
I Technical Report

CMU/SEI-89-TR-16I ESD-TR-89-24

ID ,Software Engineering Institute

*OO*00

Guidelines for the Use of the SAME

i MarcH. Graham

May 1989

I
DTIC4' i) ELECTEp

S DEC12 19891 D

I

I.
I I

I ____
° ' ' - A -

I
Ii
I
I

I
I
I
I
i
I
I
I
I
I
I

Carnege Melon University does not discriminate and Carnegie Mellon University s required not to dicriminate in admissions and eviployment on the bassl$
of race. color. national origin. sex or handicap in violation of Title Vt of the Cvil Rights Act of 1964. Title IX of the Educational Amendments of 1972 and Section
504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders. In addition, Carnegie Mellon University does not disairrnate in
admissions and errployrwnt on the basis of religion, creed, ancestry. belief, age. veteran status or sexual orientation in violalon of any federal, state, or local
laws or execuilrve orders. Inquires concerning a plication ot this polcy should be direded to the Provost, Carnegie Mellon University. 5000 Forbes Avenue.
Pittsburgh PA 15213. leieshone (412) 268 668-4 or the Vice Presiden for Enrollment, Carnegie Mellon University. 5000 Forbes Avenue. Pittsburgh PA 15213.
teephone (4121 26a 56

I

* Technical Report
CMU/SEI-89-TR-1 6

ESD-TRI-89-24I May 1989

3 - Guidelines for the Use of the SAME

Marc H. Graham
I Ada SQL Project

Aprvdfrpulcrlae
Ditiuinulmtd

Csreibutilon Unimeritd

Pittsburgh, Pennsylvania 15213

I
I
I
I

This report was prepared for the

SEI Joint Program Office
ESD/AVS

Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD position. It is pub-

lished in the interest of scientific and technical information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Charles J. Ryan, ao, SAF

SEI Joint Program Office

I

This work is sponsored by the U.S. Department of Defense. I

Copyright © 1989 Carnegie Mellon University

This document is available thu. _a the DefenseTechnical Information Center. DTIC provides access to and transfer of scientific and
technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government agency personnel
and their contractors. To obtain a copy. please contact DTIC directly: Defense Technical Information Center, Atm: FDRA. Cameron
Station. Alexandria, VA 22304-6145. £
Copies of this document are also available through the National Technical Information Service. For information on ordering, please
contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

I
I

I

I -

SAME Software Order Form

I Name

Organization

Mailing Address

I

I City State Zip

I Country Phone (
E-Mail Address (if available)

I Distribution Medium: E] UNIX Tar Format El MS-DOS Format
TK50 Cartridge [] 51/4" Floppy Disk

0 1/4" Tape Cartridge

0] VMS Backup FormatI I C TK50 Cartridge
L--

I
Remit Amount: $100.00 for US addresses, $115.00 for foreign addresses.

IRemit Procedure: All checks or purchasa orders should be made payable to Carnegie
Mellon University Software Engineering Institute. Please return this completed form along
with your payment to:

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
USA
Attn: Business Services Division (Box SAME)

E If you have questions, please contact the SEI Resource Center at (412) 268-5800.

I

,I
Table of Contents

1. Introduction 1
1.1. Overview of the SAME Method 1
1.2. An Example of the SAME Method 8

* 1.3. Structure of This Document 15

2. The SAME Typing Model 173 2.1. Concrete Types 19

3. Developing the Abstract Domains 23
3.1. The SAME Treatment of SQL Null Values 23

3.1.1. The Minimalist Approach 24
3.1.2. The Full SQL Approach 25
3.1.3. A Compromise Approach for Comparison Operators 26

3.2. !-he Image and Value Functions 29
3.3. Range Constraints and the Generic Sub-Packages 30
3.4. Character Data 32
3.5. Decimal Fixed Point Arithmetic 37

3.5.1. Basic Support 38
3.5.2. SQL Support 41
3.5.3. Range Constraints for Decimal Types 42

3.6. Data Types Not in the SQL_Standard 45
3.6.1. Ada Enumeration Types 45
3.6.2. Date; Time Types 47

3.7. Packaging the Type Definitions 51
3.8. The Package SQL_BaseTypes Pkg 55

3 4. The SAME Operational Model 59
4.1. Constructing an Abstract Interface 59

4.1.1. A Note on Typing Parameters 60
4.1.2. A Note on Naming and Packaging 62

4.2. Constructing an Abstract Module 62
4.3. Database Exceptional Conditions 63

4.3.1. The Packagec SQL_CommunicationsPkg and 64
SQL_DatabaseErrorPkg

4.3.2. Handler for SQLDatabaseError 66
4.4. Note on the Overloading of INDICATOR Parameters 67

5. Notes on Writing Application Programs Using the SAME Method 69
5.1. Design Rules 69
5.2. Visibility and the Use of use 69
5.3. Using Non-ASCII Character Sets 70
5.4. Handling the NullValueError Exception 71

CMU/SEI-89-TR-1 63

I

5.5. Simulating Predefined Attributes 71 1
5.6. Doing Type Conversions 72

5.6.1. Ada Explicit Type Conversions 72
5.6.2. Using Conversion Functions 73

5.7. Using Three-Valued Logic 74

5.8. Commenting Procedure Calls 75

6. The SAME Method Summarized 77

7. Building a SAME Application Withol-it a Module Compiler 81 i

8. Some Detailed Examples 85

9. Advanced DBMS Applications 113
9.1. Dynamic SQL 113

9.2. SQL and Ada Tasks 126

References 131

A SAME Quick Reference List 133
A.1 Example Domains 133
A.2 Functions Available to the Application 134

B Glossary of Terms 137

C SAME Standard Package Listings 143 i
C.1 Introduction 143

C.2 Copyright Notice 144 i
C.3 SQL-System Specification 144

C.4 SQLStandard Specification 145
C.5 SQLCommunicationsPkg Specification 145
C.6 SQL_CommunicationsPkg Body 145
C.7 SQL_Exceptions Specification 146 i
C.8 SQLBooleanPkg Specification 146
C.9 SQLBocleanPkg Body 147

C.10 SQL Int Pkg Specification 148 I
C.11 SQLInt Pkg Body 151
C.12 SQLSmallintPkg Specification 156
C.13 SQL_SmallintPkg Body 158

C.14 SQLRealPkg Specification 163

C.15 SQL_RealPkg Body 166
C.16 SQL_DoublePrecision_Pkg Specification 170
C.17 SQL_DoublePrecisionPkg Body 172
C.18 SQLDecimalPkg Specification 177
C.19 SQLDecimalPkg Body 184

CMU/SEI-89-TR-16

I!

0.20 SQLDecimal Assembler Support (VAX) 208
C.21 SQLDecimal Assembler Support (IBM) 215
C.22 SQLChar Pkg Specification 226
C.23 SQLChar Pkg Body 229
C.24 Subunit ToString 235
C.25 Subunit ToSQLCharNotNull 235
C.26 SQL EnumerationPkg Specification 235
C.27 SQL_EnumerationPkg Body 237
C.28 SQLDatabaseErrorPkg Specification 241
C.29 SQLDatabaseError Pkg Body 24i
C.30 SQLDatePkg Specification 241
C.31 INGRESDatePkg Specification 245

I
I
I
I
I
I

Accession For

NT TS GPA&I 1F
DTIC TAB 0
Unanounced

~~Just fiiet ion

By
Dttritutlon/

Avnilability Codes

iAvall and/or

Dist Special

I I/'\-
CMU/SEI-89-TR-1 6 iI

I
I
I
I
a
I
I
I
£
I
I
I
I
U
I
S
I

iv CMU/SEI-89-TR-16 II

I

I List of Figures

Figure 1-1: Classical Approach to Database Access 2
Figure 1-2: Modular Approach to Database Access 3
Figure 1-3: The Manual Method 6
Figure 1-4: The Automated Method 7
Figure 1-5: An E-R Diagram for Parts and Suppliers 9
Figure 1-6: The Parts-Suppliers Schema 9

Figure 1-7: Some of the Abstract Domains as Ada Types 10

Figure 1-8: Example Abstract Interface 113 Figure 1-9: An Application Program Using an Abstract Interface 12
Figure 1-10: Application Using Concrete Interface 13
Figure 1-11: The Concrete Moduie for trie Example 14

Figure 1-12: Ada Specification of Concrete Module -- The Concrete 14
Interface

Figure 1-13: Bcdy of the Abstract Intarface -- The Abstract Module 16

Figure 2-1: The SAME Typing Model 19
Figure 2-2: The Package SOL_STANDAflD 20

Figure 2-3: The Package SQLSystem 21Figure 3-1: Three-Valued Logic 26

Figure 3-2: The Generic Subpackage Sqllnt Ops 31
Figure 3-3: The Generic Subpackage SQL_CharOps 34
Figure 3-4: The Generic Subpackage SQL_DecimalOps 44
Figure 3-5: The Package Specification SQLEnumerationPkg 48
Figure 3-6: The Domain Packages for Suppliers-Parts 54
Figure 3-7: The Domain Fackages for Suppliers-Parts, cont'd. 55
Figure 3-8: The Package SQL_Base_TypesPkg 57
Figure 4-1: Parameter Kinds (with Modes) 603 Figure 4-2: The Abstract Module Procedure CalculateWeight 63
Figure 4-3: Package Specifications for SqlCommun1cdtionsPkg and 65

SQLDataboseErrorPkgUigure 6-1: SAME Application Package Structure 79
Figure 7-1: ConcreteMod for Alsys 823 Figure 7-2: ConcreteMod for Verdix 82
Figure 8-1- A Block D;'gram of the Example 86
Figure 8-2: The SQL Procedure tor ExampleA 88
Figure 8-3: The Abstract Module for ExampleA 88
Figure 8-4: ExampleA (Part I) 89
Figure 8-5: ExampleA (Part II) 90

Figure 8-6: The Abstract Module Body for ExampieA 91
Figure 8-7: The Conversions Package 93

CMU/SEI-89-TR-1 6

I
I

Preface

I Overview of Document and Intended Audience
These guir 'nes describe the Str-ctured Query Language (SOL) Ada Module Extensions, a3 methc"' 'r the construction of Ad& applications that access database management systems
w",- , data manipulation language is SOL. The SAME is not a tool set, it is a method of program
design and development. There is a set of support software, called the SAME standard3 packages, which are needed by applications using the SAME.

As its name implies, the SAME extends the capabilities of the Module language defined in the3 ANSI SOL standard to fit the needs of Ada. The defining characteristic of the use of the module
language is that the SOL statements appear together, physically separated from the Ada appli-
cation, in an object called the module. The Ada application accesses the module through proce-3 dure calls.

The primary audience for this document consists of application developers and technicians creat-
ing Ada applications for SOL database management systems. The document contains a com-
plete description of the SAME, including its motivation. It is not intended as a programmer's
guide. Organizations using the SAME may wish to create such a guide from this document.

The reader of this document is expected to be familiar with both Ada and SOL, at some level of
detail. An attempt has been made to make the document accessible to readers who are not
experts in either language. Technical details are explained under the assumption that the reader
has a general understanding of both languages.

3 A Note on the Code in This Document
All of the Ada code in this document has been compiled, in many cases on more than one
compiler, and the great bulk of it has been tested. Exceptions to this rule are noted in the text.
The code in Appendix C has been exhaustively tested. The SOL code in the document has also
been tptpd, but not in the exact form shown. However, the processes of transcrihing the code
into the document and editing it for improved readibility may have inadvertently introduced errors.
The code in the appendix was copied into the document without modification and should thus be
less likely to contain errors.

I
I
I
I
I

CMU1 SEI-39-TR-16

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

CMU/SEI-89-TR-1 6 I

Acknowledgments
I This dccument would never have been created were it not for the efforts of the Structured Query

Language (SQL) Ada Module E'xtensions Design Committee (SAME-DC). This volunteer com-
mittee of users, database and compiler vendors, and recognized experts has been meeting
regularly since May 1983. The hard work and heated discussions of those meetings effectively
shaped this document.

U The following is a list of those people who attended SAME-DC meetings. rompanies are listed
for information purposes only. In no case should the opinions in this document be considered3 those of the companies listed, nor of any individual in this list.

Name Organization
Judith Bamberger Software Engineering Institute
Wanda B. Barber USA - ISS - Development Center Lee
Stowe Boyd Meridian
Bill Brykczynski !:istitute for Defense Analyses

Scott L. Bur is Computer Science Corp
Janet E. Edwards H62dquarters, USA Information Service

Support Center
Robert Firth Software Engineering Institute
Neil Goodman RTI
Marc Graham Software Ergineering Institute
Nabil HijazX MITRE Corp

Jeff Ives Compass
Phillip R. Joiner USA - ISS - Development Center Lee
Arthur Keller Stanford University
Gary M. Lichvar U.S. Army ISS - Development Center Lee
James Metcalfe Hewlett-Pickard
Jim Moore IBM
Dit Morse Oracle Corp
Susan Philips Lockheed Software Technology Center
Judith Richardson US Army Communications Electronics

Command
Paul SciaLtca Cullinet Software
Phil Shaw IBM
John Steensen Applied Data Research, Inc.
S. Tucker Taft Intermetrics
Pat Timpanaro Compass
Keith Usher IBM
Eugene Vasilescu Grumman Data Systems
Hector Villarreai Sybase Corpoi ation
Kurt Wallnau UNISYS
Tom Wheeler USA Communications Electronics

C ,and
Bill Wood Software Engineering Institute
DaIG Worley Compass
Greg Zelesnik Software Engineering Institu~e

The author would particularly- like to thank Stowe Boyd for his help in publicizing this work, and
Arthur Keller, Susan Philips, and Tucker Taft for hosting meetings of the SAME-DC. Special
thanks to Greg Zelesnik, who is responsible for much of the code in this document and much of
the work in verifying the code's correctness.

CMU/SEI-89-TR-16I

I

This work was financially supported by the Ada Joint Program Office (AJPO). The author and the
SAME Design Committee wishes to thank Ginny Castor, David Taylor, and Glenn Hughes for

their support.

I
I
I

I
I
I
I
I

CMU/SEI-89-TR-1 6

U

* Guidelines For the Use of the SAME

Abstract. These guidelines describe the Structured Query Language (SQL) Ada
Module Extensions, or SAME, a method for the construction of Ada applications
that access database management systems whose data manipulation language is
SQL. As its name implies, the SAME extends the module language defined in the
ANSI SQL standard to fit the needs of Ada. The defining characteristic of the use
of the module language is that the SQL statements appear together, physically
separated from the Ada application, in an object called the module. The Ada appli-
cation accesses the module through procedure calls.

The primary audience for this document consists of application developers and
technicians creating Ada applications for SQL database management systems.
The document contains a complete description of the SAME, including its motiva-
tion.I

1. Introduction
I The SQL Ada Module Extensions (SAME) method of constructing database application pro-

grams in Ada is based on the SQL module language [2]. The method extends the features
of the module language by exploiting the capabilities of Ada. This results in robust appli-
cation programs written in a style suitable to Ada. The SAME treats SQL in much the same
way that Ada treats other foreign languages; that is, it imports complete modules, not lan-

* guage fragments.

11.1. Overview of the SAME Method
In the classical approach to database access from application programming languages [3],
the programmer prepares a single text containing statements from two different languages:
the programming language and a database language. These two subtexts are disentangled
by a so-called preprocessor, which outputs the programming language text in which the
database statements have been replaced with procedure calls. This text can be processed
by the programming language compiler. A diagram of this process is given in Figure 1-1.

A programmer using a modular method such as the SAME does not prepare such a mixed
text. Instead, he prepares a compilable Ada program in which database services are ac-
cessed via procedure calls. The bodies of those procedures are defined by SQL statements
collected into a separate text called a module. The process is diagrammed in Figure 1-2.

As Ada database application programs written with the SAME are written in pure Ada, there
is no need for an Ada'SQL preprocessor. Ada-sensitive editors and debuggers can be used
to create these applications. Since the database interactions are written in standard SQL,
they can be processed by existing SQL tools. There is no need for programmers to learn
new syntax and semantics; no new system software need be written, maintained, and

U
I

CMU/SEI-89-TR-1 6I

I

Program with

Database Statements

I, I

Preprocessor I
[I

Program with

Call Statements

Compiler

4 4

Binder/Linker

Figure 1-1: Classical Approach to Database Access

2 CMU/SEI-89-TR-16

4 4

I
I

Ada Programwith Calls SQL Module

4 4,

.4 SQL Module

IAda Compiler Processor

I Binder/Linker

Figure 1-2: Modular Approach to Database Access

CMU/SEI-89-TR-16 3

! ~ it
4 4 4

I

ported to process a new syntax and semantics for SQL.1 In this regard, the SAME treats i
Ada and SQL as equals. The SAME interfaces two existing standards and their implement-
ing software. It does not attempt to crcate an "ideal" Ada DBMS. Rather, it allows access to
existing, commercial DBMS in a manner which exploits the tools and capabilities of the I
DBMS.

Using the preprocessor approach to database application programming as shown in Figure 3
1 -1, the application programmer must know the syntax and semantics of not only the pro-
gramming language but also the database language. These are rarely identical or even
similar; certainly not in the case of Ada and SQL. The programmer must think in two differ- I
ent ways as he alternates between Ada and SQL. In such non-modular approaches, the
application programmer must understand not only the logic of the application, but also the
logical design of the stored database. He must know not only what information services the I
application program requires of the database, but also how the database can be made to
provide those services.

Modular approaches, such as the SAME, make it possible for the application and database
programming tasks to be assigned to different programmers. For development organizations
which are large enough to afford this specialization of roles, there are benefits in reduced
training costs and greater productivity. In the case that the same programmer creates the
Ada application and the SQL module, he is able to separate the concerns of the application
logic and the database logic. When designing or writing the application he can ignore the 3
issues of database interaction; when dealing with the database he can concentrate solely on
it. In both cases, since the resulting Ada application program contains no SQL, it is isolated
from changes in the database structure and the SQL statements. This isolation decreases
the cost of maintenance and porting.

Large, complex database applications have extensive design phases. Modular approaches
such as the SAME are particularly well suited for such applications. The module makes the
database services needed by the application visible. It is an application-specific, DBMS-
independent interface between the database and the application, which is naturally treated
during the design as a design object. The dependence of the application on the database
can be controlled more easily since it is more visible, not scattered throughout the appli-
cation as in non-modular approaches. The module is an external schema [6], a "simple user
view, tailored to the requirements of a specific application" [8].

The benefits of modular interfaces are summarized in the following list.

* Maintenance and porting costs are reduced by the isolation and separation of
the Ada code from the SQL code. The application - database interaction is
elevated to the status of a design object. This makes it easier to manage and
control.

'The method proposed by the Institute for Defense Analysis (IDA) [12] does not embed SQL into Ada in the
standard sense, but it do produce application programs containing intermixed application and database logic.
This is done by modifying he syntax and semantics of SQL so that it appears as compilable Ada code. The
necessary support packages and system software are expensive in development, compilation, and runtime
costs, although accurate figures are not available. By separating the Ada and the SQL and allowing each to be
processed by pre-existing processors, the SAME avoids these modifications and expenses entirely.

4 CMU/SEI-89-TR-1 6

I
* The potential exists for increased specialization of the software development

team. Fewer programmers need to know the details of the database aesign.
This can lead to improvements in team productivity.

5 - Ada application programs are written in compilable Ada, preserving the use of
syntax-directed editors, etc. There is no need for pre-processing. There is no
need to develop any new syntax nor system software; these methods can be3 used with existing tools. 2

The SAME is a specialization of the modular approach particular to the needs of Ada. The
benefits which it brings to database applications written in Ada are:

" The Ada typing model. Using the SAME method, the Ada program views the
database through the abstract type facilities of Ada. Type derivation and sub-
typing are available as are range constraints to control runtime behavior and
inappropriate operand usage.

" A safe treatment of null values. SQL supports partial and incomplete infor-
mation through the use of the null value. The null value is a concept foreign to
Ada, as it is to most programming languages. Through the use of Ada's data
abstraction mechanism, the SAME brings a measure of incomplete information
processing to Ada while ensuring that null values are never used as though
they were not null.

" A simple, robust, yet flexible treatment of database exceptional
conditions. SQL database management systems signal the occurrence of ex-
ceptional events, such as hardware failure, through a status code field. The
rmeanings of the values of that field are not set by the standard; each implemen-
tation presents a different set of values. Usually the application program cannot
recover from any of these conditions. The SAME treatment of exceptional con-
ditions presents a failure-free DBMS to the application program; if an SQL
statement encounters an unexpected condition, an exception is raised and an
appropriate error message is generated. This simplifies the application
programmer's job and ensures uniform treatment of errors. On the other hand,
the SAME allows applications which need to do some or all of their own error
processing full access to the DBMS facilities.

The features in the above list are implemented in a thin interface layer, called the abstract3module. In Figure 1-3, the concrete module is the object containing solely SQL statements
as might be processed by an SQL module language compiler.3 The abstract module serves
to transform data and procedural abstractions of the Abstract and Concrete Interfaces of
Figure 1-3. The architecture of Figure 1-3 is specific to the manual implementation of the
SAME method. The SAME Design Committee (SAME-DC) is engaged in the task of speci-
fying the syntax and semantics of a tool to assist in the construction of abstract interfaces.
When such tools become available, the situation simplifies to that given in Figure 1 -4. The

SAME method is valuable without such tooling, but is easier to use with it.

2 This will depend on the tool sets supplied by particular Ada compiler and DBMS vendors. It is always possible3 to use the method: these tool sets may make it easier.

3As of this writing, there are no compilers for the SQL module language, although there are some uner
development that are due to be released soon. In later chapters we show how to build applications in SAME3 without a module language cmpiler.

CMU/SEI-89-TR-16I

0) m

U) "o I
~I

C)

3

C)

0)~ I

co

0
C-I

00
C 0

6 CU/EI8-TR16I

I I=I III

C

'4-

0

cE 'Z-' (
oO- E3

Figure 1-3: The Manual MethodI

6 CMU/SEI-82.TR-1 6

0

0IL 0 0
Uf) LJ

Q)-<

C/0)
00

-00

C-0

0 C

N M/ ETR 16o

IC

I

1.2. An Example of the SAME Method 3
This section provices, by way of example, an overview of the SAME in use. It is meant to
provide the reader with an intuitive feel for the method. Later sections provide the details. I
Use of thot SAME begins during the process of database design.4 Early in that process the
desioner cielineates the abstract domains of his database. The notion of an abstract domain l
is very similar to the notion of an abstract type. However, the Ada definition of an abstract
domain requires more than a single Ada type definition, as will be shown. Hence, a new
term was needed to define this concept. l
Abstract domains are objects in the real world that are reflected in the information system
which models that world. They are also the objects from which the database structures, that 3
is, the relations, will be built. They describe, inter alia, the value sets which may appear in
database columns. Like Ada types, abstract domains serve to distinguish differing denota-
tions of a concrete value; the value "1" as an employee number is not the same as the
value "1" as a department number, for example.

Abstract domains tend to lose their identities in the SQL schema due to SQL's weak typing
model. Ada's typing model allows these domains to retain their identities and the SAME i
exploits that power.

Entity relationship diagrams [7] are a popular database design aid. Figure 1-5 contains such I
a diagrari, de",,;bing the parts-suppliers database of C. J. Date [9]. The diagram describes
two entities: Suppliers, uniquely identified by Number and having attributes Name, Status
and City; Parts, also uniquely identified by Number, with attributes Name, Color, Weight,
and City. (The city of a supplier is the city in which the supplier is located; the city of a part
is the city in which the part is stored.) The diagram also recognizes one relationship, Order,
which relates a supplier and a part, and has the attribute Quantity.

Designing the abstract domains in a database design is much like designing the abstract
data types of an Ada program. A good rule of thumb to follow is the comparison rule. if it I
makes sense to compare values of two different Ada variables or database attributes, then

they probably have the same Ada type or abstract domain. For example, it makes no sense
to compare supplier numbers to part numbers; part number one is utterly different from sup- I
plier number one. The same is true for supplier and part name... On the other hand, supplier
cities and part cities have the same abstract domain; "Pittsburgh" is "Pittsburgh" whether a
supplier or a part is located there. Thus, the abstract domains in Figure 1-5 are supplier I
number (SNO), supplier name (SNAME), STATUS, CITY, part number (PNO), part name
(PNAME), COLOR, WEIGHT, and quantity (QTY). 3
The SQL schema for this database is given in Figure 1-6. Notice that the abstract domains
have been obscured.5 SNO and PNO have the same data type, although they take values i
from distinct abstract domains. The SAME Ada types for these columns makes the distinc-

i
4 These steps are easily retro-fitted to a pre-existing database design.

51n this case, the domains have been preserved in the attribute names. In general, relational database design
methods, and SQL in particular, do not recognize abstract domains.

8 CMU/SEI-89-TR-16 3

I

I
Supplier

I
I

Quant lvN
I

Part

Number Name Cotor Weight City

I
Figure 1-5: An E-R Diagram for Parts and Suppliers

CREATE TABLE S (SNO CHAR(5) NOT NULL,
SNAME CHAR(20),
STATUS INT,

CITY CHAR(15),
UNIQUE (SNO))

CREATE TABLE P PNO CHAR(5) NOT NULL,
PNAME CHAR(20),
COLOR CHAR(6),
WEIGHT INT,

CITY CHAR(15),
UNIQUE (PNO))

CREATE TABLE SP (SNO CHAR (5) NOT NULL,
PNO CHAR(5) NOT NULL,
QTY INT,
UNIQUE (SNO, PNO)

Figure 1-6: The Parts-Suppliers Schema

tion apparent. The full set of type declarations for some of these abstract domains is given in
Figure 1-7. The meanings of these definitions is not immediately obvious; they will be ex-3 plained in Chapters 2 and 3.

Although the SAME is a method for interfacing Ada and SQL and not a tool set, it does have
underlying support software. This software is known collectively as the SAME standard
packages. The packages SQLCharPkg and SQLIntPkg are two of these packages. A

CMU/SEI-89-TR-1 6 9I

I

complete listing of the specification and bodies of these packages. along with a quick refer-
ence guide to them, are attached as Appendix A. 6

with SQL CharPkg; With SQLntPkg;
package Example Definitions is

type PNOUN NBase is new SQL_CharPkg.SQLCharNot Null;
subtype PN0NotNull is PNONNBase (I..5) -
type PNO Base is -ew SQLChar_Pkg. SQLChar;
subtype PNOType is PNOBase (PNONot_Null'Length);

package PNO_Ops is new
SQL Char Pkg.SQLChar_Op (PNOBase, PNONNBase); 3

type CITYNN Base is new SQLCharPkg. SQLCharNot Null;
subtype CITYNotNull is CITYNNBase (1..15);
type CITY Base is new SQL Char_Pkg.SQLChar;

subtype CITYType is CITY Bas (CITYNotNull'Length);
package CITY ops is new

SQL_CharPkg.SQLCharOps(CITY Base, CITYNNBase);

type StatusNotNull is new SQL_Int_Pkg.SQL_IntNot Null;
type StatusType is new SQLIntPkg. SQLInt;
package StatusOps is new

SQL_IntPkg.SQL_Int_Ops(StatusType, StatusNot_.Null);
end ExampleDefinitions;

Figure 1-7: Some of the Abstract Domains as Ada Types

In Figure 1-7, each of the illustrated abstract domains has two Ada types. One of the types,
with the suffix _NotNull, is a visible Ada type; thus StatusNotNull is an integer type;
PNONotNull is a one dimensional array, of a character type.7 The other type, with the
suffix _Type, 8 is a limited private type. This type provides an encapsulation of the SQL null
value. A full range of comparison and, for numeric types, arithmetic operators are defined
for these types. These operators implement the semantics of the corresponding SQL oper- 3
ator, which is defined for the null value. The majority of these operators are derived, using
Ada derivation, from those defined in the SAME standard packages. The few operators
which cannot be derived in this way are generated by the generic packages illustrated in
Figure 1-7. This is done to reduce compilation time and runtime storage requirements.

In the remainder of these guidelines, the two types which together with the package instan-
tiation make up the declaration of an abstract domain are be called the visible Ada or
NotNull type and the limited or Type type.

Once the database schema has been defined in Ada, subsequent steps of the SAME are 3
application specific. Consider the following application: "For each part ordered from any
supplier, print the part number and the names of cities in which some supplier with a status
of Xor greater is located. X is a runtime parameter." In order to implement this application,
an Ada program will need three database procedures:

6The SEI will, for a limited time, distribute this software in machine-readable form. An order form is attached to

this document.

7This type may be other than Standard.Character, as the database may store non-ASCII character strings.

8Section 3.4 explains the need for the structure of the character string type definitions,

10 CMU/SEI-89-TR-16

I
3 1. An "open cursor" procedure which accepts the runtime parameter.

2. A "fetch" procedure to return the rows of part numbers and cities.

3. A "close cursor" procedure to be called when the application has exhausted
all selected rows.

The program will also need a definition of the rows being passed to it. These procedure and
row record definitions make up the abstract interface, the specification of the abstract mod-
ule. That specification, for this example, is given in Figure 1-8.

with ExampleDefinitions; use Example Definitions;
package Example_Interface is

type Part NbrCity_Pairs is record
Pno PNO Not Null;
City CiTy_Typ.;end record;

3 -- All of these procedures may raise SQLDatabaseError

procedure Open (Lower-Bound : StatusNotNull);
-- creates the relation of Part numbers and Cities

-- where there exists some supplier, with status

-- at least LowerBound, of that part n that city

procedure Fetch (Tuple : in out Part_NbrCity_Pairs;
Found : out Boolean);

-- returns the records of the relation created by open
-- Found becomes False at end of table

procedure Close;
-- clean up procedure

end Example_Interface;

3Figure 1-8: Example Abstract Interface

Once the abstract interface has been determined, the application program can be written.
Figure 1-9 contains the application program. For thst figure, assume that Status_10 is an
instantiation of Integer 10 for the integer type StatusNotNull. The functions NotNull and
to unpadded_string are supplied by the SAME standard packages.

I It is instructive to notice the differences between application programs using an abstract in-
terface, as exemplified by Figure 1 -9, and one using the concrete interface provided by the
ANSI module language, as is shown in Figure 1-10. (In Figure 1-10, Example_Module is the

Ada package name assigned to the concrete module, which is illustrated in Figure 1 -11
SOL_Standard is a package defined in a revised version of the ANSI standard. See

i [16] [5] and Section 2-1. SQLInt_10 is Integer_ 0 instantiated for SQLStandard.lnt.)

6
I
I

CMU/SEI-89-TR-1 6 111

I

with Text_10; use Text_10; 1
with Status 10; -- Integer_10 instantiated for St'atus_Not !'.":

with Exaple_Interface; use ExanpleInterface;
with Example Definitions; use ExampleDefinitions;
procedure Example is I
Status Buffer : StatusNotNull;
Data Record Part Nb._City_Pairs;
Re.oordFound Boolean;

begin
put("Enter Status=> ");

StatusIO.Get(Status Buffer); newline;
put("Part Numbers and Cities for Status ");
StatusIO.put(Status_Buffer); new line;
Open (LowerBound => StatusBuffer); -- create result table 3
loop

fetch(Data Record, RecordFound); -- next record into buffer
exit when not Record Found; -- if exit taken, all done
If NotNull(Data_Record.City) then -- filter out unknown cities

put lizne (to unpadded string(DataRecord.Pno) & ".. &I
to unpadded string(DataRecord.City));

end if;
end loop;
close;

end Example;

Figure 1-9: An Application Program Using an Abstract Interface 3
These differences are summarized in the following list.

* Using an abstract interface, an application program treats rows of a table as anobject of a record type. At the concrete interface, the components of a row are
treated as individual parameters.

* Using an abstract interface, an application program sees the database through 3
the abstract domains identified during database design. At the concrete inter-
face, only the limited set of SQL types are present.

Using an abstract interface, an application programmer may safely remain un- I
aware of the SQL conventions for null values. At the concrete interface, sepa-
rate indicator variables signal nullness. Obscure errors can result from mishan-
dling these indicators. These errors cannot arise in programs using the SAME. I
Using an abstract interface, an application program does not see the
SOLCODE parameter. This is the variable which holds the status code returned
from every SOL statement execution. At the concrete interface, the application I
must check this parameter, urderstand it, and execute application supplied er-
ror processing if things go wrong. Obscure errors can result from not handling
these DBMS exceptional conditions correctly. These errors are eliminated from I
programs using the SAME.

It is also worth noting that the abstract interface provides facilities which permit application
programs to be indifferent to the encoding of the character data in the database. The con-
crete interface supports the use of non-ASCII characters but provides no mechanism for
inter-converting them with ASCII characters. For example, the Ada explicit type conversions
(that appear as arguments to the put line call in Figure 1 -10) assume that the DBMS stores
ASCII character strings. In contrast, the corresponding portion of Figure 1 -9 uses an ab-
stract interface function (tounpaddedstring) which will convert the DBMS character set to 3
12 CMU'SEI-89-TR-16

I

ASCII if needed. (The decision is made as pail of the installation of the SAME support
packages. See [14].)

with TextIO: use TextIO;
with SQLInt_10;
with ExampleModule; use Example_Module;
with SQLStandard;3 procedure Example_atConcreteInterface is

Status Buffer : SQLStandard.Int;
Part Number: SQL_Szandard.Char(l..5);
City: SQLStandard.Char(l..15);

SQLCODE : SQLStandard.SQLCODEType;
CityIndicator : SQLStandrd.IndicatorType;

begin
put("Enter Status=> ");

SQLInt IO.Get(Status_Buffer); new-line;

put("Part Numbers and Cities for Status ");

SQL Int IO.put(Status Buffer); new line;
Open(StatusBuffer, SQLCODE);
If SQLCODE in SQLStandard. SQLError then

<application supplied error processing>

eloop

fetch(Part_Number, City, CityIndicator, SQLCODE);

If SQLCODE = 0 then
If CityIndicator >= 0 then

put_line (string(Part_Number)
string(City));

end If;
elsif SQLCODE in SQLStandard. SQLError then

<application supplied error prc-.iasing>
exit;

elsif SQLCODE in SQLStandard.NotFound then
exit;

end If;
end loop;

end If;
close ;

end Example atConcrete Interface;

Figure 1-10: Application Using Concrete Interface

There remains now only the task of creating the body of the abstract interface, also called

the abstract module. The purpose of the procedures in that module is to form the bridge
between the concrete interface and the abstract interface. It is assumed in this section that

the concrete interface is supplied by a module language compiler that is compliant with the
ANSI standard. The SAME does not depend on the existence of such compilers. Chapter 73demonstrates the use of the SAME in environments without such compilers.

Figure 1-11 contains the specification of the concrete module for the example as it would be
written in the module language. The Ada package specification corresponding to that mod-
ule, according to the revised ANSI standard [5] [16], appears in Figure 1-12. The body of
that package is implementation dependent; in particular, its form will depend on the tool set

available for the DBMS is use. Finally, the abstract module, implementing the abstract inter-
face on top of the concrete interface, appears in Figure 1 -1 3.

CMU/SEI-89-TR-1 6 13

L

Module Example-Module
Language Ad.
Authorization Public

Declare X Cursor3
For

Select SP.PNO, S.City
Prom SP, S
Where SP.SNO =S.SNOI
And S.Status >= Input Status;

Procedure XOn

Input_Status Int

Open X;

Procedure XFetch5
PartNumber Char(S)
City Char (15)
City_ Indic Smallint
SQLCODE;I
Fetch X into P.-rt-Number, City INDICATOR CityIndic;

Procedure X Close
SQLCODE;

Figure 1-11: The Concrete Module for the Example3

With SQLStandard;
package ExamIsleModule IS

procedure Xo pen (Input_Status SQLStandard.Int;I
SQLCODE out SQLStandard. SQLCODEType);

procedure x Fetch (PartNumber out SQLStandard. Char;

City :Out SQLStandard. Char;
City_Indic :Out SQL Standard. Indicator-Type;
SQLCODE :out SQLstanda~rd.SQLCODEType);

procedure X_-Close (SQLCODE :Out SQL_Standard. SQLCODEType);

end Exa-pleModule;

Figure 1-12: Ada Specification of Concrete Module -- The Concrete Interface
The detail in Figure 1 -13 (for example, the purpose of the packages
SQLCommunications Pkg and SQLDatabaseError Pkg) is explained in Chapter 4,3
whic explains the construction of abstract modules. The outline of an abstract interface
procedure body can be recognized in Figure 1 -13. That outline is describe; by the following
list.3

14 CMU/SEI-89-rR-1 6

I
1..Tbe corresponding pro'3edure in the concrete interface is called. Any

parameters to that procedure are converieo to the appropriate type in package
SQLStandard.

2. The resulting status code parameter (SQLCODE) is examined. If the value of
that parameter lies in a set of expected values, control is returned to the appli-
cation program. Otherwise, a standardized error processing routine is called
and an exception is raised.

3. Values which may be null are checked for nullness, converted to the appro-
priate types for the application program and assigned to the output row record.
Values which may not be null are placed directly into the output row record by
the concrete procedure. (In the case of INSERT or UPDATE SQL statements, for
which data flows from the application to the database, this set of steps occurs

I first.)

The fact that every abstract interface procedure body has a predictable structure makes
them prime candidates for automatic generation. The SAME Design Committee hopes to
create, in the near term, a notation enhancing the standard ANSI module language, within
which abstract interfaces can be described and from which they can be generated. This is

I the idea behind Figure 1-4.

I 1.3. Structure of This Document

The remainder of these guidelines presents the SAME in detail. Chapters 2 and 3 tell the
database designer how to describe the database in terms of the abstract types used by the
SAME. Chapter 4 gives the information needed by the builder of abstract interface modules.
Chapter 5 contains hints and suggestions for designers and programmers of applications
using the SAME. Much of the information in Chapter 5 also appears elsewhere in the guide-
lines. It is repeated in Chapter 5 for the convenience of application programmers. Chapter
6 contains a condensed overview of the SAME. The bulk of this document assumes the
existence of a compiler for the ANSI standard module language. Use of the SAME does not
require such a compiler. Chapter 7 describes how the SAME can be used without a module
language compiler. Chapter 8 contains an extended example of the SAME. Chapter 9 de-
scribes the use of the SAME in applications which use dynamic SQL or Ada multi-tasking.

The SAME is supported by the SAME standard packages. A complete listing of these pack-
age specifications, alone with suggested package bodies, appears in Appendix A. There are
also appendices containing a quick reference guide and a glossary of terms.

II
U

CMU/SEI-89-TR-1 6 15I

with SQL_Standard, ExampleModule, Example Defiznit ions,3
SQL_Comunicat3.ons_Pkg, SQL_Database_Error_Pkg;

use SQLStandard;
package body Example_I nteorface is3

package Exmod renames Example-Module;
package SCP renames SQL Comuncations_-Pkg;
package SDEP renames SQL_ -DatabaseErrorPkg;

package Exflef renames ExampleDefinit ions;

procedure Open (LowerBound :StatusNotNull) is
begin

ExMod.XOpen (It (Lower_Bound), SCP.SQLCODE);
If SCP.SQLCODE in SQLError then

SDEP.ProcessDatabaseError;

edI;raise SCP .SQLDatabaseEx-ror;

end ;I

procedure Fetch (Tuple :in out Part -Nbr -CityPairs;
Found :out Boolean) is

City_.Buf :Char (Exflef.CITY_Not_Null'Pangs);

bei-ndi Indicator-Typo;3

Ex~od.X -Fetch(Cha (tuple.Pno), City_buf, CityIndic, SCP.SQLCODE);
case SCP. SQLCODE is

when NotFound =>
Found :=false;

when SQLError =>
SDEP.Process DatabaseError;
raise SCP. SQLDatabaseError;

when 0 =>

If CityIndic < o then
assign (tuple.City, NullSQLChar);

else
aasign (tuple.City,__I

City op&.With Null (City_N;otNull (CityB uf)));
end If;
Found :- true;

when others => null; -- standard has no such codesI

end Fetch;

procedure Close isI
begin

ExModXCloso(SCP.SQLCODE);
if SCP .SQLCODE in SQLError then

SDEP.Proesso Database Error;
raise SCP.SQLDatabaseError;

end If;
end close;3

end ExampleInterface;

Figure 1-13: Body of the Abstract Interface -- The Abstract Module3

16 CMU/SEI-89-TR-1 6

I

* 2. The SAME Typing Model
This section describes the model of data typing employed by the SAME. The model's objec-
tive is to integrate the data semantics of Ada and SQL to the extent that is desirable and
practicable. The problems to be solved in such an integration are:

" The differences between the typing models of Ada and SQL. SQL offers a
limited set of primitive data types. It does not offer a mechanism for user-
defined types. The abstract typing mechanisms of Ada are a central aspect of
the language. An Ada program prefers a view of the database contents consis-
tent with a set of abstract, application-oriented types.

* The null value. SQL provides a means of processing missing or incomplete
information. This is the null value and three-valued logic. These notions do not
appear in Ada.

" String processing. Ada and SQL give subtly different semantics to the string
comparison operators. Further, the Ada predefined type string is by definition a
sequence of ASCII characters. SQL strings are over an implementor-defined

character set.

a Decimal fixed point arithmetic. Ada fixed point arithmetic does not resemble
SQL decimal arithmetic. More importantly, Ada compilers do not recognize the
machine-specific packed decimal formats in which SQL database management
systems store decimal data.

" Non-standard data types. Many database management systems recognize
data types not in the ANSI standard. The date-time data type is an example of
this. Ada programmers may wish to store enumeration types in SQL data-
bases, even though SQL does not recognize such types.

The SAME solution to these problems aims at good performance in both time and space. It
achieves a direct mapping between SQL and Ada types [11] which requires no data conver-
sions. Each bit pattern representing a non-null value of a database column represents the3 same value of the Ada data type which describes it.9

The SAME typing model is flexible. An overview of it is given in Figure 2-1. At the lowest or
concrete level of the interface, at which the calls to the concrete DBMS module appear,
database values are described by Ada types designed in conformance with SQL require-
ments. These types are reviewed in the next subsection. Except for Chapter 7, these guide-
lines assume a compiler for the module language conforming to the recommendations in
[16] which are incorporated in [5]. In Chapter 7, techniques are presented for low cost im-
plementations of SAME in environments without module compiler.

3As shown in Figure 2-1, the concrete types at the concrete level are transformed into ab-
stract types at the abstract level. The three branches of that diagram represent three differ-

i ent treatments of data semantics.

I
9 The Ada application program sees the database through a set of abstract, application-oriented types. These

types and their derivation are described in Chapter 3. This section is concerned with the concrete representation
of database values.

CMU/SEI-89-TR-1 6 17I

" Ada semantics. Each database column is represented by an Ada type whose
arithmetic, comparison, arid assignment operations are those of Ada. With
these semantics, treatment of database and non-database data is uniform
throughout the Ada program.

* SQL semantics. Each database coiumn is represented by an Ada type whose
arithmetic, comparison, and assignment operations simulate those of SQL. With
these semantics, treatment of database data is uniform between the SQL and
Ada portions of the complete application.

" User-defined semantics. Each database column is represented by an Ada
type whose arithmetic, comparison, and assignment operations are user de-
fined. This treatment allows for user extensions of the method.

The choice of treatment is the responsibility of the application designer. This section de-
scribes the realization of those semantic treatments.
As mentioned, the next section reviews the concrete treatment of SQL data. It is this treat-
ment which achieves the direct mapping mentioned earlier. Chapter 3 describes the devel-
opment of the abstract domains. Section 3.1 discusses the treatment of null values in the
SAME and how that affects application programs. Section 3.3 continues that discussion,
showing how the abstract types implementing SQL semantics can be arranged into type
hierarchies and Ada range constraints can be simulated for them. Section 3.4 gives the
additional information needed to understand SQL strings and their SAME implementation.
Section 3.5 explains the SAME simulation of SQL decimal fixed point arithmetic and Section
3.6 describes the treatment of data types not covered in the ANSI standard. An implemen-
tation of a date-time data type and implementations of support for SQL storage of Ada
enumeration ,ypes are presented in Section 3.6. The section serves as a model for user
extensions to the SAME typing model.

The sections described above each deal with individual columns in isolation. Section 3.7
puts the results of those sections together into a description of the database.

1I
I
I
I
I
I

18 CMUfSEI-89-TR-1 6

I

Ada Application Program

I Ada SI_ User-Defined
Semantics Semantics Semantics

* Concrete TypesI DBM

I Figure 2-3: The SAME Typing Model

2.1. Concrete Types

At the lowest, or concrete, level of the SAME SQL Ada interface, the level at which the calls
to concrete module routines appear, all parameters have types which appear in the package
SQL_STANDARD. This package was created by the SAME Design Committee (SAME-DC) as
a recommended change to the ANSI SQL interface to Ada [16] [3].10 A listing of this pack-
age appears in Figure 2-2. Each type definition in SQL_STANDARD directly defines the SQL
type with the same name.'1 The definition is direct in the sense used previously: the value
sets underlying the types in SQLSTANDARD are exactly the value sets underlying the cor-
responding SQL types. Further, under reasonable assumptions, 12 the data encodings will be
identical and no data conversion will be necessary.

All of this is achieved by judicious choice of the implementor-defined values in
SQL_STANDARD. These values are specific to the database management system in use.
Once they have been determined, the package will be compiled as part of the installation
procedures for the SAME standard packages into an Ada library within which it may be
referenced by other SAME standard packages. Application programmers need not be con-

* cerned with this package; application programs do not reference it.

'°These recommendations were accepted by the responsible ANSI subcommittee and appear in thci;, zurrc',t
proposal for Ada support in SQL [5].

1Although SOLCODE_TYPE is not a type defined in SQL, SOLCODE acts as though it were a type as well as a
variable in [2] and [5].

12The assumptions are that the DBMS, at the application programming interface, delivers numeric values in
the encoding of the machine and that the Ada compiler uses these encodings as well. This should be true in
almost every case.

CMU/SEI-89-TR-16 19U

I
package sql standard is
package Character Set renames cap:

subtype CharacterType is CharacterSet .cat;
type Char is array (positive range <>)

of CharacterType;I
type Smallint is range be.. te;
type Int is range bi..ti;
type Real is digits dr;
type Double Precision is digits dd;

-- type Decimal is to be determined;

type SqlcodeType Is range bsc. .tsc;
subtype Sql_Error Is Sqlcode_Type

range SqlcodeType'FIRST .. -1;
subtype Not Found is Sqlcode_Type

range 10..100;
subtype IndicatorType is t;

-- cap is an implementor-defined package and cat is an
-- implementor-defined ch-racter type. ba, to, bi, ti, dr, dd, bsc,
-- and tac are implementor defined integral values. t is int or
-- smallint corresponding to an implementor-defined <exact
-- numeric type> of indicator parameters.

end scl standard;m

Figure 2-2: The Package SQL_STANDARD

The values appropriate to the definition of the integer and floating point types will generally
be easily available in the DBMS documentation. Likewise the definition of SOLCODETYPE
should not be difficult. (It is likely to be identical to one of the integer types.) The floating
point types will also be defined in the DBMS documentation. It may also be necessary to
examine the documentation for the Ada compiler, particularly true for the values of
System.MaxInt and System.Max_Digits.

The treatment of character data in SQL_STANDARD is meant to allow for non-ASCII data. The I
type CHAR is defined on analogy to the Ada predefined type STRING but with respect to a
character type which can be specified by the implementor. To use these definitions with
ASCII strings, set csp to STANDARD and cstto CHARACTER.

The subtypes SQL_ERROR and NOTFOUND of SOLCODETYPE are provided for the benefit of
programmers, such as authors of abstract modules, who write their own error detection
routines. For example, one may write

or If SQLCODE is in Sql_Error . . .

case SQLCODE is
when 0 =>

-- error free return
when Not-Found =>

-- no record found
when Sl_ -Error m-

-- error condition from DBMS
when others =>

-- standard describes no such codes
end case;

I
20 CMU/SEI-8g-TR-1 6m

I.
For more on the SAME treatment of exceptional conditions, see Chapter 4.

The SAME standard packages also depend upon the package SQL_SYSTEM (see Figure 2-3)
which defines two constants, the values of which cannot be deduced from SQL_STANDARD.

The constant MAXCHRLEN is the length of the longest character string supported by the
DBMS. The constant MAXERRLEN is the length of the longest error message returned by
the DBMS-supplied error message function. See Chapter 4 for details.

-- SQL_System is a "platform-specific" package

-- within the SAME
package SQL_System iS

-- MAXCHRLN is the upper bound of the SQLCharPkg
-- subtypes SQL_Char_Length and SQLUnpaddedLength

-- SQL Char Length is a subtype of Natural with a lower bound
I _ I

-- SQL_Unpadded Length is a subtype of Natural with a lower
- ound of 0-

MAXCHRPLEN : constant := strleng;

-- MAXERRLEN is the maxizmu length of the error message
-- string returned from the DBMS error message function

MAXEflRLEN : constant := mag_leng;

end SQLSystem;

Figure 2-3: The Package SQLSystem

Creation and compilation of the SQL_STANDARD and SQL-SYSTEM package specifications are
part of the installation of the SAME standard packages. The installation guide for the SAME
standard packages [14] contains details of the installation process.

I
U
I
I
I
I
I
I

CMU/SEI-89-TR-1 6 21I

I
I
I
I
I
I
I
U
U
I
I
I
I
I
I
I
I
I

22 CMU/SEI-89-TR-1 6

I
3 3. Developing the Abstract Domains

The types in SQL_STANDARD define the representation of SQL data to the Ada compiler. As
illustrated in Section 1.2, applications devuloped using the SAME method view the database
through a collection of abstract domains. These abstract domains are built on top of type
definitions provided in the SAME standard packages or in similar packages defined by the
user (see Section 3.6).

There exists a support package in the SAME standard packages for each of the types in
SQL_S-ANDARD (except for SQLCODETYPE) . The package SQL INT PKG gives support to ab-Io
stract types based on the SQL Int type; SQLCHARPKG supports character strings, etc.

Each of these packages defines two types. One of these types is a visible Ada type derived
from the corresponding type in SQL_STANDARD with no added constraints. These type names
are formed from the package name by dropping the _Pkg suffix and appending the suffix
_NotNull. Thus, SQLIntNotNull is defined in the package SQLINTPKG as new
SQLStandard.lnt; SQLCharNotNull is defined in SQL_CHARPKG as new
SQLStandard. Char, etc.

I The second type defined in each package is a limited private type. These type names are
formed by dropping the _Pkg suffix and adding no additional suffix. Thus SQL INTPKG de-
fines SQL_Int, SQL_CHARPKG defines SQL_Char, etc. These limited private types are used
to support SQL data semantics. In particular, objects of these types can take on the SQL
null value, 13 whereas objects of the _NotNull types cannot.

As is shown in the introduction, an abstract domain is represented in the SAME by two type
definitions derived, directly or indirectly, from the types in a support package. (Character
string types further require two subtype definitions. These are explained in Section 3.4,
below.) Conventionally, the name of the type derived from the _Not Null type retains the
_NotNull suffix; the name for the type derived from the limited private type appends tne
suffix _Type; these derivations and naming conventions are illustrated in Figure 1-7. The
types are referred to in this document as the visible Ada, or _NotNulltype, and the limited
private, orype type.

The creation of the abstract domain definitions completes the first step in the description of
the database within the SAME method. The second step consists of collecting the definitions
into Ada package specifications. These are called domain packages and their formation is3 defined in Section 3.7.

