=" (Left, Right : SQL Interval) return Booloan w;tb Unknown;
-- pragma INLINE (">=");

-~ type => boolean --
function Is_Null(Value : SQL Date) return Boolean;
function Il_pull(Valuo : SQL_;ntorval) return Boolean:;
-- pragma INLINE (Is_Null);
function Not_Null (Value : SQL Date) return Boclean;
function Not_Null (Value : SQL Interval) return Boolean;
-~ pragma INLINE (Not Null);
function Is_Yon:_yonth(Valuo : SQL_Interval) return Booclean;
-- pragma INLINE (Is_Year_ Month);
function Is_Day Time(Value : SQL Interval) return Boolean;

CMU/SEI-89-TR-16

243

-- pragma INLINE(Is Day Time): !

function Not Year Month(Value : SQL Interval) return Boolean:
-- pragma INLINE(Not Year Month)

function Not Day T;mo(Valuo : SQL Interval) return Boolean;
-~ pragma INLINE (Not_Day Time):

-- the procedure Current returns the current system Datetime, using

-~ the precision of the input variable

procedure Current (Value : in out SQL Date);

-- pragma INLINE (Current):’

-- the procedure Extend returns the value of the Right input object with
-- the datetime qualifier of the Left cbject, if a valid datetime

- value is generated by the extension process

procedure Extend (Value : in out SQL Date);

-- pragma INLINE (Extend)

-- this generic is instantiated once for every abstract
- SQL Date domain, and once for every abstract SQL_Intorval
- dom;in, based on the type SQL Date Not Null.

-- the two subprogram formal parameters are meant to

- default tc the programs declared above.

-- that is, the package should be instantiated in the

-- scope of a use clause for SQL Date_Pkg.

~~ the two actual types together form the abstract

- domain.

-- the purpose of the generic is to create functions

- which convert betweean the two actual types

-- the bodies of these subprograms are calls to

- subprograms declared above and passed as defaults to
-- the generic.

generic

type With Null Type is limited private:;
type WithSut_Null_Typo is array (positive range <>)
of SQL_StandArd.Ch‘ractor_;yp.;
with procedure Parse_and Assign_Base
{(Left : in out With Null Type; Right : SQL Date_Not Null) is <>;
with function Without Null Base(Value : With | Null Typo)
return SQL _Date Not_Null is <;

package SQL Date Ops is

procedure Parse_and Assign (Left : With Null Type:
Right : Without_Null Type):
-- pragma INLINE (Parse_and Rssign);
function Without Null (Value : With {ull Type)
return Without Null type;
-- pragma INLINE (Without Null);

end SQL_Dlto_pp.;

generic

type With Null Date Type is limited private;

type With | Null Interval Type is limited private;

with fuanction Plus (Left : With Null Date_Type; Right : SQL Interval)
return Wzth_Null_p.to_E&po In <>;

with function Plus (Left : SQL_Interval; Right : With_Null Date_ Type)
return With Null Date_Type is <>;

with function Minus (Left : With Null Date Type; Right : SQL_Interval)
return With Null Date_Type is <>;

with function Minus (Left, Right : With_ Null_ Date_ Type)
return SQL Interval is <;

package SQL Date_ Interval _Ops is

function "+" (Left : With _Null Date_Type; Right : With Null Interval_Type)
return With_Null | Date Typ.; -

function "+" (Laft : With Null Interval Type; Right : With Null Date_ Type)
return With Null Date Typc; - -

CMU/SEI-89-TR-16

function "-" (Leaft

function "-" (lLeft,

private

: With Null Date_Type; Right : With Null Interval_Type)

return With_ Null Date_Type:

Right : With Null Date_Type)
return With Null Interval Type:

end SQL Date Interval Ops;

type SQL_year number is range
type SQL month number is range

type SQL_day_ number

is range

type SQL hour number is range
type SQL minute number is range
type SQL_second number is range
type SQL_fraction_number is range
type SQL_interval number is range

type SQL_pato(From

1600..9999;

1..12;

1..31;

0..23;

0..59;

0..59;

0..(2%*31)-1;
-(2%%31) .. (2**31)-1;

SQL_Datetime Field;
SQL Datetime Field;

To
Fractional : precision)
is record
Is Null : Boolean := true;
yczt : SQL_year number;
month : SQL_ponth_pumbcr:
day : SQL day number;
hour : SQL_pour_numbor;
minute : SQL_pinuto_numbox;
second : SQL_pocond_pumbox;

f£raction : SQL_f:action_numbor;

end record;

type SQL Interval (From SQL Datotimo_?iold;
- Leading : pz-on.u‘.on ;

To - : SQL_pacotimo_Fiold;
Fractional : precision)

is recoxd
Is_Null
Il_}oaz_yonth
years
months
days
minutes
seconds
fraction

end recczd;

end SQL_D.tc_?kg;

: boolean := True;
: boolean := True;

SQL_interval number;
SQL_interval number;
SQL_interval number;
SQL_interval number;
SQL_intoerl_pumbor;
SQL_interval number;

C.31 INGRES_Date_Pkg Specification

with SQL Standard:

with SQL System; use SQL System;
with Calendar; use Calendar;

with SQL Boolean Pkg; use SQL_Boolean Pkg;
with SQL_Ch.x_Pkg; use SQL_;hax_Pkg;

package INGRES Date_Pkg
is

type INGRES Date_Not Null is new SQIL Char_ Not_Null;
---~ Possibly Null Datetime ----

CAY/SEI-89-TR-16

245

type INGRES_Date Format is (Datetime, Interval, Unknown);
type INGRES Date(Format : INGRES_ Date Format := Unknown)
is limited private;

function Null INGRES Date return INGRES Date;
-- pragma INLINE (Null INGRES_ Date):;

-- this function accepts input of type INGRES Date Not Null, and
-~ returns an object whose not-null portion is the input
function With Null Base(Value : INGRES_Date_Not_Null)

return INGRES Date;
-- pragma INLINE (With Null Base);

-- this function returns the not-null portion of the null-bearing type
function Without Null Base (Value : INGRES Datae)

return INGRES_ Date Not Null;
-~ pragma INLINE (Without_Null_Bast);

-- this function returns the not-null portion of the null-bearing type
- this function differs from Without Null Base in that the output
-— is extended to include all fields,

-- even if they contain a value of zero
-- INGRES may output a date in a format

-- that is unacceptable as INGRES input.
- Therefore this function extends the output format into an acceptable
- INGRES input format, and should be used when interacting with INGRES
function Without Null DBMS Base(Value : INGRES Datae) .

return INGRES Date Not Null;
-- pragma INLINE (Without Null DBMS Base};

.

-- this function raises constraint_error if the cbject of type

-— INGRES_Dat s Not Null is not in the correct INCRES "“intarval" format
- of the INGRES date data type

function To_Duration (Value : INGRES_Date) return duration;

-~ pragma INLINE (To_Durationm);

-- this function raises constraint error if the ocoject of type

- INGRES_Date_Not_Null is not in the correct INGRES "datetime" format
- of the INGRES date data type

function To_Tim. (Value : INGRES_D.:.) return time;

-- pragma INLINE (To_Time):;

-~ this function accepts input of type standard.duration, and

- returns an object whose not-null portion has the correct INGRES
- "interval" format of the INGRES date data type

function To_INGRES Date (Value : duration) return INGRES_Date;

-~ this function accepts input of type standard.time, and

-= returns an object whose not-null portion has the INGRES "datetime"
- format of the INGRES date data type

function To_INGRES Date (Value : time) return INGRES_Date;

-- pragma INLINE (To_INGRES_Date);

procedure Assign(Left : in out INGRES_Date; Right : INGRES_ Date);
-- pragma INLINE (Assign):;

-~ the following three functions implement unary “+", "-", "abs"
function "+" (Right : INGRES Data) return INGRES Date;

function "-" (Right : INGRES_p.to) return INGRZS_Dat.;

function "abs" (Right : INGRES_pat.) return INGRBS_Dato:
-- pragma INLINE ("aba");

246

CMU/SEI-89-TR-16

-- the following functions implement three valued
-- arithmetic

-- if either input to any of these functions is null

- the function returns the null valus; otherwise

-- they perform the indicated operation

-- these functions raise no exceptions

function "+" (Left, Right : INGRES_Dato) return INGRES Date;
-- pragma INLINE ("+");

function "-"(Left, Right : INGRES_Date) return INGRES Date;
~- pragma INLINE ("-");