3.1. The SAME Treatment of SQL Null Values

Objects or values that are directly or indirectly database values are to be stored as objects
of one of the types making up an abstract domain definition. In cases in which it is possible
for these database values to take on the SQL null value, they must be stored as values of
the limited, -Type type. In cases in which it is logically certain that a value cannot be null,
the visible _NotNull type can be used. This logical certainty can be supplied either by SQL

3 13The SQL null value should not be confused with the null value of an access tyoe

CMU/SEI-89-TR-16 23I

I

or by the application logic. The data definition facilities of SQL can restrict the value of a i
table column to exclude the null value: the data manipulation statements of SQL ca:" fltner
out rows with null values in specified columns. Within an application, it may be logically cer-
tain that null values have been previously filtereo out. If the aosence of the null value is not I
logically certain in this sense, then the limited type must be used. The SAME standard
packages are defined in such a way as to guarantee a runtime error, namely, the exception

NullValueError, if a null value is inadvertently used as though it were not null. I
Consider, then, a situation in which the null value is logically possible and a given object has
one of the SAME limited types. As part of its method, the SAME offers three treatments of 3
these objects. These treatments are coding disciplines enforced on application program-
mers. The SAME allows these treatments to be intermixed in an application program in any
way, subject only to whatever local standards and guidelines may exist.

3.1.1. The Minimalist Approach
In the minimalist approach, objects of limited types are treated solely as value repositories.
All manipulation of and access to the values of these objects is done by first extracting the
value from the limited object into an object of the corresponding visible or _NotNull type.

An advantage of this approach is that, as the _NotNull types are visible Ada types, the
predefined Ada operations may be used on objects of those types. Furthermore, as objects
of those types may not be null, it is unnecessary to check for the null value when accessing
such objects. The minimalist approach may result in marginal runtime reductions. More im- I
portantly, the minimalist approach may appear more natural to some programmers

Each of the SAME standard packages offer two sets of functions to support the minimalist 3
approach. They are testing functions and conversion or extraction functions. The extraction
functions will raise the ,' '_ValueError exception if applied to an object whose value is
null.

*Testing functions. These are the Boolean-valued functions IsNull and
NotNull. These functions are declared in the specification of the appropriate
SAME standard packayes (SQL IntPkg, etc.) in which the limited type and
visible types are also declared. Therefore, when the pair of types defining an
abstract domain are derived from those types, these subprograms are denved
for the new type.

Conversion functions. These are the functions With Null and Without Null.14

The function WithNull takes an object of the visible _Not Null type and returns
a non-null object of the corresponding limited, __Type type. The function
WithoutNull takes an object of the limitta type arid returrns an ooject of the
_Not Null type. WithoutNull raises the exception NullValueError if its input
is the null value.

I

'4The character strIng supporl provided by SQLChar Pkg includes other conversion functions. They are
described in Section 3 4.

24 CMU/SEI-89-TR-1 6

I

I Example
Consider the following fragment of application logic, referencing the Parts - Supplier data-
base of the introduction. Suppose there exist two variables, City, of type CityType (a de-
rved type of SQL-CharPkg.SQLChar), and Quantity, of type QuantityType (derived from
SQLInt Pkg.SQL Int). In other words, each of the variables may have the null value. We
need to write a code fragment which increments a counter if the value of City is "Pittsburgh"
or the value of Quantity exceeds 1000. Furthermore, we want to keep a running total of the
Quantity values from rows which qualify in this way. Omitting variable declarations for the
sake of brevity, we have the following code fragment (the variable SumQuantity has type
QuantityNotNull):

If (Not-Null(City) and then WithoutNull(City) ="Pittsburgh")
or else
e(Not Null(Quantity) andthen WithoutNull(Quantity) > 1000)

Then
Counter := Counter + 1;
If NotNull (Quantity) then

end If; SumQuantity := Without Null (Quantity)
+ SumQuantity;

end If;

3.1.2. The Full SQL Approach
An alternative to the minimalist approach to null values is the "full SQL" approach. Using
this approach, objects of the -Type types are accessed and manipulated directly, without
having to be extracted or converted to a visible Ada type. To enable this approach, the
SAME standard packages declare overloaded versions of the standard Ada arithmetic and
comparison operators. These versions extend the semantics of those operators to include
the null value. The null value is processed according to the rules of SQL. An application
using this approach treats database data in a uniform way in the Ada and SQL portions of
the application. To use the approach, it is necessary to understand how SQL processes the
null value.

SQL defines arithmetic and comparison operators for sets including the null value. The
semantics are as follows:

e Arithmetic: Any arithmetic operation applied to a null value results in the null
value; otherwise, the operation is defined to be the same as the Ada operation
for the integer and floating point types. (See also Section 3.5 for decimal

arithmetic.)

e Comparison: The comparison ot any value to the null value results in a new
truth value called UNKNOWN; otherwise the operation is defined as in Ada for the
integer and floating point types. (See Section 3.4 for the string comparisons.)

The overloaded operators provided by the SAME standard packages implement these
semantics. The comparison operators, Equals, Not-Equals, <, <=, etc., return objects of
type BooleanWithUnknown. This is an Ada enumeration type with value set (FALSE, UN-
KNOWN, TRUE). The SAME standard package SQL BooleanPkg contains declaration of
the Boolean functions and, or, not and xor defined on this type which implement the three-
valued logic of SQL. The definitions of these functions in three-valued logic are given by the
truth table in Figure 3-1.

CMU/SEI-89-TR-1 6 25

I

A B Aand B AorB AxorB notA

T T T T F F
T F F T T F
F F F F F T
T U U T U F
F U F U U T
U U U U U U

T- true F- false U - unknown
Rows not shown follow by symmetry

Figure 3-1: Three-Valued Logic

Example
The pnor example concerning Cities and Quantities can be recoded as

with SQLBooleanPkg; use SQLBoolean_Pkg;

If I &True (Equals (City, With-Null ("Pittsburgh")) or
Quantity > WithNull (1000)) then

Counter := counter + 1;
If Not-Null (Quantity) then I

assign (Sum Quantity, Quantity + Sum-Quantity);
end If;

end If;
This encoding is functionally equivalent to the prior encoding. The Counter will be incre-
mented under the same circumstances as before; namely, when at least one of City or
Quantity has the proper value. This encoding illustrates mixed usage of the two treatments.
The final value of SumQuantity, now of type QuantityType, will be the sum of all non-null
quantities encountered. Had the test for the null value not been present, and had a null
value been encountered, the result would be the null value. Ths treatment of summing is
equivalent to the SQL SUM set function which also sums columns of data after filtenng out
null values.

3.1.3. A Compromise Approach for Comparison Operators
This section considers only the comparison operators, e. g., =, >, >=, etc., and offers a third
alternative to their use. One of the difficulties with the comparison operators described in
Chapter 3.1.2 is that the values they return are not of the predefined type Boolean. This
means that predicates formed with these operators cannot appear as the condition of an If
statement unless they are first converted to Boolean using one of the functions isTrue,
IsFalse or IsUnknown defined in SQL_BooleanPkg, as was shown in the prior example.
Further, since the rules of Ada require that any overloading of the equality operator "="
return Boolean, the three-valued equality comparison function must be coded as'the prefix
function Equals and its complement as the prefix function NotEquals. Finally, it is reason-
able to assume that the most frequently used function to cast a value of type
BooleanwithUnknown to type Boolean is the IsTrue function used in the prior example.
Indeed, the semantics of the SQL WHERE clause are precisely evaluation using the rules of
Section 3.1.2 followed by an application of IsTrue.

26 CMU/SEI-89-TR-16

I
For the reasons given in the prior paragraph, sets of over ioadings of the companson
operators are defined in the support packages on the null bearing _Type types. These over-
loadings return BooJean, not Booleanwith-Unknown as the operators of Section 3.1.2.
These overloadings are defined as follows: for the operator "op," and objects 01 and 02 of
a null bearing _Jype type, the Boolean-valued expression

01 op 02

is defined as
IsTrue(O. op 02)

where in the second expression, "op" is the overloading which returns
Boolean-withUnknown. (If "op" is "=" or "/=", the second expression is written in prefix
notation, using Equals or Not Equals, respectively.) If P is any Boolean combination of com-
parisons from this section, and P' is the result of substituting the three-valued operators from
Section 3.1.2 into P, then the value of P is Is_True(P').

Example
The running example of this section can also be coded as

If City = With Null ("Pittsburgh") or else
Quantity > With Null(1000) then

Counter := Counter + 1;
If NotNull (Quantity) then

assign(Sum_Quantity, Quantity + Sum-Quantity);
end If;

end if;

A Note on Type Ambiguities
Notice that the context determines whether a given operator is three-valued or Boolean
valued. If the predicate P does not contain the equality operator, then the predicate P' as
defined above is syntactically identical to P. The context must be sufficient to determine
which interpretation is meant. For example, the context Is True(.) is sufficient to determine
that the three-valued interpretation is required for P' in ls_True(P'). Similarly, the context of
P in If P then ... end if; is sufficient to determine that P is Boolean valued. Consider the
expression 01 > 0 2, which has both a three-valued and Boolean interpretation. The case
statements

case Boolean' (01 > 02) IS

when TRUE => ... ;
when FALSE => ...

end case;

case Roolean with.Unknown' (O1 > 02) is
when TRUE => ... ;
when FALSE => ... ;

when UNKNOWN => ...
end case;

would not compile were the type qualifications not present. As written, these statements will
perform as expected.

I

CMU/SEI-89-TR-1 6 27I

I

The presence of an equality operator or a Boolean short circuit control form within a predi- I
cate is sufficient to determine its type. Therefore the predicate

Equals(0 1,0 2) or O > 02

is unambiguously of type Boolean_with_Unknown and the expression
01 = 02 or 0o > 02

is unambiguously of type Boolean; whereas the expression
01 >= 0 2

is ambiguous. Similarly, the expression

(01 >= 02) or (o1 >= 03) I
is ambiguous, but the expression (01 >= 02) or else (0, >= 03) is unambiguously of type
Boolean.

A Note on Logic
The Boolean-valued comparison operators discussed in this section do not obey all the nor-
mal rules of propositional logic. Furthermore, due to the definition of Ada, their behavior is
inconsistent. The problem arises in the so-called rule of double negation.

Again, let P be any predicate formed using the Boolean operators and and or from Boolean-
valued expressions. Now let P' represent the result of performing the following substitutions
to P:1 5

" each comparison operator is replaced by its negation; that is, = is replace by/=,
< is replaced by >=, etc.

" and is replaced by or

* or is replaced by and

This substitution produces the result of taking the expression not P and distributing the ne-
gation over the other operators. The rule of double negation states that the equality

P - not P' I
is valid, that is, always holds. This rule does not apply to predicates formed from the
Boolean-valued comparison operators of this section.16 This fact can be used to advantage.
For example, in the statement I

If Quantity > WitNull(1000) then

end If;

the sequence of statement in the then clause are executed only for non-null quantities in
excess of one thousand. In contrast, the statements in the then clause of

if not Quantity <= With 'Null(1ooo) then 3
end If;

1 5 The Boolean operators not and xor have been omitted to simplify the substitution. Given that the negation of
every comparison operator is a comparison operator, as in the first bullet item, any predicate using not and xor
can be recoded as one using and and or exclusively.

1eThe law of double negation is usually stated as the equality P = not (not P) This law does hold fo predicates
formed from the operators of this section.

28 CMU/SEI-89-TR-16 3

will be executed for those quantities and also for all null quantities. Recall that the null value
in SQL represents missing information. The null Quantity represents a fixed but unknown
value for Quantity which may exceed one thousand. Thus the second if statement, which is
often called the maximal solution, executes the sequence of statements in the the~l clause
for any quantity which might fit the predicate, while the first statement, the minimal solution,
executes that sequence only for quantities which necessarily do fit the predicate.

I Regrettably, this behavior is not consistent. The inconsistency stems from the fact that Ada
does not allow an overloading of the inequality operator "/=" to be independently defined.
Rather, "/=" is implicitly defined to be the complement of .=. In short, the equivalence

(01 = o2) = not (O1 /= 02)

is valid. When a complex predicate contains both "=" (or "/=") and other comparison
operators, the result of the double negation process outlined above is difficult to predict. In
such cases it is best to use the three-valued operators and the case statement. Thus the
maximal solution to the running example of these sections can be written as

case Booloan with Onknown'(
Equals (City, WithNull ("Pittsburgh"))

or
Quantity > WithNull(1000)) Is

when TRUE I UNKNOWN => <&a before>
when FALSE => null;

end case;

The extended example in Chapter 8 contains further discussion of these details.

3.2. The Image and Value Functions

In addition to the testing, conversion, comparison, and arithmetic functions types and as-
signment procedure, the SAME support for integer in the packages SQLInt Pkg and
SQL_SmallintPkg includes the functions Image and Value. These functions are seman-
tically identical to the Ada attribute functions 'Image and 'Value except that they operate on
character strings of type SQLChar (or SQLCharNotNull) rather than the predefined type
string. This allows character set independent programs to be written, as strings of these
types are always over the machine's native character set. When used with objects of some
_NotNull type, these functions take or return strings of type SQL_CharNot Null; when
used with an object of a null bearing _Type type, they take or return SQL_Char strings, with
the null value of the source type being transformed into the null value of the target type.

I Notice that the character string operands of these functions are of the base types declared
in SQL_CharPkg. Application programs do not have visibility to that package. A means of
getting visibility to the base types is given in Section 3.8.

II
I

CMU/SEI-89-TR-1 6 29I

I

3.3. Range Constraints and the Generic Sub-Packages

Many relational database management systems provide for data integrity constraints. 17

Among these there is usually the ability to apply range constraints to numeric columns. The
SAME extends this ability to Ada program variables holding database values.

Example I
Suppose all status values must be positive. In that case, the definitions of the abstract
Status domain would be

type Status NotNull is new SQLInt Not Null
range l .. SQL_Int_NotNul1' LAST;

type Status_Type is new SQL._int;

package status ops Is new
SQLInt_Ops (StatusType, StatusNotNull);

Notice that the range constraint is applied to _NotNull type only. Status_Type is a limited
private record type, to which range constraints cannot be applied. The generic instantiation

Status_- Ops creates an Assign procedure which will enforce the range constraint on objects
of StatusType.

The specification of the package SQL_lntOps, which appears within the specification of the
package SQLIntPkg, is given in Figure 3-2. The packages SQL_SmallintOps,
SQL_Real_Ops and SQL_DoublePrecisionOps are identical to SQL_lntOps, with the ob-
vious modifications. SQL_CharOps is slightly different and is described in Section 3.4.

Notice that the generic takes two format parameters which are types and three which are m

subprograms. The subprograms will default to subprograms with the appropriate names and
profiles, which are derived by the type derivation. (The packages should be instantiated in
the declarative region in which the derived types are declared. See Section 3.7.) Therefore, I
when instantiating these packages, only the types should be passed as actuals.

Notice that the generic subpackage generates three subprograms which provide conversion
and assignment procedures. It is not necessary to generate the arithmetic and comparison
operators. They are derived with the derivation of the type Status-Type.

The procedure Assign produced by the generic instantiation implements range constrained
assignment for the limited private types. It does this by calling the procedure
Assign WithCheck1 8 and passing it the values of the attributes 'FIRST and 'LAST from the
_NotNull type. See the appendix for the complete code.

Note: The implementation of range constraints by the SAME standard packages is meant to
support the implementation of range constraints by the DBMS. As this feature is missing
from the current SQL standard, a given DBMS may not support it. This does not mean that
range constraints cannot be used in Ada applications employing the SAME. The constraint

17These constraints do not appear in the current ANSI standard [2] but do appear in the follow-on standard in
development (4].

leThis procedure is not meant to be called directly by application programs. Applications should use only the
Assign function produced by the generic instantiation.

30 CMU/SEI-89-TR-1 6

I

generis
type With_NullType is limited private;

-- derived from Sql_Int
type WithoutNullType is range <>;

-- derived from Sql_mnt_NotNull;
-- for floating point types
-- range is replaced with digits

with function WithNullBase (Value : Sql_lnt_NotNull)
return With Null Type iS <>;

with function WithoutNullBase(Value : WithNullTypo)
return SqlItNotNull Is <>;

with procedure Assign With Check (
Left : in out WithNullType; Right : With NullType;
First, Last : Sql_lnt Not-Null) is <>;

-- subprograms with the above names
-- appear in SqlInt_Pkg specification

package Sql_lnt_Ops is
function WithNull (Value : WithoutNullType)

return With NullType;
function Without Null (Value : With NullType)

return WithoutNullType;
procedure Assign (Left : In out With_NullType;

Right : With NullType);
end Sql_Int_Ops;3 Figure 3-2: The Generic Subpackage Sql mt-Ops

"all status values are positive," if applied in the SAME abstract domain definitions as de-
scribed above, should represent a constraint on the real world. If this constraint is true of the
real world, then any non-positive value of Status is invalid and represents a corruption of the
database. If this constraint is not supported by the DBMS, the exception ConstraintError
will be raised when this database corruption is encountered. That may cause the abnormal
termination of one database application due to the improper behavior of a different appli-
cation, that application which inserted the invalid data. The incorrect application could not
have been written in Ada using the SAME.

The conversion functions WithNull and WithoutNull are also generated by the _Ops
generic subpackages. These functions convert between the two types making up an ab-
stract domain. Ada subprogram derivation rules will not generate functions with these
parameter profiles.

The _Ops generic subpackages were designed to reduce compile-time and runtime space
utilization. Only those subprograms that could not be derived using Ada subprogram deriva-
tion rules are instantiated using generic instantiation.

A Note on Type Derivation and Subtyping
The abstract domains defining the database in Ada can be arranged into type and subtype
hierarchies in the usual way. For example, suppose it is desirable to define preferred sup-
pliers as those suppliers having a status greater than 100. This can be captured in subtype
declarations as follows.

subtype Preferred StatusNotNull
Is Status_Not Null range 101 .. StatusNotNull'LAST;

subtype Preferred StatusType iS Status Type;
package ProferredStatus Ops iS new SQL_-IntOp.

(Preferred_Status_Type, PreferredStatusNotNull);

CMU/SEI-89-TR-1 6 31

I

However, care must be exercised in naming the subprograms operating on variables of the
subtype. The subprograms generated in the package PreferredStatusOps have the same
parameter profiles as those generated in the package StatusOps defined in Figure 1-7.
This is because parameter profiles depend only on base types, not on subtypes. Consider I
the following program fragment.

PreferredStatusVariable : Preferred_StatusType;

begin

Status_Ops.assign(Preferred_StatusVariable,
Status_Opc. withNull(I)); (

end;

This will execute without raising an exception and will result in the variable's having a value I
out of range. Further, the subprogram declarations in the packages Status_- Ops and
PreferredStatusOps hide each other, if both are brought into scope with use clauses.

Warning: Since range constraint checking of objects of the null bearing _Type types is
done by the generated Assign procedures and not directly by the compiler, these constraints
do not behave exactly like Ada constraints. In particular, if an arithmetic expression resulting I
in a _Type object is passed as an actual parameter to a procedure, it will not be range
constrained and may not satisfy the range constraint. For safety, assign the expression to a
temporary variable of the _Type and pass the temporary as the actual. I

3.4. Character Data 3
The SAME treatment of character string data is similar to its treatment of integer and floating
point data. Each abstract character string domain is represented by two type declarations. i
One of the types is a visible Ada type; the other is a limited private type with operations
defined on it that simulate the corresponding SQL operations. Character string variables and
database columns do not have associated range constraints, but they do have lengths. The
length of an SQL character string column is part of its definition. Abstract domain definitions
for character string domains also contain a length.

The SQL semantics of character data include the semantics of the null value for strings' 9 as
described in Section 3.1.2. Unlike the case of integer and floating point data, for which
operations on non-null values have the same effect in Ada and SQL, SQL's definition of
assignment and comparison for character strings differs from Ada's definition. For example,
when comparing two strings, SQL pads the shorter string with blanks (Database
Language-SQL, paragraph 5.11.5 [2]).

The comparison of two character strings is determined by the comparison of
<character>s with the same ordinal position. If the strings do not have the same
length, then the comparison is made with a working copy of the shorter string that
has been effectively extended on the right with <space>s so that it has the same
length as the other string. I

' 9The null string value is distinct from the null string, i.e., the string of length 0. I
32 CMU/SEI-89-TR-16

I
Very similar behavior governs the assignment of character strings to database columns in
SQL INSERT and UPDATE commands (cf. Database Language--SQL, general rule 7.b of Sec-
tions 8.7, 8.11 and 8.12 [2]).

I The SAME standard package SQLChar Pkg defines the the type SQL_CharNotNull as
a derived type of SQLStandard.Char (see Figure 2-2) with no added constraints.
SQL_CharNotNull is therefore an unconstrained one dimensional array whose component
type is specified when SQLSTANDARD is compiled. SQL_CharPkg also declares a limited
private, discriminated record type SQL_Char and comparison and assignment operations on
that type which simulate the SQL operations. The discriminant is named Length and is of
type SQL_Char-Length, a subtype of INTEGER declared in SQL_CharPkg. The dis-
criminant value is used to specify the character string length.

SQLCharPkg also contains a generic subpackage, SQL_CharOps. As before, it
generates conversion functions between a type derived from SQL_Char NotNull type and
a type derived from SQLChar. Together the two type definitions make up the abstract
domain definition. (There is no need for the generic subpackage to create an Assign proce-
dure. The version derived by the derived type declaration will suffice.) Notice, however, that
the _NotNull type is not the Ada predefined type, string. Rather, the _NotNull type is a
derived type of SQLCharNotNull, itself a derived type of SQLStandard.Char. That type
may or may not be a renaming of the predefined type string (that is, Standard.string), as the
DBMS character set may or may not be ASCII. SQLCharPkg exports functions which
convert between each of the _NotNull and the limited private type and the predefined type
string. These functions will perform character set conversions if necessary. (The identity of
the character set conversion function is set during SAME installation. See the installation
guide [14] for more details.)

The remainder of this section is as follows. The generic subpackage is displayed and ex-
plained. Abstract domain definitions for character data, which differ slightly from the integer
and floating point case, are then described and explained. The functions which convert to
arc: trom the predefined string type are then explained. Finally, a function for extracting sub-
strings from character strings of the limited private type and an operator for concatenating
two such strings are described.

The specification of the generic subpackage SQL_CharOps appears in Figure 3-3. This
generic subpackage is to be instantiated in the same manner as the integer and floating
point subpackages: only the types are passed as actuals, the formal subprograms are3 meant to default.

The functions WithNull and Without-Null generated by instantiation of this package have
the same intended meaning as before: to convert between the two types of an abstract
domain. The function WithoutNullUnpadded returns the value of its input with trailing
blanks removed; the last character in the result of this function is never blank. If the input
string is all blank, the output is an array of length zero. SQL_CharPkg exports the function
UnpaddedLength with operand SQL_Char and result type SQLUnpaddedLength, a sub-
type of NATURAL. The defining property of the function is

3

CMU/SEI-89-TR-1 6 33

generic_
type With Null_Type is limited private;

-- derived from SQLChar
type WithoutNull_Type is array (positive range <>)

Of SQL_zTANDAjw. CharacterType;
-- derived from SOLCharNotNull

with function With Null_Easel (Value: SQL Char NotNull)
return wthNTullType is <>;

with function WithoutNullEase (Value: With Null Type)
return SQL _Char NotNull IS 0;,

with function WithoutNull_Vnpadded_Ease (Value: With-Null,_Type)
return SQLChrNotNull Is <>;

package SQL Char _ope Is
function WithNull (Value : Without Null_Type)

return Wj.thNull_Type;
.~!,Witlz~... Null (Value : W~ hNul._...ypa)

return WithoutNull_Type;
function WithoutNullUnpadded (Va ue : With-NullType)

return WithoutNullType;
end SQL_Char_Opx;

Figure 3-3: The Genenc Subpackage SQLCharOps

34 CU/SE-89-R-1I

I
WithoutNullt-npadded(x)'LENGTH = Unpadded Length(x)

Notice that (assuming x is not the null value)
Without Null (x) 'LENGTH = x.LENGTH

It should be noted that WithoutNu:l, Without NullUnpadded, and UnpaddedLength raise
NullValueError when given the null value a. input.

I The generic SQL_CharOps explains to some extent the structure of abstract domain defini-
tions for character data. A character string abstract domain definition contain two type
declarations and two subtype declarations, along with the instantiation of the generic sub-
package. The following declaration of the abstract domain PNO is copied from Figure 1-7.

type PNONN_Ba.. Is new SQLCharPkg. SQL_Char_NotNull;
I " ': t: osl Is ZON, Pazaa (1.. 5;
type PNO Base is new SQL ChAr_Pkg. SQLChar;
subtype PNO_Type is PNO_Ba.e (PNONotNull' Length);

package PNO Ops Is new
SQLCharPkg.SQL_Cha.rOpa(PNOBase, PNONNBase);

The type definitions, whose type names have the suffix _Base, declare unconstrained types.
The subtypes complete the domain definition by supplying the string length. The subtype
declarations are to be used in declaring variables of the abstract domain. Thus the subtype
declarations have the suffixes _NotNull and _Type as appropriate.

The pattern of the above example should always be followed in the definition of character
string abstract domains. The length of the character strings as they are stored in the data-
base should be encoded as an index constraint on the _NotNull subtype. The value of the
discriminant in the definition of the _Type subtpe is the Length attribute value of the
_NotNull subtype. This pattern guarantees that the -Type and _NotNull subtypes are con-
sistent.

3 The formal type parameter WithoutNullType of the generic package SQLChar Ops (see
Figure 3-3), is an unconstrained array type. Therefore, the actual type parameter must also
be unconstrained (see LRM [15] 12.3.4(2)). This explains the division of the declaration of
the _NotNull type into two pieces. Notice that, as the unconstrained types are passed to
the generic instantiation, the functions it generates return objects of the unconstrained
types. This is particularly important in the case of WithoutNull_Unpadded, which returns
objects whose length cannot be determined at compile time. These objects may not meet
the _NotNull subtype constraint, but they are valid objects of the -Base type. (Similar state-
ments apply to the substring function described below.)

The functions ToSQLChar and To_SQL_CharNotNull, exported by the SQL_CharPkg,
take an operand of the predefined type string and return a value of either the limited private
type SQLChar or the one dimensional array type SQLCharNotNull (or types making up
an abstract domain definition derived from these). The length of the result is the length of
the input. Both functions raise ConstraintError if the input is the string of length zero.

There are two versions of the function ToString and ToUnpaddedString, one taking ob-
jects of type SQL_CharNotNull and one taking objects of type SQL_Char (or types de
rived from these). As was the case for WithoutNull and WithoutNullUnpadded, the fol-
lowing identities hold (assuming x is of a child type of SQL_Char and is not null)

I
CMU/SEI-89-TR-1 6 35

I I

I

To_String (x) ' LENGTH = x. Length

To_Unpadded String(x)'LENGTR = UnpaddedLength(x)

and (assuming x is of a child type of SQLCharNotNull)
ToString(x)'LNGTH = x'Length

There is no predefined technique for determining the length of ToUnpaddedString(x) if x is
of a child type of SQL_CharNotNull.

It is impossible to reproduce exactly the syntax of the Ada slice for extracting substrings of
SQL strings (strings which are objects of the type SQL_Char or a type derived from it).
Therefore, there exists a function substring in SQL CharPkg which simulates the substring
function of the follow-on version of the SQL standard, SQL2 [4], in preparation. Its definition

function substring (Value : SQLc har; I
Start, Length : SQLCharLength) return SQL Char;

where substrng(str, K, m) evaluates to the substring of str starting at the kth ordinal position
(relative to 1) and containing m characters, unless (i) stris null, in which case substring(str,
k, m) is also null; or (ii) k<=Oor m<- -or k+m-1>str.LENGTHin which case substring(str, k,
m) causes ConstraintError to be raised.

SQLCharPkg also exports a concatenation operator, "&", tor GOLChar. Its definition is
function "&" (Left, Right : SQL Char) return SQLChar; I

If either operand of "&" is null, the result is null; otherwise, the result has length
Left.LENGTH + Right.LENGTH.

I
I
I
I
I
I
I
I

36 CMU/SEI-89-TR-1 6I

I
13.5. Decimal Fixed Point Arithmetic

Among the data types recognized by ANSI SQL is the type Decimal. Like most of the SQL
data types, the decimal type is oriented to a concrete, hardware representation. Although
there is nothing in the standard that requires it, any DBMS which supports the Decimal type
is likely to do so by storing values of the type in the machine's packed or binary coded
decimal (BCD) representation. This section describes the support software provided h: the
SAME for numeric data coded in BCD.

It should be noted immediately that ANSI standard SQL as described in [2], [4], and
[16] does not support decimal data in Ada programs. Therefore, this section describes

SAME functionality outside of standard SQL. It may be that future versions of the ANSI stan-
dar will corrert this deficiency in a manner that is not compatible with the software
presented in this section. It is to be hoped that the transition to any such future standard will
be relatively easy.

It is possible to read or write database values stored in decimal without any support for the
type in Ada by taking advantage of SQL's weak typing. If, within an SQL statement, a
decimal value is stored into or read from a parameter of some other numeric type (such as
Real or Int), SQL will perform th2 necessary conversion automatically, The disadvantages of
this approach are the time taken to do the conversion and the loss of accuracy as a result of
the conversion. Decimal fractions cannot in general be accurately represented in binary
notation. Furthermore, decimal representations generally allow for more digits of precision
than do binary integer or floating representations. It is, as always, up to the application's
designers and engineers to determine the best strategy for decimal quantities. The form of
the support for BCD in the SAME is that of an abstract data type whose fundamental opera-
tions (arithmetic, comparison, etc.) are provided by assembler-ievei routines. It shoulid Le
noted that this software is very inefficient in comparison to the software that might be pro-
duced di.e:ty by a compiler which supported BCD. As there are no such compilers at this
time,20 the software przsented here will at least allow Ada programs access to BCD coded

i data.

The package SQL_Decimal_Pkg provides basic support for a non-null bearing and a ,u~l
bearing type. The package defines an Ada type for BCD objects and arithmetic and com-
parson operators for that type. It then builds on that concrete type to provide the null bear-
ing type with its associated operators.

!
i,I

2°No modification to the Ada language is needed to support BCD. All that is needed is an implementation of a

pragma Decimal, which instructs the compiler to represent values of its (fixed point type) operand in BCD.
Compilers are free to add such pragmas (LRM2.8(8)).

CMU/SEI-89-T-16 37

I

3.5.1. Basic Support
The package SQLDecimalPkg provides the Ada programmer access to the machine's
BCD representation and instruction set. All of the basic operations provided by this pack-
age, arithmetic, comparison and conversion operators and functions, are implemented in as- I
sembler. Sample implementations for the VAX and IBM 360/370 instruction sets can be
found in Appendix C.21

All of the operations are done with the maximum precision possible on the target hardware.
The constant MAXDIGITS defined in the specification of SQL_Decimal_Pkg is the number
of digits in such a maximum precision number on the target machine. SQLDecimalPkg
defines an Ada type, SQL .DecimalNotNull, for Ada objects whose contents are BCD
numbers of maximum precision. The type is a limited private record type with d'scriminant.
The component type of the record type is a fixed length array. SQL_Decm,-nal_Not_Null is a
limited type so as to prohibit the formation of aggregates of the type in the Ada code. This
ensures that the contents of an object of the type are in valid BCD format. g
The length of the array component of SQL_DecimalNotNull is calculated at compile time.
The comments within the private part of the specification of SQL_DecimalPkg explain how
and why the calculation is done.

The discriminant of SQL_DecimalNotNull specifies the number of scale digits, that is,
digits assumed to the right of the decima! point, in objects of the type (or types derived from
it). The Assign procedure justifies its input value around the decimal point. If a value v1 with
scale (discriminant) s1 is assigned to an object with scale s2, then the value v1 is shifted left
(sl >s2) or right (sl <s2) as needed. In the case of a right snift, trailing digits are lost and the
result is rounded. In the case of a left shift, trailing zeroes are supplied. If significant high
order digits would be lost by a left shift, the exception ConstraintError is raised.

The scale of the result of an arithmetic operator can be calculated as follows. For the ad-
ditive operators (+, -) the result scale is the larger of the input scales. (Justification is per-
formed automatically by the additive operators.) The result of a multiplication has scale
which is the sum of the scales of its operands. The result of a division has the maximum I
scale possible given the values of its operands and the nature of the hardware decimal di-
vide instruction.22 All four of the arithmetic operators raise ConstraintError if the result has
more significant digits to the left of the decimal point than can be accommodated. These
definitions of arithmetic are modeled after the treatment given to decimal arithmetic by SQL
[2]. 3

Other noteworthy features of SQLDecimalPkg appear in the following list. They are de-
scnbed with respect to the non-null bearing type SQL_DecimalNotNull. The next subsec-
tion desc, ibes the support for the null bearing type. I

I
21These implementations are reentrant. Therefore, they are safe for use within Ada mufti-tasking programs or

other environments in which reentrancy is a requirement. 3
22The VAX decimal divide instruction performs integer division on its operands 4nd returns the quotient with

the full width, i.e., precision, of the dividend. The IBM decimal divide also does integer division but returns a
quotient and a remainder in the location of the dividend. Therefore a division which operates successfully on the
VAX may raise ConstraintError on an IBM machine.

38 CMU/SEI-89-TR-1 6

9 The parameterless functions Zero and One return the appropnate decimal con-
stants.

* The function Shift performs multiplications by powers of ten. A positive value k
for the Scale operand of Shift results in a left shift by k digit positions (an effec-
tive multiplication by 1 ok); a negative value results in a right shill Dy k digit posi-
tions (an effective multiplication by 1 0 k). ConstraintError is raised if a loss of
significance would result from a left shift. Right shifts always succeed.

9 There is a rich collection of functions for converting numeric values between
decimal and other representations. All of the other database domain classes,
except for Real and Smallint but including database character strings, can be
interconverted with decimal representations (subject, of course, to constraints).
There is also a function to convert to the type Standard.String, but none to con-
vert from Standard.String. To convert a Standard.String object tu decimal, first
convert it to SQLCharNot_.Null.

The reasoning behind this selection of types for interconversion of decimal data
is as follows. Conversion between other numeric and character types can be
accomplished through Ada explicit type conversions and the Image and Value
functions and predefined attributes for the integer types. The predefined func-
tions do not exist for interconversion with decimal data, and must be created.
The inclusion of SQL Int NotNull in the set of types for which conversion
functions exist and the exclusion of SQLSmallintNotNull and
Standard.Integer (and the similar choices with respect to the floating point and
character string types) from that set is a consequence of the rules of Ada im-
plicit type conversions (see LRM 4.6(1 5)). Consider the expression
To_SQL_Decimal_NotNull(1). The literal 1 has type <universal integer>. It
must be converted, implicitly, to a type for which TcSQLDecimalNotNull is
defined. Were there more than one such integer type, the implicit conversion
would be ambiguous and could not proceed. It would be necessary to write
ToSQLDecimalNotNull(Integer (1)), say. As it is assumed that literal
operands are common for these functions, since the direct formation of decimal
constants is impossible, the inclusion of only one type from each class (integer,
floating point, and character string) makes these expressions easier to write.

The conversion functions are described in the following list. Use of these func-
tions will require type conversions to or from SAME base types, as the rules of
Ada program derivation do not produce functions with tho appropriate
parameter profiles. Sections 3.8 and 5.6.2 describe these type conversions.

The function To_SQL_CharNotNull returns a printable form of a
decimal value as an object of the type
SQL_CharPkg.SQLCharNotNull. The function is modeled after the
'Image functional attribute and the Float lo put routines. Leading zeroes
to the #'eft of the decimal point are suppressed, unless all such digits are

zero, in which case a single zero appears; a leading position is reserved
for a sign character which is blank for non-negative values and '-' for neg-
ative values; all digits to the right of the decimal point appear for all
values; a decimal point does not appear for integers, i. e., for objects with
a scale of zero.

The function ToString is modeled after the To_SQL_CharNotNull
function, but returns an object of type Standard.String.

CMU/SEI-89-TR-1 6 39I

I

The functions ToSQLDoublePrecisionNotNull and n
To_SOL Int NotNull return objects of types
SQL_DoublePrecisionPkg.SQLDoublePrecisionNot_ Null and
SQLInt-Pkg.SQLInt NotNull. Conversion to integer rounds to the
nearest integer; it raises ConstraintError if the decimal value is too large
in absolute magnitude to be stored as an object of type
SOL Int Pkg.SQLIntNot_Null. Conversion to float truncates, but does
not raise any exceptions.

The function To_SQL_DecimalNotNull taking an operand of type
SQL_Char Pkg.SQLCharNotNull requires its operand to be in a spe-
cial format. The first character must be either a blank, "+" character. a
numeric chaiacter (i.e., a character in th, range "0" .. "9"), a decimal
point or period ("."), or the character "-." The last possibility signifies a
negative quantity; the remaining possibilities signify a non-negative quan-
tity. (The strings "+0.0" and "-0.0" are acceptable and indicate the value
zero.) The remaining characters must all be numeric, with the possiole
exception of a penod. There can be no more than one period any where i
in the string, although there may be none. Violation of any of these
restrictions will cause ConstraintError to be raised. The scale of the
result is the number of characters appearing after the period, if present. 1
Thus the strings "9." and "9" both have scale zero, whereas "9.0" has
scale one. All three strings represent the same quantity. This function is
such that To_SQL_Decima!_NotNull(To_SQL_Char_NotNut', (x) =x, I
for x of t? QOL_DecimalNot Null type.

The function To_SQL DecimalNotNull taking a parameter of type
SOL Int Pkg.SQLIntNotNull always returns an object of scale zero.
The equality ToSQL Int Not Null(To_SQLDecimalNot_Null (x)) = x.
where x is of type SQL IntPkg.SQL Int NotNull, is valid. On the other
hand, the equality To_SQL_DecimalNotNull(To_SQLIntNotNull (x)
) = x holds only if x has an integral value and ConstraintError is not
raised on the conversion to integer.

The function To_SQL_Decirnal_NotNull taking n
SQL_DoublePrecision_Pg.SQLDoublePrecisionNotNull raises
ConstraintError if its input .s too large in absolute magnitude to be
represented by the SQL_DecimalNot Null type. The scale for inputs I
with negative exponents is calculated as the exponent of the input value

(in Ada normal form, LRM 14.3.8) minus the quantity
SQL_DoublePrecisionNotNull'Dig,'s - 1. The scale for results with
positive exponents is 0. These conversion functions are inaccurate and
the equalities To_SOL_DecimalNot_Null(
To_SQL DoublePrecisionNot Null((x)) = x and
ToSQLDoublePrecisionNotNull(To_SQLDecimalNot Null (x)) _

x do not in general hold.

" The function Width assists in printing decimal values. The equality Width(x) = 5
To_SQL_CharNotNull(x)'Length is valid.

" The function IntegralDigits (Scale) retums the number of digits to t, e left
(right) of the decimal point as defined by the type of the operand. These I
functions' values depend only on the type, not the value, of their operands. The
function Fore (Aft) returns the number of significant digits to the left (right) of the
decimal point. These functions consider leading (trailing) insignificant zeroes.

40 CMU/SEI-89-TAR-16 3

I
3 Fore returns one if there are no significant digits in the integer portion of the

input value. Aft returns one it there are no significant digits in the fractional por-
tion. Thus Fore(ToDecimalNotNull("0.0")) =3 Aft(To.DecimalNotNull("0.0")) = 1.

* The functions MachineRounds and MachineOverflows mimic the predefined
Ada floating point type attributes. They are both the constant function true on
VAX and IBM machines.

3.5.2. SQL Support
The SQL_Decimal_Pkg defines a null bearing type, SQL_Decimal, in the usual way. Arith-
metic and comparison operators are defined for this type with their usual semantics. Con-
version functions are likewise defined. The semantics of the conversion functions are the

same as their counterparts defined with respect to SQL_DecimalNotNull for non-null
values. Conversion functions for SQL_Decimal exist with respect to all of the non-null bear-
ing types described in the list given above and also their null bearing counterparts. For the
conversions from SQL_Decimal, these functions are distinguished by name. Thus
To_SQL_Char as defined in SQLDecimal_Pkg takes an operand of a type derived from
SQL_Decimal and returns an object of type SQL_CharPkg.SQLChar; whereas
ToSQLCharNotNull returns an object of type SQLCharPkg.SQLCharNotNull.
Symmetricaiiy, there are overloadings of ToSQLDecimal taking
SQL_CharPkg.SQLChar, SQLCharPkg.SQLCharNotNull, SQL._lntPkg.SQL_nt,
and SQLIntPkg.SQLIntNot_Null, etc. These functions are distinguished by their
parameter profiles. For the conversion functions interconverting SQLDecimal with other
null bearing types, if the input is the null value, the result is the null value. The functions
which convert SL-Decimal object to non-null bearing types raise NullValueError on

null input.

3 An abstract domain based on a BCD concrete representation is constructed from two type
definitions, two subtype definitions, and a package instantiation in the standard manner.
The types are defined without a discriminant constraint, which is provided by the subtype3 definitions. The discriminant specifies the scale of the type. Just as SQL character string
cclumns have fixed length, SQL decimal columns have fixed scale. Therefore objects are
declared to be of the subtypes.

Example
Suppose the Weight of a part is stored, in decimal, in tenths of some weight unit. The

Weight abstract domain is defined by the following set of definitions, assumed to appear in a
domain definition package within the scope of a use for SQLDecimalPkg.

WeightScale : constant decimal digits := 1;
type WeightNNBase is new SQLDecimalNotNull;
subtype WeightNotNull Is WeightNNBaae (scale r:> Weight Scale);
type Weight_Base is-new SQLDecimal;
subtype WeightType iS WeightBase (scale => WeightScale);
package Weight Ops JS new SULDocimalOps

(WeightBase,
WeightNN pBse,3 inscale => WeightScale);

CMU/SEI-_.9-TR-16 41I

I

Notice the use of a constant to define the scale value for the two subtypes. There is no way i
to define one of those values in terms of the other, as there was for character string based
domains. Notice also that the unconstrained types, not the constrained subtype, are passed
as the actual type parameter. The generic formal inscale will be described below, as part
of the discussion of range constrained assignment.

3.5.3. Range Constraints for Decimal TypesI
Range constrained assignment is implemented in a novel way for decimal types. This is
because the type SQL_DecimalNotNull is not a visible Ada numeric type, as the other
numeric _Not Null types are. Thus, types derived from SQLDecimalNotNull cannot be
directly constrained. Range constraints for decimal types are provided by parameters
passed to the instantiation of the generic _Ops package. As can be seenl from inspection of 3
the generic specification shown in Figure 3-4, there are seven such parameters. (The proce-
dure parameters should default, as they do for the other generic -Ops pdckages.) The use
of these parameters is as follows. i

" In_scale: gives the scale of the high and low values of the range. That scale
need not be the same as the scale of the type. However, it is good practice to
assign this parameter the scale of the type. For types without explicit range I
constraints, this is all that need be done.

" first sign, first Integral, first-fractional: gives the sign ("-", "+") of the low
value of the range, the (unsigned) value of the integral portion of the low value
of the range (the portion to the left of the decimal point) and the value of the
fractional portion of the low value of the range, the portion to the right of the
decimal point. I

" last-sign, last-integral, last_fractional: as above, but for the high order value
of the range. i

The defaults for these parameters are arranged to be the smallest (most negative) and
largest values which can be represented in the underlying decimal representation. Thus if no
values are given for these parameters, the domain is unconstrained.

The four parameters making up the two unsigned values defining the range are defined as
restricted strings (Numeric_String). This type allows only character strings containing 3
decimal digits. It is dqfined in SQLDecimal Pkg as is the type SignCharacter, an
enumeration type having the values "-" and "+." The format of the generic parameters was
chosen to avoid runtime errors. Were these values passed as two objects of type string, i
then malformed values could not be detected at comp;.e time.

The actual parameters are converted to decimal format during the elaboration of the instan-
tiated package by the sequence of statements in the package body. This means that the
conversion is done at run time, but only once during program execution. The objects into
which they are converted are local.

Example
Suppose that we wished to constrain the Weight domain defined earlier to allow only non-3
negative values. We might then code the package instantiation with

I
42 CMU/SEI-89-TR-1 6 5

I
package Weight_Ops is new SQLDecimal_Ops

(WeightBase,

WeightNN Base,
in -scale => Wsight_Scale,

first_sign => ' +''

firstintegral => "0",
first fractional => '0");

The remaining parameters may be allowed to default.

There is no check performed that the value defined L; the combination firstsign,
firstintegral, firstfractional is in fact less than or equal to the value defined by last-sign,3lastintegral, lastfractional. If that relation does not hold, any attempt to use the generated
assign procedures will cause a runtime ConstraintError.

Instantiation of the generic _Ops package creates membership test functions, Is_In, on the
types SQLDecimal and SQLDecimalNotNull. These functions may be used to prevent
assign procedure calls from raising constrainterror. Supposing that an object
A_DecimalObject has some type derived from SQLDecimal. To ensure that it can be
safely assigned to the object A-Weight, of type Weighttype, one can code

If Is_In(WeightType (A DecimalObject)) then
assign (AWeight, Weight_Type (ADecimalObject));

end If;

The syntax of the Ada membership test is <objectidentifier> in <typemark>. As the mem-
bership. test cannot be overloaded, this syntax cannot be duplicated. The allowed syntax is,
however, a close approximation. The test that an object x may be safely assigned to an
object of type T is coded Is ln(T(x)), which is self-explanatory.

3 The Is_In function which takes the null bearing type SQL Decimal returns Boolean, not
BooleanWithUnknown. If the object passed to the function is in fact null, then IsIn returns
true. This is because assignment of the null value to a null bearing object will not raise
constrainterror.

II
I
!

I
!

CMU/SEI-89-TR-1 6 43I

generic3
type With_-NullType(scale :decimnal digits) is limited private;
type WithoutNullType (scale :decimal-digits) is limited private;
in scal* decimal digits 0;

first sign SignCharaActer
first integral NumericString

(1. .decimal digits' last-in scale => '9');
first-fractional NumericString :-

(1. .in scale => '9');
last -sign Sign Charactetr : +';

last-integral Numeric_7String :
(1. .decimal 1-digits'last-in scale => '9');

last-fractional NumericString __ I
(l...in scale => '9');

with function Is Zn-Rase (Right :WithoutNull_Type;

retrn ooeanIS >; Lower, Upper :SQLDecimal NotNull2)

with function IsInBare (Right :With-NullType;
Lower, Upper :SQLDecimal NotNull2)

return boolean IS <>;

with procedure Assign_ with check
(Left In out WithoutNull_Type;
Right WithoutNullType;
Lower, Upper S 'QL Decimnal NotNull2)

is inou Wth
with procedure Assign_ with-check

(Left Iou ihNull_-Type;
Right With_-Null_Type; _I

Lower, Upper :SQL Decimal NotNull2)
is 0>;

with function ToSQLDecimal NotNull2 (Value Without NullType)

return SQL EcimalINotNull2' IS <>;
with function ToSQLDcimal_-NotNull2 (Value WithNullTye)

return SQLDecimalNotNull2 Is <>;
with function ToSQLDecimal Not-Null (Value SQLDecimalNotNull2)

return WithoutNullType iS <>;
with function ToSQL_ Decimal (Value :SQL Decimal Not-Null2)

return With Null_-Type is <>;
package SQL DecimalOps is

procedure Assign (Left In out WithoutNullType;
Right WithoutNullType);

procedure Assign (Left in out WithNullType;
Right WithNull_Type);

function Is_In(Right WithoutNullType)
return boolean;

function IsTIn (Right With NullType)
return boolean;

function WithNull (Value :Without Null TypO)
return WithNullType;

function without_-Null (Value :With Null_Type)
return Without_-NullType;

end SQLDecimalOps;

Figure 3-4: The Generic Subpackage SQLDecima Ops

44 CMU/SEI-89-TR-16

1 3.6. Data Types Not in the SQLStandard

The previous sections deal with the data types supported by ANSI standard SQL [21. Many
database management systems extend the standard to other types and some support the
standard types, particularly the string type, in non-standard ways. This section outlines the
way in which a user of the SAME can extend the data typing facilities. This is done by pro-
viding a package which supports the new type.

To design a new support package, one must first decide on the database representation of
the type and on the method by which null values of the type will be represented. It is likely
that the database representation can be simulated by one of the types in SQL_STANDARD. If
this is not possible or desirable, a new package, with the name DBMSStandard, 23 should3 be constructed to contain the concrete, database representation as an Ada type.

It is strongly recommended that the null value representation be safe, in the sense that null
values cannot inadvertently and incorrectly be used as though tney were not null. This sug-
gests an abstract, private type to represent domain values at the abstract interface. If that
route is chosen, the support package should include null testing functions IsNull and
NotNull and conversion functions WithNull and WithoutNull. A null value for the type
should also be available in the package specification. In the SAME stindard packages dis-
cussed so far, the null values NullSQLInt, NullSQLChar, etc., are defined as
parameterless functions, rather than as private constants. This treatment causes a null
value to be created for each type derived from the types in the SAME standard packages. In
every case, a function for converting a non-null value from the concrete representation to3 the abstract one should be provioeco to the builders ot abstract modules.

If the model of the previous sections is followed, i. e., if each abstract domain has two type
representatives, a _NotNull visible Ada type and a private _Type supporting nulls, gener-
ating the conversion functions WithNull and WithoutNull by generic instantiation will tie the
two types together. Other functions supplied by the package will depend on the nature of

m the type being defined and the designer's choice.

3.6.1. Ada Enumeration Types
This section illustrates user extensions to the SAME typing model with an implementation of
Aria enumeration types. Enumeration types can be represented in the database as either an
ilLeger or as a character string. The integer encoding will save space but will be incom-
prehernsible to any non-Ada database applications. The character string representation will
cost space, but will make the type meaningful to other applications, such as any interactive
SQL tool or report writer supplied by the database vendor. The representation decision must
be made at database design time, so that the proper column definitions can be made. This
decision can be made separately for each enumeration type to be stored in the database.

The treatment chosen for the null value parallels the treatment in the standard packages. A
limited private record type definition encapsulates the enumeration type with a Boolean. As
the type is private, the enumeration value can be accessed only through the functions pro-3 vided.

S23e.g., 1ngresStandard, OracleStandard, DB2_Standard, etc.

CMU/SEI-89-TR-16 45

I

The treatment uses the enumeration type itself as the _NotNull type. It defines both the
three-valued (BooleanwithUnknown) and the two-valued (Boolean) comparison operators
(Equals, Not-Equals, (or =,/= (implicitly)) <, <=, etc), and the functions Succ, Pred, Pos,
Val, Image and Value for the limited private Type. These last two functions (Image and
Value) are also defined for the _NotNull type. These functions take (Value) and return
(Image) objects of the SAME predefined types SQLChar (or SQLCharNotNull when ap-
plied to the _NotNull type). This usage is to accommodate character set independent pro- I
grams.

The specification for the package SQLEnumerationPkg appears in Figure 3-5. It is a 5
generic package with the enumeration type as the formal parameter. Even if the limited
private type were declared with no operations other than the test and conversion functions, it
would still be necessary to make this package a generic. The body of the package appears 3
in Appendix C.

Example I
Suppose the Status of a supplier has only a small number of legal values. This can occur
even if the database design was not developed with Ada in mind. It may be known to appli-
cation developers that a Status of zero indicates an unacceptable supplier, five an accept- I
able supplier and ten a preferred supplier. This information will be hidden in the application
code. Ada allows this knowledge to be made visible in the type definition while freeing the
application programmer from the need to know it. The Status abstract domain may be en- I
coded as follows.

type StatusNotNull iS (Unacceptable, Acceptable, Preferred);
for Status Not Null use

(nacceptable => 0,
Acceptable => 5,
Preferred =>i0);

package Status Pkg is new SQLEnumerationPkg(Status Not Null);
type StatusType Is new Status Pkg.SQLEnumoration;

Notice that the _Type is derived from the private type generated from the package instan-
tiation. This gives the two types making up the abstract domain similar, conventional names. I
It also means that the package instantiation need not be made visible to the application
program (see Chapter 5).