-- Logical Operations --

-- type X type => Boolean with unknown --
-~ these functions implement three valued logic
-- if either input is the null value, the functions
-- return the truth value UNKNOWN; otherwise they
- perform the indicated comparison.
-- these functions raise nc exceptions

function Equals (Left, Right : INGRES Date) return Boolean with Unknown;

function Not_Equals (Left, Right : INGRES_Date)

return Boolonn_yith_Unknown;
function "<" (Left, Right : INGRES Date) return Boolcan_-ith_unknoun;
function ">" (Left, Right : INGRES_Date) return Booloan_thh_Unknovn;
function "<=" (Left, Right : INGRES_Date) return Boolean with Unknown:
function ">=" (Left, Right : INGRES_pat.) return Booloan_yxth_pnknawn;

-- type => boolean --
function Is_Null (Value : INGRES Date) return Boolean;
-- pragma INLINE (Is_Null):;
function Not_Null (Value : INGRES_Date) return Boolean:
-- pragma INLINE (Not_ Null):
function Equals (Left, Right : INGRES Date) return Boolean:
-~ pragma INLINE (Egquals);
function Not_Equals (Left, Right : INGRES_Date)

return Boolean;

-~ pragma INLINE (Not_Rquals):
function "<" (Left, Right : INGRRS_Date) return Boolean;
-=- pragma INLINE ("<");
function ">" (lLeft, Right : INGRES Date) return Boolean;
-~ pragma INLINE (">");
funotion "<=" (Left, Right : INGRES Date) return Boolean:
= pragma INLINE ("<=");
functicon ">e&" (Left, Right : INGRES Datae) return Booclean:
~- pragma INLINE (">=");

-- this generic is instantiated once for every abstract
- domain based on the type INGRRS Date_Not Null.

-- the two subprogram formsl parameters are meant to

-- default to the programs declared above.

-- that is, the package should be instantiated in the
-- scope of a use clause for INGRES Date_Pkg.

-~ the two actual types together foram the abstract

-- domain.
-- the purpose of the generic is to create functions
-- which convert betwean the two actual types

-- the bodies of these subprograms are calls to
- subprograms declared above and passed as defaulte to
- the generic.

generiac

type With Null Type is limited private;
type Without Null Type is array (positive rangs <)
of SQL Standard.Character_Type:
with function With Null Base (Value : INGRRS Date_Not Null)

CMU/SEI-89-TR-16

247

end

return With_Null Type is <>;
with function Without Null Base(Value : W_th Null Type)
return INGRES Date Not Null is <>;
with function Wit;out_Null_DBMS_Ba-.(anuo B thh_Null_‘!Ypo)
return INGRZS_D.:._Not_Null is <>;
package INGRES Date Ops is
function Hith_Null (Value
return With Null Type:
-- pragma INLINE (With Null):

function Without_Null (Value

Without_Null__typo)

With_Null_Type)

return Without Null type;

-- pragma INLINE (Witbout_ Null):
function Without_ Null DBMS (Value
return Without Null type’

-- pragma INLINE (Wif_hout_Null_DBMS):

INGRES Date Ops:

private

end

type INGRES_ year number is
type INGRES_month_number is
type INGRES day number is
type INGRES_hour number is
type INGRES minute_ number is
type INGRES_second number is

type years_ number
type months_number
type days_number
type hours_number
type minutes_number
type seconds_number

type INGRES Date (Format

is
18
is
is
is
18

range
range
range
range
range
range
Tange
range
range
range
range
range

Is_Null: Boolean := true;

case Format 1ie
when Datet.ime
Year :
month
day
hour
manute
second
when Interval
years
months
days
hours
minutes
seconds
whan Unknown
null;
and case;
end record:;

INGRES Date_Pkg;

=>
INGRES

With Null_Type)

1582..2382:
1..12;

1..31:

0..23;

0..59:;

0..59:;

-800..6800;
-(800*12)..(800*12)

-(292200) .. (292200);: -- 800 * 365 .25

-{(292200°24) .. (292200°24) :

-(292200%24°60) .. (292200°24°60) :

-(2%**31)..(2**31)-1;

_year number:

INGRES month_ number;
INGRES day number:
INGRES hour number:
INGRES minute number:
INGRR s_.ooond_mnbot H

=

years number:
: months number:

days_number:

hours_number:
H mnutco_nunbot :

seconds_number:;

=>

mms_bato_romt := Onknown) ae record

248

CMU/SEI-89-TR-16

l

e |

sECURITY CLASS"‘CA“U" Qr Tty Pa,e

REPORT DOCUMENTATION PAGE l
te REPORAT SECURITY CLASSIFICATION 10 RLSTRICTIVE MARKINGS ' A
UNCLASSIFIED NONE (.
Ze. SECURITY CLASSIFICATION AUTHORITY) OLYTRIBUTION/AVAIL AGILITY OF REPORT '
N/A APPROVED FOR PUBLIC RELEASE P
76 CECLASSIFICATION/DOWNGRADING SCHEDULE DISTRIBUTION UNLIMITED i ‘
N/A
4 PERFORAMING ORGANIZATION REPORT NUMBERIS] 9 MONMIYORING CRGANIZATION REPOAT NUMBERA(S)
CMU/SEI-89-TR-16 ESD-TR-89-24 C
6a NAME OF PERFOAMING ORGANIZATION a OFFICE SymeoOL Te NAME OF MONITORING QRGANIZATION ! i
(1f spplicadic) i
SOFTWARE ENGINEERING INST. SEI SEI SOINT PROGRAM OFFICE
6c. AOORESS (City. State and ZIP Code) 70. AOORESS (Cily. Stair and ZIP Codel ‘
CARNEGIE-MELLON UNIVERSITY ESD/XRS! ;
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE
HANSCOM, Ma (0171
8e. NAME OF FUNOING/SPONSORING 8o, OFFICE SYMBOL 9. PAOCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (1 applicadie)
SFT JOINT PROGRAM OFFICE ESD/XRS1 F1962885C0003
8c. ADORESS (City. State and ZIP Coda) 10. SOURCE OF FUNDING NOS.
CARNEGIE-MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT
PITTSBURGH, PA 15213 ELEMENT NO. NO. NO. NO.
11. TITLE (include Secunty Clossi/icotion) 63752F N/A N/A N/A
GUIDELINES FOR THE USE OF THE SAME -

12. PEARSONAL AUTHOR(S)
Marc H. Graham
13a TYPE QOF REPORT 1Jo. TIME COVERED 14. OATE OF REPOQRT (Yr., Mo., Day) 1S. PAGE COUNT

FINAL FROM T0 Mav 1989 949
16. SUPPLEMENTAR Y NOTATION

17. COSATI COOES 18 SUBJECT TERMS (Conlinue on recerse if necessary end idendfy by block number)
F1ELO GROUP SUB. GR. Ada SQL (structured language query)

data base SAME (SQL Ada Module Extensions)
DBMS (data base management system)

19. ABSTRACT (Continue on reverse if necessary end identify by block number) B
These guidelines describe the Structured Query Language (SQL) Ada Module Extemnsions, or

SAME, a method for the comstruction of Ada applications that access database management
systems whose data manipulation language is SQL. As its name implies, the SAME extends
the module language defined in the ANSI SQL standard to fit the needs of Ada. The de-
fining characteristic of the use of the module language is that the SQL statements appear
together, physically separated from the Ada application, in an object called the module.
The Ada application accesses the module through procedure calls.

The primary audience for this document consists of application developers and techmicians
creating Ada applications for SQL database management systems. The document contains a
complete description of the SAME, including its motivation.

20. OISTRIAGUTION/AVAILASBILITY OF ABSTAACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED/UNLIMITED §] same as ast. (J oTic users (3 UNCLASSIFIED, UNLIMITED DISTRIBUTION
2a. NAME OF RESPONSIBLE INOIVIOUAL 22p. TELEPHONE NUMBER 22¢. OFFICE SYMBOUL
KARL H. SHINGLER Include Area Code)
412 268-7630 SEI JPO
0D FORM 1473, 83 APR €OITION OF 1 JAN 73 1S OBSOLETE.

SECURITY CLASSIFICATION OF Tw1S "‘/-C_

]