The task of converting from the database representation, in this case SQLStandard.lnt (or
possibly SQLStandard.Smallint), to the abstract representation, the types StatusNotNull
or StatusType, is the responsibility of the abstract module. Section 4.2 describes these
modules. In this case, the integer representation to be used on the database is that given by
the for ... use representation clause. It is necessary to use Unchecked Conversion to ac-
complish this.24 UncheckedConversion is a predefined generic function. Its use is il- -
lustrated in the following template.

I
I

24UncheckedConversion is a Chapter 13 feature. Care must be taken in its use. I
49 CMU/SEI-89-TR-16

3 with UncheckedConversion;

function Cnvrt_Status In is new
Unchecked Conversion (Integer, StatusnotNull);

function Cnvrt Status Out is new
UncheckedConversion (Status notNull, Integer);

begin

<Application Variable> :
With Null (CnvrtStatusIn (<Database Variable>));

3 <Database Variable>
CnvrtStatusOut(Withoutnull(<Application Variable>));

5 end;

These assignment statements assume that the database value involved is not null. See
i Section 4.2 for more details.

It is possible to use the position (POS) of an enumeration literal within the enumeration type
instead of its representation as the database encoding, if the database is being defined with3the Ada applications. Use of the representation encoding may help prevent inadvertent
changes in the enumeration type definition from destroying the meaning of the database.

If the character string representation is chosen, the mapping between database and internal
representations is accomplished with the Image and Value functions created by the instan-
tiation of SQLEnumerationPkg. Care must be taken to ensure the database columns stor-
ing these strings are long enough to accommodate growth. Care must also be taken to strip
or pad blanks as needed and to ensure the case of the database string is such that non-Ada
programs, which may be case sensitive, can recognize them. Although character string rep-
resentation i-kes more space, it ha the advantage of being readable by non Ada programs
and is relatively impervious to changes in the enumeration type, provided enough space has
been reserved initially.

3.6.2. Date Time Types
Many database management systems extend the ANSI standard by offering a date - time
data type. The follow-on standard, SQL2, under development by ANSI [4], also provides a
date - time data type. This section develops support for date - time types as yet another
example of user extensions to the SAME. As no standard treatment of date - time has been
established, two distinct support packages are presented here. One of the packages sup-
ports the SQL2 date - time data type; the other supports Ingres date - time.

The two support packages have a lot in common. In both cases, values appear at the con-
crete interface as character strings. Therefore, in both cases, the concrete type used to
store dates is a derived type of SQLCharNotNull. In both cases, limited private types are3 declared which support

* Null values for date - times. The test and conversion functions and three-
valued logic and arithmetic are supported (see Section 3.1).

s Date time arithmetic. The DBMS date time arithmetic is defined by appropriate
functions and operators.

4
CMU/SEI-89-TR-1 6 47

I

with SQLBooleanPkg; use SOLBooleanPkg;
generic

type SQL_EnumerationNot Null is (<>);
package SQLEnumeration Pkg-

Is -- Possibly Null Enumeration

type SQL Enumeration is private;
function NullSQLEnumeration return SQLEnumeration; 3
-- conversion functions
function WithoutNull (Value : in SQLEnumeration)

return SQL EnumerationNotNull;
-- raises Null Value Error on the null input
function With Nuil(Value : in SQL Enumeration_Not_Null)

return SQL Enumeration;

procedure Assign (Left : in out SQL Enumeration; I
Right : in SQL Enumeration);

-- Th--ee-valued comparison operators; raise no exceptions

function Equals (Left, Right : SQLEnumeration)
return Boolean withUnknown;

function Not Equals (Left, Right-: SQL Enumeration)
return Boolean withUnknown;

function "<" (Left, Right :-SQL_Enumeration)
return Boolean with Unknown;

function ">" (Left, Right : SQLEnumeration)
return Boolean withVUiknown;

function <=" (Left, Right : SQLEnumeration)
return Boolean with Unknown;

function >=" (Left, Right : SQLEnumeration)
return Boolean-withUnknown;

function Is Null (Value SQLEnumeration) return Boolean;
function Not Null (Value SQL Enumr-ation) return Boolean; 3
-- 'Pred, 'Succ return the null value on the null input

-- 'Image, 'Pos raise Null Value Error on the null input
function Pred (Value : In SQLnumeraxtion)

return SQLEnumeration;
function Succ (Value : in SQLEnumeration)

return SQLEnumeration;
function Poo (Value : In SQL_Enumeration)

return Integer;
function Image (Value : in SQLEnumeration)

return String;
function Val (Value : in Integer)

return SQLEnumeration;
function Value (Value : in String)

return SQLEnumeration;
private

type SQLEnumeration is record
Is Null: Boolean := true;
Value: SQLEnumerationNot_ Null;

end record;
end SQLEnumeration_Pkg;

Figure 3-5: The Package Specification SQLEnumerationPkg

The definitions of the limited private types are optimized for doing arithmetic. The visible, 3
_NotNull types, derived from SQLCharNotNull, are optimized for displays. Both
packages contain _Ops generic subpackages for generating conversion functions between
the _NotNull and _Type types. Both packages also contain functions for converting be-

48 CMU/SEI-89-TR-1 6

I
tween the -Type and the most nearly appropriate predefined Ada types, Calendar.time and
Standard.duration. These conversions are necessarily inexact.

Support for the SQL2 date - time type is provided by the package SQL_Date Pkg, the spec-
ification of which can be found in Appendix C. SQL2 defines two date - time types, Date and
Interval. A date is a specific moment in time; an interval is a period of time. Both of these
types can be modified by a so-called "date-time qualifier." This qualifier specifies the preci-
sion of a date or interval. Date-time qualifiers specify the most and least significant portions
of a date or interval to be recorded. A database table column having date or interval type
has an associated date time qualifier. Thus, all values in the column have the same format.
See [4] for more details.

The declaration of an abstract domain for date or interval types must also include date-time
qualifier information. The discriminants of the types SQLDate and SQL_Interval capture
that information. The discriminants are specified in the associated type declarations within
the abstract domain declaration, as exemplified by the following domain package.

with SQLDatePkg; use SQL Dat._Pkg;
package Date Domain is

type DateNNBase is new SQL_Date_NotNull;
subtype Date Not Null Is DateNNBase (1. .10);
type DateType is new SQLDate (From=>yeax, To=>Day,

Fractional=>O);3 package DateCpa is new SQLDateOps (Date-Type, DateNN Base);

type MonthbNNBase is new SQLDateNotNull;
subtype MonthsNotNull Is MonthsNNBase (1. .2);
type Months_Type is new SQL Interval (From=>Month, leading->2,

To=>Month, Fractional=>O);
package Months_Op Is new SQL_DateOps MOthNN

I package Date Months_Op Is new
SQL DateInterval_Ops (DateType, MonthsType);

end Date Domain;

Here objecIL '- -lte _TvDe record a year, a month, and a day. The _NotNull string version
of Date is ten characters long, as SQL2 defines the character representation of such dates
to have the form yyyy-mm-dd. Objects of MonthsType are intervals recorded in months.
Intervals from 0 to 99 months can be recorded as objects of MonthsType.

As before, the generic subpackage SQL_Date Ops generates conversion functions be-
tween the _NotNull and _Type types of a domain. The generic subpackage
SQL_DateInterval Ops generates arithmetic functions on the date and interval types which
are the actual type parameters. In order for the application program to do date arithmetic
such as adding or subtracting an interval to or from a date and subtracting two dates to form
an interval, an instantiation of SQL_DateInterval Ops for the types must exist in the
domain package. This "cross product" will not require very many package instantiations, as
there are likely to be very few distinct date or interval domains. Most dates and intervals are
inherently comparable.

6
UCMU/SEI-89-TR-1 6 49

U

I

The following example shows how the DateDomain can be used. I
with DateDomain; use Date Domain;
with text io; use textio;
procedure use dates is

use Date_Ops, Months Ops, Date oMnthsOps;

Today_NotNull : Date Not Null := to_sqlcharnotnull("1988-10-25");; 3
Today : DateType;
TwoMonthsNotNull : MonthsNot Null := to_sal char notnull(" 2");

TwoMonths : Months_Type; 5
begin

Parse And Asign(TwoMonths, TwoMonthsNotNull);
Parse_And_Assign (Today, Today_NotNull);
put line (tostring(withoutNull(Today + TwoMonths)));

end use dates;

Notice that, as a derived types of SQLCharNotNull, DateNotNull and
MonthsNotNull inherit conversion functions from and to the predefined type string. The
procedure ParseAnd Assign replaces the functions WithNull in other support packages.
This procedure uses the discriminants of the left, output operand to determine the meaning
of the right, character string input operand. ParseAnd_Assign can raise ConstraintError if
the output discriminants are not legal according to the rules of SQL2.

The Ingres date time data type is supported by a package Ingres DatePkg, the specifi- 3
cation of which can be found in Appendix C. Ingres dates are markedly different from SQL2
dates. There is only one type, rather than two, and row columns of date type may contain
either dates or intervals. Further, the dates and intervals have varying formats. Thus, to de- I
termine the meaning of a given value of a date column, it is necessary to. examine the value.
See [13] for details.

IngresDatePkg defines a single limited private type, IngresDate, for holding values of
Ingres date columns. As earlier, this type is optimized for date arithmetic; whereas
IngresDateNotNull is optimized for display. The discriminant of the type IngresDate is 5
used to record the nature of a value in an object of the type. The type of the discriminant,
Ingres DateFormat, is an enumeration type having the value set (Datetime, Interval,
Unknown). The IngresDate type definition specifies a default of Unknown for the dis- 3
criminant. Variables of IngresDate type can be declared without discriminant constraints.
Such variables can contain either dates or intervals, just as Ingres database columns of type
date can contain either class of values. The declaration of an abstract domain based on an
Ingres date type is illustrated by the following.

with Ingres_Date_Pkg; use Ingres_Date Pkg;
package IngrosDateDomain is 5
type Date_NotNull is new IngresDateNotNull;
type DateType is new Ingres_Date;
package Date_ops Is new Ingres DateOps (Date_Type, DateNotNull);

end Ingres_DateDomain;

Notice that the _NotNull type is already constrained by the definition of
Ingres DateNotNull. All Ingres dates and intervals are exactly 25 characters in length.
There is no need for a cross product package as there was for SQL2. The following program
uses Ingres dates. 3

50 CMU/SEI-89-TR-16 5

U
with Ingres_DateDomain; use IngresDatoDomain;

with Text 10; use TextIO;
procedure Use_Ingres_.Dates is

use Dat e_Op.;

DateStringl string(DateNot Null'Range) := "1988-oct-25" &
(12..DateNotNull'Lant => '

DateString2 string (DateNotNull'Range) := "2 nn"

(5..DateNotNull'Last => '

Datel_NotNull DateNotNull := to sqlchar_notnull(DateStringl);
Date2_NotNull DateNotNull := tosqlcharnotnull(DateString2);

Datel, Date2 : Date-T ;

begin
assign(Date, WithNull (DatelNotNull));
assign(Date2, WithNull(Date2_NotNull));

put_line(tostring(without-null(Date2 + Datel)));

3 end UseIngres_DPates;

Both treatments of the date - time type presented in this section have as their design goal
the creation of an abstract type which simulates a database type. Thus the types and opera-
tions in SQL_Date Pkg simulate SQL2's treatment of dates; the types and operations in
Ingres_DatePkg simulate Ingres' treatment of dates. Applications using these packages
can operate on dates in the same way that the DBMS does.

In constructing new data type support packages, the user of the SAME is free to substitute
other design goals for that of DBMS simulation. For example, it may be desirable to con-
struct a type support package for use with Ingres that makes its date type more closely
resemble the emerging SQL2 standard. Such a support package may improve the portability
of applications which use it. (Of course, it will not make the Ingres SQL portion of the appli-
cation treat dates in the style of SQL2.) The user is permitted to extend the SAME with
non-standard data types in any way that he or she sees fit. It is strongly suggested that such
extensions maintain the safe treatment of nulls which is a defining characteristic of the
SAME standard packages.

1 3.7. Packaging the Type Definitions

Prior sections deal with data definition at the level of the individual abstract domains. This
section begins the process of describing the database at higher level of granularity. The
level of the tuple or row is not described until Chapter 4; the level of the relation or table is
never reached, as Ada programs do not deal with tables as a whole, but only with rows
within tables, one at a time.

The identification of the abstract domains over which a database is defined occurs during
the database design process. Most database design methodologies lose this information
however, as database technology has evolved without regard to the needs of strongly typed
languages such as Ada. In developing the Ada description of the database for use with the
SAME, it may be necessary to retro-fit this information. This section assumes that the Ada
description is developed from the SQL description.

6
CMU/SEI-89-TR-1 6 51

i

The first problem to be addressed is the re-identification of the abstract domains. In the ex-
ample developed in the introduction (see Figure 1-6), the abstract domains are identified by
the attribute or column names. Thus the columns named PNO in the tables P and SP have
the same abstract domain; so do the columns named CITY in the tables S and P. Reliance
on column names is not recommended. There is no rule in database design methods nor in
SQL that enforces or even suggests such column-naming practices. In genpral, the problem
is determining whether any given pair of columns share an abstract domain.

The number of colUmns in a real world database description is generally quite large and the
task of examining each pair is overwhelming. Most such pairs are obviously not over the I
same domain, making the task simpler than this crude analysis suggests. There is one case
in which columns from two distinct table definitions are obviously over the same domain:
the foreign key. A foreign key is a column of one table, the values of which are keys of
another table. These columns clearly have the same domain. In the example, SNO and
PNO are foreign keys in the SP table. It is for this reason that the PNO columns of P and SP
have the same domain.

Once the foreign keys are recognized, remaining column pairs must be decided on a case-
by-case basis. Tht rule to follow is the comparison rule: "Does it make sense to compare i
values of these columns?" If the answer is yes, the columns probably have the same

domain. For this reason, the columns CITY in S and P of the example can be seen to have
the same domain. This rule frequently applies to fields containing dates. The DateCreated
and DateModified columns of a record describing a product are probably over the same
domain. On the other hand, the BirthDate column of an employee record may well have a
different domain. It is the designer's responsibility to make these determinations.

Once the abstract domains have been identified and the Ada type definitions have been
written, the definitions are assembled into packages, called domain packages, and compiled
into Ada libraries for the use of programmers. The essential rule of these packages is that
they must be disjoint; that is, no abstract domain should be declared in more than one
domain package.25 The reason for this rule is obvious. If the type and package declarations
making up an abstract domain declaration are duplicated in more than one package, the
result is the declaration of two distinct domains.

There are no hard and fast rules for determining which abstract domain declarations to col- i
lect into domain packages. The rule which places each domain declaration into its own
package satisfies the disjointness rule, but may result in excessively many packages. 3
A useful technique is to begin by collecting abstract domains into possibly overlapping sets
and then reducing the sets by intersection until a disjoint collection is obtained. The initial
collection can be created by letting each base table definition create a set in the collection. I
An alternative has each set in the original collection correspond to an application view, that
is, be the collection of abstract domains of interest to a given application. This alternative
requires that the designer have knowledge of the applications to be run against the data- I
base. Such information is often available during the database design. The advantage of
using application views is that they map naturally to the application programs. 3

2 5 The declaration of an abstract domain is the declaration of the two types, and for character string data two 3
subtypes, plus the package instantiation, as described in the preceding subsections.

52 CMU/SEI-89-TR-16

1 Example
In the Parts Suppliers example, assume the existence of three application views.

3 1. A Parts view, concerned only with information about Parts.

2. A Suppliers view, concerned only with information about Suppliers.

3. An Orders view, concerned with all the information in the Database.

From these views, the initial collection of sets of domains is as follows.

1. For Parts, the set containing the domains PNO, PNAME, COLOR, WEIGHT
and CITY.

2. For Suppliers, the set containing the domains SNO, SNAME, STATUS, and
CITY.

3. For Orders, the set containing the domains PNO, SNO, PNAME, SNAME,3 STATUS, COLOR, WEIGHT, CITY and QTY.

To complete the design of the domain packages, take intersections of these sets. The final
design appears in Figures 3-6 and 3-7. The Parts application will bring into context (with)
the packages CITY_DefinitionPkg and PartsDefinitionPkg. The Supplier application will
need CITYDefinitionPkg and SuppllersDefinition_Pkg. The Orders application will need

i all four packages.

The pattern of Figures 3-6 and 3 7 is common. A few domains will be shared by multiple
views. These domains will appear in small packages. The remaining domains will be unique
to an application. In most real world relational databases, the majority of the domains are
unique to an application.

3 An application may need domains defined specifically for it. If an application deals only with
preferred suppliers, that is, suppliers with Status > 100, the abstract sub-domain
PreferredStatus, illustrated in Section 3.3, is such an application-specific domain. O.,,
application-specific domains may arise from SQL expressions (see Section 4.1.1). For the
sake of exposition, suppose the Parts table were to contain Length, Width and Height
columns and that these columns had the abstract domain Meters. If part volume,
(Length*Width*Height), is returned from an SQL statement, its abstract domain is
CubicMeters. There may be no database column with this domain. The definitions of such
application-specific domains can either be included in the package of application-unique
database domain definitions or put into a package by themselves.
Except for the rule that states that domain packages must be disjoint, the other rules for the
iurination of domain packages are heuristics. The smaller the domain packages, the more
packages need to be defined and controlled in configuration management. Larger domain
packages may cause unnecessary recompilations. In the Parts-Suppliers example, a given
program or component of the Parts application may need visibility to WEIGHT but not to
COLOR, for example. If, during database evoluticr, the definition of the COLOR domain is
changed, that program or component may be unnecessarily marked for recompilation.

CMU/SEI-89-TR-16 53

City Abstract Domain
with SQL_-ChxarPkg; use SQLCharPkg;
package CITY DefinitionPkg is

type CITYNNBase is new SQLCharNotNull;
subtype CITY_-Not_-Null is CITYNNBase (1. .15);
type CITY Base is ne8w SQL Char;
subtype CTTY _Type IS CITYBase (CITYNotNull'Length);

package CITY _Ops is new
SQL_Char _Ops(CITY Base, CITYNN Base);

end CITY_Definition Pkg;

OTY Abstract Domain3
with SQLInt_-Pkg; use SQLInt_-Pkg;
package QTY Definition-Pkg is

type QTYNotNull Is new SQLIntNotNull
range 0 . . SQLInt Not Null'LAST;

type QTY_Type is new SQLInt;
package QTY_Op. is new

SQL_InzOpe(QTYType, QTYNotNull);

end QTYDefnition-Pkg;

Domains Unique to Parts
with SQLCharPkg; use SQLCharPkg;3
with SQLIntPkg; use SQL Int Pkg;
package P!arts DefinitionPkg IS

type PNONN _Base is new SQLCharNotNull;3
subtype PNO_-Not_-Null is PNONNB;se (1. .5);
type PNoBase is new SQLChar;
subtype PNC_Type is PNOBase (PRONotNull' Length);
package PNO_Ops is new

SQL_Char_Opa(PNO_Base, PNONNBase);

type PNAWENN_Base is new SQLCharNotNull;
subtype PNAME Not Null IS PAMKNN_Bas (1. .20);
type PNAME_Base is new SQLChar;
subtype PNAME_Type IS PNAM -_Base (PNANENotNull'Length);
package PNAba_Ops Is new

SQL_Char_Op. (PNANEBase, PNAMENI4Base);

type COLORITN - Base is new SQL Char Not Null;
subtype COLORNotNull is COLORNNBas-e (1. .6);
type COLOR_-Base is new SQLChar;
subtype COLOR_Type is COLOR_-Base (COLORNotNull' Length);
package COLOROps Is new

SQL_Char_Ops(COLOR Base, COLORNBase);

type WeightNotNull is new SQLIntNotNull
range 0 . . SQL_Int_Not Null;

type Weight_Type is new SQL_-Int;
package WeightOps Is new

SQL_Int_Ops(Weight_Type, WeightNotNull);
end Parts Definition Pkg;

Figure 3-6: The Domain Packages for Suppliers-PartsU

54 CMU/SEI-89-TR-1 6

* Domains Unique to Suppliers

with SQL CharPkg; use SQL CharPkg;

with SQLIntPkg; use SQLInt_Pkg;

I package SuppliersDefinitionPkg is

type SNONNBase is new SQLCharNotNull;
subtype SNONotNull is SNONNBase (l. .5);

type SNO Base is flew SQLChar;
subtype SNO__Type is SNO _Base (SNONotNull'Length);
package SNOOps is new

SQL_Char_Ops(SNOBase, SNONNBase);

type SNAMENNBase is new SQLChar_Not Null;
subtype SNAME Not Null Is SNAMENNBase (1..20);
type SNAHE Base is-new SQLChar;
subtype SNAGZType is SNAM_Base (SNAME-_NotNull'Length);
package SNAM-Ops is new

SQLCharOps(SNAME Base, SNAMENNBase);

type StatusNotNull iS new SQLIntNotNull
range 0 .. 100;

type StatusType isnew SQLInt;
package StatusOps is new

SQL_IntOps(Status_Type, StatusNotNull);

end Suppliers Definition__Pkg;

Figure 3-7: The Domain Packages for Suppliers-Parts, cont'd.

I 3.8. The Package SQL_BaseTypesPkg

The method of abstract domains for database description presented in this section will gen-
erally produce a large number of distinct abstract types. This is in keeping with good Ada
design practice, in which the type of an object gives some indication as to the semantics of
its values. Due to Ada's implementation of strong typing, in particular, Ada's lack of polymor-
phism, this proliferation of types can result in cumbersome programming requirements.
There are parts of many applications in which abstract and strong typing are hindrances.
These are the parts of the application which lie at low levels of abstraction. Examples are
communication protocols and display handlers. These services treat their operands as bit
streams or character strings, not as Weights or Names or Part Numbers. It is possible, and
may be desirable, to build abstract interfaces to these services for the application. Indeed,
the SAME builds just such abstract interfaces for database services. These interfaces are
the subject of the next section. Whether abstract interfaces taking operands of abstract
types are desirable for other services is a matter for the application designer to decide. It
should be noted, however, that such interfaces merely postpone the problem, moving it from
the realm of the application to the realm of the implementation of the interface. This can
itself be considered an advantage; it is considered an advantage of the SAME.

There are uses, other than the operands of low-level interfaces to low-level services, for
operands of concrete types. The result of an SQL COUNT function, for example, often has no
obvious abstract type. Such values are inherently comparable; it makes perfect sense to
ask whether there ae more suppliers in Pittsburgh than there are red parts weighing more
than one ton. (It may not be a very interesting question, but it is well defined). It makes no

CMU/SEI-89-TR-16 55U

I

sense to ask whether "Acme's" supplier number is greater than the part number of I
"Widgets." Part numbers and supplier numbers are incomparable.

Highly generalized applications are similar to very low-level applications in that they are un- I
concerned with the specific semantics of the data they manipulate. The classic examples of
such generalized applications are ad hoc browsing programs. Such programs can be written
to be independent of the database schema; hence, they are necessarily independent of the I
database semantics. Applications such as these are discussed in Chapter 9.

There is yet another need for concrete types in application programs. Certain of the func- 3
tions described in previous subsections, the Image and Value functions of integer types and
the conversion functions for decimal types, have operands defined in the base packages.The I
The application may need visibility to the base type for an Ada explicit type conversion.

These problems could be solved by making the base and concrete type packages, e.g.,
SQLStandard, SQL IntPkg, etc., visible to the application program. However, this results 3
in inconsistencies ;o the set of functions of available to the applications. The types defined in
SQLStandard are not parts of any abstract domain. Only the Ada predefined operators ex-
ist for them. The types defined in a base type support package have sets of subprograms
defined for them which are slightly different from those in an abstract domain package; the
differences are the subprograms generated by the package instantiation that is part of an
abstract domain definition. Furthermore, the naming conventions for these types is slightly
different from the naming conventions for abstract domain types. To insure consistency in
accessing database values, application programs must view all database values through
some abstract domain. What is needed is an abstract domain package which creates con-
crete domains. The package SQLBace_TypesPackage is designed to meet this need. It
appears in Figure 3-8.

Notice that the character and decimal domains in Figure 3-8 do not contain constrained sub- I
types. Abstract domains which define database columns are constrained, since SQL charac-
ter strings are fixed length and decimal values have fixed scale, given by the SQL column
definition. Objects of the types in SQL_BaseTypes_Pka are less specific ano more
generalized or concrete. Thus, these objects may have any length or scale.

The subtype declarations which do appear in Figure 3-8 serve a different function. They are
defined to be the same types as are defined in the base packages. No operations are de-
fined within SQL_BaseTypes Pkg for these subtypes; therefore, applications with visibility
to SQLBaseTypesPkg do not have visibility to the base operations, but only to the I
operations for the types defined in that package. The subtypes can be used as the
typemarks in an Ada explicit type conversion. The type of the operand of those conversions
must be derived from the same base type. Section 5.6.2 illustrates the use of those type I
conversions.

i
I
I

56 CMU!SEI-89-TR-1 6 3m

with SQLCharPicg, SQL-lotPkg, SQLSmallintPkg, SQLRealPkg,
SQL_DoublePreciaionPkg, SQLDecimalPkq, SQLStandard;

package SQL_E?*e_Types_Pkg is

3 package Character-Set renames SQL Standard.CharacterSet;

type SQL -It_-Not_-Null is new SQL_ntPkg.SQL-lotNotNull;
type SQL-IntType is new SQL-Int_-Pkg.SQL_-Int;
package SQL -lot_Op. is new SQL _otPkg.SQL -lot_-Ops(

SQL_-IntType, SQLIntNotNull);
subtype SQL lotSubtype is SQLltPkg.SQL-lot;
subtype SQL~ltNotNullSubtype IS SQL-lotPkg.SQL lotNotNull;

type SQL SraallintNotNull is neOw SQL SmallintPkg.SQL Smallint Not Null;
type SQL -SmallintType is new SQLSmallint_-Pkg.SQL -Szallint;
package SQL_-Smallint_Op. is new SiQL SmallintPkg. SQLSmalliot_.Op.

SQL Smallint_Type, SQLSaallIot NotNull) ;
subtype SQLSmlliotSubtype IS SQL SmallintPkg. SQLSmal lint;
subtype SQL Smallint Not -Null_-Subtype IS

SQL _Smallint_'Pkg.SQLSmallint Not Null;

type SQL_Real_-Not_-Null is new SQLRealPkg.SQLRealNot Null;
type SQL_-Real_Type Is new SQLRealPkg.SQL Real;
package SQL_-Real_0ps Is new SQL RealPkg.SQLRealOqpa(

SQL_-RealType, SQLRealNotNull);
subtype SQL_RealSubtype is SQLRalPkg.SQLReal;
subtype SQL -RealNot_-NullSubtype is SQLRealPkg.SQL Real Not Null;

3 type SQLDoublePrcisionNotNull is
new SQLDouble -PrecisionPkg.SQLDouble Precision Not Null;

type SQLDoulePrecision-Type is
new LQLDouble Precision Pkg.SQLDouble Precific,.,:

package SQL_-Double Precision Op. is
new SQL_DoublePrecisir~nPkg.SQL_-Double -Precision_Op.(

SQL_-Double Precision TYPe,
SQLDouble_-Precision NotNull);

subtype SQL_-Double Precision Subtype is
SQL_DoublePrecision Pkg.SQL -Double-Precision;

subtype SQLDoublePrecision_-Not_-Null_-subtype Is3 SQLDouble PrecisioPkg.SQL DPouble PrecisionNotNull;

type SQL Char Not-Null Is new SQL CharP 9 SLCao ul
type SQLChar_Type Is new SQL_-CharPkg.SQLChar;
package SQLChar_O0ps is new SQLCarPkg. SQLCharOpas

SQLChU~rType, SQLCharNotNull) ;
subtype SQL_Char_-subtype is SQLharPkg. SQLChar;
subtype SQLCharNotNull Subtype IS SQLCarPkg. SQLCharNot Nul3;

type SQL DecimalNotNull is new SQLDecimalPkg.SQL Decimal NotNull;
type SQL DecimalType- is new SQLDeci=al Pkg.SQLDecimal;
package SQL -Decimal Op. is new SQL -DecimalPkg. SQLDeci.mal-0ps(

SQL_ DecinAl Type, SQLDecimal Not Null);

subtype SQL_Decimal_Subtype is SQL_-Decimal Pkg. SQLDecixmal;
subtype SQLDcimalNotNull Subtype is

SQLDecimalPkg.SQL Decimal Not Null;

end SQL Ease_Types_Pkg;

Figure 3-8: The Package SQLBase TypesPkg

CMU/SEI-89-TR-1 6 57

I
• ;"I

I
I

'I
I
I
I
I
I
I
I

It

I
I
I
I

58 CMU/SEI-89-TR-1 6I

U

* 4. The SAME Operational Model

The previous sections specify the data definition process within the SAME. That process
results in a description of the database contents in Ada terms, thereby allowing the Ada
programmer to manipulate database data under the control of Ada's strong typing paradigm.
The Ada descriptions do not require any conversions of data representation a id the treat-
ment of incomplete information prevents any use of null values as though they were not null.

This chapter describes the construction of abstract interfaces and abstract modules.
Whereas the data definitions are used by all applications, an abstract interface and its imple-
mentation, an abstrat modtile, are snecific to a given set of applications.

Applications implemented using the SAME divide the problem into two parts: the part to be
solved in Ada and the part to be solved in SQL. The SQL portion of the solution is a collec-
tion of procedures the bodies of which are individual SQL statements. This collection is
called a module in ANSI standard SQL [2]. In the SAME, it is called a concrete module, to
distinguish it from the abstract module which the Ada programmer sees.

1 4.1. Constructing an Abstract Interface
For expository purposes it suffices to think of an abstract interface as a package specifi-
cation and an abstract module as a package body. In practice it is frequently advantageous
to construct an abstract interface as a collection of packages. The concrete interface is the
Ada package specification of the SQL concrete module. It should be noted that the ANSI
standard requires that there be only one concrete module in any application program ([2]
Section 4.8).

* The abstract interface contains two kinds of declarations: declarations of row record types
and declarations of procedures. The procedure declarations of the abstract interface are one
for one with the procedures of the concrete module. For each SQL statement in the concrete
module there is a procedure declaration in the abstract interface and, in the body, a call to
that SQL statement.

A higher level, more abstract and application-oriented interface than that of the abstract in-
terface is conceivable. The application designer may very well wish to create such an addi-
tional layer that defines such an interface for his application. The SAME abstract interface3does not attempt to "improve" SQL. An abstract module should deal only with the details of
database interaction and should never contain application logic.

A procedure declared in the abstract interface has a parameter profile which differs from that
of the procedure in the concrete interface that it calls. Parameters declared in the concrete
interface have types defined in the package SQLStandard (see Figure 2-2, [5], [16]). The
types of parameters and parameter components of procedures declared in the abstract in-
terface are the abstract types described in the previous sections of these guidelines.
Beyond that change are two other significant differences in the parameter profiles of proce-

* dures at the concrete and abstract interfaces.

1. At the abstract interface, rows being returned from the database or inserted
into it are transmitted as record objects rather than individual fields. These

CMU/SEI-89-TR-16 59U

!

records are called row records and their types are the row record types I
declared in the abstract interface. Every component of the record type must
have its value set, either in the abstract module or in the application program,
as appropriate. In the case of data being transmitted from the databas3 to the
program, i.e., from an SQL FETCH or SELECT statement, the components of the
row record type are one for one with the elements of the <target list> of the
statement. Similar comments apply to the INSERT ... VALUES SQL statement.

2. The SQLCODE parameter does not appear at the abstract interface. An op-
tional result parameter appears instead. A full description of this parameter
can be found ir Section 4.3.

For concreteness, Figure 4-1 lists each executable statement of ANSI Standard SQL [2] and
gives the parameters such statements take as abstract procedures along with the parameter I
modes. Parameters listed as having mode In out are logically out parameters of a limited

type. (They are row records whose components will be of limited types.) Each such proce-
dure may also take, in addition to those listed, a result parameter as the last parameter. The I
result parameter's mode is always out. The phrase Individual Parameters indicates that the
sequence of individual parameters in the concrete SQL module interface appea-s as a se-
quence in the abstract interface, albeit with different types. This treatment is usec primarily I
for runtime parameters of SQL where and having clauses. Notice that only the select state-
ment may take both a row record (for the retrieved row) and a sequence of ind'vidual
parameters (for the where or having clause). I

I
SQL Statement Ada Parameter Kinds Mode

close none I
commit none
delete - positioned none
delete - searched Individual Parameters In
fetch row record In out
insert values row record In
insert (subquery) Individual Parameters In
open Individual Parameters In
rollback none
select row record in out

Individual Parameters in
update - positioned Individual Parameters In
update - searched Individual Parameters In

Figure 4-1: Parameter Kinds (with Modes)

4.1.1. A Note on Typing Parameters 3
It should not generally be difficult to determine the types of the individual parameters and
row record components at the abstract interface. If the values of that parameter or compo-
nent are in transit between the application program and a database column or are compared I
to a database column in a where or having clause, the type to be used is one of the ab-
stract types describing the abstract domain underlying that column. If the null value is per-
missible in the given context, a type supporting null values must be used. I

60 CMU'SEI-89-TR-16

I

I In the case that the value involved is the result of an expression in the SQL statement, par-
ticularly one involving more than one database column, the appropriate abstract type may
not be obvious. It may be necessary and desirable to create a new type for such an expres-
sion (see Section 3.7). The class of that abstract type, e.g. INT I At Ptc , can be estab-
lished from the concrete type of the parameter that holds values of the expression at the
concrete interface. The general problem of typing parameters whose values are set by SQL
expressions is an instance of the "dimensional analysis" problem. The SAME does not pro-
vide its own solution to that problem.

Example
Consider the following problem: "Calculate the total weight of all orders for a given part
number." The SQL module specification for this query is:

MODULE ConcreteMod
LANGUAGE Ada

Procedure CalculateWeight

PNUMBER Char (5)
TotalWeight Int
TW Indic Smallint
SQLCODE;

select sum(QTY * WEIGHT)
into TotalWeight INDICATOR TWIndic
from P, SP
where P.PNO = SP.PNO

and P.PNO = PNUMBER;

The concrete interface, that is, the Ada specification of that SQL module is:

with SQLStandard; use SQLStandard;
package Concrete Mod is

procedure CalculateWeight (PNUMBER : Char;
TotalWeight : out Int;
TW Indic out IndicatorType;

end CSQLCODE : out SQLCODE_Type);

end ConcretoMod;

The abstract interface for this procedure (without the package declaration and context
clauses and assuming no result parameter) is:

type Weight_Record is record
Total : WeightType;

end record;

procedure CalculateWeight (PNUMEER : in PNONotNull;
Weight: in out WeightRecord)

In this case, the expression clearly results in a Weight, an abstract domain already identi-
fied. For uniformity, a row record is used for the output, even though the record contains
only one component. The type of the component must allow for nulls, that is, must be
WeightType rather than WeightNot_Null, since, if PNUMBER is not the number of some
part for which some orders are recorded in SP, the result of this query is the null value ([2]
Section 5.8, general rule 4.c).

6
ICMU/SEI-89-TR-1 6 61

I

4.1.2. A Note on Naming and Packaging i
The SAME does not mandate any specific packaging of abstract interface procedures. As
mentioned, the rules of SQL require the concrete interface to be a single package. The ab-
stract interface can be partitioned as fits the needs of the application. To prevent unnec- U
essary recompilations, the concrete interface should be imported into the context of the
bodies, not the specifications, of the abstract module packages. 3
In general, the SAME does not specify the names of the procedures at the abstract interface
nor the names of their parameters. This naming is the responsibility of the application
builder. However, the SAME suggests that the set of procedures associated with a given
cursor declaration, the OPEN, FETCH, CLOSE and if needed, positioned UPDATE and DELETE
procedures, be placed in a separate package or subpackage of the abstract interface. The

name of the package can be the name of the cursor. The open procedure for a given cursor,
for example, is then referred to as CURSORNAME.OPEN.

4.2. Constructing an Abstract Module U
The bodies of the procedures declared in the abstract interface form the abstract module. 3
Each of these procedure bodies has much the same form.

1. The concrete module procedure is called. 3
2. The status code field (SOLCODE) is processed according to the procedures

described in Section 4.3.

3. Type conversions are applied to the parameters at the concrete interface, I
transforming them to objects of the types at the abstract interface.

For procedures that take input parameters, step 3 occurs first and in the other direction. If a
procedure takes no parameters, step 3 does not occur at all. The type conversions of step 3
generally take the form of a test for null, followed by an Assign procedure call.

Example U
The body of the procedure Calculate_Weight (of the prior example) is displayed in Figure
4-2, with the package declarations and context clauses omitted for brevity. I
The input parameter, PNUMBER, must be converted to a type (Char) defined in
SQLStandard, using an Ada explicit type conversion. Had PNUMBER had type
PNOType, acall to WithoutNull would be necessary and Null_Value Error might be
raised. The concrete module, as given earlier, made no provision for null values in PNUM-
BER, there being no INDICATOR for it. The raising of an exception here conforms to ANSI
specifications Database Language - SQL, Sections 8.6 and 8.10, general rule 8) for thissituation.

The processing of the output is typical. A negative indicator value indicates a null value. A
non-null value must be transformed, using an explicit Ada type conversion, from a type in
SQLStandard (in this case, Int), to the NotNull type and then, if necessary, to the output
type, via WithNull.

I
CMU/SEI-89-TR-1 6

I

procedure CalculateWeight (PNUMBER : in PNONotNull;
Weight : in 0ut Weight Record) is

Weight Indic SQLStandard.IndicatorType;
Weight_Buffer SQLStandard.Int;
begin

Concrete_Mod.CalculateWeight
SQLStandard. Char (PNUMBER),
WeightBuffer,
Weight_Indic,

SQL Comwunications Pkg.SQLCODE);
If SQL_CoununicationsPkg.SQLCODE /= 0 then

<see section 4.3>
end If;
If Weight_Indic < 0 then

assign (Weight. Total, NullSQLInt);
else

assign (Weight.Total,
With Null (WeightNotNull (Weight_Buffer)));

end CalculateWeight;

SFigure 4-2: The Abstract Module Procedure Calculate-Weight

* 4.3. Database Exceptional Conditions

Every database interaction is capable of failing. Application programmers frequently forget
this, and assume that some database interaction will always succeed. Frequently, they as-
sume that a given interaction can fail in one of a small set of predictable ways (e. g., no
record found) and forget to check for unpredictable, unrecoverable failures (e. g., disk
errors). The net result is that in the presence of failure, the application program behaves in
ways that cannot be predicted or analyzed. The SAME provides a robust treatment of data-
base exceptional conditions which allows the average application to assume a failure free

* database while allowing more sophisticated applications the freedom to do their own error
recovery.

ANSI standard SQL systems signal the presence of an exceptional condition through a
status parameter called SQLCODE. The values of this parameter are not set by the stan-
dard and therefore differ from implementation to implementation. The number of distinct er-
ror values is usually in the hundreds. The overwhelming majority of these values signal fatal
errors from which the average application will not be able to recover. The SAME is oriented
to the needs of such an average application.

3 The following steps constitute the treatment of database exceptional conditions in the
SAME:

1. As each SQL statement is designed and written for the application program,
the set of DBMS error conditions which the application will tolerate must be
identified. In the most frequently occurring cases, this set will either be empty
or will be the singleton "no record found" condition.

2. If the set identified in the prior step is not empty, the abstract interface specifi-
cation of the procedure that executes that statement will include the optional
result parameter. That parameter has an enumeration type, frequently, but not
necessarily, BOOLEAN. If the application is sensitive to failure but not to failure
mode (or in the case that the set identified above is a singleton), a Boolean is
sufficient. The mapping of status code values to enumeration values must be

CMU/SEI-89-TR-16 63U

I

determined. (For example, a "no record found" condition returned from a 3
DELETE may be considered a successful termination.)

3. The body of this procedure in the abstract module body will then, upon return
from the concrete procedure, examine the SQLCODE variable (see Section
4.3.1). The value of the result parameter is set correctly, in the case of suc-
cess or of a fail, .re mode anticipated in the set described above. In the case of
a failure mode outside that set, the procedure ProcessDatabaseError
declared in package SQLDatabaseErrorPkg is called and the exception
SQL_DatabaseError declared in SQL_CommunicationsPkg is raised.

This treatment allows the application programmer to ignore exceptional database conditions
that are not germane to the application and from which it cannot recover. Raising an exce o

tion makes the condition difficult, although not impossible, to ignore. When desired, an error
recovery routine can be coded as a handler for the SQLDatabaseError exception.

4.3.1. The Packages SQLCommunications Pkg and 3
SQL_DatabaseErrorPkg

The SAME standard packages SQL_CommunicationsPkg and SQLDatabaseErrorPkg
support the authors of abstract modules and of those applications which do more sophis-
ticated error recovery processing. The specification of these packages can be found in
Figure 4-3. Both of these packages must be tailored by the user. The specifications in
Figure 4-3 are the basic skeletons, which may be modified as needed.

SQL_CommunicationsPkg is specific to the platform; it must be tailored to the specific
DBMS in use at a site. There need be only one copy of SQLCommunications_Pka at a site.
SQL_DatabaseErrorPkg is specific to the application. There may be more than one copy
of this package at a site. In the most likely case, many applications will share a copy of
SQL_DatabaseErrorPkg. The package is best described as being specific to an applica-
tion class.

Every module language procedure must contain an <sqlcode parameter> (Database Lan- I
guage - SQL, Section 7.3, syntax rule 6). The call to each concrete module procedure from
each abstract module procedure uses the globai variable SQLCODE declared in the specifi-
cation of Sql_Communications Pkg. 26 Given the importance of the status code, it is best not I
to duplicate it unnecessarily as that could lead to confusion over which copy is current.
(Only the most recent value of the status code is of interest.) 3
The procedure ProcessDatabaseError should perform whatever processing must be done
before the exception is raised and information is lost. This procedure should not attempt
error recovery. That should be done by the exception handler. Rather, this procedure I
gathers whatever information will be needed by the recovery mechanism. It is legitimate,
and probably desirable, for ProcessDatabaseError to initiate a transaction rollback. For
that to be the case, the procedure must be able to find, (that is know the name of) a sub- I
program that will cause the SQL ROLLBACK WORK command to be executed.

26Most DBMSs define a communications area which includes a good deal of information beyond SOLCODE.
The SAME allows for modifications of the specification of SQLCommunicationsPkg to include that information.

Populating those variables with data is a DBMS-specific task, not covered by the SAME.

64 CMU/SEI-89-TR-16

I.
SQL_CommunicationsPkg

with SQLCharPkg, SQLStandard;
use SQL Char_Pkg, SQLStandard;
package SQLCommunications Pkg is

SQL_Database Error : exception;

SQLCODE : SQLCOVE_TYPE; -- Global variable

-- parameterless function returning an error message of type
-- SQL_CharNotNull

-- the error message is the descriptive string associated with
-- the most recent database error

function SQL_DatabaseErrorMessage return SQLCharNotNull;

I end SQL_Couunications_Pkg;

SQL_DatabaseErrorPkg

package SQLDatabaseError_Pkg iS

-- The following procedure must be present in every version of
-- SQL_Database_ErrorPkg. It's purpose is to perform standard
-- processing of unexpected exceptional conditions. It should not3 -- attempt error recovery.

procedure ProcessDatabaseError;

3 end SQL_-ntabae ErrorPkg;

Figure 4-3: Package Specifications for SqlCommunications_Pkg and
SQL_DatabaseErrorPkg

In the most frequently occurring case, there will be no handler for the SQL_DatabaseError
exception. The exception is raised only when an exceptional condition from which the appli-
cation cannot recover arises. Generally, this indicates either a programming error or a cor-
ruption of the database Manual intervention will usually be required to repair the condition
that caused the exception to be raised. The purpose of ProcessDatabaseError is to dis-
play a suitable error message on a suitable device or devices so that the nature of the error
will be known. The choice of device may depend upon the class of an application. Batch
applications may wish to notify the system operator, record the message in an error log and
place a copy into the standard application output file. Online applications may do all of those
things and also notify the terminal user.

Most SQL DBMSs provide a routine that converts an SQLCODE value into a meaningful
message. The function SQL_Database ErrorMessage in SQL_CommunicationsPkg is
meant to interface to that routine. As the ANSI standard does not include this functionality,
the body of this function must be tailored to the DBMS.

6
I

CMU/SEI-89-TR-1 6 65I

I

4.3.2. Handler for SQLDatabaseError I
Applications which mus, be fault tolerant, and applications written in accordance with local
standards prohibiting unhandled exceptions, will provide exception handlers for the
SQLDatabaseError exception. These handlers typically appear fairly high in the dynamic I
call structure of the application, e.g., in a driver procedure, as they are meant to deal with
errors that are fairly general in nature. Recall that the exception handler deals only with con-
ditions that tha application itself could not process.

If an exception handler is to be used in an application, the ProcessDatabase__Error proce-
dure may need to be specialized to work cooperatively with the handler. For example, if the I
procedure initiates a rollback operation, the contents of the global variable SQLCODE at the
time of failure will be destroyed by the rollback operation. It may be that the handler, not
executed until after the termination of ProcessDatabaseError, will obviate the need for the
rollback by repairing the error.27 The handler may need information which has been
destroyed by the exception's being raised. ProcessDatabaseError may save such infor-
mation for the handler's use. (It will have to do so either in global variables, as its local I
variables will have been destroyed when the handler is run, or by calling subprograms
visible to the exception handler which can accept and store the information.) Specializations
such as these may require modifications to the specifications of the packages
SQLDatabaseErrorPkg and SQLCommunicationsPkg. This is perfectly acceptable,
provided that the global variable SQLCODE and the procedure ProcessDatabaseError
appear as shown in Figure 4-3.

As has been stated, the goa! of the SAME treatment of the SQLCODE status parameter
are: 3

1. To free the application programmer from any concern with exceptional con-
ditions not meaningful to the application.

2. To make the occurrence of such exceptional conditions known to the people
running the application and difficult for the application to ignore in order to
prevent the eventual application failure from being unanalyzable.

3. To allow fault-tolerant programs the ability to recover from system failures.

It is possible for a software development organization to meet these goals through the 3
promulgation of programming standards. The SAME treatment of the SQLCODE parameter
ensures that errors are handled in a standard manner specified by the organization, without
the need for standards enforcement. This is because the realization of those standards lies
not with the application programmers, but rather with the system software designers. Most
organizations should find that they need very few distinct copies of the packages involved in
this processing, which can be shared by the application programs. 3

I

27This seems unlikely. More likely is that an exception handler will trap the exception, to prevent abnormal

program termination, and allow the application to restart (rather than recover). Since the underlying problem has
not been repaired, it may recur.

66 CMU/SEI-89-TR-1 6

U
4.4. Note on the.Overloading of INDICATOR Parameters

The primary purpose of indicator parameters in the SQL module language is the indication
of null values. (See Database Language - SQL, Section 4.10.2.) However, indicator
parameters have a secondary usage, described by general rule 8.a of Sections 8.6 and 8.10
of Database Language - SQL:

[Let V be an output parameter and v be the non null value to be assigned to V.] If
the data type of V is character string of length L and the length M of v is larger
than L, then the indicator is set to M.

In other words, indicators can be used to inform the program that a character string has
been truncated. Interestingly, if L in the above is larger than M, padding occurs and the

* program is not informed.

Since the SAME uses Ada's abstract typing facilities to encapsulate null values, it does not
support indicators at the abstract interface. The SAME-DC felt that the use of indicators
described in the above quotation would be of use to only a small fraction of all database
applications. A means of satisfying those applications without penalizing the majority of ap-3 plications was developed.

An abstract procedure that corresponds to a concrete FETCH or SELECT statement may
declare an additional record parameter. This record will have components all of type
SQL_Standard.lndicatorType (or a type derived from this, if desired). Each component of
this indicator record corresponds to a string component of the row record. The name of each
component in the indicator record is the name of the component in the row record, and they
appear in the same order although some string components may be missing. The body of
the abstract procedure copies the indicator values from the concrete indicator parameters to
the components of ihe indicator ri:ord for those string components that have indicators.

The SAME-DC felt that this solution was the cleanest available. Altering the row record type
definitions to include indicators seemed inappropriate. Altering the abstract types,3SQLChar and SQLCharNotNull, would have penalized all applications to support only a
few.

6
3
U
I
I

CMU/SEI-89-TR-1 6 67I

U
U
U
I
I
U
I
I
U
U
I
U
I
I

a

I
I
I

68 CMUISEI-89-TR-1 6

I

I

* 5. Notes on Writing Application Programs Using the
SAME Method

This chapter contains hints and suggestions for the designer and programmer using the
SAME for an Ada database application.

5.1. Design Rules
The SAME method of constructing database applications divides the problem into two parts:
the part to be solved in Ada and the part to be solved in SQL. A rule of thumb to use in
determining this division is: If a part of the problem can be solved in either the Ada or the
SQL portion of the application, solve it in SQL. The rationale for this rule is that the more the
database management system knows, the more it can optimize its behavior. For example,
suppose an application is interested in all "red" parts. It is possible to write an SQL state-
ment which returns all parts and an Ada program which finds the red ones. However, it is
also possible to write an SQL statement which returns only red parts. In that case, at the
very least, there will be fewer calls from the Ada application to the DBMS at runtime. If an
index on COLOR exists in the database, the total runtime can be drastically reduced.

1 5.2. Visibility and the Use of use
The application program will need visibility to the domain packages that define the relevant
types and to the abstract interface. The domain packages have been designed to be used.
The domain packages contain instantiated subpackages that are likewise meant to be used.
This use of use allows the operators (comparison and arithmetic) defined in the support
package to be used in their normal infix notation. These domain packages typically declare,
either by generic instantiation or subprogram derivation, numerous versions of subprograms
with the same name. These subprogram, can be distinguished by their parameter profilesand often can be distinguished only in that way. Giving their complete names will not
uniquely identify them.

There is a situation in which use should not be used in the SAME. If two subtypes of a type
are declared in a domain package and generic .ubpackages instantiated for them, the sub-
programs generated in those subpackages will have the same parameter profiles. If only
one of the subtypes is needed in the application, it can be used in the normal way. How-
ever, if both subpackages are used, they will effectively hide each other. In this case, nei-
ther subpackage should be used; subprograms within them should be referred to as
<subpackage name>.<subprogram name>. Be careful to use the correct subpackage with
the correct subtype (see Section 3.3).

(The instantiated generic package which forms part of the declaration of an enumeration
type abstract domain [see Section 3.6] is also not meant to be used. Use of the domain
package will bring the derived function names into scope.)

Application programs should not have visibility to any of the SAME standard packages. They
should depend only on the domain packages and abstract interface packages which have
been developed for them.

CMU/SEt-89-TR-1 6 69I

I

5.3. Using Non-ASCII Character Sets

The SAME support for character database columns is designed to allow SAME application
programs to be portable across machines with different native character sets. As a by-
product, SAME applications can eliminate unnecessary character set conversions.

If the chara.;ter set native to the machine on wnich a SAME application is running is not
ASCII, then SQL-Standard.CharacterSet is not set to Standard.Character (see Figure 2-2).
Rather, SQL_Standard.CharacterSet is a renaming, that is a subtype, of an enumeration
type which defines the native character set. String literals over that character set can be
formed in the normal way, provided that the name of the enumeration type specifying the
character set is in scope. The context in which the literal appears must be sufficient to deter-
mine which character set is to be used, since the predefined package Standard cannot be I
taken out of the scope of any Ada compilation unit.

If, for example, the host character set is supported by a package named
HostCharacterPkg, then the application can use HostCharacterPkg if it needs to con-
tain string literals over the host characters. Let StringVar and StringVarNotNull be vari-
ables of types derived from SQL_Char and SQLCharNot_Nuil, respectively. If the name of
the DBMS character type is in scope, then both

Equals (String_Var,WithNull ("A String"))
andI

Strng_VarNotNull = "A String"

are syntactically correct and behave as expected.

If the character set native to a machine on which a SAME application is to be run is ASCII,
that is, if SQL_Standard.CharacterSet is SQLStandard.Char, then the predefined Ada
type string and the type SQLCharNotNull (and types derived from it) are structurally U
identical (they are both unconstrained one dimensional arrays with the same component
type), and are interconvertible using Ada explicit type conversions. if such conversions are
used, however, the resulting code is not portable to a machine whose native character set is
not ASCII. The functions ToString (and ToUnpadded_String) and
To_SQL_CharNotNull (and ToSQLChar) are modified at the time of SAME software

installation to make them aware of the native character set and to properly perform the type I
conversion. Use of these functions exclusively for the purpose ot sucn conversions results in
an application that is portable across machines with different character sets. However, one
further step is needed to complete this portability. If the advice given to use
HostCharacterPkg to enable string literal formation is followed, the resulting code will not
compile on a machine whose native character set is ASCII and on which, presumably,
HostCharacterPkg does not exist. To ensure correct behavior on both ASCII and non-
ASCII machines, the program should use the package SQL Standard.CharacterSet.
SQL__Standard is not meant to be visible to application programs. The package
SQLBase TypesPkg descrbec in Section 3.8 contains a renaming declaration of that 3
package. Therefore, a character set independent program should use
SQLBase TypesPkg.CharacterSet to enable formation of literals of types derived from
SQL_CharNotNu;l.

Altnough one speaks of a given machine's native character set, it is neither the CPU nor the
magnetic storage media that are sensitive to character set encodings. These encodings are 3
70 CMU SEI-89-TR-16 3

U
3 properties of the display devices, printers, and terminals attached to the system. In many

DBMS applications. haracter strings are retrieved from the database and displayed on a
display device, often without being examined by the software. ;t is highly inefficient to con-
vert such data from the native character set to ASCII as the data is read from the database,
and then from ASCII to the native character set as the data is displayed on the output de-
vice. The conversion is time-consuming and does nothing to forward the application's
progress. If all character string variables within an application are of types derived from
SQL_CharNotNull (or SQLChar), those conversions will not occur.28

I 5.4. Handling the NullValueError Exceptiun

The exception NullValueError is raised by subprograms of the SAME standard packages
when an invalid use of a null value is detected. Typically, this is an attempt to convert the
null value to a type which does not support nulls. The exception is defined in the SAME
standard package SQLExceptions. In order to provide a handler for that exception, the
package must be brought into scope.

I 5.5. Simulating Predefined Attributes

The limited private types which the SAME standard packages use to simulate SQL data
semantics have operation-, which allow objects of those types, and the types derived from
them that appear in abstract domain declarations in domain packages, to appear very much
like visible Ada types. For example, variables of the SQL _Int 'ypes Weight-Type,
Status-Type, and Qty_Type (see Figure 3-7) support arithmetic and comparison operators
identical to the Ada integer operators whenever the values of those variables are not null.
Since the types are limited private, however, the attributes predefined for integer types are
not available. Most of the those attributes can be simulated.

Those attributes which are properties of the type, rather than properties of objects of the
type or functions defined on objects of the type, can be applied to the _NotNull type. That
is, Weight Type'First is not defined but WeightNotNull'First is defined and is the smallest
non-null value that can stored in a variable of type WeightType.

Many of those attributes which are properties of objects or functions on objects are dupli-
cated by functions defined on the limited private type. Examples of these are Succ, Pred,
Image, and Value for enumeration types, and Image and Value for integer types. The length
attribute for strings is simulated by the discriminant, Length, of the SQL_Char type. Recall
that the discriminant of a limited type is visible outside the package defining the type. The
attributes 'Range, 'First, and 'Last are not simulated for SQL_Char, nor is it possible to ac-
cess individual characters of a string object of a type derived from SQLChar. Suppose, for
example, some processing is to be done if a variable String_Var, of a null bearing type de-
rived from SQLChar, contains the character "X." The following code fragment is correct.

I 28There Pre Ada contexts in which t! ,)redefined type string is mandatory: the subprograms within the
package Tt-XT_10 and the parameters of 'he 'Image and 'Value attribute functions. The latter functicis are
duplicated by functions defined in the SAME support software. The SAME does not provide a rep'-.'ment for
T EXT 10,

CMU.GSEI-89-T R- 16 71I

I

for i in 1. .StringVat.Length loop i
If InTrue (Equals (substring (StringVar, i, 1)),

With Null("X")) then
-- process as needed

exit;
end If;

end loop;

At the expense of a temporary variable assignment, the above code could be rewritten as:
String_VarNotNull := WithoutNull(String_Var);
for i in String_VarNotNull'Range loop

If StringVar NotNull (i) = 'X' then
-- process as needed
exit;

end If;
end loop; 3

but this code is correct only if StringVar is known not to be null. The original code is cor-
rect, in the sense that the process is executed only if StringVar contains the character "X",
in all cases. The following version is robust and more efficient, particularly when the string
of trailing blanks in Stnng_Var is long.

If NotNull (String_Var) then
StringVar Not Null := WithoutNull (StringVar);for i in l..-Unpadded Longrth(String_Var) loop

-- Since StringVarNot Null has the Not Null type
-- of some abstract domain, StringVar_NotNull' First 1.

If StringVarNotNull (i) = 'X' then
-- process as needed

exit;
end If;I

end loop;
end If,

The extended example of Chapter 8 contains further examples of this kind of processing.

5.6. Doing Type Conversions

It sometimes becomes necessary in Ada programs to convert an object from one type to
another. This section contains some details to be kept in mind when type converting data-
base objects.

5.6.1. Ada Explicit Type Conversions 3
For all domainr:, except those based on a binary coded decimal (BCD) concrete represen-
tation, the non-null bearing -Not_ ' es are visible Ada types. Therefore, type conver-
sion for objecs or these typeE in the ordinary way. The null bearing _Type objects
are of a limited private type. (This is also true of the _NotNull decimal objects.) Objects of
these types are interconvertible with other objects derived from the same base type, directly
or indirectly. This is to say, any object the type of which 's based on SQL_Int can be con-
verted by an Ada explicit type conversion to any other type based on SQL_Int. Such an
object cannot be converted by such a conversion to an object of a _Type aerived from
SQLSmallint, SQLReal, etc. The following code fragment demonstrates a conversion of
an object of a null bearing type derived from SQL_Int to an object of a null bearing type
derived from SQL_Real. (It assumes appropriate visibility.i

72 CMU.'SEI-89-TR-16

U

3 If Is-Null (Integer_Object) then
Assign(Real_O ject, NullSQLReal);

else
Assign (Real_Object,

WithNull(RealObjectNotNull(WithoutNull
(Integerobject))));end if;

(Real_Object is assumed to be of type RealObjectType. Real_ObjectNot_Null is the
corresponding non-null bearing type.)

Special care must be taken when the objects involved are of a character or decimal domain
class. These domain class declarations contain subtypes which serve to introduce con-
straints, sti~ng lengts for character domains, and scale for decimal domains. If the subtype
names are used as the typemarks for the explicit type conversions, then the domains in-
volved (that is, the source and target domains of the conversion) must specify the same
value for these constraints. The procedures for these domain classes allow for inter-type
operations. For example, the character Assign will change the length of a string object, pad-
ding with blanks or truncating silently; the decimal Assign will change scale, rounding when
scale is decreased, providing zeroes when scale is increased. To access this functionality
and prevent runtime errors, use the type names of the domain declaration rather than sub-
type names. (These have the suffix _Base rather than _Type. Note: These rules apply to
decimal objects and null bearing character string objects. Non-null bearing character string
objects are visible, one dimensional Ada arrays. The standard rules of Ada assignment ap-

3 ply to them.)

5.6.2. Using Conversion Functions
The support for integer and decimal types in the SAME includes functions that convert be-
tween objects of those types and objects of unrelated types. (All abstract domains have
functions that convert between the null bearing and non-null bearing types within the domain
definition.) There is no such support for the floating point types. For the integer types, this
support consists of the Image and Value functions. These are semantically equivalent to the
'Image and 'Value predefined attributes for integer types, but their character string operands
are over the database character set; that is, they take or return objects of type SQL_Char or
SQL._CharNotNull defined in SQL_CharPkg. Applications do not have visibility to that
package and cannot directly declare objects of those types. The package
SQLBaseTypesPkg, displayed in Figure 3-8, can be used to circumvent this problem.

When taking the Image of a database integer value, the resulting object can be immediately
converted to a type visible and meaningful to the application. The following is an example. It
is coded within the scope of use clauses for SQL_BaseTypesPkg,
SQLBaseTypesPkg.SQLCharOps, PartsDefinition_Pkg, and
PartsDefinition Pkg.Weiqht Ops.

IntegerAsCharacter_Object : SQL_Char_Type(SQL Int Not Null'Width);
WeightObject : WeightType;

Assign (IntegerAsCharacterObject, SQLChar_Type (Image (Weight Object)));

end;

Notice the use of the 'Width attribute of the database integer type to set the length of the
output type as large as needed. Since Weight-Object is of the nul! bearing VWeightType,
the Image function applied to it returns an object of the null bearing type

CMUiSEI-89-TR-16 73

I
SQL CharPkg.SQLChar. This is immediately converted to the visible type I
SQL BaseTypesPkg.SQLChar Type. The proper overloading of the Assign procedure,
in SQLBaseTypes_Pkg.SQLCharOps, is then found by the compiler. (The base type
SQLCharType was used for IntegerAsCharacter Object under the assumption that it I
serves a general role of preparing values for display, rather than a role specific to weights.)

In order to execute the Value function to perform the inverse conversion, the operand must 3
be converted to the appropriate character base type. The subtype names defined in
SQLBase Types Pkg can be used as typemarks for this conversion. The inverse of the
assignment above is:

Assign (WeightObject, Value (SQL_CbarSubtype (ntegrAs Chb.acterObject)));

The decimal support package provides an extensive collection of conversion functions.
These convert between the database integer, floating point and character string types, both
null and non-null bearing, and the null and non-null bearing decimal types. Use of these
conversion functions follows the pattern described for Image and Value. Functions which
convert to the other (non-decimal) types are called within the context of a type conversion to
a locally visible, appropriate type. Functions which convert from those types to a decimal
type take operands which are of the form of a type conversion to the appropriate base type,
using the subtypes declared in SQL_Base TypesPkg as the typemark. For example, sup-
pose Integer-Object is of a type derived from SQLIntNotNull and its value is to be as-
signed to DecimalObject, of a type derived from SQLDecimal. The following Assign pro-
cedure call accomplishes this:

Assign (DecimalObject,
ToSQLDecimal(SQLIntNotNullSubtype (IntegerObject))); 3

5.7. Using Three-Valued Logic
The SAME's treatment of null values (see Section 3.1) replicates the SQL semantics. Data-
base objects which might be null can be operz-.dd on with arithmetic and comparison opera-
tions in place. They do not have to be converted to visible Ada types. To do this success- I
fully, however, the programmer must understand SQL semantics for the null value.

Briefly, any operator that is not a conversion function, other than comparisons, returns the
null value when at least one of its inputs is the null value. The comparison operators return
the truth value UNKNOWN if one of the comparands is the null value.

The SQL null value represents missing or unknown information. The expressions "2 + null"
means "add two to a.- unknown number." The answer is an unknown number, that is, the
null value. Similarly, the comparison "2 > null" means "is two greater than an unknown i
number." The answer is the new truth value, UNKNOWN.

When using SQL arithmetic, the programmer or analyst must decide whether the null an- 3
swer is acceptable. The null answer indicates that some of the input was missing ano that
an accurate calculation is impossible. If the null answer is not acceptable, then a strategy for
dealing with null values in the input must be chosen. SQL will filter out null values, but this
may not be acceptable within the context of the application, because it may cause other
information to be lost. Null values can be detected with the IsNull and NotNull Boolean-
valued functions that every SAME standard package exports. The application must decide
what to do with those values.

74 CMU/SEI-89-TR-1 6

II

SQL arithmetic and three-valued logic are most useful in short calculations leading to tests.
For example, suppose a process is to be applied in case a Status variable (of type
StatusType, which may be null) has a value in excess of one hundred. This can be written* as:

If Status > W.th Null(100) then
<perform process>

end if;

The operator ">" is resolved to the Boolean-valued operator taking objects of type
Status Type which operator is created as part of the derivation of Status Type from
SQLInt Pkg.SQLInt. This operator returns "false" if either operand is null. Were the proc-
ess to be applied in case Status might be in excess of one hundred, it would be written as:

If not (Status <= WithNull(lO0)) then
<perfomm process>

end If;

or as:
if not IsFalse (Status > With-Null (100)) then

<perform process>

In either case, the process is performed for a Status value of null, as well as known values
I over one hundred.

Three-valued logic can be most helpful in evaluating compound predicates. One can think of
the versions of or and and exported by SQLBooleanPkg as being symmetric versions of
Ada's or else and and then. Thus the process in this statement

If IsTrue (Status > WithNull(100) or
Equals(City, With Null("Pittsburgh"))) then

<perform process>
end If;

will be performed if at least one of the two conditions is known to be true. Unlike Ada's or
else, the first condition may be non-computable, that is, UNKNOWN, and the second True.
The example can also be written as:

If Status > WithNull (I00) or else
City = WithNull ("Pittburga") then

<perform process>

end If;
in which case, the second comparison will not be made if the first comparison returns "true."

The package SQL_Boolean Pkg defines the type Boolean With Unknown and the func-
tions which operate on it. The application program must have visibility to that package to use
those functions. As discussed above, the package is meant to be used.

5.8. Commenting Procedure C lls
To improve the readability of SAME applications, it is good practice to annotate the calls to
abstract interface procedures with an English descnption of the call's effect. This annotation
should also appear on the declaration of the procedure in the abstract interface. It is bad
practice to use the SQL statement as the annotation. An advantage of the SAME is that the
SQL statements in the concrete module can be modified without modification, indeed, with-
out recompilation, of the application. Further, proper understanding of the SQL statement
requires ar understanding of the database structure and semantics. If the com -nent is in

CMU/SEI-89-TR-1 6 75

U

English and not in SQL, it may be understood by readers who are ignorant of the database I
structure.

The SQL statement as comment may be very uninformative. The SQL FETCH statement
says very little about what is being fetched. In so far as that is present in the concrete mod-
ule, it is the associated DECLARE CURSOR statement. It is better to use an English description
such as "retrieves the next pair of part numbers and cities meeting the run time restriction I
on supplier status" (see the example in the introduction) rather than "fetch x into
PartNumber, City INDICATOR CityIndic."

It is likewise good practice to comment the definition of a row record type with an explana-
tion as to the meaning of objects of the type. This practice is illustrated in the examples of
Chapter 8.

7
I
I
I
I
I
I
I
I
I
I

76 CMU,'SEI-89-TR-1 6I

I

I 6. The SAME Method Summarized

The SAME is a modular approach to Ada SQL interfacing that builds on the capabilities of
the ANSI standard module language. The value added by the SAME beyond the module
language itself includes:

Se a safe treatment of null values

e a robust treatment Or exceptional conditions

* full Ada typing

* decimal arithmetic in Ada

. SQL string operations in Ada

* extensibility to data types not in the SQL standard (such as Ada enumeration
types)

U There exist standard SAME packages which implement the~e features. They appear in Ap-
pendix C of this report. This support includes an implementation of three-valued logic which
conforms to SQL definitions.

The SAME is used in the following way:

e During the database design process the abstract domains occupying the data-
base columns must be identified and described as Ada types. These type
definitions are stored as domain packages.

*Durng the design of an application, the services needed from the database are
identified and coded as SQL statements. They are collected into a module. This
is called a concrete module.

e For each data item at the abstract interface, the type within the abstract domain
definition for that item must be determined. If the data item is logically capable
of taking on the null value, an Ada type capable of taking on a null value, e. g.,
the -Type rather than the _NotNull type, must be used.

* An abstract interface is created. This is a set of package specifications declar-
ing whatever record type definitions are needed to describe row records and
whatever procedure declarations are needed to access the relevant concrete
module procedures.

e The abstract module, the hodies of the procedures declared in the abstract in-
terface, is created. The procedures in the abstract module ha the following
structure:

1. The corresponding concrete procedure is called; the global parameter
SQLCODE in the package SQLCommunicationsPkg is used as the
<sqlcode parameter>.

2. The SOLCODE value is proce.sed as appropriate. When unanticipated
errors occur, a standard routi ,e, ProcessDatabaseError in the pack-
age SQL_Database_ErrorPkg, is called. This routine is specialized to a
class of applications, e.g., batch, online, etc. Upon return from that
routine, the exception SQL_DatabaseError is raised.

CMU/SEI-89-TR-16 77I

I

3. Assuming the exception is not raised, data values are examined for null I
(indicator values) and assigned to output parameters for type conver-
sion and range checking. (If data is flowing from the applicatio,. !,- the
database, as for UPDATE and INSERT commands, this step occurs first. If
data is flowing in neither direction, as for e.g., close, this step is
omitted.)

The application program can be written while the abstract module is being writ-
ten. It will need access to the relevant domain packages and to the abstract
interface. It can treat incomplete information (null values) in either a "test and
convert" fashion or with the full three-valued logic and arithmetic of SQL. It can
ignore all database errors from which it cannot recover.

Figure 6-1 diagrams the package structure of a complete SAME application. Although only
one domain package and abstract interface module are shown, these may be divided into
multiple packages at the designer's discretion. The shaded areas indicate those parts of an
application which are unique to it. The arrows represent visibility (with) relationships, not call
structure. The dashed arrows indicate optional visibility. An application needs visibility to
SOLBooleanPkg and SQLExceptions only if it executes three-valued Boolean operations
or provides an exception handler for the NullValueError exception, respectively.

The packages with:n the support layer are in the SAME standard packages and are never
modified. The package SQL DatabaseErrorPkg may be specialized for classes of ap-
plications. The packages SQL System, SQLStandard, and SQLCommunicationsPkg are
specialized for the DBMS being used. I

I
I
I
I
I
I
I
I

78 CMU/SEI-89-TR-1 6I

Application Layer Appcation

Irga .. O atbs ro k
Ioai
Ia~ae lne__ae

Icdue

Figuryse 61 S OLSAME a Applomuication Pcae Strutur

I T

Iiue61 A EApiato akg tutr

U CMU/SEI-89-TR-16 -_ _ _ 79

I
I
I
I
U
I
I
I
I
I
I
I
I
U
I
I
I

_________________________________ _________________ I
80 CMU/SEI-89-TR-1 6 I

I
n 7. Building a SAME Application Without a Module

Compiler
The presentation of the SAME in these guidelines has assumed the existence of a compiler
for the moduie language. The SAME can be used in environments for which no such com-
piler exists. All that is needed is DBMS support for some programming language. With such
support, the module language compiler can be simulated.

The simulation of the module language compiler need not be exact. if the DBMS vendor
supplies an SQL preprocessor for Ada, it is reasonable to use it and put SQL statements inplace of tne calls to the concrete procedures in the bodies of the procedures in the abstract

module. The division into abstract and concrete modules is not an essential part of the
SAME. It is used primarily for purposes of exposition. It is the interface to the application, the
abstract interface, which is the hallmark of the SAME.

If the DBMS vendor supplies no support for Ada, but supplies support for other programming
languages, those foreign language processors can be used in place of the module language
compiler. This is easiest if the DBMS vendor allows database access from a language to
which the Ada compiler interfaces.

The details of foreign language calls are compiler dependent. In general terms, a procedure
declaration is followed by a pragma INTERFACE statement indicating that the procedure is
coded in a foreign language. This pragma may appear in the body of abstract module proce-
dures. When using a foreign language, it is not essential that the concrete module appear as

n an object.

Example
The example ConcreteMod displayed earlier is repeated here coded in C. It is shown in
Figure 7-1 with its Ada call coded for an Alsys Ada compiler (Release 3.0, running on a
Sun) [1]. In Figure 7-2 it is shown for a Verdix compiler (Release 5.41, running on a
VAXStation) [17]. Both examples are written for Ingres Release 5.0.29

I
I
I
I
I

I91ngres 5.0 does not support null values. Therefore. the indicator paramete-rs are missing from the SQL
statements.

CMU/SEI-89-TR-16 81

I

ConcreteMod In 'C' for Alsys I
exec sql include sqlca;

ingcalc (pnumber, totalw, sqlcode)
exec sql begin declare scztion;

long pnumber;
long *totalw;

exec sql end declare section;
long *sqlcode;

{
exec sql select sum (qty*weight)
into :*totalw
from p, SP

where p.pno = sp.pno
and p.pno :pnumber;

*sqlcode = sqlca.sqlcode

The Alsys Ada declaration
procedure CalculateWeight (PNUMBER SQLStadard.it;

Total Weight OUt SQLStandard.:nt;
SQLCODE : out SQLStandard.SQLCODEType);

pragma INTERFACE (c, Calculate-Weight); I
pragma InterfaceNamQ (Calculate-Weight, "ingcalc");

Figure 7-1: ConcreteMod for Afsys

ConcreteMod in 'C' for Verdix
exec sql include sqlca;

ingcalc (pnurkber, totalw, sqlcode) I
exec sql begin declare section;

long *pnumber;
long *totalw;

exec sql end declare section;
long *sqlcode;

{
exec sql select sum (qty*weight)

into :*totalw
from p, sp

where p.pno = sp.pno
and p.pno = :*pnumber;

*sqlcode = sqlca.sqlcode I
}I

The Verdix Ada Declaration
procedure CalcilateWeight (PNUMBER : System.Acddress;

Total-Weight : System.AddrQss;
SQLCODE : System.Address);

pragma INTERFACE (c, Calculate-Weight, "_ingcalc");

Figure 7-2: ConcreteMod for Verdix

I
82 CMU/SEI-89-TR-1 6I

aall l •In m mu B m u m n |I

I
3 Notice that use of a foreign language makes the abstract module compiler dependent; if the

application is moved to a different compiler, the abstract module must be recoded. The ab-
stract interface is not affected; therefore, neither is the application program.

As illustrated in Figures 7-1 and 7-2, the foreign language routines should do only the mini-
mum required. They should contain almost nothing but SQL statements and data declara-
tions. In particular, any differences between the Ada data representation and the foreign
language representation should be resolved in the Ada code. For examp', C character
strings are terminated wth the ASCII null. Ada strings are not. The removal and addition of* the ASCII null can be done in the Ada abstract module.

One must be careful in using foreign language routines in an Ada program. There is no type
checking across the boundary between Ada and the foreign language. Be sure to verify the
types by hand. Be sure to leave enough room in character strings to accommodate the AS-
CII null at the end of C strings, for example.

* If the set of languages which the compiler recognizes is disjoint from the set of languages
which the DBMS supports, it will be necessary to write an extra interface procedure. This
has not been attempted as of this writing; thus, little guidance can be offered.

I
I
I
I
I
I
I
I
I

CMU/SEI-89-TR-1 6 83I

I
I
U
I
I
I
I
U
I
I
I
I
I
I
I
I
I

84 CMU/SEI-89-TR-1 6

I

I

* 8. Some Detailed Examples
This section presents an example of the use of the SAME, illustrating features of a SAME
application and a SAME abstract module. Details of the apr!ication which are irrelevant to
the database interaction are not shown; in particular, the details of user interaction are sup-
pressed. Only those fragments of the application which acquire and manipulate database
data will be presented

The design decisions in the examples are contrived to illustrate the coding aspects of ab-
stract modules and application programs. The example should not be taken as an example
of good program design.

The example accesses the Parts-Supplier database described in Figure 1-6. The abstract
domains describing that database are to be found in Figures 3-6 and 3-7. The overall struc-
ture of the application is shown in Figure 8-1. The DRIVER block is responsible for user com-
munication. Based on user input, the DRIVER block determines which application service has
been requested and calls the appropriate subprogram, the blocks labeled EXAMPLE_A
through EXAMPLEC in Figure 8-1. The DRIVER program will not be shown. Each of the ex-
ample blocks has an associated DISPLAY facility which is responsible for displaying the
module's results on the user terminals. These display facilities will also not be shown. The
complete text of the example subprograms and of the abstract modules will be presented.
(This architecture was chosen so that complete subprograms could be shown and irrelevant
details could be suppressed.)

Not ..e that th.re is or-, concrete module in Figure 8-1, labeled
EXAMPLECONCRETEMODULE. There are three abstract modules, one for each of the distinct
parts of the application. They contain just those database procedures and definitions which
are relevant to the application services they support. The bodies of the abstract modules
depend on (with) the concrete module. Modifications to and recompilation of the concrete
module will, in general, require recompilation of the bodies of the abstract modules, but not
their specifications and, therefore, not those parts of the application which are unaffected by

Sthe changes to the concrete module.

Example_A
In ExampleA, the user enters the number of a part and requests the number of outstanding
orders for that part and the total weight of those shipments. The SQL module procedure
which retrieves this information is given in Figure 8-2.30 The corresponding abstract module
specification is given in Figure 8-3.

The single procedure PartWeight in the Ada abstract module ExampleAModule takes a
part number as its single input parameter and returns a record containing the part number,
the requested weight and count, and a Boolean result parameter. (The part number is added
to the output row record type so that objects of that type have a well defined meaning. The
comments on the row record definition in Figure 8-3 give that meaning. It is good practice to
comment row record type definitions in this way.) The Boolean takes the value false whenthe requested part number does not have any shipments in the database, in which case the

30Figures containing SQL or Ada code appear at the end of each example.

CMU/SEI-89-TR-16 85I

ii iI

Driver

D D Di i I
SS S S

ExampleA s Example-B p ExampleC p

a a a
y y y

II

I
ExampleAModule ExampleB Module ExampleC Module I

ExampleConcrete_Modde

i
Figure 8-1: A Block Diagram of the Example

value of the record object is unreliable. Although the SQL statement references the quantity
(Qty) column of the SP table, the abstract module does not need visibility to the QTY
domain defined in QTYDefinitionPkg (see Figure 3-6) since no values of the QTY domain
are passed across the abstract interface.

The Weight component of the result record takes a null bearing type, Weight-Type, as the
value returned from the SQL statement may be null. (It will be null when the Weight column l
of the P table entry for the given Pno is null.) Notice that the SQL statemi- , rp.- an indicator
variable attached to the output target specification for WeightO'ut. signali , t a null
result is possible. The Count component of the result record takes a non-null oearing type
as the corresponding value of the SQL statement cannot be null and therefore does not
have an attached indicator variable. 3
The type of the Count component, SQLIntNot_Null, is one of the "base domains" defined
in the package SQLBaseTypesPkg. The package is doscribed in Chapter 3.8.

The bulk of ExampleA reformats the database input for the purpose of display. The details
of the communication with the display device, including screen formats, are hidden in the

86 CMU/SEI-89-TR-16

I

I
separately compiled subprogram DisplayTheLine_A. Among other things, Example_A
must convert integers into character strings. It uses the SAME function Image, not the Ada
predefined attribute function 'Image, as the former returns its value in the underlying ma-
chine character set whereas the latter returns its value in ASCII. In this and the other ex-
amples, each item to be displayed has an associated length field. (The component Pno of
the DisplayLine type does not have a length field, as this component is fixed length. The
other fields have an associated length, as the length of an integers's image depends on its
value.) Because the Count component within the Weight_CountRecord has a NotNull
type, the Image function applied to it returns a character string of the unconstrained array
type SQL_CharPkg.SQLCharNotNull. The length of that string is returned by the
'Length predefined Ada attribute. The Weight component has a null bearing _Type, so the
Image function applied to it returns an object of the limited, discriminated type
0 CQL_Char Pkg.SQLChar. The length of that object is the value of the discriminant,
Length. The character strings themselves must be converted to the type
SQLBaseTypesPkg.SQLCharNotNull. These conversions should consume no run-
time resources. (This usage of the SQL Char domain in SQLBaseTypesPkg is illustra-
tive of interfaces to low-level services. Section 3.8 discusses these seivices an various
strategies for using them.)

I The body of ExampleA's abstract module is presented in Figure 8-6. Its structure is typical
of abstract procedures whose SQL statement is a <select statement> (SELECT ... INTO).
Since concrete procedures use the types in SQLStandard as parameter types, the input
and output part numbers must be converted, using an Ada-explicit type conversion, to
SQLStandard.Char. (Notice that the output part number is deposited directly into the
application's buffer from the concrete module's output. Every component of a row record
object must be set from a parameter of the concrete module, even in a case like this one, in
which an output value is by definition identical to an input value.) This conversion consumes
no runtime resources. After the concrete proredure is called, the SQLCODE value is
analyzed according to the needs of the application. Condition codes other than NotFound
or successful completion (zero) invoke standard error processing.

3 If the input part number exists in the database, the data returned must be converted to the
abstract application types. Since the Count component of the output is a _Not Null type,
that is, a visible Ada integer type, the value returned from the concrete module can be
deposited directly in the output component. Thus, with respect to the Count component, the
abstract module introduces no runtime overhead.

Since the Weight component may be null, the abstract module must examine the indicator
variable for weight to determine if the actual value is null. The package Conversions was
written to facilitate this. Its specification and body are presented in Figure 8-7. The use of
the Convert functions declared in package Conversions simplifies the writing of abstract
module bodies. Those functions return objects of the base null bearing types, SQL_Int,
SQL_Char, etc. Abstract modules do not have visibility to the packages in which those
types are declared, for reasons discussed in Section 3.8. Thus the values returned by these
functions must be immediately converted to the output abstract type, as shown. (Notice the
use of pragma Inline in package Conversions to eliminate the expense of a procedure call.)

8

!CMU/'SEI-89-TR-1 6 87

~ __ ___ ___ ___ ___ ___ ____ ___ ___ ___ ___ ___ ____ ___ ___ ___ ___ ___ ___

I

PROX.DURE PartWeight 5
Pno In Char (f)
PnoOut Char (5)
Weight Out Int Weight_Indic Smallint

Count O ut It
SQLC DE;

SELECT DISTINCT P.Pno, Weight * Sum(Qty), Count(SP.SNO)

INTO PnoOut
WeightOut INDICATOR WeightIndic,
Count Out

FROM P, SP

WHERE P.Pno = SP.Pno and P.Pno = PnoIn;

Figure 8-2: The SQL Procedure for ExampleA

with SQLBase_TypesPkg, PartsDefinition Pkg; m
use SQL BaseTypesPkg, PartsDefinitionPkg;
package Example_A_Module is

type WeightCountRecordType is record I
PnQ : PnoNot Null; -- all the shipments for this part
Weight WeightType; -- have this combined weight.
Count SQLIntNotNull; -- there are these many

end record;

procedure PartWeight (Pno : in Pno Not-Null;
Weight-Count : in out Weight-Count-Record-Type;

Exists :out boolean);

-- the result weight is the combined gross weight
-- of all shipments of the input Weight

-- Exists is False when Pno not in database

end Ex-n leAModule;

Figure 8-3: The Abstract Module for ExampleA

I
I

I
I
I
I

88 CMU/SEI-89-TR-1 6m

I
with PartsDefinition_Pkg, SQLBae_Types_Pkg, Exarple A Module;
use Parts_DefinitionPkg, SQLBase_TypeE_ ., ExampleAModule;
separate (Driver)
procedure ExampleA (Pno : PnvNotNull) is
use SQL_Char_Op., SQL IntOps; -- Base type subpackages
use CharacterSet; -- For literal formation
-- literals for display

NoData : constant SQL Char Not Null
S"art Number Not in Database";

NullWeight : constant SQLCharNot Null
"Null Weight";

-- types used for display
type Message_Type IS (Error Msg, Data_Mag);
type DisplayLine (Message - MessageType) is record

Pno : SQL CharNotNull(Pno Not Null'Range);
case Message is

when Data Mug =>
Weight_Length, Count-Length: Integer;
-- these are lengths of the data in the
-- next two fields, which are declared to be
-- of a maximum length, which in most cases is
-- much too large

Weight SQL Char Not Null(!.
WeightNot_Null'Width);

Count :SQLCharNot Null (I . .
ADatabaseInteger_NotNull'Width);

when Error_Msg =>
-- when the part number doesn't exist, this
-- variant is used
Mssg SQLCharNotNull (NoData'Range) := No-Data;

end case;
end record;

-- objects used for display
Data Line : Display_Line (Message => Data_Meg);
Error Line : Display_Line(Message => Error Mag);
-- objects used for communication with Abstract Module
Tuple : WeightCount RecordType; -- holds the output
IsFound : Boolean;
-- the display procedure, which will not be shown

procedure Display_The_LineA (Line To Display : Display_Line)
is separate;

Figure 8-4: ExampleA (Part I)

8
I
I
I

CMU/SEI-89-TR-1 6 89I

begin
PartWeight(Pno, 'Duple, Is-Found), -- The Abstract procedure
If Is-Found then -- Part Nbr good; prepare output

Data-Line.Pno :=SQL -Char_-NotNull(Tuple.Pno);

DataLine.CountLength :=Irage(Tuple.Count)'Length;
DataLine.Count(Data Line.Count'Firs..

D5ata-ljne.Count'iirst + DataLine.CountLength - 1)

SQLCharNotNull (Image (Tuplo .Coont) ';
If NotNull(Tuple.WeiLght) then -- for non null weights

- - prepare output*
Data -Li-ne.Weight_-Length - Image (Tpla.Weight) .Length;
Data Line-Wight (Data Line.Weight'Firat .

Data-Line.Weight'First + DataLine.Weight_Length - 1)

Without Null (SQL_CharType (Image (Tuple .Weight)));
else -- for null weights, prepare a message

Data -Line.Weight_-Length :=NullWeight'Length;
Data Li-ne.Weight -NullWeight;

end If,
Diaplay The LineA(DataLine); -- put out a line of data

else -- the Part Nbr not in DS
ErrorLine.Pno :=SQLCharNotNull(Pno);
DisplayThe_ LineA (Error Line); -- a message about misaing Part

end If;,
end ExampleA.;

Figure 8-5: ExampleA (Part 11)3

90 CU/SE-89-R-I

with Conversions. SQLStandard, SQLComnuncationsPkg,
SQLDatabaseErrorPkg;

use Conversions, SQLStandard, SQLCozvunicationsPkg,
SQLOat base_ErrorPkg;

with ExampleConcrete-Module;
package body Example A Module isI package Conc renames Example_ConcreteModule;

use Weight_Cps;

procedure PartWeight (Pno :In Pno_-Not_-Null;

Weight -Count :in out WeightCount RecordType;

WeightTemp Int;IWeight_Indic Indicator-Type;

begin

3 Conc:.Par-tWeight (Char (Pno),
Char(WeightCount.Pno),
Weight_17Tamp, Weight_-Indic,

nt (WeightCount. Count),

SQLCODE);

If SQLCODE In Not_-Found then -- no such part no
Exists =fias;

elsif SQLCODE /= 0 then -- unrecoverable error
ProcessDatabaseError;

raise SQLDatabaseError;

eleExists :=tru~e; -- record retrieved as expected
Assign (WeightCount, weight,

Weight Type (Convert (Weight Temp, Weight Indic)));
end If;

end PartWeight;
end 'ExaxmpleANModule;

Figure 8-6: The Abstract Module Body for ExampleA

IIISI8-Ri69

I

with SQL_Standai: SQL_Int_Pkg, SQLSmallint_Pkg,
SQL_Char_P kg, SQL RealPkg,
SQLDoublePrecision_Pkg;

use SQLStandard, SQL_Int_Pkg, SQLSmallintPkg,

SQL CharPkg, SQLRe-._Pkg,
SQLDoub leP rci sionP kg ;

package Conversions iS
function Coniver-t (Input : Int; Indicator : IndicatorType) [

return SQLInt;
function Convert (Input : SmaLlint; Indicator : IndicatorTye)

return SQL_Smallint;
function Convert (Input : Char; Indicator Indicator Type)

return SQL Char;
function Convert (Input : Real; Indicator IndicatorType)

return SQL_Real;

function Convert (Input : Double_Precision; Indicator : IndicatorType)
return SQL_Double Precision;

pragma inline (Convert);
end Conversions; 3
package body Conversions is

subtype Null Indication IS IndicatorTypo -- Negative value
signals Null _

range Indicator_Type'First -1;

function Convert (Input : Int; Indicator : IndicatorType)
return SQLInt is I'

begin
If Indicator in Null Indication then

return NullSQLInt;
else

return With NullBase (SQL Int NotNull (Input));

end If;
end Convert;

function Convert (Input : Sallint; Indicator : IndicatorType)
return SQLSmallint Is

begin
If Indicator In Null Indication then

return NullSQL-Smallint;
else

return WithNull_Base (SQLSmallintNot Null (Input));
end If;

end Convert;

function Convert (Input . Real; Indicator : Indicator Type) 3
return SQL_Real is

begin
If Indicator in Null Indication then

return NullSQLReal;
return WithNull_Base (SQLRealNotNull (Input));

end If;
end Convert;

function Convert (Input : DoublePrecision; Indicator Indicator-Type)
return SQLDouble Precision is

begin
If Indicator in Null Indication then

return Null SQL Double Precision;
else 3

92 CMU'SEI-89-TR-16 £

return WithNullBase (SQLDouble_Precision_Not_Null (Input))I end if;
end convert:
function Convert (Input :Char: Indicator : Indicator_Type)

begin return SQLChar is

If Indicator in Null_Indication then
return NullSQLChar;Ielse return With Null Base (SQLChar Not Null (Input));

end If;
end Convert;I cend Conversions;

Figure 8-7: The Conversions Package

UM/E-9T-69

I

Example_B
ExampleB accepts a part number from the user and returns information about each ship-
ment of the part: the part number, the name of the supplier, and the total weight of the
shipment. As there are, in general, - altiple shipments for a part, a cursor-oriented retrieval
is needed. The SOL text of the cursor declaration and its associated procedures is given in
Figure 8-8 and the abstract module specification in Figure 8-9. In the abstract module, the
cursor procedures appear in a subpackage whose name is the cursor name, Detail. This I
usage is inessential, in this case, as the abstract module contains only these procedures.
For applications which manipulate multiple cursors, the use of abstract module subpackages
in this way will improve the readability of the code and prevent name conflicts.

ExampleB, which is displayed in Figure 8-10, declares a display-oriented record type con-
taining a variant for part numbers which have no shipments. The body of ExampleB opens I
the cursor, passing the part number into the open procedure, and then retrieves each row of

the result, formatting and displaying each of them. Notice that the initial fetch is done outside
of the loop, as an end of file condition, for this fetch means the part was not found. There- I
fore, the loop body first displays the current tuple and then fetches the next tuple. This is a
typical paradigm for cursor-oriented uatabase retrieval

The body of the while loop illustrates two new features. The SNAME character string value
has its trailing blanks removed by the Without_Null_Unpadded function generated by the
instantiation of the SNAME Ops subpackage. (Hence, the use for that subpackage.) The
length of that function result is returned by the UnpaddedLength function.

The loop body also contains an example of mixed mode arithmetic. Recall that ExampleB
returns to the user the total weight of each shipment, the product of the weight of a part, and
the quantity of items shipped. This value could have been produced by the SQL statement,
which would in reality have been preferable. It was not done in order to illustrate mixed
mode arithmetic operations in the SAME.

The quantity value is converted to the weight type, as the target value has weight type. Be-
cause the null bearing Type(s) are in use, this Ada explicit type conversion will not produce
any runtime exceptions. If the _Not_Null types were in use and were range constrained,
care would be needed to ,nsure that a runtime constraint-error is not raised.

The body of Example_B_Module, the abstract module for ExampleB, appears in Figure
8-11. Neither the Open nor the Close procedures will accept any SQLCODE values other
than success, e.g., the value zero. These procedures take no resui parameter, therefore. I
The fetch procedure signals end of file by returning the false Boolean value in its asult
parameter.

When a tuple is returned, its values must be converted to the applicat'on's abstract types.
Again the Pno value, which cannot be null, is deposited directly into the application's buffer.
The values of those items which may be null are read into intermediate variables in the I
abstract module's data space. They are tested for null and converted to the application's
types using the assign and convert functions shown in ExampleA's abstract module.
Notice the use statement for the generic subpackage instantiations of the integer domains, I
Weight, and OTY. This use statement makes the assign prccedures for these domainsvisible.

94 CMU/SEI-89-TR-16

I
Again, the values returned by the Convert functions have the SAME base types (SQLInt,
SQL_Char. etc.) and must therefore immediately be converted to the application's types.
This is done with an Ada-explicit type conversion. For the character string based SNAME
domain, the target of the type conversion is SNAMEBase and not the SNAME Type sub-
type. Recall that the definition of a character string domain consists of two type declarations,
two subtype declarations, and a package instantiation. The type declarations declare uncon-
strained types; the subtypes specify the constraint, i. e., the string length. Now if a given
value is null, the Convert function will return NullSQL_Char, an obj.- t 3f type SQL_Char.
This object must, of course, have a discriminant constraint (a Length). Since Convert works
only with base types, it cannot know how "long" to make this null value. Thus the length of
NullSQLChar is one. If this object were converted to the subtype SNAMEType, a
constrainterror (discriminanterror) would occur. Since the type SNAMEBase is uncon-
strained, the type conversion to it avoids the runtime exception.

DECLARE Detail CURSOR FOR
SELECT P.Pno, S.Sname, SP.Qty, P.Weight

FROM S, P, SP
WHERE S.Sno=SP.Sno AND P.Pno = SP.Pno and

P.Pno = Pno In;

PROCEDURE DetailOpen
Pno In Int

SQLCODE;

OPEN Detail;

PROCEDURE FetchDetail
Pno Char (5)
Sname Char (20) Sname Indic Snmallint
Qty Int QtyIndic Smallint
Weight Int WeightIndic Smallint
SQLCODE;

FETCH Detail
INTO Pno,

Sname INDICATOR SnameIndic,
Qty INDICATOR QtyIndia,

Weight INDICATOR Weight-Indic;

PROCEDURE CloseDetail3 SQLCODE;

CLOSE Detail;

Figure 8-8: The Cursor Declaration and SQL Procedures for Example_B

I1!

CMU/SEI-89-TR-1 6 95I

I
with QTY Definition Pkg, Suppliers _Definition Pkg, Parts Definition Pkg; 3
use QTYDefinitionPkg, SuppliersDefinitionPkg, Part. Definition 2kg;
package ExampleB_Module is

type DetailRecord_Type is record 3
Pno : PnoNot Null; -- this part shipped by
SName : SNAHMEType; -- this supplier
Qty : QTYType; -- in this quantity
Weight : Weight Type; -- each part weighs this much

end record;
package Detail IS

procedure Open (ae : in PnoNotNull);

-- Creates a file of DetailRecords for the part
-- whose number is given

procedure Fetch (Tuple : in out Detail RecordType; 1
Found : out Boolean);

returns the records created by the open
-- found becomea false at eof

procedure Close;
end Detail;

end ERxale_B_Module;

Figure 8-9: The Abstract Module for ExampleB 3

I
I
I
I
i
I
I
i
I

96 CMU/SEI-89-TR-1 6I

3 with ExampleBModule, PartsDefinitionPkg, Supplior._Definition Pkg,
Q-DefntonPkg, SQL_Ba_Types_Pkg;

use ExampleBModule, Parts_DefiLnition_Pkg, SuppliersDefi-nition Pkg,
QTY DefinitionPkg, SQLBase_Types_Pkg;

separate (Driver)U procedure EVampleB (Pno :PnoNotNull) IS

use CharacterSet, SNAMEOps, Weight Op., SQL_Chazrups;

-- literal for error message display
NoData :constant SQLCharNotNull :="Part Number"

SQLChiar_Not_Null(Pno) &"has no shipments";

-Strings For Printing Null values
Null_-Sname constant SQLCharNotNull "No Supplier Name";
NullWeight constant SQL Char Not-Null :"No Weight";
-- types for display

type Display_ Line (Kind : Line_Type) is record

caeKind iswhe Ero _ia=

-this is used when the part has no shipments
Hoag : SQLChar Not Null (No Data'Range) :=No-Data;

when Data Line =>
-this is used when the part can be foundI -- each field (except Pno)

-has a length field. The field is big enough
-for the largest possible value. The length field
-contains the size of the actual value.

Pno :SQL CharNotNull(PnoNot Null'Range);
Sname_Length : integer;
Sname : SQLCharNotNull(SnameNotNull'PRange);
TotalWeightLength : integer;

TotalWeight : SQLCharNotNull (1
WeightNot Null'Width);

end case;
end record;

-- Put the display line out (not shown)
procedure Display__The LineB (ALine : in Display_.Line)

Is separate;

-body of ExampleB
begin

declare
Tuple Dtail Record Type;
Found Boolean; -- true signals EOF
ErrorMessage :DisplayL-ine (ErrorLine); -- displayed no ship

DataMessge DislayLino(Data_L3.ne); -- if shipments
TotalWeightTemp : WeightType;

begin
Detail.Open(Pno);U If not Found then -- no such part

D4iSplayTho- Lne- B(E.rozMessage);
end If;
while Found loop

DataMessage.Pno := SQLCharNotNull(Tupl.b.Pno);

ifIsNull(Tuple.Sname) then
DataMessage.Snaie (Null Snarne' Range) := Null Sname;
DataMessage.Sname_Length :~NullSnanie'Length;

else3 DataMessage. Sname Length := npaddedLength (Tuple .Sname);

CMU/SEI-89-TR-1 6 97

DataMessage.Snanm(DataMessag..Sname'First
Data Message.Sname First + Data-bissago.SnaeLength - 1)

edI;SQL Char NotNull(Without NullOnpadded(Thple.Sname));

A-~n example of mixed mods arithmitic
assign(TotalWeightTomp,

Tuple.Weight * WeightTyp(Tupl.Qtyfl;

If Is_-Null(Total-Weight_Temp) then
Data tdssag.TotalWeight(Null-Weight'Range) :- Null-Weight;
DataM"esageTotal-Weight-Length :- Null Weight'Lezgth;

else
Data-tdessage.TotalWeight_Length :

Igo(TotalWeightTmp) .Length;
DataMessage.Tetal Woight(DataMa-ssage.Total Weight'Firat

DEataMa-ssage.TotalWeight'First +
DataMessage.TotalWeightLength -1)

WithoutNull(SQLChar_Typs(Image(TotalWeight_Tamp)));
end If,
Display_ TheLineB(DataMessage); -- display this line
Detail.Fetch(Tuple, Found); -- get next line

end loop;
Detail.Close;

end;
end Ex-mpleB;

Figure 8-10: Example B

98 CU/SE-89-R-1

with Conversions, SQLStandard, SQLCognunicationsPkg,
SQL_-Database_-Error_-Pkg, Example ConcreteModule;

use Conversions, SQLStandard, SQL_(cr---n"t---tsPkg,
SQL_-Database_-ErrorPkg;I package body ExampleBModule is

package Conc renames Example Concrete Module;

Use WightOp, QTY _Ops;

package body Detail IS

3 procedure Open (Pno :In PnoNotNull) Is

begin
Conc.DetailOpen(Chazr(Pno), SQLCODE);

If SQLCODE /=O then
ProcessDatabaseError;
raise SQLDatabase Error;

end If;
end Open;

procedure Fetch (Tuple :ini out Detail-RecordType;
Found :Out Boolean) is

Sname :Char(SnameNotNull'Range);
Weight, Qty :Int;
SnamoThdic, Wight_Indic, Qty Indic Indicator_-Type;I begiConc.FatchDtall(Cha (Tuple.Pno),

Sname, SnameIndic,
Qty, QtyIndic,
Weight, WeightIndic,
SQLCODE);

If SQLCODE In NotFound then -- end of file

Found :- Fals;
elslf sQLCODE In SQLError then -- unrecoverable error

Process DatabaseError;

Ielse rien.DtbsEro; -- a tuple is returned
assign (tuple. sname,

SNAEEase (Convert (Sname, SnameIndic)));
assign (tuple.Qty,

QTY _Type (Convert (Qty, Qty_Indic)));
assign. (tuple .Weight,

WeightType(Convert(Weight, Wight_Indic)));
Found :=true;I end If;

end Fetah;
procedure Close is
begin

ond . SLowDt (SQLCODE);

Process DataaError;

rieSEDatabaseError;

end Detail;I end zxan leBModule;

Fge8-11: The Abstract Module Body for Example-B

CMU/SEI-89-TR-1 6 99

I
Example_C I
ExampleC illustrates a database update. The user enters a supplier number and a signed
;.,teyer. If a supplier w iih that number exists in the database, and if that supplier's status is
not null, the integer is added to the supplier's status. If the supplier's status is null, it is re-
placed by the value of the integer. In other words, for this update, the null value is treated as
though it were zero.

The SQL statements for ExampleC appear in Figure 8-12 and the abstract module specifi-
cation in Figure 8-13. In the current SQL standard, two SQL update statements are needed.
One statement is used for the case that the original status is null; the other statement is I
used in the remaining case. (In the SQL2 standard, this update can be performed by a
single statement.) Hence, it becomes essential that the application first read the relevant
supplier data to determine which case applies. Thus ExampleC requires three SQL state- I
ments. (Since it is necessary to read the initial status, it is possible, and simpler, to calculate
the updated status value in the Ada application. This would eliminate the need for one of the
two update procedures, the procedure IncrStatus. An attempt to set status to an invalid I
value, one not in the range of the Status domain, would then be trapped in the Ada appli-
cation. Example_- C has been designed so that the DBMS will trap illegal updates, in order to
illustrate a method by which the SAME can handle that phenomenon.) The text of I
ExampleC is found in Figure 8-14.

A new abstract domain, Increment, has been defined for this example. This domain does
not describe any database data, but it does describe data passed across the abstract inter-
face. (The package IncrementDefinitionPkg is given in Figure 8-15.) The new domain has
been placed in a oomain package by itself. It could have been placed in a domain package 5
with other domains, had there been any reason to do so.

Although only the _Not Null type within the domain definition is used, the domain is fully
defined, with a null bearing type and a generic subpackage instantiation. There is some con-
crete benefit from that. The designer may be certain that there will never be a need for a
null Increment, but such certainties are notoriously fallible. More importantly, for uniformity,
consistency, and clarity, all data crossing the abstract interface must be of a type defined
within arn abstract domain in an abstract domain package. There is no time penalty for doing
this, but there is a space penalty. If indeed there are never any null Increments, then the
space occupied by the generic subpackage is wasted. (Some compilers may be intelligent
enough to recover the wasted space.) If the space is available, the benefits of uniformity are
worth the price.

The AcquireSupplier procedure returns an entire S tuple, even though, apparently, only the
status value is of interest. This is acceptable, although it may negatively affect performance.
This may be an artifact of reuse. It is likely that a software development organization writing I
database applications will develop procedures for accessing single tuples by key. Such pro-
cedures can be reused, as may be the case here. 5
The abstract procedures representing the two SQL UPDATE statements have an attached
result parameter that has a locally defined enumeration type. As can be seen, these proce-
dures can terminate in four possible ways: successfully, indicating that the requested up-
date occurred; with a constraint violation, indicating that the update did not occur due to the
new status's being out of range; with a permission violation, indicating the user does not
have permission to update supplier statuses; and with no record found. The last condition is 5
100 CMU/SEI-89-TR-1 6

I
a logical impossit lity, since the update is preceded by an acquisition of the record to be
updated. It may be argued that this condition should not be returned to the application, but
rather trigger the st .ndard error-processing path, as it indicates some unrecoverable error.

The Boolean-valued function Choose filters the suppliers based on a static property con-
tained in the function body. This function is admittedly a contrivance designed to illustrate
aspects of the SAME's logical processing. Its discussion is delayed until after the discussion
of the abstract module body for ExampleC. That code can be found in Figure 8-16.

The two update procedure bodies in Figure 8-16 are essentially identical, differing only in
the concrete procedure which they call. Their function is to analyze the SOLCODE value
returned in one of the four allowable cases. Constraint and permission violations are not
thoroughly covered by the current SQL standard. That standard describes user authoriza-
tions, but does nct describe the result of an authorization violation. The current standard
does not cover data integrity constraints at all, although most SQL DBMSs do. Thus, the
SQLCODE values to be looked for are dependent upon the DBMS in use. The code in
Figure 8-16 is designed for use with RTI's Ingres DBMS. If this code were to be ported to a
different DBMS the constants ConstraintViolation and PermissionViolation would have to
be redefined. (Notice that to Ingres, a constraint violation is signalled as a no-record-found
condition. The abstract module code has been deliberately written to check for
ConstraintViolation first. Had this code been written for some other DBMS and ported to
Ingres, some recoding might have been necessary.)

5
I
I
I

I
I

I
CMU/SEI-89-TR-1 6 101I

I

PROCEDURE AcquireSupplier I
Sno In Char (5)
Sno Out Char (5)
Sname Char Snare Indic Smallint
Status Int Statua Indic Smallint
City Char CityIndic Smallint
SQLCODE;

SELECT Sno, Sname, Status, City
INTO SnoOut,

Snamn INDICATOR Snam._Indic,
Status INDICATOR StatusIndic,

City INDICATOR CityIndic
FROM S
WHERE Sno = Sno_In; 3

PROCEDURE IncrStatus

Increment Int
Sno In Char (5)
SQLCODE;

UPDATE S
SET Status = Status + Increment
WHERE S.Sno = SnoIn;

PROCEDURE SetStatua
Increment Int
Sno In Char (5)
SQL(ODE;

UPDATE S
SET Status = Increment
WHERE S.Sno = Sno In;

Figure 8-12: The SQL Procedures for ExampleC

I
I
!
!
I
I
I

102 CMU/SEI-.89-TR-1 6 3

I
with IncrementDefinitionPkg, Suppliers DefinitionPkg,

City_DefinitionPkg;
Use Increment DefinitionPkg, SuppliersDefinitionPkg,

City_Definition Pkg;
package Example_C_Module is

type Supplier RecordType Is record
Sno : SNONot Null;
SName SNAMEType-;
Status StatueType;
City : CityType;

end record;

type Update StatusResultType Is (Success,
NoSupplier,
ConstraintViolated,

PermissionDenied) ;

procedure AcquireSupplier (Sno In : in Sno Not Null;
SupplierRecord : in out SupplierRecordType;
Found : Out Boolean);

procedure IncrStatus (Sno : in SnoNotNull;
Increment : in StatusIncrement Not Null;
Result : out UpdateStatus_ResuntType);

-- adds Increment (signed quantity) to Status

-- of Supplier Sno. Result is Constraint Violated if

-- updated status violates constraint on Status. Result is

-- NoSupplier is Sno is not in database or its Status
-- is Null. Result is Success if the Supplier
-- with number Sno has hadU -- his Status incremented by the value of Increment

procedure SetStatus (Sno : In SnoNot Null;
Increment : in StatusIncrement Not Null;

Result : out UpdateStatus_ResultType);

-- Sets Status of Suppler Sn- tQ Increment

-- Result is CoanstzaintViolated if updated Status

-- violates constraint (e.g., is negative).
-- Result is No Supplier if Sno is not in database
-- or its Statue is rot Null. Result is Success if

-- the Supplier with number Sno has had his Status

-- set to the value of Increment.
end Example_C_Module;

I Figure 8-13: The Abstract Module for ExampleC

1

I
I

CMU/SEI-89-TR-1 6 1031

I

with SuppliersDefinitionPkg, Parts DefinitionPkg, 3
QTYDefinition Pkg, ncrement efinition_Pkg, ExampleC_Module,
SQL_BaseTypes_Pkg;

use SuppliersDefinitionPkg, Parts DefinitionPkg,

QY _DefinitionPkg, Increment DefinitionPkg, Example-_CModule,
SQLBaseTypesPkg;

separate (Driver)
procedure ExampleC (Sno S noNotNull;

Increment : StatusIncrementNotNull) is

-- A filter on suppliers. Serves to illustrate SAME logic.
function Choose (A Supplier : SupplierRecord_Type) I

return boolean is separate;

-- The display procedure will not be show!'
procedure DisplayTheLineC (Message : SQLChar_NotNull)

is separate;

begin
declare

-- Messages to be displayed to user indicating status of update

NoSupplier Meg : constant SQLCharNotNull
"The Supplier " & SQLCharNotNull(Sno)

& " Does Not Exist in the Database";
Constraint Violation : constant SQL_Char_Not.Null

"Your attempted status modification "

"violates database constraints";
UpdateSuccessful : constant SQL_Char_NotNull : I

"Status successfully updated";
Not Chosen : constant SQL Char Not Null =

"You may not Update the Status of Supplier "

SQL_Char Not null(Sno);
Permission Denial : constant SQL_Char Not Null :

"You do not have permission to updat e Supplier data";
Unknown Error : constant SQL_Char Not Null :=

"-Th supplier " & SOL Char No ;-ll(Sno)

"has inexplicably disappeared from the database." &
" Contact a service representative.";

-- objects for concrete module communication
Supplier : SupplierRecordType;
Exists Boolean;
Results Update_Status_ResultType;

begin I
AcquireSupplier(Sno, Supplier, Exists); -- get initial status
If not Exists then

Display_TheLine C (No Supplier_Msg); -- no such supplier

elsif Choose(Supplier) then -- filter suppliers
If Is Null (Supplier. Status) then -- decide which SQL statement

LetStatus(Sno, Increment, Results); -- to call
else

IncrStatus (Sno, Increment, Results);
end If;
case Results is -- tell user status of update

when No Supplier =>
Display_TheLine_C (UnknownError);

when Constraint Violated =>
Display_TheLine C(ConstraintViolation);

when Permission-Denied ->

Display_The_-Line C(P ermission Denial);
when Success =>

Display_The_LineC(UpdateSuccessful);
end case; 5

104 CMU/SEI-89-TR-1 6

eleDisplay_TheLineC(NotChosen);
-- status when filtered out

end if;
end;

end Example C;
Figure 8-14: ExampleC

wit _upir-eiiinPg _Q-ntP

with Suppliers Defi.nitionPkg, SQLntPkg;

package IncrementDef:Lition-Pkg is

type Status_IncrmentNotNull is new SQL-tnt Not Null
range -SQL -tnt_-Not_-Null (StatusNotNull'Last)

SQLntNotNull(StatusNotNull'Last);
type Status IncrementType Is new SQL t nt;
package StatusIncrment,_Ops is new

SQL-tnt_Ops (Status_Increment Type, Status Increment Not Null);

end Increment-Definition_Pkg;I Figure 8-15: The Package Increment Definitio nPkg

IM/E-9T- 0

with Conversions, SQL_Standard, SQL -Coimunications Pkg,3
SQL DatabaseErrorPkg, Example_Concrete Xodule;

use Conversions, SQLStandard, SQL Communications Pkg,
SQL DatabaseErrorPkg;

package body' ExampleCModule. IS

package Conc renames EPamleConcreteModule;

use SNANEOps, StatusOp., CityOp.;

ConstraintViolation constant 100; -- implementation defined
-the value of SQLCODE

-when an update would violate
-a constraint

PermissionViolation constant -1; -- implementation defined
-the value of SQLCODE
-when a user does not haveI
-update permission

procedure AcquireSupplier (Sno-' Z:. In SnoNotNull;
Supplier_-Record : in out SupplierRecord Type;
Found :Out Boolean) iS

Sname c : Char (SnameNotNull' Range);3
Status-c : Int;
City-.c Char(City_Not Null'Rango);
SnamoIndic, StatusIndic, City-Indic :IndicatorTipe;

begin_
Conc.AcquireSupplier(Char(SnoIn),

Char(Supplier -Racord. Sno),

Sname-c, SnameIndic,

Status-c, Status-Indic,
City__c, City_1ndic,
SQLCODE);

If SQLCODE In NotFound then
Found :- Fals;

elsif sQLCODI /. 0 then
ProcessDatabaseError;

else

Found := Tr-ue;
assign (Supplier Record. Sname,

SN~AME_Base(Convert(Sname-c, SnamoIndic)));
assign (SupplierRecord. Status,

Status_Type(Convert(Status-c, StatusIndic)));
assign (Supplier -Record. City,

edI;CITYEas*(Conver-t(City_c-, City_Indic)));

end AcquireSupplier;

procedure IncrStatus (Sno :in SnoNotNull;
Increment :in StatusIncrementNotNull;
Result :out UpdateStatus ResultType) is3

begin
Conc. IncrStatus (It (Increment),

M- r(Sno),I

If SQLCODE - Constraint-Violat ion then

-- update refused: constraints

106 CMU/SEI-89-TR-1 63

I

I Result := Constraint Violated;
elsif SQLCODE = Permission Violation then

-- update refused: permission

Result := Permission Denied;
elsif SQLCODE in Not Found then

Result := NoSupplier; -- Sne not in database
-- or Status Null

elsif SQLCODE /= 0 then -- unrecoverable error
Process Database Error;
raise SQLDatabase Error;

else
Result := Success; -- successful completion

end If;
end IncrStatus;

procedure SetStatus (Sno : In SnoNotNull;
Increment : in StatusIncrementNotNull;
Result : out UpdateStatusResult_Type) is

-- This logic is identical to IncrStatus except
-- concrete procedure SetStatus is called

begin
Conc SetStatus (nt (Increment),

Char (Sno),
SQLCODE);

If SQLCODE = Constraint Violation then
-- update refused: constraints
Result := Constraint Violated;

elsif SQLCODE = Permission Violation then
-- update refused: permission

Result := Permission Denied;
elslf SQLCODE in Not Found then

Result := No_-Supplier; -- Sfe not in database
elsif SQLCODE /= 0 then -- unrecoverable error

Process Database Error;
raise SQLDatabase Error;

else
Result :- Success; -- successful completion

end If;
end SetStatus;

end Exa-ple C.Module;3 Figure 8-16: The Abstract Module Body for Example_C

C
U

I
I

ICMU/SEI-89-TR- 16 107

I

with City_DefinitionPkg; use City_DefinitionPkg;

separate (Driver. ExampleC)
function Choose (ASupplier : SupplierRecordType) return boolean is

use City ups; I
use CharacterSet;

begin
-- this version rejects any supplier known to be in Pittsburgh
It ASupplier. City = With-Null ("Pittsburgh") then

return false;
else

return true;
end If;

end Choose;

Figure 8-17: Choose - Version 1 3

with CityDefinition._Pkg, SQLBoolean Pkg;
use City_Definttion_Pkg, SQLBooleanPkg;
separate (Driver. Example_C)
function Choose (ASupplier : SupplierRecord._Type) return boolean is

use CityOps;
use CharacterSet;

begin
-- this version rejects any supplier that might be in Pittsburgh

_ I
case Equals(ASuplier.City, With-Null ("Pittsburgh")) is

when True I Unknown =>
return false;

when False =>
return true;

end case;
end Choose; IFigure 8-18: Choose - Version 2

Illustrations of Three-Valued Logic 3
This section concludes with a discussion of the Choose function in ExampleC. As men-
tioned, this function has been contrived for the purpose of illustrating logical processing
within the SAME. Five separate versions of Choose, illustrating different aspects of that 1
processing, will be presented. The first two versions appear in Figures 8-17 and 8-18. These
two versions are both concerned with the city of Pittsburgh. In the first version, the function
returns false for any supplier whose city value is Pittsburgh. The second version returns 3
false for suppliers whose city is either unknown (null) or Pittsburgh. This versiun needs
visibility to SQLBoolean Pkg in order to have the enumeration literals in the case alter-
natives correctly identified. The first version deals only with known information, with the abil-
ity to establish a fact; the second version deals with uncertainty, with the inability to disprove
a fact. In other words, the version in Figure 8-1 7 looks for suppliers whose city is definitely
Pittsburgh, the so-called minimal result; whereas, the version in Figure -18 looks for sup- 3
pliers whose city may be Pittsburgh, the so-called maximal result.

1

I

3 In the third and fourth versions of Choose, displayed in Figures 8-19 and 8-20, suppliers are
selected based on their status values. The third version, in Figure 8-19, resembles the first
version, in Figure 8-17, in that it rejects only those suppliers whose status is known to not

exceed the specified value. Similarly, the fourth (Figure 8-20) resembles the second (Figure
8-18), in rejecting those suppliers whose status values might not exceed the given value.
The fourth version works by the double negation principle; suppliers are rejected if it is not
known that their status values exceed the given value. The fourth version could have been
coded in the style of the second version, using a case statement whose alternatives are
guarded by literals of the Boolean withUnknown enumeration type. However, the second
example (Figure 8-18) cannot be coded in the style of the fourth, since Ada will not Pilow

explicit overloadings of the negation of the equality operator.

3 The final version of Choose, shown in Figure 8-21, exemplifies mixed mode comparisons for

string based values and the substring operation. This version rejects suppliers whose name
contains their city as a substring. Only the definite information version is shown. Points to3 be noticed about Figure 8-21 are:

e The search excludes the sequence of trailing blanks in the supplier's name
field.

3 The search avoids the exception constrainterror in the Substring function.
This and the previous point explain the upper bound on the for loop.

3 The search does not require the string of trailing blanks, if any, in the city field
to be present in the name field. This explains the length parameter in the Sub-
string function call.

3 * It is not necessary to actually remove the trailing blanks from the City field.

9 For the comparison to be syntactically valid, one of its operands must be con-
verted to the other's type. The city operand is converted to the type of suppliers'
names. The unconstrained type, SNAMEBase, is used. Were the constrained
type, SNAMEType, used here, a constrainterror would be raised due to the3 conflict in discriminant values, i. e., string lengths.

3

!CMU/SEI-89-TR-1 6 109

I

separate (Driver. Example_C) 3
function Choose (ASupplier : SupplierRecordType) return boolean is

use StatusOpe;
use CharacterSet;

begin
-- this version rejects any supplier

whose status is known to be less than or equal to 20

If ASupplier.Status <= With Null(20) then
sereturn false;

return true;
end If;

end Choose;3

Figure 8-19: Choose - Version 3

separate (Driver. RxampleC)
function Choose (ASupplier : SupplierRecordType) return boolean iS

use StatusOps;
use CharacterSet; 3

begin
-- this version rejects any supplier
-- whose status is not known to be greater than 20 1
If not (ASupplier.Status > WithNull(20)) then

return false;elseI
return true;

end If;
end choose; Figure 8-20: Choose - Version 4 I

I
U
I
I
I
I
I

110 CMU/SEI-89-TR-1 6 3

WihIt~o nto k, upir-oiiinPg
with CityDefiLnition_Pkg, Suppliers Definition Pkg;

separate (Driver. xamplo_C)3 function choose (ASupplier :Supplier RecordType) return boolean is

use City Ops, SNAM_Ops;

begin
-this version rejects any supplier whose name contains
-its city as a substring

for i In

(Unpde egh(uple.Sae paddedLength (A _Supplier. City) - 1))

loop
IH Substring (ASupplier. Sname, i, UnpaddedLength (A_Supplier. City))

SNAME Ease(ASupplier .City) then
return False;

end If;
end loop;
return Trume;

end C oose;Figure 8-21: Choose - Version 5

IM/E-9T-

i I I I I I iI

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

112 CMU/SEI-89-TR.1 6 3

I

* 9. Advanced DBMS Applications

This chapter deals with specialized applications of SQL DBMS technology; in particular, with
applications that require dynamic SQL services and those Ada DBMS applications which
use Ada tasking. It should be noted that ANSI standard SQL [21 supports neither of these
features.31 There are DBMS implementations on the market which provide support for one
or both of these facilities. The discussion in this section cannot take the details of these
implementations into account. The reader will need to adapt the methods of this section to

* the target DBMS.

A second note of caution must be introduced into this section. Whereas the ideas in other
sections of these guidelines have been verified, and all of the code has been compiled and
executed, the author did not have at his disposal a DBMS which supported either of the
classes of applications discussed in this section. Therefore, the code presented here has
not been executed, although it has been compiled, and the ideas have not been directly
tested agaJnst any DBMS.

9.1. Dynamic SQL
As has been shown in previous sections, SQL statements can take runtime parameters.
This parameterization is limited to those parts of an SQL statement in which a constant may
appear. In the examples of Chapter 8, SQL statements were parameterized with Supplier
and Part numbers. If a needed DBMS service is to be parameterized by something other
than a constant, this can be done with dynamic SQL. If, for example, an update application
allows for the modification of various sets of dynamically specified columns using various
sets of dynamically specified update expressions and various sets of dynamically specified
search conditions, it may choose to use dynamic SQL. If the amount of variation is very
small, it may be preferable for the application designer to produce a small set of static SQL
update statements and choose the statement to execute at runtime. Dynamic SQL applica-
tions are harder to write than static SQL applications and add runtime overhead. A good
heuristic to follow is to avoid the use of dynamic SQL whenever feasible.

A full description of dynamic SQL is inappropriate for these guidelines. There follows a brief
description of dynamic SQL based on the proposals in [3].

The SQL statement to be dynamically executed is created by the application as a character
string. This string is presented to the DBMS as the operand of a PREPARE statement. If the
statement is not a SELECT statement, i.e., if it is an INSERT, UPDATE, DELETE or one of a
handful of other, bookkeeping statements (see [3]), it may then be EXECUTEd. A cursor must
be declared for SELECT statements. Once declared, the cursor is OPENed, FETCHed and
CLOSEd as in static SQL Thus, the mental model of dynamic SQL operation is very much3 the same as for static SQL.

Dynamic SQL applications can be placed along a continuum whose end points may be
called "fully dynamic" and "slightly dynamic." Fully dynamic applications are generalized
system software utilities. They typically provide an ad hoc browsing and updating capability.

31The follow-on ANSI standard [3] has support for dynamic SQL.

CMU/SEI-89-TR-1 6 113

I
(Most SQL DBMS offer an interactive version of SQL. However, SQL is probably not a good
end user language.) These applications are often supplied by the DBMS vendor or by third I
parties and are written with no knowledge of the schema of the database against which they
execute. Slightly dynamic applications offer more restricted services to their users. They are
written with full knowledge of the target database schema, its semantics, and the abstract i
domains involved.

The central distinction between static and dynamic SQL statement execution is the manner I
in which runtime parameters are passed. SQL2 offers three distinct methods of passing
parameters to dynamically prepared statements. Each dynamic statement32 has a USING
clause whose operand specifies the manner in which parameters are being passed. In the I
simplest case, this operand is a list of identifiers. This alternative can and should be used
whenever the number and type of the parameters of the statement, i.e., its parameter
profile, do not vary and the dynamically varying parts of the statement lie elsewhere (e.g., in I
the use of these parameters in a search condition). Such applications lie at the slightly
dynamic end of the continuum. When the list of identifiers option of the USING clause ap-
pears, the abstract procedure declaration corresponding to the dynamic statement is iden-
tical to its static counterpart in its use of row records, abstract domain types, and result
parameters33 3
Example
Suppose a program wishes to execute an UPDATE statement which always takes a part num- -
ber, a color, and a weight, sometimes updating the color and sometimes updating the
weight. Assuming this is to be done with dynamic SQL, two dynamic statements are
needed: PREPARE and EXECUTE. (In practice, an EXECUTE IMMEDIATE, which performs both i
functions, could be used. Two statements are used here for purposes of illustration.) The

module procedures are:
PROCEDURE STM TPREP

STIT TO PRZP CMBR(100)
SQLCODE;

PREPARE ST FROK STNTTOUPREP; 3
PROCEDURE UPDATE EXC

PNO CHAR (5)
WRIGHT INT WEZIGT IlNDIC SMALLINT
COLOR CHAR (6) COLOR iN z1, smALL NT

EXEC ST USING PNO,
WEIGHT INDICATOR WEIGHT_INDIC,
COLOR INDICATOR COLOR INiDIC; I'

32Dynamic SQL statements, e.g., PREPARE. EXECUTE, dynamic OPEN, and dynamic FETCH, are distinct from
dynamically prepared SQL statements, e. g., SELECT. UPDATE. INSERT. The dynamic SQL statements are those
which are executed by a dynamic SQL program to accomplish the database operations specified by the dynami- I
cally prepared SQL statements.

33SQL2's notions of extended statement identifier and extended cursor name, to be described, are runtime
parameters which may be needed at the abstrdct interface, even in this case. I

114 CMU/SEI-89-TR-16 3

U

I The abstract module procedure declarations corresponding to these module procedure are:
procedure Strut_Prep (Strut_ToPrep : In SQLCharNotNull);

procedure update-Exec (Pno : in PnoNotNull;

Weight : in-Weight_Type;
color : In ColorType);

Result parameters can, of course, be attached to either or both of these procedures.

Applications which require SQL statements whose parameter profiles vary dynamically must
be "polymorphic," that is, able tc deal with a variety of types at runtime. Although Ada is not
a polymorphic programming language, the Ada variant record construct can be used to sim-
ulate polymorphism, provided that the set of possible runtime types is known at compile
time. Furthermore, each variant will typically require path segments unique to it. It is best if
the number of types is kept small.

SQL2 offers two methods of passing parameters to dynamically prepared statements whose
parameter profiles vary dynamically. Both methods are based on the <dynamic using
descriptor area stucture> or SQLDA. In the first of the two methods the SQLDA is allocated
by the application program and exists in its name space. In the second method, the SQLDA
is allocated by the DBMS and exists in its name space. In Ada terms, the distinction is that
between visible and private declarations of the SQLDA type. The first of these alternatives,
the visible SQLDA, will be described first, as the second alternative, the functional approach,
is defined in terms of it.

The definition of the SQLDA structure in PIJI can be found in Figure 9-1. The ANSI proposal3does not allow this structure in Ada. This is subject to change before the standard is ap-
proved and, of course, there are no implementations conformant with the SQL2 proposal. As
was mentioned, the reader will need to adapt the discussion in this section to the target3DBMS in any case. A proposed definition for an SQLDA in Ada appears in Figure 9-2. The
package SQLStandardDynamic is like the package SQL_Standard in that it describes
data crossing the concrete interface.

DCL 1 SQLDA
2 SQLN BIN FIXED,

/* max nbr of parameters*/
2 SQLD BIN FIXED,

/* actual nbr of parameters */
2 SQLVAR (SQLSIZ REFER (SQLN)),

3 SQLDATA PTR,

/* points to the data */
3 SQLIND PTR,

/* points to the indicator parm *

3 SQLTYPE BIN FIXED,
/*integer encode of type */

3 SQLNULLABLE BIN FIXED,
/* is there an indicator parm? */

3 SQLLEN BIN FIXED,
/* character length, numeric precision */

3 SQLSCALE BIN FIXED,
/* numeric scale */

3 SQLNAME CHAR (k) VAR;
/* column name if applicable */

DCL SQLSIZE BIN FIXED;

Figure 9-1: SQLDA in PLII

3 CMU/SEI-89-TR-1 6 115

I
The implementation-specific type SQL Dynamic _Datatypes Base is used to choose the ap- 3
propriate integer type as defined by the DBMS. The constants of this type, DynamicChar,
etc., define the integer encoding of types as specified by ANSI [3]. The constant
Not Specified is used as the default for the discriminant of the SQL Dynamic_Parameter U
type. The subtype SQLDynamicDatatypes is used as the type of the discriminant to ob-viate the need for an others variant.

The type of the SQLDATA component of the SQLVAR Component Type
(SQLDynamicParameter) is a variant record of access types. The objects accessed by
these variants are of types declared in SQLStandard (or the not null decimal type in
SQL_ DecimalPkg). The SQLLEN and SQLSCALE fields, which give length, precision, and
scale information, are no longer present as fields, but are now attributes (or discriminants) ofthe accessed objects. 3
The dynamic SQL DESCRIBE statement takes a statement identifier and an SQLDA object
and fills in the type information in the SQLDA from the prepared statement identified by the
identifier. When issued in conjunction with the definitions of Figure 9-2, the DESCRIBE state-
ment must also allocate the space for the values of the dynamic parameters described by
each SQLVARComponentType object, in order to return length, precision, and scale infor-mation. The values themselves may be left undefined by DESCRIBE. This behavior is slightly
different from the behavior of DESCRIBE in [3], Section 12.7.

The types Extended_CursorType and ExtendedStatement Type are used for the I
<extended cursor name> and <extended statement identifier> of SQL2 [3]. Briefly, the con-
nection between dynamic statements operating on a dynamically prepared statement (e.g.,
PREPARE and EXECUTE) is via a <statement identifier> which may be either a constant or a I
variable. In the example given earlier, the token ST is a constant statement identifier.
Similarly, the connection between dynamic open, close, and fetch and the prepared select
statement on which they operate is via a <cursor identifier>, which may be either a constant I
or a variable. (When a cursor is a runtime variable, a <dynamic declare cursor> statement
must be executed to form the connection between the prepared select statement and the
cursor.) An object containing an extended statement identifier has type
ExtendedStatement-Type; an object containing a dynamic extended cursor has type
Extended_CursorType. 3

I
I

'I
I
I

116 CMU/SEI-89-TR-1 6 ,

U

3 with SQL_Standard, SQLDecimalPkg;
use SQLStandard, SQLDecimalPkg;

package SQLStandard_Dynamic iS

type ExtendedCursorType is implementation defined;
type ExtendedStatement-ype Is implementation defined;
type SQL_DynamicDatatypes_Base Is range implementation defined;

Maybe_NullIndic : constant IndicatorType := 1;
-- value of SQLNULLABLE if nulls allowed

subtype Null Indication iS Indicator_Type range
IndicatorType' First .. -1;

-- value of indicator if value is null

-- types to describe column names
SQL_Column_NameLength : constant := 19; -- set in SQL2 standard
subtype SQL_Column_Name_LengthType Is

positive range l..SQLColumnName_Length;
subtype SQL4AMType Is Char(SQLColumnName_Length_Type);

-- These constants capture the encoding of SQL Types as integers
-- as given by SQL2.
Not-Specified constant SQLDynamicDatatypesEase = 0;
Dynamic Char constant SQL._Dynamic Datatypes Ease 1;
DynamicNumeric constant SQLDynamicDatatypesEase 2;
DynamicDecimal constant SQL_Dynamic DatatypesBase 3;
Dynamic_Int : constant SQL_Dynamic_Datatypes_Base 4;
DynamicSmallint constant SQLDynamic_Datatypes__ase = 5;
Dynamic_Float: constant SQLDynamicDatatypesEase = 6;
DynamicReal : constant SQLDynamicDatatypesBase 7;3 DynamicDouble_Precision : constant SQLDynamicDatatypesBase 8;

subtype SQL_Dynamic Datatypes is SQL_Dynamic.DatatypesBase
range NotSpecified .. Dynamic DoublePrecision;

3 -- access types for components of SQLDynamicParameter
type Char Access is access Char;
type DecimalAcces is access SQLDecimal Not Null;
type int Access Is access int;
type Smallint Access isaccess Smallint;type Real Access iS access Real;

type Double Precision Access Is access DoublePrecision;
type SQL_Dynamic Parameter (SQLTYPE :SQLDynamicDatatypes:=Not Specified)

is record
case SQLType Is

when NotSpecified =>
null;

when Dynamic Char =>
ChaValue : CharAccess;

when Dynamic _Decimal I DynamicNumeric =>

DecimalValue : DecimalAccess;
when DynamicInt =>

IntValue : IntAccess;
when DynamicSmallint =>

* Smallint_Value :SmallintAccess;

when DynamicReal =>
RealValue : RealAccess;

when Dynamic Double_Precision I DynamicFloat =>
Double_Precision Value : Double ProcisionAccess;

end case;

end record;

type SQLVARComponentType is record

3 CMU/SEI-89-TR-1 6 117

SQLDATA :SQLDyaamcParameter;3
SQLXtILLABLE Indicator_Type;
SQLIND :IndicatorType;
SQLNAMEL SQL_-ColumnNameLongt1 _Type;

end record;

type sQLV=R_Type Is
array (mnt range <>) of SQLVar-Couzponent Type;

type SQLDA (SQLN :Int) Is record
SQLD :Int;

end record;

end SQLStaradar4d Dynamic;3

Figure 9-2: The Package SQLStandardDynamic

118 MU/SI-89TR-I

I

The package SQLStandardDynamic is like the package SQL_Standard in describing data
at the level of the concrete interface. Before describing an abstract interface for dynamic
SQL, it is first necessary to consider what the goals of an abstract interface design for
dynamic SQL should be.

As mentioned earlier, fully dynamic SQL applications are general system software support-
ing ad hoc user interactions. As such, these programs are independent of any database
schema, which is to say, of the semantics of the stored data. These programs do not deal
with Part Numbers, Supplier Names, Weights, etc. They deal with character strings, in-
tegers, etc. For this reason, the suggested definition of an abstract SQLDA in Figure 9-3
does not allow for user defined types. However, fully dynamic SQL applications can be pro-
vided with the standard SAME treatment of null values and the standard SAME treatment of

I database exceptional conditions.

The package SQL.DynamicPkg in Figure 9-3 presents a set of abstract types closely
modeled on the set of concrete types in SQLStandardDynamic. The underlying, "scalar"
types have been changed to types suitable for an abstract interface. These types are de-
fined in the abstract domain package, SQLBaseTypesPkg, which was introduced in
Figure 3.8. The types of the objects accessed by components of SQL Dynamic_Parameter
in SQLDynamicPkg are all of null bearing types. It is possible to introduce the non-null
bearing types, or a set of abstract types, into this list of components, but at the expense of
increased application complexity. Each variant of SQL_DynamicParameter will require an
execution path segment of its own. There is good reason to keep the number of such
variants small.

I
U
I
I
I
U
I
U
I

ICMU/S EI-89-T R-1 6 119

with SQLBase_Types_Pkg, SQLStandardDynami c;3
use SQLBaseTypesPkg;
package SQLDynamicPkg is

-- Theme next definitions deal with names of columnsI

subtype SQL_7ColumnNameLeongth,_Type Is
positive range 1. .SQL_-StandardDynamic.SQL -ColumnNameLength;

subtype SQLNAMEType is SQLCharNotNull (SQLColumn Name Lengtlh_Type);

-- The discriminant is now an enumeration type
type SQL _Dynamic_Datatypex IS

(Not_-Specified,
DynamicChar, Dynamic Decimal,I
Dynamic Int, Dynamic Smallint,
Dynamic Real, Dynamic-Double Precision);

-- access types access null bearing types in Base TypePkg
type Char_-Access is access SQLCharType;
type Decimal -Access is access SQLDcimalType;

type Int Access is access SQL-IntType;
type Smallint. Access is access SQLSmallint_Type;
type RealAccess is access SQL_-Real_Type;
type DoublePrecision-Access is access SQLDoublePrecision Type;3

type SQL DynamicParamter (SQLTYPE 'SQL_Dynamic_Datatypes Not_Specified
Is record

case SQLType is
when NotSpecified =>

null;
when Dynamic -Char =>

Charvalue :Char_-Access,-
when Dynamic Decimal =>

Decimal-Value Decimal-Access;
when Dynamic Int.

IntValue' IntAccess;
when DynamicSmallint ->

SmalliLntValue SmallintAccess;
when oynamicReal

RealValue :Real Access;

DoublePrecision Value :Double-Precision Access;
end case;

end record;

type SQLVARComponnt_Type is record
SQLDATZ SQL_-Dynamic-Parameter;

SQLNAbML SQLColumnNameLngrth__Type;
SQLNAHE SQLNzaETypes;

end record;

type SQLVAR_Type ISI

array (SQL1ntNot_-Null range <>) of SQLVaxComponentType;

type SQLDA (SQLN :SQLIntNotNull) Is record
SQLD :SQL IntNotNull;
SQLV7.R :SaLV~iR_Type (1 .. SQLN);

end record;
end SQLDynamicPkg;

Figure 9-3: The Package SQLDynamic Pkg

120 CMU/SEI-89-TR-1 63

U

With the definitions of Figures 9-3 and 9-2 at hand, it is possible to write an abstract module
supporting a dynamic application. The module allocates and maintains a local object of the
concrete SOLDA type, as defined by the package SQLStandard_Dynamic in Figure 9-2,
and exports to the application subprograms which take parameters of the abstract SQLDA
type, given by Figure 9-3. The module then translates between the two formats on each
subprogram call. Although such modules are possible, they may not be desirable, partic-
ularly when built for a DBMS which does not directly support either SQLDA type. (Of course,
there are no DBMSs which support these types at this time.) A module which operates in
this way requires an excessive amount of data movement. The information in the SQLDA
would first be stored in an SOLDA structure local to the DBMS (probably in either C or PLJI,
the only languages currently supporting an SQLDA in SQL2), translated to the concrete Ada
SQLDA, and then translated to the abstract SQLDA. These translations are done field by
field. Since the purported advantage of an SQLDA structure is runtime efficiency, the over-
head of these translations is unacceptable. The remaining alternative to dynamic parameter
passing, the functional approach, 34 eliminates much of this data translation.

The functional approach treats the SQLDA as a private type declared, from the application
program's point of view, behind the abstract interface. The application program allocates
objects of the SQLDA type using an SQL-defined allocation procedure whose syntax is:

ALLOCATE SQLDESCRIPTOR <sqlda descriptor name>
WITH MAX <occurrences>

where <sqlda descriptor name> is a character string parameter and <occurrences> is an
integer parameter. This statement appears at the abstract interface as the following proce-
dure declaration: 35

procedure Allocate (SQLDANae * SQLCharNotNull;
Max :SQLInt_NotNull);

A call to this procedure having the form:
Allocate(SQLDAName => "SQLDAObject",

Max => 10);

creates an SQLDA structure with 10 occurrences of the SQLVAR component (i.e., an SQLN
value of 10). This structure can be referenced by the name "SQLDAObject" as in the pro-
cedure call:

Deallocate (SQLDAName => "SQLDAObject");

which calls a procedure defined by the SQL syntax:
DEALLOCATE SQLDESCRIPTOR <sqlda descriptor name>

There is no need for more than one Allocate or Deallocate statement in any module.

The type information within an SQLDA is supplied as the result of a DESCRIBE (or DESCRIBE
INPUT) statement. These statements take a prepared statement identifier and an SQLDA
object name. (This information can also be modified, to within implementation-defined limits,

34The functional approach does not appear in [3]. It is contained in an accepted change to SQL2, which can
be found in [101. The ensuing discussion is based on [10], which may differ from the description of the functional
approach that will appear in the final standard. The differences should be minor and should not affect an abstract
interface providing a functional approach to an Ada application.

35The Ada code in these following examples uses types in SQL_Base TypesPkg. It may be desirable to use

specially designed types, declared in a package similar in purpose, but not design, to SQL_ Dynamic Pkg, for the
parameters in these examples.

CMU/SEI-89-TR-16 121

I

by an application, thereby effecting runtime data conversion.) Since the SOLDA is itself hid- i
den, two functions, GET and SET, are provided to access or modify Lne type information and
the values of the parameters. These functions have two forms which are described by the
following combined syntax: I

(GET I SET) <sqlda descriptor name>
[VALUES <sqlvar number>] <parameter associations>

The <parameter associatons> determine what information is to be extrarted from (or set
into) the SQLDA. The form without the VALUES <sqlvar number> phrase is used to access
the SLD field, which determines the actual number of parameters used by the dynamic
statement. Thic is the only field of an SQLDA which is not a subcomponent of the SQLVAR I
component. The form with the VALUES phrase accesses suocomponents of the SQLVAR
component with index, relative to one, of <sqlvar number>.

Within [10], the <parameter associations> are of the form <parameter> = <identifier> where
<identifier> is the name of an SQLDA field as shown in the PL/' description in Figure 9-1.
(When VALUES is absent, only SQLD may appear as an <identifier>.) Notice that the GET
(SET) statement is not itself dynamically preparable; therefore calls to these statementsh:ve parameter profiles that can be determined at compile time.

Figure 9-4 contains fragments of a "fully dynamic" Ada application using the functional inter-
face. The example is based on [10]. The application is fully dynamic in that it uses the data
types in SQLBaseTypesPkg.

The abstract module used by the program in Figure 9-4 contains the procedure declarations
for the SQL statements which implement the functional approach to dynamic parameter
passing. It is not essential that the concrete interface used by the abstract module also im-
plement the functional approach; an SQLDA-based concrete interface is permissible. The
decision can be made on performance grounds alone. Tha abstract module retains respon-
sibility for null value encapsulation and SQLCODE processing. (SOLCODE processing is
not explicitly used in Figure 9-4, in order to control its size. Comments indicate what might
be done in a realistic setting.) The procedure Set_SQLDATA (Get_SQLDATA) gives values
to (accepts values from) the DBMS. These procedures have oveiloaded declarations in the
abstract module, one declaration for each of the null bearing types in WeakTypesPkg.
The abstract module procedure bodies are responsible for processing the null value. For

example, the body of a Set_SQLDATA procedure might be:
If IsNull (SQLDATA) then

Conc.SetSQLNull(SQLVAR Nbr => SQLVARNbr,

SQLDAName => SQLDAName,
SQLNULLABLE => MaybeNull_Indic,
SQLIND => Null Indication'Last);

else
Conc.SetSQLDATA(SQLVAR Nbr => SQLVARNbr,

SQLDAName => SQLDAName,
SQLIND => 0,
SQLDATA => SQLDATA);

end If;

Similarly, the Get_SOLDATA procedure needs a concrete Get_SOLNul procedure to deter-
mine if an output value is null. These are examples of concreie procedures which do not
appear at the abstract interface. Generally, that is to say, in static SQL applications, there
are no such procedures. (Note: In the above if statement, the object MaybeNullIndic and
the subtype Null_Indication are as defined in the package SQL_StandardDynamic shown
in Figure 9-2.)

122 CMU/SEI-89-TR-16

I

I It is possible to envision an abstract module and application program which are less fully
dynamic and use abstract domains for parameter values. Dynamic SOL requires the data-
base to access its data dictionary at runtime. This processing could be extended tu access
an Ada data dictionary as well. 36 This would allow the application program access to the
abstract domain of the parameters. However, such access would increase the complexity of
the application and the runtime overhead of the abstract module. It is unclear whether the
benefits of abstract typing outweigh the costs, for dynamic applications. (Note: If the abstract
domain definitions are used to constrain, via range constraints, database objects in a man-
ner which is not also supported by the DBMS, then fully dynamic update programs which do
not use the abstract domain definitions may violate database constraints.)

I
U
I
U
I
U
I

I
U
I

36As mentioned in the introductory chapter, the SAME - Design Committee is working on a language for

automation of SAME application development. The processor for this language, whatever its final form, will

certainly need an Ada data dictionary.

CMU/SEI-89-TR-16 123

MaxSQLVAR : constant := 10; -- this limit on SQLVAR occurrences is
-- a property of the application and of
-- the DBMS implementation

Input .SQLDA : constant SQL_CharNot Null "InputSQLDA" ;
Outp" _SQLDA : constant SQLCharNot Null "OutputSQLDA";

SQLTYPE : SQL_DynamicDatatypes; -- type declared in SQL_DynamicPkg

SQLDOut, SQLD In : SQ T- Int Not Null;
IXFetched : boolea.; -- result parameter for fetch

begin I
-- assume the dynamic statement is available in object STMT,
-- of type SQL CharNotNull. Assume also it is the only statement

-- which will be in use at any one time. This allows for constant
-- statement identifiers and cursor names. i
Prepare(STMT);
-- a failure here is probably a badly formed statement. This can
-- be trapped here, using an SQLCODE result mapping and parameter.

Allocate (SQLDAName => InputSQLDA, Max => MaxSQLVAR);
Allocate (SQLDAName => Output_SQLDA, Max => MaxSQLVAR);
-- Failure here is irrecoverable.
Describe In(Input_SQLDA); -- Inputs to the prepared Statement 3
Describe(Output SQLDA); -- Outputs. The statement identifier

-- is statically known to the module.
-- Failure here is irrecoverable.
Get_SQLD(SQLDAName => Input_SQLDA, SQLD => SQLD_In);
-- Failure here is irrecoverable.

if SQLD In > 0 then
far-i in 1 .. SQLDIn loop

Get_SQLTYPE(SQLVAR_Nbr => i,
SQLDAName => InputSQLDA,
SQLTYPE => SQLTYPE);

-- Failure here is irrecoverable.

case SQLTYPE iS
when DynamicChar =>

-- get the character string from the user.
-- assume it is in an object called Char_Obj of type
-- SQLCharType in SQLBase_Types_Pkg.

SetSQLDATA(SQLVARNbr => i,
SQLDAName => InputSQLDA,

SQLDATA => Char Obj);
-- Include an alternative
-for each element of SOLDynamic Datatypos.

-- The object containing the input value will be distinct
-- in each alternative, as it will have a distinct type. 3
end case;

end loop;
end if;
Get_SQLD (SQLDAName => Output_SQLDA, SOLD => SQLD Out);
If SQLD_Out = 0 then -- if no outputs, not a select

Execute (SQLDAName => InputSQLDA);
-- There are many non successful statuses which might be
-- trapped here: permission or constraint violation,
-- record not found, etc. This is omitted here, as it has been
-- fully illustrated elsewhere.

else -- if it does have outputs, it is a select

-- cursor does not need to be declared, as both cursor name
-- and statement identifier are statically known to the module
OpenCursor (SQLDAName => InputSQLDA);
-- Failures on Open are irrecoverable.

124 CMU/SEI-89-TR-1 6

I
Fetch(SQLDA _Name => Output_SQLDA, Result => IsFetched);
if not is Fetched then

-- perform 'no records were retrieved' processing
else

while IsFetched loop
for i in 1 .. SQLD_Out loop

GetSQLTYPE(SQLVARNbr => i,
SQLDA Name => Output SQLDA,SQLT7YE => SQLTYPE);

case SQLTYPE IS
when DynaxmicChaL =>

IGot__SQLDATA (SQLVAR_-Nbr => i,

SQLDAName => InputSQLDA,
SQLDATA => CharObj);

-- process CharObj as needed

-- An alternative is need-i

-- for for each type in SQLDynamicDatatypes.

end case;
end loop;
-- end of tuple processing

end loop;

-- end of file processing
end If;
-- end of cursor processingCloseCursor;

end If;
end;-- end of statement processing

end;

Figure 9-4: Dynamic SQL Application Fragments

i
I
I
i
i
I
i
i

iCMU/SEI-89-T R-16 125

I

9.2. SQL and Ada Tasks I
This section delineates issues arising from the use of SQL within an Ada application using
Ada tasking. The issues stem from both practical and theoretical aspects of concurrency
control.

The tasks within an Ada multi-tasking program form a set of mutually cooperating sequential I
programs. The cooperation is mediated by shared variables and rendezvous. The trans-
actions executing concurrently against a shared database form a set of mutually non-
interfering sequential programs. The non-interference is mediated by the DBMS's concur- I
rency control protocol, typically locking. The difference between these two views of concur-
rency is profound. Whereas the purpose of an Ada task control monitor is, in part, to ensure
that inter-task communication and cooperation proceed smoothly, the purpose of a DBMS
concurrency control monitor is to ensure that inter-transaction communication does not oc-
cur at all. The difference in the meaning of correctness of concurrent execution of Ada tasks
and DBMS transactions requires that Ada multi-tasking DBMS applications be carefully de- I
signed. In particular, the mapping between Ada tasks and DBMS transactions must be care-
fully considered. 3
A task is said to be directly associated with a transaction if the task executes a statement of
the transaction,3 7 by way of an abstract procedure call. A task is indirectly associated with a
transaction if it causes the execution of such a statement within a task that is directly associ- i
ated with the transaction. (There may be tasks which are neither directly nor indirectly asso-
ciated with any transaction.) A mapping between tasks and transactions is a relation which
gives the tasks and their associated transactions at some point during the execution of the I
program. (An application may terminate and restart transactions during its execution. Such
sequences of transactions which do not overlap in time present no difficulties. The design
and coding difficulties arise in connection with sets of concurrent transactions associated I
with a single Ada program.) This mapping can be of one of four classes.

1. One-to-one. A task is associated, directly or indirectly, with at most one trans-
action; a transaction is associated with exactly one task.

2. Many-to-one. A task is associated with at most one transaction; a transaction
is associated with any (positive) number of tasks.

3. One-to-many. A task is associated with any number of transactions; each
transaction is associated with exactly one task.

4. Many-to-many. The mapping between tasks and transactions is uncon- I
strained.

Since a DBMS considers a transaction to be a sequential program, it cannot tolerate concur- i
rent execution of multiple requests on behalf of a single transaction. 38 In other words, if
either of the relations many-to-one or many-to-many between tasks and transactions is de-
sired, the many tasks associated with any transaction must all use a synchronization or ser-

37The means by which a DBMS identifies the transaction on behalf of which a statement is to be executed is a
central issue which will be discussed.

38There are research DBMS prototypes which allow overlapped execution of database operations within the i
context of a single task. It is highly probable that no commercially available DBMS supports such processing.

126 CMU/SEI-89-TR-16 3

I

vice task to control database operations for that transaction. If an Ada multi-tasking pro-
gram is to appear to the database as a single transaction at every point in its execution,

* provision of this synchronization task is all that is required.

The synchronization task can be designed so as to contain the abstract module(s) for all of
the tasks associated with the synchronization task's transaction. This may well be a poor
design choice. In particular, it may give rise to an inordinate number of task entries. Alter-
natively, each task within the transaction may contain its own abstract module. The
synchronization task provides a semaphore service. Calls to the semaphore task's entries
belong in the application, as the abstract module deals only with database interaction and
should not be aware of task structure. The semaphore should be acquired before each call
to the abstract module's procedures and released upon return. This will ensure that the
global SQLCODE variable in SQL_CommunicationsPkg, which will be shared by the tasks,
is accessed in the critical region de!i,eated by the get and release calls to the semaphore.

If an Ada program is designed to present multiple, concurrent transactions to the DBMS,
careful consideration must be given to the semantics of this situation. For simplicity, assume
exactly two tasks, T1 and T2, each associated with exactly one transaction, N1 and N2.
The DBMS will schedule the operations of N1 and N2 such that they are serializable. This is
to say that, given the information available to the DBMS, which is exactly the sequence of
DBMS operations within N1 and N2, the DBMS will schedule those operations so that their
net effect is identical to the effect of executing one of those sequences in its entirety fol-
lowed by the entirety of the other sequence. In short, serializabilty provides to each DBMS
transaction the illusion that it is running by itself, without competing, concurrent transactions.
Now suppose that T1 and T2 share information, through global variables or rendezvous that
the information they share is derived from the database operations they execute; and that
the database operations they execute are determined by the information they share. In this
case, T1 and T2 cannot be serialized; their net effect is not equivalent to their complete,
non-parallel execution in any order. However, that fact is unknown to the DBMS. It may well
be that this scenario is not erroneous. That will depend on the semantics of the tasks' inter-

* action. But it must be carefully reviewed.

Cooperating tasks presenting distinct transactions to the DBMS, such as T1 and T2 in the
prior paragraph, must be able to deal with each other's abnormal termination. A DBMS may
abnorma!ly terminate a well formed, semantically correct transaction in order to resolve a
detected deadlock. If, for example, T2 has given information derived from the database to
T1, and its associated transaction, N2, is abnormally terminated by the DBMS, the DBMS
will not abnormally terminate N1, since it does not know that the communication has taken
place. T1 must be able to detect that situation and take whatever action is appropriate. 39

The discussion so far has centered on the theoretical issues involved in forming seman-
ticaily correct multi-tasking, multi-transaction Ada DBMS applications. An example of such a
well-formed application is the case of multiple task executions of the same task type, each
execution operating on behalf of a distinct user, without inter-task-object communication.
The remainder of this section deals with the practical aspects of constructing such well-
formed applications.

39This situation is not unique to DBMS applications. Any set of cooperating tasks must be able to deal with

each other's abnormal termination.

CMU/SEI-89-TR-1 6 127

It must be noted immediately that neither the current ANSI standard [2], nor the follow-on I
standard [3], allow for the construction of multi-transaction programs. This is because there
is no way in the standard to associate a statement execution with a particular transaction
among a concurrent set of transactions. This topic will be addressed below. U
The ability to construct multi-transaction Ada programs depends in large measure on the
target DBMS. There are many things to consider. Every Ada DBMS application will contain i
in its executable image some code supplied by the DBMS. This code will be called the
DBMS stub. The function of this stub is to accept the DBMS call from the concrete module
and transfer control to the DBMS, which, in a multi-user operating environment, may be ex- i
ecuting as a separate process, in a separate address space, or even on a separate ma-
chine. It must be the case that either this stub code is reentrant, that is, capable of executing
multiple, parallel threads of control, or that each task associated with each transaction has
its own, private copy of that code. If neither of these things can be done, multi-transaction
programs cannot be written. The same reasoning holds for the concrete module, if distinct
tasks, directly associated with distinct transactions, are to share an abstract, and therefore
also a concrete, module.

If the reentrancy requirements of the previous paragraph are met by the target DBMS, the
final obstacle is the means by which the DBMS identifies the transaction on whose behalf a I
given statement is to be executed. In the case of a single user DBMS, as might be found on
a PC class machine, all statement executions are part of the same transaction, and multi-
transaction programs cannot be written. If a multi-user DBMS identifies transactions on the
basis of the identity of the program executing the statement, using operating system fea-
tures to make that identification, multi-transaction programs are again impossible. If the
DBMS identifies the transaction by some parameter of the call itself, such as the address of
a "communication area," then this parameter can be called a transaction identifier. Trans-
action identifiers do not appear in SQL statements. Dynamic modification of that parameter
requires understanding of, and possibly modification to, the code generated by an SQL I
preprocessor or concrete module compiler, particularly in the case where that concrete mod-
ule code is to be shared by task objects. This is a tricky and dangerous business, which can
result in engineering nightmares.40

One way to ensure that task objects do not share abstract or concrete modules is to place
these modules within the bodies of the tasks. If the task objects are to logically (but not
physically) share an abstract module, the module can be made into a parameterless generic
which is instantiated into the task body. If the DBMS identifies transactions via a transaction
identifier generated by the SQL processor, this solution may work, at the expense of in- I
creased object code size on most compilers. This solution will probably not work to solve
reentrancy problems for the DBMS stub code referenced earlier. That code is usually

brought into the executable by the system linker, which normally resolves references by I
name, thereby sharing one copy of the stub among all the tasks.

If multi-transaction programs are not prohibited by any of these considerations, then such
programs can be written if a minor modification is made to the standard SAME support
packages. In particular, the package SQL_Communications Pkg presents a difficulty as it
exports a global variable, SQLCODE. This variable can be made local to a task object by I

4 0 1t may be that a DBMS extends SQL to provide a transaction identifier. The author knows of no such DBMS I
128 CMU/SEI-89-TR-16

I

I the method of the prior paragraph, i.e., by placing this package, along with the abstract and
concrete modules and the package SQLDatabaseErrorPkg, into the body of the tasks. If
that is otherwise not necessary or desirable, then the package SQLCommunicationPkg
and the calling conventions at the abstract module level (and the concrete level as well, in a
non-standard way, see the previous discussion), can be modified as follows: Remove the
variable SQLCODE from the specification of SQLCommunicationsPkg and replace it with
the following type definition:

type Transaction Id Type is record
SQLCODE : SQLCODEType;
<implementation dependent private record type>

end record;
(The implementation-dependent portion of the type Transactionld_Type is meant to accom-
modate an implementation defined "communications area." Such an object may also be
added to the definition of SQLCommunicationsPkg in the single transaction case.) Each
task object directly associated with a transaction must allocate an object of this type in a
manner which will allow it to persist across all abstract module procedure calls. The
parameter lists of such calls are extended to include that object, which is a transaction iden-
tifier. The procedure ProcessDatabaseError in SQLDatabaseErrorPkg is also
amended to include this parameter. Any handler for for the SQLDatabaseError exception
must be able to find the appropriate transaction identifier.

I
I

I
I
I
I
I
I

ICMU/S EI-89-TR-1 6 129

I
I
I
I
I
I
I
I
U
I
I
I
I
I
li
I
I

"-: -U

130 CMU/SEI-89-TR-1 6 3

I References
[1] Alsys Ada Sun Workstations Appendix F Version 3.0

Alsys Inc., Waltham, MA, 1987.

[21 Database Language - SQL
American National Standards Institute, 1986.
X3.135-1986.

[3] American National Standard Embedding of SQL Statements into Programming Lan-
guages (proposed draft)
Technical Committee X3H2 - Database, 1988.
X3.168-198x.

[4] ISO-ANSI Working Draft Database Language SQL2
American National Standards Institute, 1987.
X3.135-1986.

[5] American National Standard for Information Systems Database Language Em-
bedded SQL (proposed draft)
Technical Committee X3H2 - Database, 1988.
X3H2-88-320.

[6] ANSI/X3/Sparc.
Interim Report from the Study Group on Data Base Management Systems.
Bulletin of the ACM SIGMOD 7(2), 1975.

[7] Chen, P. P-S.
The entity-relationship model; toward a unified view of data.
ACM Transactions on Database Systems 1(1), 1976.

I Clemons, Eric K.
Data Models and the ANSI/SPARC Architecture.
In S. Bing Yao (editor), Principles of Database Design, pages 66-114. Prentice Hall,

1985.

[9] Date, C. J.
An Introduction to the ANSI SQL Standard.
Addison-Wesley Publishing Co., Reading, MA, 1988.

[10] Felts, Steve.
X3H2 SQL2 Change Proposal: Dynamic SQL Functional Interface.
ANSI X3H2, 1988.
X3H2-88-31 8 corrected.

[11] Engle, C; Firth, R.; Graham, M.; Wood, W.
Interfacing Ada and SQL.
Technical Report CMU/SEI-87-TR-48, DTIC: ADA199634, Software Engineering In-3 stitute, December, 1987.

[121 Brykczynsk, W.; Friedman, F.; Hilliar, K; Hook, A.
Level 1 Ada/SQL Database Language Interface User's Guide.
Technical Report M-30, Institute for Defense Analyses, September, 1987.

[13] Ingres/SQL Reference Manual
Relational Technology, Inc., 1986.

3 CMU/SEI-89-TR-1 6 131

I
[14] Graham, Marc H.

SAME Standard Package Installation Guide
Software Engineering Institute, 1988.
CMU/SEI-89-SR-5.

[151 Reference Manual for the Ada Programming Language
United States Department of Defense, ANSI/MIL-STD-1 815A-1 983.
American National Standards Institute.

[16] Shaw, P.
Ada-SQL Interface: Changes in the SQL module language for Ada and deletion of

the Ada-SQL embedded syntax.
Technical Report ANSI X3H2-88-182, SQL Ada Module Extensions Design Com-

mittee (SAME - DC), May, 1988.

[17] VADS UNIX Implementation Reference (Including Ada RM Appendix F)
Verdix Corporation, 1987.

I
I
I
I
I
I
I
I

I

132 CMU/SEI-89-T R-1 6

U

II A SAME Quick Reference List

I A.1 Example Domains
Let Dom be an abstract domain name for the SQL <type> domains for int,
smallint, real, and double_precision.

with SQL_<type>_Pkg; use SQL_<type>_Pkg;

type DOaM Not Null IS new SQL_<type>_NotNull;
type Dom_Type is new SQL<type>;Ipackage DomOps isnew SQL_<type>_Op.(DomType, DomNotNull);

Let Dom be an abstract domain name for the SQL Character domain. In the following
example, n represents the number of characters in the _NotNull portion of the
domain.

I with SQL Char Pkg; use SQLChar_Pkg;

type DoMNNBase is new SQLChar Not Null;
subtype DomNotNull Is DOMNNase (--..n);
type Dom Base is new SQLChar;
subtype Dorr_Type is DomBase(DOM Not Null'Lngth);
package DoamOp is new S-QL Char O-(Dam_Type, DOMNotNull);

Let Doam be an abstract domain name for an SQL enumeration domain.

with SQL_numration Pkg;

type Dom Not Null is (literal, literal, literal);
package Dr_ kg is new SQLEnumeszation Pkg (Doam Not Null);
type Dom_Type is new Dorn_.kg. SLnumeration;

I Let Dom be an abstract domain name for an SQL Decimal domain. Let
the scale of the domain be s.

I with SQLDecimalPkg, AdaBCD_Pkg;
use SQL_Doci-al Pkg, AdBCDPkg;

Dom Scale : constant decimal digits := s;

type DomNNBase is new SQL De=cimal Not Null;
subtype Dom mNot Null is Dorm w ase'(scale => Doamscale);
type DomBase is'new SQL Char;
subtype Dom_Type Is DomnBaso(scale => DomScale);
package Uomop. is new SQL CharOp&(DornTyp,

in acalo => DomScale);

See Chapter 3 for further details.

CMU/SEI-89-TR-16 133

I
A.2 Functions Available to the Application

Operand Type Exceptions

Left Right Result

All Domains

Y AlSQL_<type> Type
WithNull _Not Null -Type
WithoutNull -Type 1 _Not Null 2 NullValueError
Is Null, NotNull Type Boolean
Assign3 - Type -Type Constraint-Error
Equals, Not-Equals -Type -Type B W U4

<, >, <=, >= -Type -Type B W U
=, /=, >, <, >=, <= -Type -Type Boolean

Numeric Domains

unary +, -, Abs -Type -Type
+, -, /, * Type -Type Type

* Type Integer _Type

Int and Smallint Domains

Mod, Rem -Type _Type -Type
Image -Type SQLChar
Image Not Null SQLChrNN5

Value SQL_Char _Type
Value SQL_ChrNN _NotNull

Decimal Domains

7, /=, >, <, >=, <= NotNull _NotNull Boolean
unary +, -, abs _NotNull _NotNull
+, -, *, / NotNull _Not Null -NotNull ConstraintError
,, /6 Not-Null SQL_IntNN -NotNull ConstraintError
• , / Type SQLIntNN _Type ConstraintError
, Type SQLInt _Type Constraint-Error

• SQL_IntNN _NotNull _NotNull ConstraintError
SQL_IntNN -Type --Typ Constraint-Error
SQL_Int -Type -Type ConstraintError

Zero, One _Not Null
Zero, One _Type
Assign3 -Not-Null -NotNull Constraint_Error
Shift Not-Null Integer -NotNull ConstraintError
Shift -Type Integer -Type Constraint-Error

Width _NotNull Integer
Width -Type Integer NullValueError
Fore, Aft Not Null Integer
Fore, Aft -Type Integer Nqll_ValueError
Integral, Scale NotNull Integer
Integral, Scale -Type Integer NullValue-Error
IsIn _NotNull Boolean

Is_In -Type Boolean i

134 CMU/SEI-89-TR-16 I

H Operand Type Exceptions
SLeft Right Result

Decimal Domains (cont.)

MachineRounds _Not Null Boolean
Machine-Rounds -Type Boolean
Machine Overflows _Not Null Boolean
Machine_Overflows _Type Boolean
To SQL Decimal Not Null SQLIntNN _NotNull
To-SQLDecimal-Not Null 7 SQL DblNN _NotNull Constraint_Error
To_SQLDecimal__Not Null SQLChrNN Not-Null Constraint-Error
To SQLDecimal SQL IntNN _Type
ToSQLDecimal SQL Int _Type
To SQLDecimal SQLDblNN _Type Constraint__Error
To_SQLDecima18 SQL Dbl -Type ConstraintError
To SQLDecimal SQLChrNN -Type Constraint-Error
ToSQLDecimal SQLChar _Type Constraint Error

ToSQL Int Not Null Not Null SQL IntNN ConstraintError
ToSQLIntNotNull Type SQLIntNN ConstraintError

Null ValueError
ToSQL_Int _Type SQLInt ConstraintError
ToSQLDoublePrecisionNotNull _NotNull SQLDblNN
ToSQL_DoublePrecisionNotNull Type SQLDblNN NullValueError
To SQLDoublePrecision -Type SQLDbl
ToSQLCharNotNull _Not Null SQL ChrNN
ToSQL_CharNot Null _Type SQLChrNN NullValueError
ToSQL__Char Type SQLChar
ToString NotNull String
To String _Type String Null Value-Error

I Character Domains

WithoutNull Unpadded Type _NotNull NullValueError
ToString - ot Null String
ToString Type String NullValueError
ToUnpadded_String NotNull String
To _UnpaddedString -Type String Null Value-Error
ToSQL__Char Not Null String _NotNull
ToSQLChar String _Type
Unpadded Length Type SQL_U_L 9 NullValueError
Substring10 -Type -Type ConstraintError
& Type -Type -Type

* Enumeration Domains

Pred, Succ Type Type
Image -Type SQLChar
Image NotNull SQL_ChrNN
Pos Type Integer NullValueError
Val- Integer -Type
Value SQLChar _Type
Value SQLChrNN _NotNull

I 13Ih

1CMU/SEI-89-TR-1 6 135

I

i

Operand Type Exceptions I
Left Right Result

Boolean Functions U
not BWU Boolean
and, or, xor B W U B W U Boolean
To Boolean BWU Boolean Null Value Error
Is True, BWU BWU Boolean
Is False, B W_U B W U Boolean
IsUnknown BW__U B7W U Boolean

i
I
i
i
i
i
I

1. "-Type" represents the type in the abstract domain of which 3
objects that may be null are declared.

2. "_NotNull" represents the type in the abstract domain of which
objects that are not null may be declared.

3. "Assign" is a procedure. The result is returned in object
"Left."

4. "B W U" is an abbreviation for Boolean WithUnknown.
S. "SQL ChrNN" is an abbreviation for SQLCharNot Null.
6. "SQLIntNN" is an abbreviation for SQLntNot_Null.

7. "SQLDblNN" is an abbreviation for
SQL Double Precision NotNull.

8. "SQL Dbl" is an abbreviation-for SQLDoublePrecision.
9. "SQLUL" is an abbreviation for the SQLCharPkg subtype

SQLUnpaddedLength.
10. Substring has two additional parameters: Start and Length,

which are both. of the SQL Char Pkg subtype
SQLCharLength.

136 CMU/SEI-89-TR-16 I

III

I B Glossary of Terms
Abstract domain. A real world collection of values. Differs from both an Ada type and an
SQL type in that it is a real world object, not a programming object. An abstract domain is
represented in an Ada program by a pair of type definitions and a generic package instan-
tiation. One of the types, the _NotNull type, can represent any value in the abstract domain
except the null value. The other type, the _Type, can represent the null value as well. The
two types are syntactically connected through the convention of having the same prefix.
That is, the abstract domain Domain is represented by the two Ada types DomainNotNull3 and Domain _Type. The two types are semantically connected through the instantiation of
an _Ops package. See _NotNull type, _Type type, _Ops package, and Visible Ada type.

Abstract Interface. The specification of the abstract module. Contains the declarations of
row record types and of abstract procedures. See Abstract module, Abstract procedure,
Row record type.

UAbstract module. The body of the abstract interface. Contains the bodies of the abstract
procedures. See Abstract interface and Abstract procedure.

Abstract procedure. The procedure called by the application program to perform database
interaction. The abstract procedure calls the concrete procedure to perform the interaction.
The abstract procedure does error checking by examining the SQLCODE variable and takes
action as necessary. It also does data conversion from concrete to abstract types. See
Abstract interface, Abstract module, Concrete procedure, SQLCODE, and Standard error

i processing.

Ada semantics. Refers to the operations predefined in Ada for arithmetic, comparison, etc.

Ada typing model. The ability, in Ada, for the programmer to define new types from exist-
ing types. The phrase also refers to Ada's use of name equivalence, rather than structural
equivalence, to determine object typing. As two integer types with the same integer range
constraint being nonetheless distinct. Ada's typing model also includes so-called "strong"
typing.

Application program. The part of the complete application which contains that part of the
application logic that is written in Ada. It contains none of the application logic written in
SQL, nor any of the bookkeeping logic for executing the SQL. See Concrete module and
Abstract module.

Attribute. See Column.

_Base type. Within the definition of a string-based abstract domain, the unconstrained
types. The _NotNull and _Type types are subtypes of the _Base types. See SQL String
processing, _Not-Null type, and _Type type.

Column. A field of a row within a table. Corresponds to Ada's scalar variable in that a field
must hold an atomic value and may not contain a composite value. (Character strings are

Sthought of as atomic in this sense.)

CMU/SEI-89-TR-16 13,I

I.

Concrete Interface. Specification of the concrete module. Contains the declarations of the I
concrete procedures. See Concrete module and Concrete procedure.

Concrete module. Contains the bodies of the concrete procedures. See Concrete inter- i
face and Concrete procedure.

Concrete procedure. A procedure in the concrete module. Concrete procedures perform 5
database interaction. Each concrete procedure corresponds to a single SQL statement.

Concrete types. The types defined in SQLStandard. These types describe the represen-
tation of data in the database.

Comparison rule. A heuristic for determining if two values, variables, or columns have the
same type or abstract domain. The rule: If it makes sense to compare the values, variables I
or columns, then they have the same type or abstract domain. If it makes no sense to com-
pare them, then they have different types or domains. 3
Cursor. Used by SQL to communicate with application languages. A cursor is associated
with a Select... From...Where block. A cursor may be opened, fetched, and closed. See an
SQL description (e.g., Database Language - SQL [2]) for details. A cursor is a quasi-object
in that it can be updated and it has state, but it is not available for any programming opera-
tions other than SQL statements. The state of a cursor is closed or open; an open cursor
records a current position (row) within the associated table. The current row may be deleted
or updated.

Database exceptional condition. Any condition which causes SOLCODE to be set to a 3
non-zero value upon return from a concrete procedure. Includes "no record found." Excep-
tional conditions may be expected or unexpected. See Result parameter and Standard error
processing. =
Data Integrity constraints. Statements made about the contents of the database that are
enforced by the database management system. I
Data semantics. The meaning of the operations defined on a set of values. See Ada
semantics and SQL semantics.

Derived type. A type whose operations and values are replicas of those of an existing type.
The existing type is called the parent type of the derived type. LRM glossary [15].

Domain package. An Ada package specification containing only declarations of abstract
domains. No abstract domain declaration may appear in more than one domain package,
and no abstract domain declaration may appear outside of a domain package. See Abstract
domain.

Dynamic SQL. A form of SQL in which the statement to be executed is created by the i
application at run time. Dynamic SQL is used when a database interaction takes parameters
which are not constants. These can be search conditions, table names, etc.

Full SQL treatment of nulls. The discipline of handling null values in Ada programs that
use SQL semantics for arithmetic and comparison operators. This discipline treats variables
of -Type type as regular variables, using the versions of arithmetic and comparison I
operators exported by the SAME standard packages.

138 CMU/SEI-89-TR-1 6

I

Indicator parameters. Special integer-typed parameters used at the concrete interface to
record information about other parameters. A negative indicator parameter value indicates a
null value in the associated parameter. Indicator parameters do not appear at the abstract
interface.

Minimalist treatment of nulls. The discipline for handling null values in an Ada program
that uses only test (IsNull, NotNull) and conversion (With_Null, WithoutNull) functions.
Treats variables of _Type type as value repositories only. See _Type type, Full SQL treat-
ment of nulls.

Modular approach. Any technique for constructing DBMS application software which phys-
ically separates the database interaction statements and the programming language state-

I ments.

Module. A related set of procedures which perform database interaction. See Abstract
Module, and Concrete Module.

Module Language. The language in which SQL modules are written. Part of ANSI stan-
dard SQL. The module language describes procedures, the bodies of which are single SQL
statements.

-NotNull type. One of the two types making up an abstract domain definition; so-called
because the set of objects of this type does not include the null value. Usually, the
_NotNull type is a visible Ada type. See Abstract domain and Visible Ada type.

Null value. SQL's means of recording missing information. A null value in a column in-
dicates that nothing is known about the value which should occupy the column.

_Ops generic package. Each of the SAME standard packages contains a generic sub-
package which generates, by package instantiation, those functions or procedures that can-
not be produced by subprogram derivation. The subpackage name is formed by replacing
the _Pkg suffix in the containing package name with _Ops. In use, the _Ops package takes
two types as formal parameters, the _Type and _NotNull types, which together make up
the abstract domain definition.

Platform, or platform specific. The platform on which a piece of software runs is the com-
bination of the hardware, operating system, DBMS and Ada compiler. Pieces of the SAME
which are platform specific are the database layer, containing the packages SQL-System
and SQL_Standard, to describe concrete DBMS types in Ada, SQL_Communications_Pkg,
for retrieving and storing status information from the DBMS, and SQLDatabaseErrorPkg,
for reporting errors.

Result parameter. An optional parameter, of an enumeration type, frequently Boolean, to
every abstract procedure declaration. If present, the result parameter is used by an abstract
procedure to signal the occurrence of an expected exceptional condition. See DBMS excep-
tional condition.

Row. An element of a table. Also called a tuple. Analogous to a record object. See Column
and Table.

CMU/SEI-89-TR-1 6 139

I

Row record. The object returned from an abstract procedure which retrieves data from the I
database. Also, the object given to an abstract procedure which stores data in the database.
A row record contains a field for each element in the target list of the SQL statement ex-
ecuted by the abstract procedure.

Row record type. The Ada type definition of the row record. Declared in the abstract inter-
-face.

SAME standard packages. The packages which support the SAME method; particularly,
those packages which support SQL data semantics. Those packages are SQL IntPkg, 5
SQL_SmallintPkg, SQLRealPkg, SQL_DoublePrecisionPkg, and SQL_CharPkg,
which provide support for the standard SQL data types. Other standard SAME packages are
SQLSystem, SQL_Standard, SQL_Exceptions, SQLBooleanPkg,
SQL_CommunicationsPkg, and SQL_DatabaseErrorPkg. See Platform, SQL semantics,
Standard error processing, and User-defined semantics.

SOLCODE. The name of the parameter to a concrete procedure which holds the status I
code at procedure termination. Also references-the values of the parameter.

SQL module. A concrete module written in the module language. I
SQL procedure. A procedure defined within the concrete module whose semantics are
given by an SQL statement. See Concrete module, Module language, and SQL module. I
SQL semantics. The operations of arithmetic and comparison extended to cover the null
value. Refers also to SQL string processing, in which strings are automatically padded or i
truncated during comparisons and assignments. See Three-valued logic and Three-valued
arithmetic.

SQL String Processing. SQL treats character strings as fixed length objects in some cir-
cumstances and vadble length objects in others. For example, all string objects within a
given database column have the same length which is given by the column definition. How-
ever, when transporting data between and application and the database, an SQL DBMS will i
truncate or blank pad a string value, as appropriate to the length of the programming lan-
guage variable. When comparing strings of different lengths, SQL pads the shorter string
with blanks before the compare. The SAME standard support package SQL_CharPkg of-
fers an Ada implementation of these semantics. See -Base type, -Type type, _NotNulltype. 5
Standard error processing. The process initiated after an unexpected exceptional con-
dition arises: ProcessDatabaseError in package SQL_DatabaseErrorPkg is called and
an exception, SQLDatabaseError, defined in SQL_CommunicationsPkg, is raised.

Status parameter. See Result parameter.

Three-valued arithmetic. The arithmetic operations within SQL which are defined to cover
the null value. Three-valued arithmetic operations act just like their normal counterparts on
non-null values; they return the null value if any of their operands are null.

I
140 CMU/SEI-89-TR-1 6i

I
Three-valued logic. The extension of comparison and Boolean operations within SQL to
cover null values. SQL comparison operations return the truth value UNKNOWN if either of
their operands are null. SQL defines Boolean operations (and, or, not) on the three-valued
set of Boolean operands [FALSE, UNKNOWN, TRUE].

Transaction. A logic unit of database work. Database transaction control provides
transaction atomicity; i. e., (1) either all of the database modifications performed by any
transaction occur or none of them do, and (2) the effect of every successful transaction is
the same, whether or not other transactions are executing concurrently.

-Type type. O.e of the two types making up an abstract domain definition. The set of
objects of this type includes the null value. Usually, the _Type type is a private record type.

* See Abstract domain.

User-defined semantics. The semantics of operators supplied by support packages writ-
ten by users. These packages allow users to the SAME to fit local needs.

Visible Ada type. Opposite of a private type. See _NotNull type.

I!
I
I
I
I

I
I
I
I

ICMU/SEI.-89-TR-1 6 141

U
U
I
I
I
U
I
I
I
I
I
I
I
I
I
I
I

142 CMU/SEI-89-TR-1 6 £

II C SAME Standard Package Listings

I C.1 Introduction
This appendix contains the source code of the SAME standard packages. This code will be
available in machine-readable form from the SEI for a limited time. Please read the
copyright notice in the next section. A copy of this notice appears in each file of theg machine-readable distribution.

Every procedure and function declaration in these packages is followed by a pragma IN-
LINE which has been "commented out." The explanation for this is as follows. Almost all of
the procedures and functions in these packages are extremely small. Many consist of a
single If or return statement. Therefore they are excellent candidates for procedure inlining

which will decrease their runtime cost by the overhead of a procedure call. Experience in
using this code with various compilers has shown that this degree of inlining tends to uncov-
er compiler errors and produce inexplicable timings. The safest approach, that of not using
inlining at all, has be chosen for the code as distributed. The installer is urged to experiment
with the inlining of this code. Some experiments have shown a tenfold speedup due to inlin-
ing (whereas other experiments, on other compilers and machine architectures, showed
marginal slowdown due to inlining). Recall that inlining will usually make the resulting object

I module larger.

I
I
i
I
I
I
I
I
I

ICMU/SEI-89-TR-1 6 143

I I I

C.2 Copyright Notice I

-- The following copyright must be included in this software and

-- all software utilizing this software.

-- Copyright (C) 1988 by the Carnegie Mellon University, Pittsburgh, PA. I
-- The Software Engineering Institute (SEX) is a federally funded
-- research and development center established and operated by Carnegie
-- Mellon University (CMU). Sponsored by the U.S. Department of Defense I
-- under contract P19628-85-C-0003, the SE! is supported by the
-- services and defense agencies, with the U.S. Air Force as the
-- executive contracting agent. I
-- Permission to use, copy, modify, or distribute this software and its
-- documentation for any purpose and without fee

-- is hereby granted, provided
-- that the above copyright notice appear in all copies and that both I
-- that copyright notice and this permission notice appear in supporting

-- documentation. Further, the names Software Engineering Institute or
-- Carnegie Mellon University may not be used in advertising or publicity
-- pertaining to distribution of the software without specific, written I
-- prior permission. CMU makes no claims or representations

-- about the suitability of
-- this software for any purpose. This software is provided "as is"
-- and no warranty, express or implied, is made by the SEX or CMU,
-- as to the accuracy

-- and functioning of the program and related program material, nor
-- shall the fact of distribution constitute any such warranty. No

-- responsibility is assumed by the SEX or CMU in connection herewith.

I
C.3 SQL-System Specification

-- SQLSystem is a "platform-specific" package
-- within the SAME

package SQLSyatem is

-- MAX LEN is the length of the longest character string
-- which the DBMS will store.

-- It serves as the upper bound on SQL_CharPkg
-- subtypes SQL_Char Length and SQLUnpadded_Length.
-- SQLChar_Length is a subtype of Natural with a lower bound
-- of i.
-- SQLUnpadded Lencrth is a subtype of Natural with a lower
-- bound ot 0.

MAXCERLEN ; constant integer := strlength; -- replace 3
-- MAXERRLEN is the maximum length of the error message
-- string returned from DBMS specific error message routine

MAXERRLEN : constant integer :- mag length; -- replace

end SQLSystem;

144 CMU/SEI-89-TR-16

I
* C.4 SQLStandard Specification

package Sql_Standard is
package CharacterSet renames cap;
subtype Character Type is Character Set.cst;
type Char is array (positive range <>)

of CharacterType;
type Smallint is range ba..ts;
type Int is range hi..ti;
type Real is digits dr;

type Double Precision is digits dd;
-- type Decimal is to be determined;

type SqlcodeType is range bsc..tsc;
subtype SqlError is SqlcodeType

range SqlcodeType' FIRST ..- 1;
subtype Not Found is SqlcodeType

range 100.. 100;
subtype Indicator Type is t;

-- cap is an implementor-defined package and cat is an
-- implementor-defined character type. be, ts, hi, ti, dr, dd, bac,
-- and tsc are implementor defined integral values. t is Int or
- - mallint corresponding to an implementor-defined <exact
-- numeric type> of indicator parameters.

end sqlstandard;1
C.5 SQL_CommunicationsPkg Specification
with SQLCharPkg; use SQLCharPkg;
with SQL Standard; use SQLStandard;
package SQLCommunicationsPkg is

-- This is an exazple of the package, providing minimal functionality.
-- This package may be tailored to the needs of a given platform.

SQL Database_Error : exception;

SQLCODE : SQLCODETYPE;

-- Parameterless function returning an error message of type-- SQL_ ChNtNull.
The error message is the descriptive string associated with

-- the most recent database error. It is produced by a3 - DBMS specific function.

function SQLDatabase_Error_Message return SQLCharNotNull;

end SQLComunicationsPkg;

3 C.6 SQL_CommunicationsPkg Body

-- SQL Cmmnications Pkg is a "platform-specific" package
-- within the SAME
-- this particular version of the package was developed for
-- a platform consisting of the Verdix (Version 5.41) Ad& compiler
-- and INGRES (Version 5.0) running on a Vax Station

I
CMU/SEI-89-TP-1 6 145I

I

with system; use system;
with SQLSystem; use SQLSystem;

with ingres_csupport; use ingres-c-support;
-- ingresc support contains functions AddNull and StripNull

-- Ada format strings. It is not included in the SAME standard packages.

package body SQL Coumunications_Pkg is

function SQLDatabaseoError_Message return SQLCharNotNull is

Message-Buffer SQLChar NotNull (i. .MAXERPLEN);

Len : integer :- MADXERLEN; i
procedure geterrmsg (Message in Address;

Length in Address);

pragma interface(C, geterrmsg, "_sqlerrmsg");

begin
geterrmog (MessageBuffer'Address, Len'Address);

-- the assumption here is that no error will occur wLen

-- retrieving the error message from the database

return stripnull(MessageBuffer);

and SQL_Databae_ErrorMessage;

end SQL_Couunications_Pkg; 3
C.7 SQL_Exceptions Specification
package SQL exceptions

is

Null Value-Error : exception; I
end SQL exceptions;

C.8 SQL_BooleanPkg Specification 3
package SQL Boolean_Pkg

type BooleanwithUnknown is (FALSE, UNKNOWN, TRUE);

---- Three valued Logic operations --
--- three-val X three-val => three-val --
function "not" (Left : Boolean-with Unknown)

return Booleanwith-Unknown;
-- pragma INLINE ("not");
function "and" (Left, Right : oolean_withUnknown) I

return Boolean with Unknown;
-- pragma INLINE ("and");

function "or" (Left, Right : BooleanwithUnknown)

return Boolean with Unknown; I
146 CMU/SEI-89-TR-1 6

I
-- pragma INLINE ("or");

function "xor" (Left, Right : Boolean with-Unknown)
return Boolean with Unknown;

-- pragma INLINE ("xor");

--- three-val => bool or exception ---

function To Boolean (Left : Boolean withUnknown) return Boolean;

-pr.iqma INLINE (ToBoolean);

three-val -> bool ---
function Is True (Left : Boolean withUnknown) return Boolean;
-- pragma INLINE (IsTrue);

function Is False (Left : Boolean withUnknown) return Boolean;
-- pragma iLINE (Is_F-aise);
function Is Unknown (Left : Boolean-with Unknown) return Boolean;
-- pragma INLINE (IsUnknown);

end SQLBooleanPkg;

I
C.9 SQL_BooleanPkg Body

3 With SQL_Exceptions;

package body SQL_BooleanPkg is

i NullValueError : exception renames SQLExceptions.Null Value Error;

function "not" (Left : Boolean with Unknown)
return Boolean with Unknown is

begin
case Left is

when true => return false;

when false => return true;
when unknown => return unknown;

end case;
end;

function "and" (Left, Right : BooleanwithUnknown)

return Boolean-withUnknown is
begin
if (Left = False) or else (Right = False) then

return False;

elsif (Left - Unknown) or else (Right = Unknown) then
return Unknown;

else
return True;

end if;
end;

function "or" (Left, Right : Boolean-withUnknown)
return BooleanfwithoUnknown is

begin
if (Left = True) or else (Right - True) then

return True;
elsif (Left = Unknown) or else (Right = Unknown) then

return Unknown;
else
e return False;
end if;
and;

CMU/SEI-89-TR-1 6 147I

function "zor" (Left, Right :Boolean withUnknown)
return Boolean with Unknown is

be gin
return (Left and not Right) or (not Left and Right);

and;I

-- three-val -> bool or exception
function ToBoolean, (Left : oolean with Unknown) return Boolean is
begin
if Left = Unknown then raise null-value error;

else return (Left - True);
end if;

and;

-- three-val -> bool -

function IsTrue (Left Boolean with Unknown) return Boolean is3
begin

return (Loft - True);
end;
function Is-False (Left : Boolean with Unknown) return Boolean is
beginI

return (Loft = False);
and;
function Is-Unknown (Left : oolean with Unknown) return Boolean is

return (Left -Unknown);
end;

end SQLBooleanPkg;

CA10 SQL-IntPkg SpecificationI
with SQL Standard;

with SQLoolean_pkg; use SQLEcoleanPkg;
with SQLChar_ Pkg; use SQLCharPkg;
packge SiQL-1mtPkg

type SQL-Int-not null is new SQL Standard.Int;

--- Possibly Null Integer--

type SQL- mt is limited private;I

function NullSQL-Int return SQLInt;
-pragzia INLINE (NullSQLInt);5

-this pair of functions convert between the
-- null -bearing and non-null -bearing types.

function Without_-NullEase (Value :SQLInt)
return SQL IntNotNull;

-pragma INLINi (WithoutNullEase);
-WithNullEase raises NullValue Error if the input

-- value is null

function With NullEae(Value SQL-ZntNotNull)
return SQLInt;

-pragma INLINE (WithNullEase);

-this procedure implements range checking
-note: it is not meant to be used directly

-- by application programers
-see the generic package SQL-IntOps

148 CMU/SEI-89-TR-1 63

3 -- raises constraint earror if not
-- (First <= Right <= Last)

procedure Assign_with-chock(
Left :in out SQL -Int; Right :SQLInt;

First, Last : SQL_ntNotNull);
-pragma INLINE (Assign_writh-check);

-the following functions implement three valuedI -- arithmetic
-if either input to any of these functions is null

-- the function returns the null value; otherwise
-- they perform the ind~icated operation
these functions raise no exception&

function "+" (Right SQLInt) return SQL Int;

-- pragma INLINE ("+");
function "-"(Right SQLInt) return SQL Int;

-pragma INLINE ("-");

function "abs' (RighL : SQLInt) return SQLInt;
-- pragma INLINE ('abs");
function "+" (Left, Right SQLInt) return SQLInt;

-pragma INLINE ("+");

function "*" (Left, Right :SQLInt) return SQLInt;

-- pragma INLINE ('"*");

function "-" (Left, Right SQLInt) return SQL Int;

-pragma INLINE ("-"); __

function "/"(Left, Right SQLInt) return SQLInt;
-- pragma INLINE ("/");
function "mod" (Left, Right SQLInt) return SQLInt;

-pragma INLINE ("mod");
function "rem" (Left, Right SQLInt) return SQLInt;
-- pragma INLINE ("rem");
function "**" (Left : SQLInt; Right: Integer) return SQLInt;

-pragma INLINE ("**");

-simulation of 'IMAG~E an 'VALUE that
-return/take SQLIChsar[_NotNull) instead of string

function IMAGE (Left SQ L It_-Not_-Null) return SQLCharNotNull;
function IMA.GE (Left :SQLInt) return SQLChar;
function VALUE (Left SQLCharNotNUll) return SQL-IntNot Null;

function VALUE (Left :SQLCha&r) return SQLInt;

-- Logical Operations --

-type X type => Boolean with unknown --

-these functions implement three valued logic
-if eit-hor input is the null value, the functions

-- return the truth value UNXNOWN; otherwise they
-- perform the indicated comparison.I -- these functions raise no exceptions

function Equals (Left, Right : SQL Int) return Boolean with Unknown;
-- pragma INLINE (Equals);
function NotEquals (Left, Right : SQLInt)

_return Boolean-with Unknown;
-pragma INLINE (NotEquals);

function <"(Left, Right :SQLInt) return Boolean with Unknown;
-- pragma IN LINZ ("<");

function >"(Left, Right :SQLInt) return Boolesan with-Unknown;
-- pragma INLINE (">"1);

function "<=" (Left, Right SQLInt) return Boolean with Unknown;
-- pragma INLINE ("<=");
function ">-" (Left, Right SQLInt) return Boolean with Unknown;

-pragma INLINE (">-");

-type => boolean --

CMU/SEI-89-TR-1 6 149

I

function IsNull (Value : SQLInt) return Boolean; I
-- pragma INLINE (IsNull);
function Not Null(Value : SQL Int) return Boolean;
-- pragma INLINE (NotNull);

-- These functions of class type => boolean
-- equate UNKNOWN with FALSE. That is, they return TRUE
-- only when the function returns TRUE. UNKNOWN and FALSE

-- are mapped to FALSE.
function "-" (Left, Right SQLInt) return Boolean;

-- pragma INLINE ("=");
function "<" (Left, Right SQLInt) return Boolean;
-- pragma INLINE ("<");
function ">" (Left, Right SQLInt) return Boolean;

-- pragma INLINE (">");
function "<=" (Left, Right SQLInt) return Boolean;

-- pragma INLINE ("<="); I
function ">-" (Left, Right SQLInt) return Boolean;

-- pragma INLINE (">="); I

-- this generic is instantiated once for every abstract
-- domain based on the SQL type Int.
-- the three subprogram formal parameters are meant to I
-- default to the programs declared above.
-- that is, the package should be instantiated in the
-- scope of a use clause for SQL Int Pkg.
-- the two actual types together form the abstract

-- domain.
-- the purpose of the generic is to create functions
-- which convert between the two actual types and a
-- procedure which implements a range constrained I
-- assignment for the null-bearing type.

-- the bodies of these subprograms are calls to
-- subprogram& declared above and passed as defaults to

-- the generic.
ge ner ic

type WithNulltype is limited private;
type Without nulltype is range <>;

with function With NullBase (Value : SQLIn+ NotNull)
return WithNull_Type is <>;

with function Without Null Base(Value : WithNullType)
return SQL_mt_NtNull is <>;

with procedure Assign_with check (I
Left : in out WithNullType; Right : WithNullType;
First, Last : SQLIntNotNull) is <>;

package SQL Int_Ops is

function With Null (Value : Without Null type)
return With_Nulltype;

-- pragma INLINE (With_Null);
function Without Null (Value : With NullType)

return Without_Null_tvpe;
-- pragma INLINE (WithoutNull);
procedure assign (Left : in out With null.Type;

Right in With_null_type);

-- pragma INLINE (assign);
end SQLIntOps;

private

type SQLInt is record
Is Null: Boolean := true;

Value: SQLIntNotNull; I
150 CMU/SEI-89-TR-16

3 and record;

and SQL-IntPkg;

CA11 SQL-Int Pkg Body
I with SQL exception&;

package b~ody SQL Intypkg is

3 Null Value-Error :exception rename* SQL-exceptionc.null value error;

function Without-NullB ase(Value SQLInt)
return SQL-IntNot Null is3egi

if Value.IsNull then
raise Null Value error;

else
return Value .Value;

end if;
end WithoutNullEase;

3function WithNullEase (Value :SQLIntNot_-Null)
return SQL mnt is
begin

return(False, Value);U end WithNullBase;

procedure Assign_with-check
Left :in out SQL Int; Right :SQLInt;

First, Last :SQLIntNotNull) is
begin

if Right.ls-null then Left.is-null :- True;
0l41fI (Right.Value < First or else

R-ight .Value > Last) then
raise Constraint Error;

als Left :- Right;
end if;

end Assign_With-Check;

function NullSQL-Int return SQL- mt is
NullHolder :SQLInt;

begin
return (NullHolder); -- relies on default expression for Is Null

end NullSQLInt;

function "+" (Right S:)LInt) return SQL mnt is

I begireturn Right;
end;

function "-"(Right SQLInt) return SQL-Int is
ern (~h.sNl,-RgtVle3 end;

function "abs"(Right :SQL Int) return SQL mnt is
begin3 return (Right. IsNull, abs (Right. Value));

CMU/SEI-89-TR-1 6 151

end;3

function "+"(Left, Right :SQL -tnt) return SQL -tnt is
begin

if Left.l._Null or Right.!._Null then
return NullSQL-tnt;

else
return (False, (Left.Value + Right.Value));

end if;I
end;

function "*" (Left, Right : SQL tnt) return SQL-tnt isI
begin

if Left.!._Null or Right.!._Null then

return NullSQL-Int;

alreturn (False, (Left.Valuo * Right.Value);
end if;

end;

function "-" (Left, Righ; SQL-tnt) return SQL-tnt is
begin

if Left.!._Null or Right.!._Null then

aloreturn VullSQL-tnt;

return (False, (Left.Value - Right.Valu*));
end if;

end;I

function "/"(Left, Right : SQL tnt) return SQL-tnt is
begi~n

return NullSQL-tnt;I

also
return (False, (Left.Value / Right.Valua));

end; an f

function "mod" (Left, Right : SQL-tnt) return SQL-tnt is

begin
if Left.!._Null or Right.!._Null then

return NullSQL-tnt;

aloreturn (False, (Left.Valuo mod Right.Value));I

end if;
end;

function "rem" (Left, Right :SQL-tnt) return SQL-trt isI
begin

if Left.!._Null or Right.leNull then

aloreturn NullSQL-tnt;

return (False, (Left.Value rem Right.Value));
end if;

end;

function "**" (Left :SQL tnt; Right: Integer) return SQL-tnt is
begin

if Left.IsNull then

return NullSQL-tnt;
else

return (False, (Loft.Value ** Right));

end if;I

152 CMU/SEI-89-TR-1 6

I
3 end;

function IMAGE (Left : SQL_Int_NotNull) return SQLCharNotNull is
begin

return toSQL_Chr_NotNull(SQLInt_NotNull' IMAGE(Left));
and IMAGE;

function IMAGE (Left : SQLInt) return SQLChar is
begin

if not Left. IoNull then
return toSQL_Char (SQLIntNot Null' IMAGE(Left.Value));

also
return NullSQLChar;

end if;

end IMAGE;

3 function VALUE (Left : SQLCharNotNUII) return SQLIntNot Null is
begin

return SQL IntNot Null'VALUE(toString(Left));3 end VALUE;

function VALUE (Left : SQLChar) return SQLInt is
begin

if Not Null(Left) then
return WithNull_Base(SQLIntNotNull'Value (toString(Left)));

else
return NullSQLInt;

end if;
end VALUE;

-- Logical Operations --

-- type X type => Boolean with unknown --
function Equals (Left, Right : SQLInt) return Boolean with Unknown is
begin

if Left.Is Null or Right.IsNull then
return Unknown;

else
if (Left.Value = Right.Value) then
return True;

else
return False;
end if;

end if;
end;

function Not-Equals (Left, Right : SQLInt)
return Boolean-with-Unknown is

begin
if Left.Ix Null or R-ight.Im Null then

return Unknown;

else
if (Left.Value = Right.Value) then
return False;

else
return True;
end if;

end if;

end;

3 function "<" (Left, Right : SQL Int) return Boolean with Unknown is
begin

if Left.IsNull or Right.Is-Null then
return Unknown;

CMU/SEI-89-TR-16 153

else
if (Left. Value < Right.Value) then
return True;

elso
return False;

end if;
end if;

end; 3
function ">" (Left, Right : SQLInt) return Boolean withUnknown is
begim

if Left.IsNull or Right.l._Null then

return Unknown;
else

if (Left.Value > Right.Value) then
return True;

lseo
return False;

end if;
nd if;

end;

function "<=" (Left, Right : SQL Int) return Boolean withUnknown is
begin I

if Left.!sNull or Right.IsNull then
return Unknown;

else
if (Left.Value <= Right.Value) then I
return True; E

lseo
return False;

end if;
and if;

and;

function ">-" (Left, Right : SQL Int) return Boolean with Unknown is
begin

if Loft.!. Null or Right.IsNull then
return Unknown;

if (Left.Value >- Right.Value) then

return True;
else

return False;
end if;

and if;

end ">"; I

-- type => boolean --

function IsNull(Value : SQLInt) return Boolean is

begin
return Value.!._Null;

nd Is-Null;

function Not .2ull(Value : SQLInt) return Boolean is
begin

return not Value.I._Null;

end NotNull;

function "-" (Left, Right : SQLInt) return Boolean is
begin

if Left.Is Null or else Right.!s Null then

154 CMU/SEI-89-TR-16 3

I
3 return FALSE;

else

return Left.Value = Right.Value;

end if;
end .11
function "<" (Left, Right SQLInt) return Boolean is
begin

if Left.. INull or else ight. IsNull then
return FALSE;3 else
return Laft.Value < Right.Value;

end if;
end "<"';

function ">" (Left, Right : SQL Int) return Boolean is
begin

if Left.IsNull or else Right.IsNull then

elsereturn
FALSE;

return Left.Value > Right.Value;
end if;

and "1>" ;

function "<=" (Left, Right SQLInt) return Boolean in
begin

if Lft.IsNull or else Right.IsNull then

alsoreturn FALSE;

return Left.Value <= Right.Value;
end if;

end "<=" ;
function ">=" (Left, Right : lQLInt) return Boolean is

begin
if Left. InNull or else Right.IsNull then

return FALSE;
also

return Left.Value >- Right.Value;
end if;

end ">w";

package body SQL_Int_Ops is

function WithNull (Value : WithoutNull type)
return With_Null type is

begin

return(WithNullBase(SQLXnt_NotNull(Value)));3 end WithNull;

function Without Null (Value : WithNullType)
return WithoutNull_Type is

begin

return (Without null_Type
SQL_-nt_NotNull' (WithoutNullBase(Value))));

end WithoutNull;

procedure assign (Left in out With null Type;
Right in Withnulltype) is

begin

AssignWith Check(Left, Right,
SQLInt NotNull (WithoutNull Type' FIRST),

• SQLIntNotNull (WithoutNull-Typ'LAST));
end assign;

end SQL_!nt(_Opa;

Sand SQLInt_Pkg;

C; USEI-89-TR-16 155I

I

C.12 SQLSmallintPkg Specification
with SQL Standard;
with SQLBoolean_Pkg; use SQLBooleanPkg;
with SQLCharPkg; use SQLCharPkg;
package SQL Smallint_Pkg

type SQL_S allintnotnull is new SQLStandard.Smalli-nt;

Possibly Null Integer -

type SQLSmallint is limited private;

function Null SQL Smallint return SQL_Smallint;
-- pragma INLINE (NullSQLSmallint); 3
-- this pair of functions converts between the
-- null-bearing and non-null-bearing types.
function WithoutNull_Base (Value : SQLSmallint)

return SQL_SmallintNot Null; n
-- pragma INLINE (Without NullBase);
-- With Null _ase raises NullValueError if the input
-- value is null
function WithNullEase(Value : SQLSmallintNotNull)

return SQL_Smallint;
-- pragma INLINE (With Null_Base);

-- this procedure implements range chocking 3
-- note: it is not meant to be used directly
-- by application programers
-- see the generic package SQLSmallintOp
-- raises constraint-error if not
-- (First <- Right <= Last)
procedure Assign with check

Left : in out SQLSmallint; Right : SQLSmallint;
First, Last : SQLSmallint_NtNull);

-- pragma INLINZ (Assign with check);

-- the following functions implement three valued 3
-- arithmtic
-- if either input to any of these functions is null
-- the function returns the null value; otherwise
-- they perform the indicated operation
-- these functions raise no exceptions
function "+"(Right : SQLSmallint) return SQL_Smallint;
-- pragma INLINE ("+");
function "- .ight : SQL Smallint) return SQL Smallint; I
-- pragma INLINE ("-") I

function "abs' (Right : SQLSmallint) return SQL Smallint;
-- pragma INLINE ("abs");
function "+"(Left, Right : SQLSmallint) return SQL Smallint; I
-- pragma INLINE ("+");
function "*"(Left, Right : SQLSmallint) return SQL_Smallint;

-- pragma INLINE ("*");
function "-" (Left, Right SQLSmallint) return SQLSmallint;
-- pragma INLINE ("-");
function "/"(Left, Right SQLSmallint) return SQLSmallint;
-- pragma INLINE ("/");
function "mod" (Left, Right : SQL Smallint) return SQLSmallint;
-- pragma INLINE ("rood") ;
function "rem" (Left, Right SQLSmallint) return SQLSmallint;

-- pragma INLINE ("rem");
function "**" (Left : SQLSmallint; Right: Integer) return SQLSmallint;

156 CMU/SEI-89-TR-1 6

3I-- pragma INLINE ("**")

-- simulation of 'IMAGE and 'VALUE that
n_ return/take SQLChar[_NotNull] instead of string

function IMAGE (Left SQL SmallintNot Null) return SQL_CharNotNull;
function IMAGE (Left SQL Sallint) return SQL Char;
function VALUE (Left SQLCharNotNull) return SQLSmallintNot Null;
function VALUE (Left SQL Char) return SQLSmallint;

-- Logical Operations --

-_ type X type -> Boolean with unknown --
-- these functions implement thre valued logic
-- if either input is the null value, the functions
-- return the truth value UNKNOWN; otherwise they
m_ perform the indicated comparison.
-- these functions raise no exceptions
function Equals (Left, Right : SQL_Smallint) return Boolean withUnknown;

-- pragma INLINE (Equals);
function NotEquals (Left, Right : SQL_Smallint)

return BooleanwithUnknown;
-- pragma INLINE (Not-Equals);

function "<" (Left, Right SQLSmallint) return Boolean with Unknown;
-- pragma INLINE ("<");

function ">" (Left, Right SQLSmallint) return Boolean-withUnknown;
-- pragma INLINE (">");
function "<=" (Left, Right SQLSmallint) return Boolean with Unknown;
-- pragma INLINE ("<=");
function ">-" (Left, Right SQL_Smallint) return oolean with-Unknown;
-- pragma INLINE (">=");

-- type => boolean --

function IsNull(Value : SQLSmallint) return Boolean;
-- pragma INLINE (IsNull);

function Not Null(Value : SQLSmalint) return Boolean;
-- pragma INLINE (Not-Null);

-- These functions of class type => boolean
s_ equate UNKNOWN with FALSE. That is, they return TRUE

-- only when the function returns TRUE. UNKNOWN and FALSE
-- are mapped to FALSE.
function "-" (Left, Right SQLSmallint) return Boolean;
-- pragma INLINE ("=");
function "<' (Left, Right SQL Smallint) return Boolean;
-- pragnma INLTNE ("<");
function ">" (Left, Right SQL Smallint) return Boolean;
-- pragma INLINE (">");
function "<=" (Left, Right SQL Smallint) return Boolean;
-- pragma INLINE ("<=");
function ">-" (Left, Right SQLSmallint) return Boolean;
-- pragma INLINE (">=");

-- this generic is instantiated once for every abstract

-- domain based on the SQL type Smallint.
-- the three subprogram formal parameters are meant 12
-- default to the programs declared above.
-- that is, the package should be inmstantiated in the
-- scope of a use clause for SQLSmallintPkg.
-- the two actual types together form the abstract1 - domain.
-- the purpose of the generic is to create functions

-- which convert between the two actual types and a
-- procedure which implements a range constrained

CMU/SEI-89-TR-1 6 157

I

-- assignment for the null-bearing type. 3
-- the bodies of these subprograms are calls to
-- subprograms declared above and passed as defaults to
-- the generic.

generic I
type WithNull type is limited private;
type Without-null type is range <>;
with function With Null Base (Value : SQLSmallint_NotNull)

return WithNull_Type is <>;
with function WithoutNullBase(Value : WithNull_Type)

return SQLSmallint Not- Null is <>;
with procedure Assign with_check (

Left :In out With NullType; Right :With NullType;
First, Last : SQL_Smallint NotNull) is <>;

package SQL SmallintOP. is
function With Null (Value : WithoutNulltype)

return With_Null_type;
-- pragma INLINE (WithNull);

function WithoutNull (Value : WithNullType)
return WithoutNulltype;

-- pragma INLINE (WithoutNull);
procedure assign (Left : in out With null Type;

Right in Withnull_type);
-- pragma INLINE (assign);

end SQL_Smallint_ops;

private

type SQLSmallint is record
Is Null: Boolean := true;
Value: SQLSmallint_Not Null;

end record; I
end SQLSmallintPkg; I
C.13 SQLSmallint_Pkg Body I
with SQLexceptions;
package body SQLSmallintypkg is

Null Value-Error : exception renames SQL exceptions.null value error; 3
function WithoutNullBase(Value : SQLSmallint)
return SQLSmallintNotNull is
begin

if Value.lsNull then
raise Null Value error;else
return Value .Value;

and if;

end WithoutNullBase;
_ _ I

function With Null Base(Value : SQLSmallintNotNull)
return SQLSmallint is
begin

return (False, Value);
end With NullEase;

procedure Assignwith-check
Left : in out SQLSmallint; Right : SQLSmallint;

158 CMU/SEI-89-TR-16

U
First, Last :SQL SmallintNot_Null) is

begin
if Right.IsNull then Left.IsNull := True;

elsif
(Right.Value < First or else
Right.Value > Last) then

raise Constraint Error;
also

Left := Right;

end if;
end AssignWithCheck;

5 function NullSQLSmallint return SQL_Smallint is
Null _older : SQLSmallint;

begin
return (NullHolder); -- relies on default expression for Is-Null

end NullSQLSmallint;

function "+" (Right SQLSmallint) return SQLSmallint is
begin

return Right;
and;

function "-" (Right SQLSmallint) return SQLSmallint is
begin

return (Right.Is_Null, -(Right.Value));

end;

dfunction "aba' (Right : SQLSmallint) return SQL Smallint is

begin
return (Right. IsNull, abs (Right .Value));3 end;

function "+"(Left, Right : SQLSmallint) return SQLSmallint is
begin

if Left.Is Null or Right.Is Null then

return-Null SQLSallint;
else

return (False, (Left.Value + Right.Value));

end if;

function "*"(Left, Right : SQLSmallint) return SQL Smallint is
begin

if Loft.IsNull or Right.Is Null then
return NullSQLSmallint;

return (False, (Left.Value * Right.Value));
and if ;

end;

3 function "-" (Left, Right : SQLSmallint) return SQL Smallint is
begin

if Lft.IsNull or Right.Is Null then
return NullSQL Smallint;

alsoe
return (False, (Left.Value - Right.Value));

end if;
3 end;

function "/" (Left, Right : SQLSmllint) return SQLSmallint is
begin3 if Left.IsNull or Right.IsNull then

CMU/SEI-89-TR-1 6 159

I
return NullSQLSmallint; 3

also
return (False, (Left.Value / Right.Valua));

end if;
end;

function "mod" (Left, Right : SQL Smallint) return SQLSmallint is
begin

if Left. Is Null or Right.IsNull then
return NullSQLSmallint;

else
return (False, (Left.Value mod Right.Value));

end if;

function "rem" (Left, Right : SQLSmallint) return SQLSmallint is
begin 3

if Left.ImNull or Right.IsNull then
return NullSQLSmallint;

else
return (False, (Left.Value rem Right.Value));

end if;

end;

function "**" (Left : SQLSmallint; Right: Integer) return SQL Smallint is 3
begin

if Left.Is Null then
return NullSQLSmallint;

else
return (False, (Left.Value ** Right));

end if;
nd; 3

function IMAGE (Left : SQLSmallintNotNull)
return SQLChar_NotNull is

begin
return to SQLCharNot Null(

sQL_smllint Not-Null' Iu= (Left));
end IMAGE;

function IMAGE (Left : SQLSmallint) return SQL_Char is
begin

if not Left.IsNull then
return to SQL Char (

SL_-SIllint NotNull' Iaaz (Left. Value));
else

return NullSQL_Char;

end if;
and M1AGE;

function VALUE (Left : SQL CharNot Null)

begin return SQL_Smallint NotNull is
I

return SQLSmalnt_NotNull' VALUE (toString (Left));
end VALUE; 3
function VALUE (Left : SQLChar) return SQL_Smallint is
begin

if NotNull(Loft) then
return With Null Base(U

SQLSmallint_Not_Null' Value (to String (Lft)));
else

return NullSQLSmallint; 3
160 CMU/SEI-89-TR-1 6 I

3 end if;
end VALUE;

3 -- Logical Operations -

-typo X type => Boolean with Unknown -

function Equals (Left, Right :SQL Smallint)
return Boolean-withUnknown is3 _ _n

if Left.IsNull or Right.IsNull then
return Unknown;

else
if (Left.Value = RIght.Value) then
return True;

also
return False;3n f

end if;

end;

I function NotEquals (Left, Right :SQL Smallint)
return Boolean-withUnknown is

begin
if Left.IsNull or Right.IsNull thenU return Unknown;
else

if (Left.Value = Right.Value) then
return False;U else
return True;

end if;

en; nd if;

function 11<' (Left, Right :SQL Smallint) return Boolean-with-Unknown isU begiif Left.leNull or R-ight.Is Null then
return Unknown;

*lse
if (Loft.Value < Pight.Valuo) then
return True;

else
return False;
and if;

end if;
end;

3 function ">" (Left, Right :SQLSmalint) return Boolean with Unknown Is
begin

if Left.IsNull or Right.Is Null then
return Unknown;I else

if (Loft.Value > Right.Valuo) then
return True;

0lse
return False;

end if;

end if;3 end;

function "<" (Left, Right :SQLSmalliLnt) return Soolean-with Unknown is
begin3 if Left.Is Null or Right.In Null then

CMU/SEI-89-TR-1 6 161

return Unknown;
also

if (L~ft.Valu* <= Right.Value) then
return True;
also
return False;

and if;

end; end if;3

function ">-" (Left, Right :SQL Smallint) return Boolean withUnknown is
begin

if Loft.IsNull or Right.!. Null then
return Unknown;

elif (Le*ft.Vlu >- Right.Valuel then3

return True;
also
return False;

end if;I

end;

function "=" (Left, Right :SQL SMAllint) return Boolean isI

if Left.1s_-Null or elseo Right.1s Null then
return FA.LSE;

aloreturn Laft.Value Right.Value;

end if;
end "="

function "<" (Left, Right SQLSmallint) return Boolean is
begin

if Left.Is_-Null or else Right.I._Null then
return FALSE;

aloreturn Loft.Value < Right.Value;

end if;
end 1<11;

function ">" (Left, Right :SQL Sms-llint) return Boolean is
begin

if Left.IsNull or else Right.IsNull then
return FM.SE;

also
return Loft.Value > Right.Value;

end if;
end ">";

function "<-" (Left, Right SQLSmallint) return Boolean is
begin

if Left.1sNull or else Right.Is Null then

elereturn FA~LSE;

return Left.Value <= Right.Value;
and if;

end "<=";

function ">-" (7 Right: SQLSmallint) return Boolean is
begin

if Left.IsNull or else Right.Is Null then

elereturn FA&LSE;

return Left.Value >- Right.Value;
end if;

end >

162 CMU/SEI-89-TR-1 63

type => boolean -

function is_-Null(Value :SQLSmallint) return Boolean is
begin

return Value.IsNull;
end;

function NotNull(Value SQL Smallint) return Boolean is
begin

an;return not Value.IsNull;

package body SQL SmallintC-ps is
function WithNull (Value :WithoutNull--type)

beturn With Null type is

return(WithNullBase(SQLSmallintNotNull(Value)));
end With-Null;

function Without_-Null (Value :With Null_Type)
return WithoutNull,_Type is

begin _

return (WithoutNull,_Type(
SQLSmallintNotNull' (WithoutNullBase (Value))));

* end WithoutNull;

procedure sasign (Left in out With NullType;
Right in With-Null-type) is

begin

Assign With Chock(Left, Right,
-SQLSmallint Not Null(Without Null Type'FIRST),

SQLSmalint-Not Null (Without NullType' LAST));

end assign;

end SQLSmalint_op.;

end SQLSmallint Pkg;

3 C.14 SQLReal_Pkg Specification
with SQL Standard;
with SQLBooleanmPkg; use SQL Boolean Pkg;
package SQLRealPkg

type SQLRealNotNull is now SQLStandard.Real;

--- Possibly Null Real --
type SQLReal is limited private;

function NullSQLReal return SQLReal;
-pragna INLINE -(NullSQLReal);

-this pair of functions convert& between the
-- null-bearing and non-null-bearing typos

function Without_-Null_-Base(Value :SQLReal)
return SQLRealNotNull;
-pragma INLINE (WithoutNullBase);
-- With Null -Base raises NullValueError if the input

-- value is8 null

CMU/SEi-89-TR-1 6 163

I

-- pragma INLINE (WithNullBase); 3
-- this procedure implements range checking
-- note: it is not meant to be used directly
-- by application progra~mers
-- see the generic p'i-ckage SQLReal_Ops
-- raises constraint-error if not
-- (First <= Right <= Last)

procedure AssignwithChock (I
Left : in out SQL_Real; Right : SQL_Real;

First, Last : SQL_RealNotNull);
-- pragma INLINE (Assign withcheck); I

-- the following functions implement three valued
-- arithmetic

-- if either input to any of these functions is null
-- the function returns the null value; otherwise
-- they perform the indicated operation
-- these functions raise no exceptions
function "+"(Right SQL_Real) return SQL Real;
-- pragma INLINE ("+") ;
function "-"(Right SQLReal) return SQL Real;
-- pragma INLINE ("-");
function "abs"(Right : SQLReal) return SQLReal;
-- pragma INLINE ("abe");
function "+"(Left, Right SQL_Real) return SQLReal;
-- pragma INLIN?. ("+");
function "*" (Left, Right SQLReal) return SQLReal; I
-- pragma INLINE (" * ") ;

functio. "-"(Left, Right SQLReal) return SQL_Real;
-- pragma INLINE ("-");

function "/"(Left, Right : SQL_Real) return SQLReal;
-- pragma INLINE ("/");

function "**"(Left : SQLReal; Right : Integer) return SQL_Real;
-- pragma INLINE (*"); 3

-- Logical Operations --

-- type X type => Boolean with unknown --
-- these functions implement thre valued logic I
-- if either input is the null value, the functions

-- return the truth value UNKNOWN; otherwise they
-- perform the indicated comzparison.

-- these functions raise no exceptions
function Equals (Left, Right : SQLReal) return BooleanwithUnknown;
-- pragma INLINE (Equals);

function NotEquals (Left, Right : SQLReal)
return Boolean withUnknown;

-- pragma INLINE (NotEqual.);

function "<1" (Left, Right : SQLReal) return Boolean withUnknown;
-- pragma INLINE ("<");

function ">" (Left, Right SQL_Real) return Boolean withUnknown;
-- pragma INLINE (">");

function "<=" (Left, Right SQL_Real) return Boolean withUnknown;
-- pragma INLINE ("<=");

functi,,n ">=" (Left, Right : SQL_Real) return Boolean with Unknown;
-- pragma INLINE (">-");

-- type => boolean --
function Is Null(Value : SQL_Real) return Boolean;
-- pragma INLINE (Is Null);

function NotNull(Value : SQLReal) return Boolean;
-- pragma INLINE (NotNull);

1b4 CMU/SEI-89-TR-16 3

U
-- These functions of class type => boolean
-- equate UNKNOWN with FALSE. That is, they return TRUE
-- only when the function returns TRUE. UNKNOWN and FALSE
-- are mapped to FALSE.
function "=" (Left, Right : SQL Real) return Boolean;
-- pragma INLINE ("=") ;
function "<" (Left, Right SQL Real) return Boolean;
-- pragma INLINE ("<");
function ">" (Left, Right : SQL Real) return Booiaan:
-- pragma INLINE (">");
function "<=" (Left, Right : SQL_Real) return Boolean;
-- pragma INLINE "("<=");
function ">-" (Left, Right SQLReal) return Boolean;
-- pragma INLINE (">-");

3 -- this generic is instantiated once for every abstract
-- domain based on the SQL type Real.
-- the three subprogram formal parameters are meant to
-- default to the programs declared above.
-- that is, the package should be instantiated in the
-- scope of the use clause for SQLRealPkg.
-- the two actual types together form the abstract
-- domain.

-- the purpose of the gent ,ic is to create functions
-- which convert between the two actual types and a
-- procedure which implements a range constrained
-- assignment for the null-bearing type.
-- the bodies of these subprograms are calls to
-- subprograms declared above and passed as defaults to
-- the generic.

generic
type WithNulltype is limited private;
type Withoutnull-type is Atgits <>;
with function With Null _ase(Value : SQLRealNotNull)

return With Null_Type is <>;
with function Without Null Base(Value : With NullType),

return SQLRealNotNu i 0;
with procedure Assignwith check

Left : in out WithNull_Type; Right : WithNull_Typs;
First, Last : SQL_Ral Not Null) is <>;

package SQL_RealOps is
function WithNull (Value WithoutNulltype)

return With_Nulltype;
-- pragma INLINE (WithNull);
flinction Without Null (Value : With NullType)

return WithoutNulltype;
-- pragma INLINE (WithoutNull);

• procedure assign (Left in out With Null_Type;
Right in With Null-typ*);

pragma INLINE (assign):
end SQLRealOps;

U private

type SQLReal is record
Is-Null: Boolean := true;
Value: SQL_RealNotNull;

end record;

end SQL_ReaIPkg;

CMU/SEI-89-TR-1 6 165

! ! I

C.15 SQLRealPkg Body I
with SQL exceptions;
package -ody SQLReal pkg is

Null Value-Error : excepti- renames SQL exceptions.null value *rror;

function WithoutNull Base(Value : SQL Real) 3
return SQL_Real_.!otNull is
bogin

if Value.Ic Null then

alseraise Null Value error; I
return ValueValue;

end if;
end WithoutNull_Base;

function With NullBase(Value : SQLRealNotNull)
return SQL_Real Is
begin

return (False, Value);

end With Null-Base;

procedure Assignwithcheck (
Left : in out SQL_Real; Right : SQL_Real;
First, Last : SQL_RealNotNull) is

begin
if Right.Isnull then Left.is null Tru-,;
alsif

(Right.Value < First or else
Right.Value > Last) then

raise Constraint Error;
else

Left := Right;
end if; _ I

end Assign WithCheck;

function Null_SQL Real return SQL_Real is
Null Bolder : SQL_Real;

begn
return (Null Bolder); -- relies on default expression for In Null

end Null SQL Real;

function "+"(Right SQL Real) return SQLReal is
begin

return Right;
end;

function "-" (Right SQLReal) return SQL_Real is
begin

return (Right .IsNull, - (Right.Value));end;

function "abs"(Right : SQLReal) return SQLReal is
begin

return (.-4 ght. IsNull, abs (Right .Value));
end;

function "+"(Left, Right : SQL_Re&l) return SQL Real is i
begin

if Left.s_Null or Right.lsNull then
return NullSQLReal;

166 CMU/'3EI-89-TR-16 3

edreturn (False, (Left.Value + Right.Value));

end;

3 function ""(Left, Right : SQLReal) return SQL Real is

begin
if Left.IsNull or Right.IoNull then

return NullSQLReal;

aloreturn False, (Left.Value * Right.Value));

end if;3 end;

function "-"(Left, Right :SQLReal) return SQL Real is
begin

if Left.IsNull or Right.IsNull then

elereturn NullSQLReal;

return (False, (Left.Value - Rigbt.Value));
end if;I end;

function '""(Left, Right : SQLReal) return SQL Real is
begin

if Left.Is Null or Right.Is Null then
return NullSQLReal;

else
return (False, (Left.Value / Right.Value));

en;end if;

function "**" (Left :SQLReal; Right: Integer) return SQL Real is

begin
if Left.IsNull then

return NullSQLReal;

als return (False, (Left.Value ** Right));
end if;

-nd Logical
Operations

--

-type X type => Boolean with Unknown --

function Equals (Left, Right : SQLReal) return Boolean with Unknown is

if Left.IsNull or Right.Is Null then
return Unknown;

else

return False;

end if;3 end;

function NotEquals -.oft, Right : SQLReal)

return floolean with Unknown is
begin

if Left.IsNull or Right.IsNull then
return Unknown;

3 if (Laft.Value = Right.Value) then

CMU/SEI-89-TR-1 6 167

I

return False; 3
else

return True;
end if;

end if;
end;

function "<" (Left, Right SQLReal) return Boolean with Unknown is
begin

if Left.IsNull or Right.Is_Null then
return Unknown;

if (Left.Value < Right.Value) then
return True;

elso
return False;
end if;

end if;
end;

function ">" (Left, Right : SQLReal) return Boolean withUnknown is m
begin

if Left.lsNull or Right.IeNull then
return Unknown;

elseI
if (Left.Value > Right.Value) then

return True;
elso
return False;

end if;
end if;

end; m
function "<=" (Left, Right : SQL_Real) return Boolean with-Unknown is
begin

if Left. is Null or Right.IsNull then
return Unknown;

else
if (Left.Value <= Right.Vlue) then
return True; m

else
return False;
end if;

end;end
if;

function ">-" (Left, Right : SQLReal) return Boolean w-th Unknown is
begin

if Left. Is Null or Right.IsNull then
return Unknowns;

else

if (Left.Value >= Right.Value) then
return True;

else
return False;
end if;

and if;

end;

function "-" (Left, Right : SQL_Real) return Boolean is I
begin

if Lft.IsNull or else Right.Is Null then
return FALSE;

168 CMU/SEI-89-TR-1 6

U
I also

return Left.Value = Right.Value;

and if;
end
function "<" (Left, Right SQLReal) return Boolean is

begin
if Left.IoNull or oleo Right.ImNull then

return FALSE;

alsereturn Left.Value < Right.Value;

nd if;
and " ;

function ">" (Left, Right : SQLReal) return Bolean is
begi~n

if Left.IsNull or alse Right.INull then
return FALSE;

also

return Left.Value > Right.Value;

end
if;3 end ">" ;

function "<=" (Left, Right SQL Real) return Boolean is
begin

if Left.Is Null or else Right.IsNull then
return FALSE;

else
return Left.Value <- Right.Value;

end if;

end "=" ;

function ">" (Left, Right : SQLReal) return Boolean i
begin

if Left. IsNull or also Right. IraNull then

aoreturn FALSE;

return Loft.Valuo >= Right.Value;
end f;

-- type > boole n
function itNull (Value : SQLRoal) return Boolean is
begin

return Vlue.IsNull;
and;

3 function NothNull(Vlue : SQLReal) return Boolean is
begin

return not Value.sNull;
endW t

package body SQLRaI_Ops is
function With; Null (Value : WithoutNull-type)

I return WithNull-typo ia

begin

r Sturnl(With Null'Base (SQLiReal_Notull(Value))));
and WithNull;

I function Without-Null (Value : With NullType)

return WithoutNull_Type is

begin
I return (Without nullType

SQL Real Not Null' (Without Null Base (Value)))) ;
end Without-Null-- - - -

3 procedure assign (Left : in out Withnull_Type;

CMU/SEI-89-TR-16 9

I

Right : in With_nulltype) is
begin

AssignWithCheck(Left, Right,
SQLRealNotNull (WithoutNullType' FIRST),

end &&sign; SQLRealNotNull(WithoutNullType'LAST)); I
end SQLRealOps; 3
end SQL_RealPkg;

C.1 6 SQL_DoublePrecisionPkg Specification I
with SQLStandard;
with SQLBoolean_Pkg; use SQLBooleanPkg;
package SQLDouble_ProcisionPkg

type SQLDouble PrecisionNot Null is new SQLStandard.DoublePrecision;

Possibly Null DoublePrecision ---
type SQLDoublePrecision is limited private;

function NullSQLDouble Precision return SQLDoublePrecision;
-- pragma INLINE (NullSQL Double Procision);

-- this pair of functions converts between the
-- null-bearing and non-null-bearing types.
function WithoutNullBase(Value : SQLDouble Precision)
return SQLDoublePrecision NotNull;

-- pragma INLINE (WithoutNullBase);
-- WithNullBase raises Null ValueError if the input
-- value is null

function With Null Bas(Value : SQL_DoubleProcisionNot Null)
return SQL Doubl _Precision;

-- pragma INLINE (With NullBase);

-- this procedure i plement& range checking I
-- note: it is not meant to be used directly
-- by application programmers
-- see the generic package SQLDoublePrecisionOp
-- raises constraint error if not
-- (First <- Right <= Last)

procedure AssignwithChck
Left : in out SQLDouble Precision;

Right : SQLDoublePrecision;
First, Last : SQL Double Precision NotNull);

-- pragma INLINE (Assign withcheck);

-- the following functions implement three valued
-- arithmetic
-- if either input to any of these functions is null
-- the function returns the null value; otherwise they
-- perform the indicated operation
-- these functionr raise no exceptions
function "+" (Right SQLDoublePrecision) return SQL DoublePrecision;
-- pragma INLINE ("+") ;
function "-" (Right SQL Double-Precision) return SQL DoublePre-ision;
-- pragma XNLINE (...);

function "abs"(Right SQLDouble-Precision) return SQLDouble Precision;
-- pragma INLINE ("abe");

170 CMU/SEI-89-TR-16

UI

function "+"(Left, Right : SQLDoublePrecision)
return SQLDouble Precision;

-- pragma INLINE ("+");

function "*"(Left, Right : SQLDouble_Precision)

return SQL Double Precision;
-- pragma INLINE ("*");
function "-"(Left, Right : SQLDoublePrecision)

return SQL Double Precision;
-- pragma INLINE (-7;

function "/"(Left, Right : SQLDoublePrecision)
return SQLDouble Precision;

-- pragma INLINE ("I"T;
function "**" (Left : SQLDouble Precision; Right Integer)

return SQL Double Precision;
-- pragma fILINE ("**-) ;

I -- Logical Operations --
-- type X type => Boolean with unknown --

-- these functions implement three valued logic
-- if either input is the null value, the functions
-- return the truth value UNKNOWN; otherwise they

-- perform the indicated comparison.
-- these functions raise no exceptions

function Equals (Left, Right : SQLDoublePrecision)
return BooleanwithUnknown;

-- pragma INLINE (EqualsA);
function NotEquals (Left, Right : SQLDoublePrecision)

return Boolean with Unknown;
-- pragma INLINE (NotEquals);
function "<" (Left, Right - SQLDouble Precision)

return BooleanwithUnknown;

-- pragma INLINE ("<");

function ">" (Left, Right : SQLDouble-Precision)

return Boolean withUnknown;
-- pragma INLINE (">");

function "<=" (Left, Right : SQL Double Precision)
return Boolean withUnknown;

-- pragma INLINE ("<");

function ">-" (Left, Right : SQL Double Precision)

return Boolean with Unknown;
-- pragma INLINE (">=");

-- type => boolean--
function IsNull(Value : SQLDoublePrecision) return Boolean;
-- pragma INLINE (IsNull);

function Not Null(Value : SQL Double_Precision) return Boolean;

-- pragma INLINE (NotNull);

-- These functions of class type => boolean
-- equate UNNOWN with FALSE. That is, they return TRUE
-- only when the function returns TRUE. UNKNOWN and FALSE
-- are mapped to FALSE.

function "=" (Left, Right SQLDoublePrecision) return Boolean;
function "<" (Left, Right SQLDouble Precision) return Boolean;
function ">" (Left, Right SQLDouble Precision) return Boolean;
function "<=' (Left, Right SQL Double Precision) return Boolean;
function ">=" (Left, Right SQLDoublePrecision) return Boolean;

3 -- this generic is instantiated once for every abstract
-- domain based on the SOL type Double Precision.
-- the three subprogram formal parameters are meant to3 -- default to the program. declared above.

CMU/SEI-89-TR-1 6 171

I
-- that is, the package should be instantiated in the 3
-- scope of the use clause for
-- SQLDouble PrecisionPkg.

-- the two actual types together form the abstract
-- domain.
-- the purpose of the generic is to create functions

-- which convert between the two actual types and a
-- procedure which implements a range constrained
-- assignment for the null-bearing type.
-- the bodies of these subprograms are calls to

-- subprograms declared above and passed as defaults
-- to the generic.

generic
type WithNulltype is limited private;
type Without nulltype is digits <>;
with function With Null Base(Value : SQLDoublePrecisionNotNull)

return WithNull_Type is <>;
with function WithoutNull Baseo(Value : WithNullType)

return SQLDouble-Prcision NotNull is <>;
with procedure Assignwith chock (

Left : in out WithNull-Type; Right : With Null_Type;
First, Last : SQLDoublePrecisionNot_Null) is 0;

package SQLDoublePrecisionOps is
function With Null (Value : WithoutNulltype)

return With_Nulltype;
-- pragma INLINE (WithNull);
function WithoutNull (Value With_NullType)

return Without_Nul_type;
-- pragma INLf4, (WithoutNull);
procedure assign (Left : in out With-nullType;

Right : in Withnulltype);
-- pragma INLINE (assign);

end SQLDoublePrecisionOps;

private 3
type SQL Double Procision is record

Is Null: Boolean :- true;Value : sQLoubleriionrotrll;
end record;

end SQLDublePrecisionPkq;3

C.17 SQLDoublePrecisionPkg Body m
with SQL_exceptions;
package body SQLDoubleProision_pkg is 3

Null Value Error : exception renames SQL_exceptione. null value error;

function WithoutNullBase(Value : SQL Double Procision)
return SQLDoubleProcision Not Null is
begin

i _ Value 10 Null then2
raise Nll_Value._error;t

else
return Value. Value;

end if;
end Withour._NullBase;

172 CMU/SEI-89-TR-16

I

I function WithNullBase(Value : SQLDoublePrecision NotNull)

return SQL_Double Precision is
begin

return(False, Value);
end WithNullBase;

procedure Assign_iwith check
Left : in out SQL Double Precision; Right : SQLDoublePrecision;

First, Last : SQL DoublePrecisionNotNull) is
begin

if Right.Is_Null then Left.ls_Null := True;
elsif

(Right.Value < First or else
Right.Value > Last) then

raise ConstraintError;

a Left := Right;

end if;
end Assign WithCheck;

function NullSQLDouble Precision return SQLDouble Precision is
NullHolder : SQL_DoublePrecision;

begin

return (Null Holder); -- relies on default expression for Is-Null
end NullSQLDouble Precision;

function "+" (Right : SQLDouble Precision)
return SQLDoublePrecision is

begin

return Right;
* end;

function "-"(Right : SQL Double Precision)
return SQLDoublePrecision is

begin
return (Right.Is_null, -(Rght.Value));

Sfunction "abs"(Right : SQLDouble_Precision)
return SQLDoublePrecision is

begin
return (Right.Isnull, abs(Right.Value));

* end;

function "+"(Left, Right : SQLDoublePrecision)
return SQLDoubl6Precision is

begin
if Left.IsNull or Right.IsNull then

return NullSQLDoublePrecision;

elso
return (False, (Left.Value + Right.Value));

end if;
and;

function "*"(Left, Right : SQLDouble-Precision)

return SQLDoublePrecision is
begin

if Left.Is Null or Right.Is Null then
re turn-Null_SQL_DoublePirecision;U else
return (False, (Left.Value * Right.Value));

end if;3 end;

CMU/SEI-89-TR-1 6 173

function "-" (Left, Right SQL_Double Precision)
return SQL_Doubl_Prci.sion i

begin
if Left.IsNull or Right.IsNull than

return NullSQLDoublePrecision;
alse

return (False, (Left.Value - Right.Valuo));

an;end if;

function "/"(Left, Right :SQLDouble Precision)
return SQLDoublePrecision i

beginI
if Left.Is Null or Right.IsNull then

return NullSQLDoublePrecision;
also

return (False, (Left.Value / Right.Value));
end if;

end;

function "**" (Left : SQLDoublePrecision; Right: Integer)

return SQLDouble Precision i
begin

if Left.IsNull then
return NullSQLDoublePrecision;

also
return (False, (Left.Value ** Right));

end; en f

-Logical Operations -

-type X type => Boolean- with-unknown -

function Equals (Left, Right : SQLDoublePrcision)
return Boolean-withUnknown is

beginI
if Left.IsNull or Right.Im-Null then

return Unknown;
olse

if (Left.Value - Right.Value) then
return True;

else
return False;
end if;I

end if;
end;

function Not_-Equals (Left, Right : SQLDouble Precision)I
return Boolean with Unknown is

begin
if Left.Is_-Null or Right.IsNull then

return Unknown;I
else

if (Left.Value = Right.Value) then
return False;

also
return True;

end if;

en; nd if;

function "<" (Left, Right : SQLDoublePrecision)
return Boolean with Unknown is

174 CMU/SEI-89-TR-1 63

begin
if Left.I I.Null or Right.IsNull then

return Unknown;
else

if (Left.Value < Right.Value) then
return True;

else
return False;I end if;

end if;
end;

function ">" (Left, Right :SQLDouble Precision)
return Boolean-with Unknown is

begin
if Left.IsNull or Right..IsNull thenU return Unknown;
else

if (Left.Value > R.Lght.Valuo) then
return True;I eleo
return False;
end if;

en; nd if;

function "<=" (Left, Right :SQL_7Double-Precision)

beireturn Boolean with Unknown is

if Loft.IsNull or Right.IsNull then
return Unknown;U elsif (Left.Value <= Right.Value) then
return True;

elseI return False;
end if;

end if;
end;

function ">in" (Left, Right :SQL_7Double-Precision)
return Boolean-with Unknown is

begin
if Left.Is Null or Right.Is Null then

return Unknown;

else
if (Left.Value >- Right.Value) than
return True;

else

return False;
end if;

edend if;

-type => boolean --

function Is Null (Valu* SQLDoublePrecision) return Boolea~n is
begin

an;return Valuels Null;

function NotNull(Value SQL Double Precision) return Boolesn is
* begin

CMU/SEI-89-TR-1 6 175

return not Valuels_-Null;3
end;

function "=" (Left, Right: SQLDoublePrcision) return Boolean ir

begin
if Loft.Is Null or alse Right.ZsNull then

return FALSE;

aloreturn Left.Value =Right.Valuo;I

end if;
end ''

function "<" (Left, Right SQLDouble Precision) return Boolea.n is3
begim

if Left.1s Null or else Right.Zs Null then
return FALSE;

elreturn Left.Value < Right.Value;
end iZ;

end 1<"1;

function ">" (Left, Right :SQLDouble Precision) return Boolean is

if Left.1s_-Null or else Right.IsNull then

return FALSE;

aloreturn Loft.Value > Rigbt.Value;

end if;
and ">",-

function "<" (Left, Right SQL DoublePrecision) return Boolean isI
begin

if Left.1s -Null or also Right.lsNull then
return FALSE;

return Left.Valuo <= Right.Value;

end if;
end "<=.,;

function ">-" (Left, Right :SQL Double Precision) return Boolean is

ifLeft.Is Null or alse Right.Is Nu-l then

return FALSE;

*IOreturn Left.Valuo >- Right.Value;

end if;
end ">"; 3

pack&q. oody SQ obePeiinD.is
functiLon WithNull (Value :WithoutNull1-type)

return WithNull-type Is
begin__ _I

return(With-NuY Sase(SQLDouble PrecisionNotNull(Value)));
end With-Null;

function WithoutNull (Value :WithNullType)
return Without Null -Type is

begin
return (Without null Type(

SQLDouble -Precision Not Null' (WithoutNullBase(Vlue))));
end WithoutNull;

procedure &ssign (Left in out With null_Type;
Right in With-nul-type) is

begin
Assign _WithCheck (Loft, Right,

SQL Double Precision NotNull (Without NullType'FIP.ST),

176 CMU/SEI-89-TR-1 63

U

nd assign; SQL Double Prcision Not Null(Without NullType'LAST));

end SQLDoublePrecisionOps;

end SQLDoublePrecisionPkg;

SC.18 SQLDecimal Pkg Specification
with SQLBooleanPkg; use SQLBooleanPkg;
with SQL IntPkg; use SQL antPkg;
with SQLCharPkg; use SQL_CharPkg;with SQL Double ProcisionPkg; use SQLDoublePrecisionPkg;

I pQL-gecmal= kg is

-- MAXDIGITS is implementation defined
-- It represents the maximum number of digits that can be
-- stored in the underlying hardware's representation of

-- a BCD number

MAXDIGITS : constant integer := 31;

subtype decimal-digits is natural range 0..MAXDIGITS;

type SQL Decimal NotNull(scale : decimal digits := 0) is limited private;
type SQLDecimal (scale : decimal-digits) is limited private;

subtype Numeric Cha-ecter is Character range '0' . '9';
type NumericString i array (decimaldigits range <>) of NumricCharacter;
type SignCharacter is ('+', '-');Ur
-- the following type is used for purposes of creating generic
-- assign and --s in functions DO NOT USE THIS TYPE to
-- create the abstract domains
type SQL DecimalNvtNull2(scale : decimaldigits := 0) is limited private;

function ToSQLDecimal_NotNull (Value : SQL_DecimalNotNull2)
return SQL_Deimal_NotNull;

function ToSQL_Decimal (Value : SQLDecimalNotNull2)
return SQLDecimal;

function ToSQLDecimalNotNull2 (Value SQLDecimal Not_Null)
return SQLDecimalNotNull2;

function ToSQLDecimal Not Null2 (Value SQL Decimal)
return SQLDecimal _ot_ Null2;

-- pragma INLINE(ToSQL_DecimalNot_Null2);

-- this function returns a null value of the SQLDecimal type
function Null SQLDecimal return SQLDecimal;
-- pragma INLINE(NullSQL_Decimal);

-- The following functions shift the value of the object
-- without changing the scale. Effectively, the operation
-- Imutiplies the value in the object by 10**Scale.

-- The following functions raise Constraint Error if the left
-- shift causes a loss of significant digits
function Shift (Value SQLDecimal Not Null;

Scale integer) return SQL_DecimalNotNull;
function Shift (Value SQL Decimal;

Scale integer) return SQL_Decimal;
-- pragma INLINE (Shift);

3 -- The following functions return objects with the appropriate

CMU/SEI-89-TR-16 177

-- values3
lunction Zero return SQL Decimal NotNull;
function Zero return SQL Decimal;
-- pragma INLINE(Zero);

fucto OnIeunSLD~i&-o-u
function One return SQLDecimal;NtNul

-pragma INLINE(One);

-The following Assignment procedure is provided for the
-- SQL DecimalNot_-Null type:

-The following Assignment procedure raises ConstrainT- Error
-- if the value of Right does not fall within the range
-- of lower. upper

procedure Assign_WIithCheck (Left - in out SQLDecimalNotNull;
Right : SQLDecimal NotNull7

The ollwin Asign Lower, Doper :SQLDcixmal Not Nul!2);

-- he ollwin Asig_ with-check procedure will be used
-- in the generic Assign produced in SQL_-DecimalOps

-this procedure raises the Constraint 2rror exception ifI
-- the 'Right" input parameter falls outside the razage
-- defined by Lower. Upper

procedure Assign_With :inot QLDcialk

Right : SQLDecimal;
Lower, Upper : SQLDecimal Not-Null2);

-pragma INLINE (Assign_ with- check);3

-The following comparison operators are provided:

function "" (Left, Rlight :SQLDecimal-NotNull) return boolean;

function "" (Left, Right SCLDeci-mal) return boolean;I
-- pragma INLINE('=');
function Equals (Left, Right : SQLDocimal) return BocleanWith Unknown;
-- pragma INLINE (Equals);

function NotEquals (Left, Right : SOLDecimal) return Boclean With Unknown;
-- pragma INLINE (Not_-Equals);
function <" (Left, Right :SQL_-Decimal NotNull) return boolean;
function <" (Left, Right : 3L 'Decimal) return boclean;

function .'" (Left, Right :SQL_Decimal) return Boolean WithUnknown;
-- pragma INLINE("<');
function ">" (Left, Right :SQLDecimal NotNull) return boolean;
function '>,(Left, Rigkxc :SQLDecimal) return boclesan;

function >" (Left, Right :SQLDecimal) return Boclean WithUnknown;
-- pragma INLINE (">");

furiction "<"(Left, Right :SQLDecimal tNotNull) return boolean;
f'inction "<"(Left, Right :SQL Decimal) return boclean;
function <"(Left, Right :SQLDecimal) return Boclean WithUnknown;
-- pragma INLINE "<=");

function ">"(Left, Right :SQLDecimal NotNull) return boolean;
function >"(Left, Right :SQLDecimal) return boolean;
function ">"(Left, Right :SQL Decimal) return Boclean With Unknown;I

-pragma INLINB(">-");

-the ollowing functions are membership tests
-- the value of the Object is tested to see if
-- if it falls within the range of Lowr.. Upper

function Is In Ease (Right :SQLDecimal NotNull;

retrn oolan;Lower, Upper : SQLDecimal NotNull2)

function Is-In Ease (Right :SQL_-Decimal;
Lower, Upper : SQLDecimal Not_14u112)

r%,turn boolean;

178 CMU/SEI-89-TR-1 63

-pragma INIINi (IsInBase);

function IsNull(Valu* SQL -Decimal) return boolean;
-- pragma INLINE (IsNull);

function Not Null(Valus SQLDecimal) return boolean:
-pragmia rINZ (Not-Null);

-The following unary arithmetic operators are provided:

function "+" (Right SQL Deci=alNot Null)
return SQL DecimalNotNull;

function +* (Right SQL Decimal) return SOL -Decimal;
function -" (Right :SQL DecimalNotNull)Ireturn SQLDc-ImaNotNull;
function "-" (Right :SPQL -Decimal) return SQL -Decimal:

function "&be" (Right SQL DecimalNotNull)
return SQL DecimalNotNull;

function "abs" (Light "T SQL Decimal) return SQL Decimal;
-pragma INLINE (abs");

3 -- The following binary arithmetic operators are provided:

-The "+" and ""functions return a result with a scale of
ow- ma(Lft. scale, RLight. scale)

-If the operation produce& a result that is too large to
h- e represented in an ob~ect that has this scale, &

-- Costraint-Zrror will be raised

function "+" (Left, Right :SQL -Decimal_-Not_-Null)
return SQLDecimal Not Null:Ifunction "+" (Left, Ligjht :SQLDecimal) return SQL -Decimal:

-- pragma INX N("+"):,
function "-" (Loft, Light :SQL -DecimalNotNull)

return SQLDecimal Not Null;Ufunction "-" (Left, Light :SQL -Decimal) return SQLDecimal:
prg&INLIN(-");

-The "*" function returns a result with the scale
-- Left.soale + LIght scale

-If the result is too large to be represented in an ob~ect
-- that has this scale, Constraint Error will be raIsed

function '*" (Left, Right SQL DecimalNotNull)Ireturn SQLDecimalNotNull;
function --- (Left, Ligjht SQL Decimal) return SQL Decimal;

-- The "/" function returns a result with as much *;cale as
-- possible, given the nature of the result

-If the result is to* large to be represented in the
-- the underlying hardware or in an ob~oct with no scale,
-- or if en attmt is made to divide by zero, the
-- Constraint Err or exception will be raised

function "/" (Left, Right : SQL -DecimalNotNull)
return SQLDecimlNotNull:

function "/" (Left, Ligjht : SQL_-Decimal) return SQL_-Dc.1al

-The following mixed mode operators are provided:
function "*" (Left :SQL_-Decial_ Not_-Null; Light : SQL -ItNotNull)

return SQL DecimalNotNull;
function "*" (Left :SQLDecimal: Light :SQL mnt Not Null)

return SQL-Decimal:
function"" (Loft: SQL_-Decimal; Light SQLInt)

f rton SQSmotNul Liht: QLDiml otNul

function "*" (Left : SQL71ntNotNull: Right :SQL_-Decimal)
return SQLDecimalNtNul

function "" (Left : SQL Int; Light : SQL Decimal)

CMU/SEI-89-TR-1 6 179

I

return SQL_Decimal; i
-- pragma INLINE("*");

I

function "/" (Left : SQL_DecimalNotNull; Right : SQLnt_NotNull)
return SQLDecimal NotNull;

function "/" (Left : SQLDecimal; Right SQLInt_Not Null)
return SQLDecimal;

function "/" (Left : SQLDecimal; Right SQLInt)
return SQLDecimal;

-- pragma INLINE (" /") ; I
-- The following functions convert to SQLDecimal NotNull;
function To SQL Decimal Not Null (Right : SQLnt_NotNull)

return SQlDecimal NotNull;I
-- the following function raises Constraint Error

-- if the SQLDoublePrecision Not Null value is too large

-- to be represented in BCD format
function ToSQLDecimal NotNull (Right : SQLDouble Precision NotNull)

return SQLDecimal Not Null;
-- the following function raises Constraint Error
-- if there are more than MAX DIGITS number of digits;
-- if there are two or more d7ecimal points;
-- if ther are two or more sign designations;

-- if there exists a character other than '0'..'9' or '.

or '+', '-', 1 1 for the sign

-- if the order of the characters is anything other than
-- sign designation followed by the number
function To SQL Decimal Not Null (Right : SQLCharNotNull)

return SQLDecimal NotNull;

-- pragma INLINE (To_SQL_DecimalNotNull);

-- The following functions convert to SQLDecimal;
function To SQL_Decimal (Right SQLIt_Not_Null) return SQL_Decimal;
function ToSQL Decimal (Right : SQLInt) return SQLDecimal;
-- the following two functions raise Constraint Error
-- if the SQL Double Precision Not Null value in too large

-- to be represented in BCD format
function ToSQLDecimal (Right : SQL DoublePrecisionNotNull)

return SQL_Decimal;
function To SQLDeoimal (Rijht SQL Double Precision) return SQLDecimal;

-- the following two functions raise Constraint_Error
-- if there are more than MAX DIGITS number of digits;
-- if there are two or more decimal points;

if there are two or more sign designations;
-- if there exists a character other than '0'..'9' or ' .
-- or '+', '-',' for the sign

-- if the order of the characters is anything other than
-- sign designation followed by the number

function ToSQL Decimal (Right : SQL CharNotNull) return SQLDecimal;
function ToSQLDecimal (Right : SQLChar) return SQL_Deocimal;
-- pragma INLINE (ToSQLDecimal);

-- The following functions convert from Decimal to Integer
function ToSQLInt_NotNull (Right : SQLDecimalNot_Null)

return SQLnt Not_Null;
function To SQLIntNot Null (Right SQLDecimal)

return S-QLInt Not_Null;
-- pragma INLINE(ToSQL IntNotNull);
function ToSQL Int (Right : SQLDecimal) return SQLInt;
-- pragma INLINE (ToSQLInt); 3
-- The following functions convert from Decimal to Float:
function ToSQLDoublePrecision Not Null (Right : SQL DecimalNotNull)

return SQL Double Precision Not N-ull; 3
180 CMU/SEI-89-TR.16

I
function To_SQL_Double__Precision Not Null (Right . SQL Dec-Ial)

return SQLDouble Precision NotNull:
-- pragma INLINE(ToSQLDoublePrecisionNotNull),
function ToSQLDoubloPrecision (Right : SQL_Decimal)

return SQLDouble Pzecision:
-- pragma flLINE(To SQLDouble PrecLson);

-- The following functions convert from Decimal to String:
function ToString (Right SQLDecimalNotNull) return string:

function ToString (Right : SQL Decimal) return string:
-- pragma INLINE(To String);

function To SQL Char Not Null (Right SQL DecimalNotNull)
return SQLar Not Null;

function To__SQLCha;7rNotNull (Right SQL_Decimal)
return SQL Char_ Not_ Null;

-- pragma INLINE(To_SQLChar_NotNull);
function ToSQLChar (Right : SQL._Decimal) return SQLChr:
-- pragma INLINE(To_SQLChar);

-- the following functions return the length of the string

-- value returned by the "To String" function
function Width (Right : SQL DeT-nalNctNull) return integer:
-- The following function raises the Null_ValueError exception
-- on the null input
function Width (Right : SQL_Decimal) return integer
-- pragma INLINE (Width).

-- The following functions implement game of the Ads Attributes
-- of the BCD type

-- The number of BCD digits bk "re the decimal point for the
-- type of the given object:

function IntegralDigits (Right : SQLDecimalNot Null, return decimal_digits;
functic-. IntegralDigits (Right SQL_Decimal) return decimal dagits:
-- pragaa INLINE (IntegralDigits);

-- The number of BCD digits after the decimal point for the
-- type ,f the given object:

function Scale (Right SQL_ DecimalNotNull, cer-rn decimal digits;
function Scale (Right : SQL_Decimal) return decimaldigits;
-- pragma INLINE (Scale),;

-- The actual number of BCD digits before the decimal point for
-- a given object of a given type:
function Fore (Right : SQL Decimal Not Null) return positive;
-- The following function raises the Null Value Error on the null input
function Fore (Right : SQL Decimal) return positive;
-- pragma INLINE (Fore);

-- The number of BCD digits after the decimal point for a
-- given object of a given type:
function Aft (Right : SQL_DecimalNotNull) return positive;
-- The following function raises the Null Value Error on the null input
function Aft (Right : SQL_Decimal) return positive;
-- pragma INLINE (Aft);

function MachineRound& (Right SQL DecimalNotNull)"return boolean;

function MachineRounds (Right : SQL_Decimal) return boolean;

-- pragma INLINE(MachineRounds);

function MachineOverflows (Right : SQL_Decimal .Not Null) return boolean;
function Machine Overflows (Right : SQL Decimal) return boolean;
-- pragma INLINE7(MachineOverflows);

CMU/SEI-89-TR-16 181I

I

generic U
type WithNullType(scale : decimal_digits) is limited private;
tv e Without Nu' Te (scale : decimal diqits) is limited private;

in saledecimal-digits 0;
first-sign : SignCharacter :
first_intogral NumericString :

(I..decimaldigitallast-in scale => '9');
firstfractional : NumericString :=

(1. in scale => '9');
lastaign Sign_Character =+';
lastintegral NumericString :

(i..decimal_digits' last-in scale => '9');
last_fractional Numeric-String :I

(1. in scale => '9');
with function IsInEase (Right WithoutNull_Type;

return boolean is <>; Lower, Upper : SQL_Decimal Not Null2) I
with function Is In Base (Right : WithNull_Type;

Lower, Upper SQL_Decimal_NotNull2)
return boolean is <>;

with procedure Assign_with chock
(Left : in out WithoutNullType;
Right WithoutNull_Type;

Lower, Upper : SQL Decimal Not Null2)
.is <>;

with procedure Assignwith check
(Left : in out With Null Type;
Right WithNullType
Lower, Upper : SQLDecimalNotNull2)
is <>;

with function To SQL Decimal Not Null2 (Value : WithoutNullType)
return SQLDecimal NotNul2 -i. <>;

with function ToSQLDcimal NotNul12 (Value : WithNull_Type)
return SQL Decimal Not NuIl2 is <>;

with function To_SQL Decimal Not Null (Value : SQL Decimal Not Null2)
return WithoutNull_Type is 0>;

with function ToSQLDecimal (Value : SQL DecimalNotNull2)
return With NullType is <>;

package SQL_Decimal Ops is
procedure Assign (Left in out WithoutNull_Type;

Right Without NullType);
procedure Assign (Left in out WithNull_Type;

Right WithNull Type);
-- pragma IINE (Assign);
function Is In(Right : WithoutNull Type)

return boolean;
fur.ction IsIn(Right : With N-0] Type)

return boolean;

-- pragma INLINE(Is_In);
function With Null (Value : Wit. :NullType)

return WithNullType;
-- pragmna INLINE(With Null);
function Without Null (Value : WithNull_Type)

return Without_NullType;

-- pragma INLINE(WithoutNull_Type);
end SQL_Decimal_Ops;

privatei

-- The requirement here is to provide

-- at least enough space for the machine representation of the
-- SQL DecimalNotNull operand*. 3

182 CMU/SEI-89-TR-16

I
-- type Digit is picked to be an integer type with a range
-- that will force the Ada compiler to pick a
-- pro-defined integer type from package Standard.

type Digit is range -(2**7)..(2**7)-l;

-- the following object is declared so that the true size
-- (in actual number of bits allocated) is assignec to the
.. size" object, rather than the number of bits used ofSothc which are allocated. In other words, usi.ng 'size
-- on the type Digit yields 4 bits (number bits used),
-- whereas using the 'size on "object" (of type Digit) yields
-- 8 bits (number bits allocated)

object : Digit;

-- size is the number of bits used by each object of type Digit

-- it is used in the calculation of MAXSIZE (below)

size :constant integer :=object' size:

-- MAX SIZE is the number of array positions needed for the
-- MaxDecimal type below
-- since each BCD digit can fit into 4 bits of storage, the
-- total number of bits can be calculated by MAXDIGITS * 4;
-- this result is divided by the number of bits that an object
-- of type Digit will comprise, which yields the number of
-- array positions needed for the BCD number

-- the result is incremented by one to accomodate the sign

MAXSIZE - zonstant irteger := ((4 * (MAX_DIGITS)) / size) + 1;

-- Max Decimal is the array type definition used by the

-- SQL DecimalNotNull type definition (below) to allocate maximum
-- storage for its BCD value

type Max_Decimal is array (1. .MAXSIZE) of Digit;

-- SQLDecimal Not Null is the Ada BCD type. It is comprised of a BCD
-- value which resides in an object which reserves maximum

-- space for BCD values, and a scale which indicates how
-- many digits exist to the right of the decimal point in the
-- BCD value

type SQLDecimal NotNull (scale decimal digits : 0) is record
Value : Max_)ecimal;

end record;

type SQL Decimal NotNull2 (scale decimaldigits :w 0) is record
Value : MaxDecimal;

end record;

type SQL_Decimal(scale decimal digits) is record
Is Null boolean := true;
Value SQLDecimal NotNull (scale);

end record;

end SQLDecimalPkg;

I
I

CMU/SEI-89-TR-1 6 183

1

C.19 SQL_Decimal_Pkg Body
wi.th text io; use text io;

with unchecked conversixon;
lith SQL Exceptions;
with SQLStandard;
package body SQLDcimalPkg i.s

-th-.. ollowing type in used to co-vert all other integer
-- types to the underlying hardware Integer representation
-- used by the computer to convert between integers

- and packed decimal numbersI

type BCD-Int_Type is range -(2**3)..(2**3l)-l;

NullVaJluo Error: excepticn renames SQLExceptions.null-value error;
package fio is new float -io(float); use fio;
package SQLDPNN io is new float-io(SQLDouble Precision Not Null);

use SQL_DPKN_jo;

use SQL Standard.CharacterSet;

-- interfaced assembler routines

-- this procedure converts the integer in Right to a BCD value
procedure integer _to decimal (Value in out MaxDecimal;

Right BC.)_Int_Type);
pragma inpterced (asebeinteger t -decimal);12"
pragma intrfacedr (asmbeintegerto cimal);M"

(MaxDcimal,BCD_nt_Type),Reference);

-- thi6 procedure converts the BCD value in Right to an integer
procedure deciml-to-integer (Value in out SCD_nt_Ty'pe;

Right MaxDecimal;
error in out boolean);

pragma interface (asiembler, decimal-to-intager);
pragma importyprocedure (decimal to integer, "D21",

(BD-nt_Typ,MaxDeci-Ina,booleain),Reference);

-this procedure converts a string representation of a BCD value
-- into a BCD value

procedure numeric-string to -deci MAI (Value :in out Max Decimnal;
Right :SQLCharNot_-Null);

pragma interface (assembler, numeric string_.to decimal);
pragma importyprocedure (numeric--string_ to_decimal ."1452D,

(Max_-Decimal, SQL_CharNotNull),

Reference);

-this procedure converts a BCD value to a string representation
-- of that value

procedure decimal-to-numeric-string (Value In out SQL_Char Not Nv1l;
Right Max -Decimal);

pragma interface (assembler, decimal to numeric string);
pragma importyrocodur* (decimal to numeric str*=7g,"D2NS",

(SQL CharNot_Null,Max_Decimal) , Reference);

-this procedure returns the number of leading zeroes In the
-- first "Integ" digits of the BCD value

procedure leadi.ng_zeroes (Value Max Decimal;
integ integer;
digs In out integer);

pragma interface (assembler, leading zeroes);

pragma izzportyprocedure (leading_zeroes,"LZ",

184 CMU/SEI-89-TR-1 6

(Max_-Decimal, integer, Integer),I Reference);

-this procedure returns the number of trailing zeroes in the
-- last "scal" digits of the BCD value

procedure trailLng zeroos (Value Max -7Decimal;
scal decimal_digits;
digs in out integer);

pragma interface (assembler, trailing_zeroes);
pragma importyprocedur* (rintgr digitsTZ"

Inee)Reference);

I -- this procedure intsrpret the wign of the BCD value, and
-- negates it

procedure inverse (Valua in out MaxDecimal;
Right max Decimal);

pragma interface (assembler, inverse);
pragma importprocedxre (inverse , "INV"I

(Max_-Docizmal,MaxDecimal),

Reference);

-this piocedure returns the absolute value of the BCD value
procedure absv (Value in out MaxDecimal;IRight M--xDecimal);
pragma. interface (assembler, abov);
pragma izzportyproceduro (absv, "I.ASV"I,

(Max -Decimal, MaxDecimal),I Reference);

-this procedure shifts the input value by "scale" p,);.-rs of 10
-if "scale" is positive, the shift is left; else the shift is

-- rightUprocedure shft (Result outMax Decimal;

error in out booan);
pragma interface (assembler, shft);
pragma inqortprocedure (shft, "ISEFT"I,

(Max_-Decimal,Max Decimal, integer,boolean),

Reference);

-this procedure determines if Left and Right are equal
procedure equal (Left, Right MaxDecimal;

result in out boolean);
pragma interface (assembler, equal);
pragma importyprocedur* (equal, "ZQ"

(Max_-Decimal, Max Docimal, booloan),

Reference);

-this procedure determines if Left is < Right
procedure loesthan (Left, Right Max Decimal;Iresult in out boolean);
pragma i-nterface (assembler, less-than);
pragma importprocedure (loe__than, "LT",

(Max3 Decimal, Max Decimal, boolean),
Reference);

-this procedure determines if Left > Right
procedure gyreater than (Left, Right :Max Decimal;

result :ink out boolean);
pragma interf ace (assembler, greater-than) ;
pragma importyrocedure (greater-than, "GT"I,

CMU/SEI-89-TR-1 618

(Max -Decima&l,MaxDeci.ml,boolen),I
Reference);

-- this pocedure determine& if Left <= Right
procedure less-than-equal (Left, Right MaxDecimal;

result In out kboolean);
pragma interface (assembler,lestaeq l)

pragma importprocedure (esta~qa,"R"
(Max -Decimal, MaxDecimal, boolean),

Reference);

-- this procedure determines if Left >- Right
procedure greater-than-equal. (Left, Right Max Decimal;

result in out boolean);
pragma. interface (assembler, greater than equal);

praga i _ptrocedure (greater -than qual, "E"
(Max -Decimal, MaxDecimal, boolean),

Reference);

-this procedure adds Left and Right, and stores the result
-- in Result

-the "error" boclean is set to true on overflow
procedure add (Result :in out Max_-Decimal;

Left, Right :Max -Decimal;I
error :in out boolean);

pragma interface (assembler, add);
pragma importyprocedure (add, "ADD",

Max Decimal,boolean) ,Reference);

-this procedure subtracts Right frcm Left, storing the

-the "error" boolean as set to true on overflow

procedure subtract (Result :in out Max Decimal;
Left, Right :Max Decimal;
error :in out booleari);I

pragma interface (assembler, subtract);
pragma import-procedure (subtract, "SUB",

(Max Decimal, MazDecimal,

Maxecimal, boolean) ,Reference);

-this procedure multiplies Left by Right, and stores the
-- resvult in Result

-the "error" boolean is set to true on overflow
procedure mulLIply (Result :in out Mlax-Decimal;

Left, Right .Max Decimal;
error :in out booleaxn);

pragma Interface (assembler, multiply);
pragma import-proceduro (multiply, "MUL",

(Max -Decimal, MaxDecimal,

Max Decimal,boolean) ,Roferenca),

-this procedure divides Left by Right, storing the result
-- in Result

procedure divide (Result :in out Max Decimal;
Left, Right Max_3 Dcimal;
Shift -in out integer;
error -in out boolean);

pragma. interface (assembler, divide);I
pragma importyprocedure (divide, "DIV",

(Mlax -Decimal, MaxDecimal,
Max Decimal, Integer, boolean),

Reference);I

186 CMU/SEI-89-TR-16

I
function max (Left, Right : decimal digits) return

decimaldigits is
begin

if Left >- Right then
retuls Left;

return Right;
end if;

end max;function T SQLDecimal NotNull (Value SQL Decimal NotNull2)

return SQLDeocimal Not Null is
begin

return (Value.scale, Value.Value);
end ToSQLDecimalNotNull;

function ToSQLDecimal (Value : SQLDecimalNotNull2)
return SQLDecimal is

begin
return (Value.scale, False, ToSQLDecimalNotNull(Value));

end ToSQLDecimal;

function To_SQL_Decimal NotNull2 (Value : SQLDecimalNotNull)
return SQLDecimalNot Null2 is

begin
return (Value.scale, Value.Value);

end ToSQLDecimalNotNull2;

function ToSQLDecimal NotNull2 (Value : SQLDecimal)
return SQL_Decimal NotNuli2 is

begin
if Value.Is Null then

raise nullvalue_error;I else
a return ToSQLDecimalNot_Null2 (Value.Value);
end if;

end ToSQLD ecimal_Not_Nu112;

function Null SQLDecimal return SQLDecimal is
NullHolder : SQLDecimal(O);

begin
return NullHolder;

end NullSQL_Decimal;

function Shift (Value SQL Decimal Not Null;
Scale integer) return-SQLDecimalNotNull is

Holder SQL Decimal Not Null := Value;
error boolean := false;

begin
shft (RHolder.Value, Value.Value, Scale, error);
if error then

raise Constraint-Error;
end if;

return Holder;
and Shift;

function Shift (Value SQL Decimal;

begin Scale integer) return SQL_Decimal is

if Value.s Null then
return NullSQLDecimal;

CMU/SEI-89-TR-16 187I

I

else
return (Value.scale, False, Shift(Value.Value, Scale));

end if;
end Shift;

function Zero return SQLDecimalNotNull is
begin

return ToSQLDecimalNotNull(O);

end Zero;

function Zero return SQLDecimal is
begin

return (0, False, Zero);
end Zero;

function One return SQLDecimalNotNull is
begin

return ToSQLDecimal NotNull (1);

end One;

function One return SQLDocimal is
begin

return (0, False, One);
end One.

procedure AssignWithCheck (Left in out SQLDecimal Not Null;
Right SQLDecimal NotNull;
Lower, Upper : SQL_DecimalNotNull2) is

Holder SQL DecimalNotNull;

error boolean := false;
begin

if Right >= ToSQL_Decimal NotNull(Lower) and then
Right <= To_SQL_DcimalNotNull(U-iper) then
if not (Left- scale = Right.scale) then

shft (Holder.Value, Right.Value, (Left. scale - Right. scale),
error);

Left.Value :- golder.Value;

else
edLeft :- Right;U

and if ;

also
raise ConstraintError;

end if;

end AssignWithCheck;

procedure Assign with chock

(Left in out SQL_Docimal;
Right SQLDecimal;
Lower, Upper : SQLDecimal NotNull2) is

Holder SQL Decimal Not Null;

error bocloan s= als;
begin

if Riqht.I._Null then

Left.lo.Null :- True;

if Right.Value >- ToSQLDecimalNotNull (Lower) and then
Right.Value <- To SQL Dec:_-l 4ot_Null(Upper) then
Left. IsNull :- False;
if not (Left. Value. scale - Right. Value. scale) then

shft (Holder.Value, Right. Value. Value,
(Left. Value scala - Right. Value. scale),
error);

Left.Value.Value :- Holder .Value;

188 CMU/SEI-89-TR-16 3

edLeft.Value :=Right.Valuo;

else
raise Constraint-Error;

end if;
end if;

end Assian with check:

P-- tion '-" (Left, Right :SQLDcimalNotNull) return boolean is
digs :integer;

Solder :SQLDecimal Not Null;
orrox , result boo2ean -- false;I bgiif Leftascale /Rightascale then

d~igs :- &be(integer (Left scale - Right.scale));
if Left.scale > Right.scale then

shft (Holder.Value, Right.Value, digs, error);
if error then

return False;
end if;I equal (Left.Value, Noldor.Valuo, result):

also
shft (Bolder.Value, Left.Value, digs, error);

if error thenI return False;
end if;
equal (Holder.Value, Right.Value, result);

elo nd if;

equal (Left.Value, Right.Value, result);
end if;
return result;

end =;

function "-' (Left, Right :SQLDecimal)
return boolean isU ~ ~~~begin reunFl;
if Laft.IsNull or else R-ight-Is Null then

etunFle
eleif (Left.Value =Right.Value) then

return True;
alsoI return False;
end if;

end if;
end 11=1

function Equals (Left, Right :SQLDecimal)
return BooleanWith Unknown is

begin

if Laft.IsNull or else Right.IsNull then
return Unknown;

also
if (Left.Value =Right.Value) then

lsreturn True;

return False;
end if;I end if;

end Equals;

CMU/SEI-89-TR-1 6 189

function NotEFquals (Left, Right :SQLDec.i.mal)
return Boolean With-Unknown isI

begin
if Left.IsNull or else Right.Is .Null then

else return Unknown;I
if (Left.V~lue /= Right.Value) then

return True;

aloreturn False;

end if;
end if;

end NotEquals;

function "<" (Left, Right .SQL-Decimal-Not_-Null) return boolean is
digs :integer;

Holder :SQL DecimalNotNull;
error, result b~oolean := false;

begin
if Laft.scale /Right.scale then

digs :=abs(intager(Left.scals - Right.scale));I
if Loft.scale > Right.scale then

shft (Holder.Value, Right.Value, digs, error);
if error then

if Right > Zero thenI

also
return False;

end if;

less-than (Left.Value, Eolder.Value, result);

eleshft (Rolder.Value, Left.Value, digs, error);I
If error then

if Left < Zero then

aloreturn True;

return False;
end if;

en if
loesthan (Holder.Value, Right.Value, result);

end if;
SB

loes than (Left.Value, Right.Value, result);I

return result;
end "<';

function "<' (Left, Right :SQLDcimal)

return boolean is
begin

If IotI ulo leRgtI-ulta
return False;

if (Left .Value < Right .Value) then

sreturn True;

return False;
end if;

end if;I

function "<" (Left, Right :SQL Decimal)

190 CMU/SEI-89-TR-1 6

3 return floolean With Unknown is
begin

if Left~lsNull or elm* Right.ImNul. then
return Unknown;

also3 if (Left.Va..ue -,Right.Valuq-) th
return Tmo;

return F-ls;

end if

eucnd "> f; ft Righ; -: SQL Decimal Not Nall) return boolean Is

Hodr:SQLDeciml-otNull

begin
if Left, scale /~Right scal*en

digs := bs(intsge=(Left.s'-ale - Right.scale));
if Left.scalo > Riqit.scals thenI shft. (Holder.Value, Right.Value, digs, error);

error then
if Right < Zero then

aloreturn True;I elsreturn False;

end if;
end if;I 9--eater than (Left.Value, Holder.Value, result);

oleo
shft (Lolder.Value, Left.Value, digs, error);
if error then

if Left > Zero then
retur.n True,

else
return False;

and if;
and if;
greater than- (Rolder .Valuc, PRight .Value, rvasult);

elseeand if;

groa,;er-than (Left.Value, Right.Value, result);
end if;
return result;

and ">';

function ">" (Left, Right :SQL Decimal)
Leturn boole in isS ~ ~~begim :~Fle
if Loft.ImNull or else Right.IsNull then

else nrase
asif(Left.Value > Right .Valuol then

retuzm True;
else

return False;
and if;

and if;3 end ">";

function ">" (Left, Right :SQL Dec-ma)
return Boolean With-Unknown is

CMU/SEI-89-TR-1 6- 191

I
beginI

if Left.Is Null or else Right.Io Null then

return Unknown;

if (Left.Value > Right.Value) then

return True;
else

return False;
end if;

end if;
and "1>" ;

function "<-" (Left, Right : SQL DecimalNotNull) return boolean is
d-gs : integer;

Holder : SQLDecimal_NotNull;
error, result boolean := false;

begin
if Left.scale 1 Right.scale then

digs := abs(integer(Left.scale - Right.scale));
if Left.scale > Right. scale then I

shft (Holder.Value, Right.Value, digs, error);

if error then
if Right > Zero then

return True;
else

return Fale;
end if;

and if;
leses_thanequal (Left.Value, Holder.Value, result);

else
shft (Holder.Value, Left.Value, digs, error);
if error then

if Left < Zero then
return True;

also
return False;

end if;
end if;
less_thanequal (Holder.Value, Right.Value, result);

end if; U
else

les thanequal (Left.Value, Right.Value, result);
end if;
return result;

end "<=" ;

function "<=" (Left, Right : SQLDecimal) S
return boolean is

begin
if Left. IsNull or else Right.IsNull then

lereturn vtIs;
a

if (Left.Value <= Right.Value) then

return True;

return False;

end if;
end if;

end
"<=";

function "<-" (Left, Right : SQL_Decimal)

return Boolean With Unknown is
begin .

192 CMU/SEI-89-TR-1 6

if Left>. Null or else Right.Z. Null then

elereturn Unknown;

if(et.Su <- Right.Vaiue) thenreunIre
return False;

end if;

and if;I end "<-";

function ">-" (Left, Right :SOL -Decimal Not Null) return boolean is
digs :Integer;
Bolder :SQL DecimalNotNull;
error, result boolean :- false:

begIn
if Left.scala /m ightascale then

digs :- &ba(intqer(Lsft.&cale - Right scale)):
if Left. scale > Rxght .sca then

shft. (Holder.Value, Right.Valu*, digs, error):
if error thenI if Right < Zero then

return True;
else

return False;I end if;
end if;
greater-than-equal (Left.Value, Bolder .Value, result):

els shft (Holdor.Value, Left.Value, digs, error);
if error then

if Left > Zero then

olsereturn True;

return False;
end if;

a nd if;
greater than equal (Holder. Valme, Right.Value, result);

end if;
else

greater-than-equal (Left .Value, Right.Value, result);

return result;3 nd ">";

function ">-" (Left, Right :SQL Decimal)
return boolean is

begin
if Left.IsNull or else Right.1sNull then

return False;

else
if (Left.Valus >= Right.Valuo) then

lsreturn True;

return False;
end if;I end if;

end '>=~"

function ">-" (Left, Right :SQL_7Decimal)

beireturn BooleanWith-Unknown is8

if Lft~ls Null or else Right.IsNull then

CMU/SEI-89-TR-1 6 193

aloreturn Unknown;

if (Left.Value >- Right.Value) then
return True;

oloreturn False;

end if;
end if;

end ">,; I
function IsI ae(Right :SQL Decimal-NotNull;

Lower, Upper :Q 39 Decimal-Not-Null2)

beireturn boolean isI

bein ih -TQeia NtNl(oe adte
ifRight >- ToSQLDecimal Not_-Null(Vpper) athen

eereturn True; I
return False;

end if;

end IsInEase;

function IsInEase (Right :SQL Decimal-;

return boolean is Lowerf Upper ;SQL Decimal Not Null2)I

begin
if Right.isNull then

oloreturn True;

if Right.Valuo >- To SQLDcimal_-NotNull(Lower) and then
Right.Value <s: ToSQL Decimal-NotNUll (Upper) then

olereturn True;
return False;

and if;

end if;I
end Is In Ease;

function IsNull (Value :SQL-Decimal) return boolean is

beginI
return Value. Is Nul'l;

end Is Null;

function Not Null (Value :SQLDecimal) return boolean is3
begin

return not Value IsNull;
end NotNull;3

function "" (Right SQLDecimalNotNull) return SQLDecimalNotNull is
begin

return Right;

end 11+'; 1

function " (Right SQL Decimal) return SQL Decimal is
begin

return Right;I

function -" (Right SQL DecimalNotNull) return SQLDecimal Not-Null is

beiValue Max Decimal;

inverse (Value, Right.Value);
return (Right.Scalo, Value);

194 CMU/SEI-89-TR-1 6

p end

function -" (Right :SQLDecimal) return SQL Oec~.nal ins

begin
if Right.IsNull then

lereturn Null SQL Decimal;

return (Rightascale, False, -(R.Lght.Value));
end if;

a nd "-" ;

function "abs" (Right :SQLDecimal NotNull) return SQL Decimal NotMull 1.s
Value :Max-Decimal;I begiabsv (Value, Right.value),
return (Right.Scals, Value);5 end "abs";

function 'abs' (Right :SQLDecimnal) return SQL Decimal is
begin

if Right.ISNull then

return NullSQL -Decimal;
else

return (Right. scale, False, abs (Right. Value));
end if;

end "abs" ;

function "+" (Left, Right :SQLDecimal Not Null)
return SQLDecimalNotNull is
digs :integer;
Result, Holder :SQLIDecimalNotNull;
error :boolean :=false;

U begiif Left.scale /= Right.scals then
digs := abs(.Intager(Left.scale - Right.scale));
if Left.scale > Right.scale thenI Holder :- Right;

add (Result.Value, Left.Value, Shift (Holder, digs) .Value,
error);

elseI Holder :- Left;
add (Result.Value, Shift(Holder, digs) .Value, Right.Value,

error);
end if;

a lsoeadd (Result.Va.%, Left.Value, Right.Value, error);
end it;
if error then

raise Constraint Error;

return (max(Left .scale,Right.scals), Rosult.Value);
end if;

a nd "+" ;

function " (Left, Right :SQL _Decimal)

return SQL Decimal isbegi
if Left.IsNull or else Right.Xs Null then

return Null-SQL Decimal;

als return (max (Left .scale, Right. scale), False,
(Left.Value + Right.Value));

end if;

CMU/SEI-89-TR-1 6 195

end "'

function -"(Left, Right :SQLDecimal NotNull)
return SQLDecimal NotNull xs

digs :integer;
Result, Holder :SQL Decimal Not-Null;
error :boolean :- false;

iLeft.aoale /= Right.scale then5

digs :- abs (integer (Left -scale - Right .scale));

if Left. scale > Right. scale then
Bolder :- Right;

subtract (Result.Value, Left.Value, Shift(Holder, digs) Value, '
also

Bolder := Left;
subtract (Result.Value, Shift (Bolder, digs.Value,I

Right.Value, error);

end if;

elesubtract (Result .Value, Left.Value, Right.Value, error);I

end if;
if error then

aloraise ConstraintError;

return (max(Left scale, Right-scale), Result .Value);
end if;

end ""

function -" (Left, Right :SQLDeciml)
return SQLDecimal is

bpeginI
if Left.Is_-Null or else Right-.Is Null then

return NullSQLDeciml;
also

return (ma (Left. scale, Right.scale), False,
(Left.Value - Right. Value));

end if;
end "-";

function "*" (Left, Right :SQLDecimal NotNull)
return SQLDecimal Not Null is
Result SQLDecimlNotNull;

beierror boolean :- false;I

if (Left - Zero) then
return Left;

elsif (Right - Zero) thenI

end if;
if (Left.scalo + Right.scale) > decimal digita'last then

raise Constraint-Error;I

nmltiply (Result.Value, Left,.Value, Right.Value, error);
if error then

raise ConstraintError;
and if;
return ((Left.scals + Right.scale), Result.Value);

end "*" ;I

function " (Leaft, Right :SQL.Decimal)

return SQLDecimal is
beginI

196 CMU/SEI-89-TR-1 6

m

if Left.IsNull or else Right. IsNull then
return NullSQL_Decimal;

else
if Left.Value - Zero then

retun Loft;

elair Right.Value - Zero then
return Right ;

return ((Left.scale + Right.scale), False,
(Left.Value * Right.Value));

and if;
I and if;

and " *., ;

function "/" (Left, Right : SQL_DecimalNotNull)
return SQL DecimalNotNull is
prec : decimaldigits :=decimal digits(decimaldigits'last);
Left digs, Right_digs, Resultdigs : integer;
RightScale, Result Scale : integer;
Right_Holder, Resul7t Holder : SQLDecimalNotNull;
error : boolean := f;lse,

beginif (Left = Zero) then

return Left;
and if;

RightHolder := Right;

-- shift the BCD value in RightHolder all the way to the
-- right, eliminating trailing zeroes
-- adjust the scale accordingly

-- this will help to yield a result of maximum precision

trailing zeroes (RightHolder.Value, prec, Right-digs);
if Right digs = decimal digits' last then

raise ConstraintError;I Right digs :- -Right_digs;
RightBolder :-Shift (RightHolder, Rightdigs);
Right_scale U Right.scale + Right_digs;

end if;

-- perform divide operation

divide (ResultHolder.Value, Left.Value,
RightBolder.Value, Leftdigs, error);

if error then
raise ConstraintError;

end if;

m_ if the scale of the result is outside the bounds of
-- the available precision, shift the result left or
-- right, accordingly

Result scale :- Left .scale - Right_scale + Leftdigs;
if Result scale > decimal digits'last then

Result-_digs :- decimal digits' last - Result scale;

Resultscale : decimal digits'last;
Result Holder : Shift (ResultHolder, Result digs);

elsif Result Scale < 0 then
Result Holder :- Shift (ResultHolder, bs(ResultScale));
Result Scale : 0;3 end if;

CMU/SEI-89-TR-16 197

return (decimal-digits(Result-scale), ResultBolder.Value); 3
end ""

function " (Left, Right :SQLDecimal)

beireturn SQLDecimal is

if Left.IsNull or else Right.!._Null then
return NullSQLDecimal;

else
return (""(Left. Value, Right. Value). scale, False,

(Laft.Value / Right.Value));
end if;

end ./I, ;
function "* (Left :SQL DecimalNotNull; Right SQL-ImtNotNull)

return SQLDcimal_&INotNull is

begin_
return (Left * ToSQL Decimal-Not- k.All (Right));

end *- ;

function "' (Left :SQL Decimal; Right :SQL-IntNotNull)
return SQLDecimal is

begin
if Left. IsNull then

return NullSQLDecimal;
eloe

return (Left.scale, False, (Left.Value * Right));
end If;

end "* ";I

function " (Left :SQLDecimal; Right :SQLInt)

beireturn SQLDecimal is

if !Left.Is -Null or else InNull(Right) then
return NullSQLDecimal;

aloreturn (Left scale, Folse,
(Left.Value * WithoutNullEase(Right)));

end if;

end " * "; I
function "" (Left :SQL IntNotNull; Right :SQL DecimalNotNull)

return SQLDecimal NetNull is-

beginI
return (To SQLDecimmal Not Null(Left) * Right);

end " ";

function "' (Left :SQL-ImtNotNqull; Right SQL Decizal)
return SQLDecimal is

begin
if Right.IsNull then

return NullSQLDecimal;

return (Right.scale, False, (Left * Right.Value));
end if;

end " *;I

function " (Left :SQL Int; Right :SQL Decimal)
return SQL Decimal is

begin__I
if Right.ImNull or else IsNull(Left) then

return NullSQLDecimal;
also

198 CMU/SEI-89-TR-1 6

return (Rightuscale, False,
(WithoutNullBaso(Left) * Right.Value));

end if;
end "*";

function " (Left :SQL Decixmal Not Null; Right :SQL mnt NotNull)
return SQLDcimalNotNull i

beginI return (Left / ToSQLDec=lINot-Nll(Right));
end "/" ;

function " (Left :SQLDecir-al; Right :SQL mnt Not Null)
return SQLDecimal is

if Left.IsNull then

edreturn NullSQLDecimal; Fle

* end "/";

function I" (Left :SQLDecimnal; Right :SQLInt)
retrn QLDecimal is

if Left.Is_-Null or else IsNull(Right) Lhen

return Null_-SQLDecimal;
else

ratumn r"/" {Left.Value, WithoutNullEase (Right)).scale,
False, (Left .Valueb / Without NullEase (Right)));

end if;3 end "/";

function ToSQLDecimalNotNull (Right :SQL-IntNotNull)
return SQLDecimal Not Null is
Holder :SQLDecimal-Not-Null;I bgiinteger _to decimal (Holder.Va'ue, BEDmt_Type (Right));

return Holder;
and ToSQLDeci-inl Not Null;

function ToSQLDecimal Not-Null (Right :SQL Double Precision.-NotNull)
return SQLDcimlNotNull is
Value MaxDecimal;

Scale deimal digits;
prec: integer :; SQLDouble Precision Not Null' digits;
eip :integer;
temp_string :string (1. .prec+6);
Number String :SQL_-CharINot_-Null (1..decimal digits' last.+l)

(1 -> '+', 2..decimal-dgita'last+l => '0')

begin
put (to => temp string,

item ~>Right,
aft >prec -1

exp =>3);

exp :- integer' value (temp_string (prec+4. .prec+6));
temp_string(3..prso+1) := temp_string(4..prec+2);
if exp < prac-1 then

if exp-prec+2. < -(decimal-digits .Iast) then

raise ConstraintError;
also3 ~ ~Scale :- abs(exp - (prec -1)

CMU/SEI-89-TR-1 6 199

NumberString(decimal_digits' last+2-prec..I

decimal digits'last+l) :
To_-SQLCharNotNull(tamp_tring(2. .prec+l));

end if;

eleif amp > decimal -eigits' last-i then
raise ConstrainLError;

else

Sc.6.l0 := 0;
NumberStrig(dcimldgitslast+l-exp..

decimal-digits'last-exp+prec):
ToSQLCharNotNull(tmp__striLng(2..preo+2.));

end if
and if;

if tamp-string(l) -' then
NumbrString(l) -

end if ;_
numeric-string_ to_dacimal. (Value, Number-String);
return (Scale, Value);

and ToSQLDcimalNotNull;

function ToISQL Decimal Not_-Null (Right SQLCharNotNull)
return SQLDe*cimal NotNull is
tamp :SQLccharNotNull (1 .. decimal digits' last+1);

fret, lot, xmdx, lngth :integer;
temp_scale decimal -digits := 0;

decimal found :boolean := false;
Value :MaxDecimal;

begin
1ot :1 RIcht'length;
if Right(l) ='-' or else Right(l) = +' then

tomp(l) Right(l);

fret 2=;2;
elsif Right(l) =''then

temp(l) :=''

alofret :2;

temp~l : U1
frst U1;

end if;

for Imdx in frst..l st loop1

if Right (indx) - I. I thenI
if decimal found than

raise Constraint__Error;
olse

decimal found :- true;
temp_scale : -decimal -digits (1st -indx);

lngth :- lngth - 1;
end if;

elsif ((R-igbt(indx) - '0') or elseo
(Right(indx) = '2.') or else

(Right(indx) - '2') or else
(Right(indz) - '3') or else
(Right(indx) - '4') or alseo
(PRight(Indx) - '5') or else

(Right(indx) - '6') or else
(Right(indx) - '7') or else
(Right(Indx) - '9') or elseo
(Right(indx) ' 9')) then

tamp (lngth) := ight (indx);
eleo

200 CMU/SEI-89-TR-1 6g

I
raise Constraint-Error;

end if;
and loop;
if Ingth < decimal-digits'last+l then

tamp := tomp(l..l) & (2..decimal_digits'last+2-lngth => '0') &
tamp (2.. ingth) ;

end if;
numeric-stringto decimal (Value, tamp)
return (towp_scale, Value);

end ToSQLDecimalNot_Null;

function ToSQL_Decimal (Right : SQLInt_NotNull) return SQL_Decimal is
begin

return (0, False, ToSQLDecimalNotNull(Right));
end To SQLDecimal;

function ToSQLDecimal (Right : SQLInt) return SQLDecimal is
begin

if IsNull(Right) then
return NullSQL_Decimal;

else
return (0, False, ToSQL DecimalNot Null(

Without NullBase (Right)));
end if;

end ToSQLDecimal;

function ToSQLDecimal (Right : SQLDoublePrecisionNotNull)
return SQL_Decimal is

begin
return (To SQL Decimal Not Null(Right) .scale, False,

To SQLDecimal Not Null(Right));
end ToSQL_Decimal ;

function ToSQLDecimal (Right : SQLDoublePrecision) return SQLDecimal is
begin

if IsNull(Right) then

alsereturn NullSQL_Decimal;

return (ToSQL DecimalNotNull (WithoutNullEase (Right)). scale,
False, ToSQL_ Dcimal-NotNull (Withc,.itNullEase (Right)));

end if;
end ToSQLDecimal;

function ToSQLDecimal (Right : SQLCharNotNull)
return SQLDecimal is

begin
return (ToSQL_-Docim-lNot_Null(Right) .scale, 'False,

To_SQL_DecimalNotNull(Right));

end ToSQLDecimal;

function ToSQLDecimal (Right : SQLChar)
return SQL_Decimal is

begin
if Is Null(Right) then

return NullSQL_Decimal;
else

return (To SQL Decimal Not Null(WithoutNullBase(Right)).scale,

False, To_SQL_DeimlNotNull(WithoutNull_ase (Right)));

end if;
end ToSQL_Decimal ;

procedure Assign_ToSQLDecimal (bound in out SQL_DecimalNot Null2;
sign SignCharacter;

CMU/SEI-89-TR-1 6 201I

Integral, scale :Numeric String;

in-scale :decimal digits) is

subtype new char is SQLCh rNotNull(l. .integral'length+scale'lflgth).
Length :integer := integral' length + scale' length;

Number_-String SQL_CharNotNull(l. .Longth+2);
function uric is now unchecked conversion (source >Numeric-String,

target >new char);

begin

if Length > decimal -digits' last thenI
r&3.se Constraint-Error;

end if;
Number_-String :- uic (integral & scale) &"00";

If sign M '-_' then
NumbrSting(l. .Length+2) '-&

NumberString(l. .Length-in-scale) 4

elseNumberString (Length-in-scale+l..Length);

Number String(l. .Length+2) :- "4" 6
NumberString(l. .Length-in scale) 4

NumbeorString (Length-in scale+l..Length);

end if;
bound := ToSQLDecimalNotNull2(

ToSQLDcimalNotNull (Numb er String));
end Assign_To_SQL_De.cimal;

function To_-SQL-IntNot -Null (Right :SQLDecimal NotNull)

return SQL-IntNotNull is
Rolder :BCD-IntType;
Decimal Holder :SQL Decimal Not Null;
error :booloan =false;

begin
if Right scale > 0 then

DecimalHolder ;=Right;
deciml~to-integer (Rolder, Shift (DecimalHolder,I

-integer (Right.scale)) Valuo, error);

else
decimal to-integer (Holder, Right .Value, error);

end if;I
if error then

raise ConstraintError;
else

return SQL_mnt_NotNull(Hld~r);
end if;

end ToSQLImtNotNull;

function ToSQL IntNot Null (Right -SQL Decimal)
return SQL. mt Not-Null is

begin
if Right.ZsNull then

raise N4ull ValueError;

return To_SQL _mt_-Not_Null (Right.Value);

end if;

and To SQL mntNotNull;

fun%. tinn To SQL-Int (Right :SQL Decimal)
return SQ"._Iz't ix

begin

aloreturn NullSQL Irit;

202 CMU/SEI-89-TFI-1 6

return WithNullBase(ToSQL-ItNotNull(Right.Valu));

and if;
end ToSQL _ otNul i

3 function ToSQLDouble Precision Not Null (Right :SQLDecimnal NotNull)

mdx, lngth :Itgr
NumberSrm SQL_-Char -Nt-u1(l.decimal digits' last+l);
temp_holder -integer,.I prec :integer := SQL Double Precision Not Null'digits;

begin
decimal -to -numeric string (NumberString, kight.Value);
iLndx : 2;

while ((indx < decimal -digits' last+2) and then
(NumberStriLng(iLndx) = '0')) loop

iLndx :- indx + 1;
end loop;I if indx = decimal digits' la~t+2 then

return 0.0;
end if;
if mndx < decimal digits' last+3-prec then

temp_h older :=integer'value (ToString(NumnberString(
inx.. mndx+prec-)));

Ingth := prec-l;

eltempholder := Integer' value (To String (NumberString(
indx..decimal digits'last+1)));

Ingth :=decimal-digits' last+l-indx;
end if;

if Number-String(l) ''then

temp_holder := -temp_h#older;
end it;

if Rigvt Scale = 0 then
return (SQLDoublePrecision NotNRull(temp_holder) * (10.0 *

decimal~digits'last + 1 - indx - lngth)));
else

return (SQLDoublePrecisionNotNull(temp-holder) * (10.0 *
(decimal-digits'Ilast + 1 -indx - Ingth - i-nteger (Right. scale)))

end il;3 end ToSQL Double Precision NotNull;

function ToSQLDoublePrecision Not Null (Right :SQLDecimal)
return SQLDouble Precision Not k4all is

begin
if Right.Is Null then

raise Null ValueError;

else
return ToSQLDouble PrecisionNotNull(Right.Value):

end if;_ _

end ToSQLDoublePrecision NotNull;

function ToSQLDouble Precision (Right :SQLDecimal)

return SQL Double Precision is
begin

if Right.IsNull then

aloreturn NullSQLDouble Precision;

return WithNullEase (ToSQLDouble Precision NotNull(
R-ight.value));

end if;

end ToSQLDoublePrecision;

function To-String (Right SQLDecimal Not Null) return string is

CMU/SEI-89-TR-1 6 203

Holder :SQLCharNotNull(...dscimaldcigits'last+3);3
mdx :integer;

begin
deia onmrcsrn (Holder, Right.Value);

if Holder(l) =''than

end if;
if Rightescale > 0 then

Holder(decimal -digit.' last+3-Right.scale..
d*cimal diLgits'lst+2) :=

Eolder(dciz-l digits' last+2-Right.scale..
dociuaal digits' last+l);

Holder (decimal -digits' last-2 -Right. scale) 11
Eolder(3. .deci.mal digits'last+3) :

Holder (2. .dcimal digiLts'last+2);
Holder (2) : 0';
mLdx := 2;I
while (Rolder(indx) = '0') loop

indx -=idx + 1;
end loop;

if Rolder(iLndx) =''thenI

and if;
return ToString(Holder(l. .1)

Holdr (indxz..decimal-diLgits'last+3));I
also

Imdx :=2;
while (Holder(:indx) = '0' and then

indx < decimal_daigits'last+2) loop
imdx x~ndx + 1;

end loop;

if Lndx = deimal digits'f last+2 thenU

else
retiirn To_StriLng 'Eolder(l. .1)

end if; Bolder(mndx..decimal digits'last+1));I

end if;
end To String;

function ToStrIng (Right :SQL_Docim -al) return string is
begi~n

if R-ight-IsNull then

raise NullValueError;
else

return ToString(Right.Value);
end if;

end ToString;

function ToSQL_-Char_-Not_-Null (Right :SQL Decimxal NotNull)
return SQLCharNotNull is

Holder :SQLCharNotNull(l..decimaldigits'last+3);
iLndx :integer;

begi~n
decimal to numeric string (Holder, Right.Value);

if Holder (T) '-'then

Bolder(1):'
end if;
if Right scale > 0 then

Bolder(docimal digitm' lastfl! ! ;ht scale..I

Holder(decinal-digits' last+2-Right..cale..

decimal digits' last+1);

204 CMU.'SEI-89-TR- 16

3 ioldor (d~cimaL&_digits' last *2 -R1ght Ocala)
Bolder (3 .decimal digits last*3)a

Mad.:(2-decimal digit. last*2)L

So ldor(2)0
indx - 2:
while (Bolder (Lnx) - ' 0') l-op

whale MLdeix 10:

end iof:

return Molde (1. 1) 4 Bolder dz. decml d.&it I t)

inegin 2

if iht -Null ditslt+ then

also
return oLChrNot_.1)4Vlermght.V doa wldgis!;t:

end 4if;
end ToSQLCharNtNull;

3function ToISQLChr (Not NullDecgti:malDcjL
return SQL_Chariitul is

begin
if Right.IsNull then

retuse NullSQLu*Charr;

return Wth NuL-ll- Ba(ot_SQLCRxhrt NulRib.V)oe

end ToSQLChar;o-Nll

function WTh Q b (Right SQLDecimalNtNl)rtunitgri

return ToQLCharoNl(ihilegh

I begin
if Right.Is, Null then

elsereuniulSLCb

end if;

end Wito-Qh; r

3function itgr(l_ igt (Lgh SQLDecimalo- l Notu) neeri

return deQcima digit is Rgt)Ingh

beginifIgt1 ulte
raiseSEI-89-TR-1 6r205

els

I
return decimaldigits (dec*imal digits last-integer (Right. scale));

end IntegralDigits;

function Integral-Digits (Right : SQLDecimal)

begin

return IntegralDigits (Right.Value);
end Integrael_Digits; 1
function Scale (Right : SQL_Dcimal NotNull)

return deci.al digits is
beg n

return Right. scale;
end Scale;

function Scale (Right . SQL_Dcimal)
return decimal digits iskegin

return Scale(Right.Value);and Scale;
function Fore (Right : SQLDecimalNot Null)

return positive is
integral, digs : integer;

begin I
integral - decial digits' lat-intg r(Right. Scale);

leadingzercos (Rigt.Value, integral, digs);
digs - integral - digs;
if digs - 0 then I

return 1 ;

else
return pcsitive(digs);

end if; I
and For*;

function Fore (Right : SQL-DciMal) return positive is

begin
if Right.Is Null then

raise Null Va&lue Zrroz;
end if;
return For s(Right.Value);

end Fore;

function Aft (Right SQLDecimalNotNull) return positive IsI
digs : integer; m

begin
if Right.Scale , 0 then

return 1;

trailing zeroes (Right .Value, Right. Scale, digs);digs :- imtagr(Right cae) -digs;I
if digs a 0 then 3

return 1;
else

return Positive (digs);
end if; I

and if ;

end Aft;

function Aft (Right : SQL_Decimal) return positive is
begin

if Right.Is Null then
raise NullValue Irror; I

206 CMU/SEI-89-TR-1 6

I
end if;
return Aft (Right.Value);

end Aft;

function Machine Rounds (Right SQLDecimalNotNull)
return boolean is

begin
return True;

end MachiaeRounds;

function MachineRounds (Right SQLDecimal)
return boolean is

begin
return True;

end MachineRounds;

function MachineOverflows (Right : SQLDecimalNotNull)
return boolean is

begin
return True;

and Machine_Overflows;

function Machine Overflows (Right : SQL_Decimal)
return boolean is

return True;

end Machine_Overflows;

package body SQLDecimal_Ops is

lower bound SQLDecimalNotNull2 (inscale);3 upper_bound SQLDecimal NotNull2(inscale);

procedure Assign (Left in out WithoutNullType;
Right WithoutNull_Type) is

begin
Assig:n_with check (Left, Right, lower bound, upper_bound);

and Assign;

procedure Assign (Left : in out WithNullType;

Right : ithNull_Type) is
begin

Assignwith-check (Left, Right, lower-bound, upper_bound);
end Assign;

function Is In (Right : WithoutNullType)
return boolean is

begin

return IsInBase(Right, lowerbound, upper bound);
end IsIn;

function IsIn (Right With NullType)

return boolean is
begin

return IsInBase(Right, lowerbound, upper_bound);
end IsIn;

function With Null (Value : Without NullType)
return With_Null_Type is

return ToSQLDecimal (ToSQLDecimalNotNull2 (Value));
end With Null;

I
CMU/SEI-89-TR-1 6 207I

I
function Without-Null (Value : WithNullType)

return Without Null_Type is
begin

return ToSQLDecimalNotNull (To_SQLDecimalNotNull2(Value));

end Without-Null;

begin

Assign_ToSQLDecimal(lower_bound, first_sign, first integral,

first_fractional, inscale);

AssignToSQLDecimal (upperbound, last-sign, laat integral,

last frational, in scale);I

end SQLDecimal Ops;

end SQLDecimal Pkg; 3
C.20 SQLDecimal Assembler Support (VAX) m
PROCEDURE 12D

procedure integertodecimal (Value in out MaxDecimal;
Right integer); 3

; -- this procedure converts an integer into a packed decimal
-- number 31 digits long

.PSECT 12D

.ENTRY 12D ^M<R2, R3>
CVTLP @S(AP),#31,84(AP)

RET

PROCEDURE D21

procedure decimal to-integer (Value : in out integer;
Right : MaxDecimal;
error : in out boolean);

-- this procedure converts a packed decimal number of 31
-- digits into an integer

.PSECT D21

.ENTRY D21 ^M<R2, R3>

CVTPL #31, @(AP),84(AP) I
BVS D21ERR

RET
D21ERR: HOVL #1,012(AP)

RET I
PROCEDURE NS2)

procedure numericstring_todecimal (Value : in out MxDeocimal;
Right : string);

208 CMU/SEI-89-TR-16 I

thspocdr cnet a numeric string of 31 digits and a
signfro leaingseparate nmrcfra noapce

.PSZCT INS2D
.ENITRY NS2D -MR2 R3>

CVTSP #31,Qs(AP),#31-@4(AP)3 RET

*PROCEDURE D2NS

;procedure decimal to-numeric-string (Value in out string;
Right :Max Decimal);

this procedure convert& a packed decimal number of 31 digitsI ;--into a numeric string in leading separate numeric format

.PSECT D2NS

CVTPS *31,@S(AP),#31,@4(AP)

PROCEDURE LZ

procedure leading :eroes (Value :Max-Decimal;
integ integer;
digs :in out integer);

-this procedure returns the number of leading zeroes in theU -- first "Integ" digits of the packed decimal number

.PSECT LZI .RENTRY LZ -M<R2, R3, R4, R.5, R6, R.7, RB>

CXRL R.SILOOP: INCL R.S

BICL3 #-XO7FFFFOF,RP6,RP7

DECL R4

0GBS #AXOO,R7
BEQ DONE3
DRCL RS

0GBS #-XOO,P.4
BEQ DONIE

INCL R.5

D0N13: IOVL RS,:12(AP)

CMU/SEI-89-TR-1 6 209

I
PROCEDURE TZ n

procedure trailing_zero.s (Value Max Decimal;
seal declaldigits;
digs in out integer);

-- this procedure returns the number of trailing zeroes in
-- the last "scal" 'digits of the packed decimal number 3

.PSECT TZ

.ENTRY TZ -M<R2, R3, R4, R5, R6, R7, RS>
M0VL @e (AP), R4g
M0VL 4(AP),,R5
ADDL #15, R5
MDVB (RS}, R6

CLRL RS I
LOOP1: INCL RS

BICL3 #^XFFFFFFOF,R6, R7
CMPB #^XOO,R7
BNEQ DONEl
DECL R4

CMPB #^XOO,R4
BEQL DONE2
DECL R5
MOVS (R5), R6

INCL RS
BICL3 #^XFFITTFFO, R6, R7
C0PB #*^XOO,R7 I
BNEQ DONEl
DECI R4
C0PB #XOO,R4
BEOL DONE2
BRB LOOP1

DONE1: DECL RS
DONR2: 30VL R, O12(AP)

RET

PROCEDURE INV

procedure inverse (Value in out Max Decimal;
Right Max Decimi); 3

-- this procedure returns the inverse of Right in Value

.PSECT INV

.ENTRY I.V ^M.R, R3, R4>
IDVC3 #16, @s (AP), @4 (A.P)
MaVL 4 (AP) ,R3
ADDL #15,R3
M0VB (R3), R2
BICL3 #^XUFF7F"Y, R2, R4
CMPB #AXOF,R4

BICL2 #^X00000002, R2

BRE INVEND
CNTNU: BICL2 #^XOOOOOOO,R4

C0PB #i,R4 IBEQL POS
BICL2 #^XOOOOOOOF,R2
BISL2 #^XOOOOOOOD, 2

210 CMU/SEI-89-TR-16

ERB INVEND
POS: BICL2 #^XOOOOOOOF,R2

BISL2 #^XOOOOOOOC,R2

INVEND: MO1VB R2, (R3)
* RET

PROCEDURE ABSV

Iprocedure abov (Value in out Max Decimal;
Right Max Declmal);

this procedure returns the absolute-value of Right in Value

.PSECT ABSV
.ENTRY ABSV -M'<R2, R3>I IVC3 1,SA)@(P

ADDL #15,R3

WDVB (R3),R2I ICL2 #XOOOFR

IDVD R2, (P3)
RET

N ;procedure shft (Result :out MaxDecimal;
Value :MaxDecimal;
scale :integer;I error :in out booloan);

this procedure shifts the 31 digits of Value by "scale"
;-digits. if scl"is positive, the shift is left.
-- if "scale" is negative, the shift is right. If overflow

*- ccur& on a left shift, then the error boolean is sewt to

-true. The right shift rounds the remaining digits.

.PSECT SHTDATA

SDATA: .BLKB 16
.PSECT SEFT

.ENTRY SEFT -M*R2, R3, R4, R5>
30VL @12(AP),R4
ASUP R4, #31,68 (AP) ,#5,#31, @4 (AP)
EVS OVFLW

OVFLW: M0VL #l,@16(AP)

RET

PROCEDURE EQ

;procedure equal (Left, Right Max Decimal;Uresult In out boolean);

-this procedure compares Left and Right, and returns a result
of true if they are equal, or false if they are not equal---------------------------------

.PSECT EQ

CMU/SEI-89-TR-1 6 211

.ENTRY EQ ^k4<R2, R.3>3
OEPP3 *31,@4(AP),@S(AP)
BEQL EQTRU
RET

EQTRU: MOVL #1,@12(AP)3
RET

PROCEDURE LT3

procedure less-wthan (Left, Right Max Decimal;
result in out boolean);3

-this procedure compares Left and Right. if Left is < Right
-then result is set to true

--
.PSECT LT
.EN4TRY LT -M<cR2, P.3>
CMPP3 #31,§4(AP),@S(AP)

BLSS LTTRUI

LTTRU: MOVL #1,@12(AP)
RET

PROCEDURE GT

-procedure greater-than (Left, Right MaxDecimal;I
result in out boolean);

-this procedure compares Left and Right. if Left > Right
-result is set to true.

.PSECT GT

.ENqTRY CT '-MG.2, R.3>

BGTP. GTT~RU
RET

#1,ZU MV fl@2 (AP)I
RET

PROCEDURE LEQ

procedure less-.than _equal (Loft, Right MaxDecimal;

result In out boolean);I

-this procedure compares Left and Right. if Left <- Right
-then result is met to true.3

.PSECT LEQ
.ENTRY LZQ -M-1.2, P">

04PP3 *31,@4(AP),8B(AP)I

RET
LEQTRU: MOVL *l,@12(AP)

RETI

PROCEDURE GEQ3

212 CMU/SEI-89-TR-1 6

I ;procedure greater-than-equal (Left, Right Max Decimal;
result in out boolean);

3 ; -- this procedure compares Left and Right. if Left >= Right
-then result is set to true.

3 .PSECT GEQ
.ENTRY GEQ -M4CP2, R.3>
OdPP3 *31,@4(AP),@S(AP)
EGEQ GEQTRUU RET

QEQTRV: II3VL #1,@12(AP)
RET---------------------------------

PROCEDURE ADD

procedure add (Result :in out MaxDecimal;
Left, Right :Maax Decimal;
error :In out boolean);

-this procedure adds Left and Right, and stores the result
-in Result, if an overflow occurs during the operation, then

"-t error"~ is set to true.

3 .PSECT ADD
.ENTRY ADD -M<cR2, R.3, R.4, P.5>

ADDP6 *3l,@l2(AP),#31,@S(AP),#31,@4(AP)
BVS ADDBRR

RET
ADDEER:)OVL *1,@16(AP)

RET

proedresubtract (Result :in out Max Decimal;

(3 -- this procedure subtracts Right from Left, and stores the result

-- In Result. if an overflow occurs during the operation, the
-"error" boolean is set to true.

.PSECT SUB

.ENTRY SUB ^M<R2, R.3, R.4, P.5>
SURP6 #31,@12(AP),#31,@S(AP),31,@4(AP)I VS SUE.R
RET

SUERR: MOVL *l,@16(AP)
RET

pocedure multiply (Result :in out MaxDecimal;

N Left, Right :MaxDecimal;
error :in out boolean);

CMU/SEI-89-TR-1 6 213

I
-- this procedure multiplies Left by Right, and stores the result
-- in Result. if an overflow occurs during the operation, the I

" . error" boolean is set to true.

.PSECT KUL

.ENTRY MUL ^M<R2, R3, R4, R5>
MULP #31,@12(AP),#31,@8(AP),#31,@4(AP)

BVS MULERR
RET

MULERR: MOVL #1,@16(AP)
RET

PROCEDURE DIV

procedure divide (Result : in out MaxDecimal;
Left, Right : Max_Decimal;
Shift : in out integer;
error in out boolean); 3

-- this procedure divides Left by Right, and stores the result
-- in Result. no overflow can occur using this instruction.
-- this procedure does not protect the application from the

divide-by-zero run-time exception.
-- - - ---- ci i e b - o --- - - - - -- - - - - - -- - - - - -- - - - - -

.PSECT DIV
SHF MP : .SLKB 16

.ENTRY DIV ^M<R2, R3, R4, RS, R6, R7, RS>

MOVL #31,R4
MDVL S(AP),R5
CLRL RS

LOOPA: INCL RB

MWVB (R5),R6

BICL3 #^XFFFFFFOF, R6, R7
C0PB #AXOO,R7
MDQ DONRA
DECL R4

CMPB #^XOO,R4
BEQL DONEK I
INCL RB

BICL3 #AXFFFFFFFO, R6, R7
CMPB #^XOO,R7
BNEQ DONEm

DECL R4
CMPB #AXOO,R4
BEQL DONEA
rNCL R5

BRB LOOPA
DONEA: DECL RB

ASEP RB, #31, @G (AP),#5, #31, SHFTM
DIVP #31,@12(AP),#31,SBFTHG,#31,@4(AP)

MOVL RB, @16(AP)

END

I
214 CMU/SEI..89-TR-1 6

I
C.21 SQLDecimal Assembler Support (IBM)

Note: At the time this document was published, this code had not yet been fully tested.
Electronically distributed versions of this code will be updated to reflect any changes made
during testing.

ADASUP CSECTI --* DR e
L'XVCZDU1RZ Mi.

* procedure mask-interrupts;

-- this procedure turns off bit 37 In the PSW, to prevent

* -- the decimal overflow exception from causing an interrupt

ENTRY MI
MI SAVE (2,3)

BALR 3,0
USING *, 3

SR 2,2 CLEAR R2
0 2,=X'0B000000' OR IN THE PROGRAM MASK
SPM 2 TURN OFF BIT 37 OF THE PSW
RETURN (2,3)

* PROCEDURE 12D

* procedure integer_todecimal (Value : in out MaxDecimal;
* Right: integer);

* -2 this procedure converts an integer into a packed decimalI " -- number 31 digits long

ENTRY 12D
12D SAVE (2,5)

RALR 5,0
USING *, 5
LM 2,3,0(1) ADDRESS OF VALUE IN R2; RIGHT IN R3

IXC 0(8,2),0(2) CLAR UPPER 2 WORDS OF DEC RESULT

CVD 3,8(2) CONVERT INTEGER, STORE IN WRDS 3 4
RETURN (2,5)

* PROCEDURE D21

procedure decimal to integer (Value : in out integer;
Right : MaxDecimal;

* error : in out boolean);

-- this procedure converts a packed decimal number of 31
* -- digits into an integer

* This procedure will cause a numeric Arror to occur in the
application if the number to be converted falls outside the

* range -2147483648. .2147483647

i ENTRY D21

CMU/SEI-89-TR-16 215I

I

D21 SAVE (2,5) 1
BALR 5,0
USING *,5
L 3,4(1) ADDRESS OF RIGHT IN R3 i
CP 0(16,3),LOWER(16) COMPARE INPUT TO MAX NEG INTEGER

DL D2IEPA IF LESS THAN, OVERFLOW WILL OCCUR
CP 0(16,3),UPPER(16) COMPARE INPUT TO MAX POS INTEGER

BE D2IERR IF GREATER THAN, OVERFLOW WILL OCCUR S
CVB 4,8(3) CNVT LOWER 8 BYTES OF DECIMAL NUM
ST 4,0(l) STORE RESULT
B D2IRET GO TO D2IRET

D2IERR L 2,-F'l' SET VALUE OF ERROR BOOLEAN
STC 2,8(1) TO 'TRU'

D2IRET RETURN (2,5)
--. I

• PROCEDURE NS2D

* procedure numerictring_todecimal (Value In out Max-Decimal;

• Right str3.ng);

-- this procedure converts a numeric string of 31 digits and a
• -- sign from leading separate numeric format into a packed

• -- decimal number of 31 digits

--

ENTRY NS2D

NS2D SAVE (2,5)
BALR 5,0
USING *,5

LK 2,3,0(1) GET ADDRESSES OF PARMS

PACK 0(9,2),1(16,3) CK TRST 16 DIGS INTO FRST 9 BYTES n
SRP 0(9,2),1,5 SEFT LFT, SO 16 VALID DIGS IN 8 BYTS

PACK 8(8,2),17(15,3) PACK LAST 15 DIGS INTO LAST 8 BYTES
CLC 0(1,3),=X'4E' CHECK SIGN
BE NS2DPOS BRANCH TO MAKE RESULT POSITIVE

NI 15(2),X'F0' CLEAR SIGN DIGIT
01 15(2),X'OD' MAKE RESULT NEGATIVE
B NS2DRET RETURN AFTER MAKING RESULT NEGATIVE I

P92DPOS NI 15(2),X'F0' CLEAR SIGN DIGIT

01 15(2),X'OC' MAKE RESULT POSITIVE

NS2DRET RETURN (2,5)

• PROCEDURE D2NS

• procedure decimaltonumoricstring (Value in out string;
Right MaxDecimal);

• -- this procedure converts a packed decimal number of 31 digits
• -- into a numeric string in leading separate numeric format

ENTRY D2NS
D2NS SAVE (2,5)

RALR 5,0

USING *,5

Im 2,3,0(1) GET ADDRESSES OF PARKS
UNPK 1(15,2),0(8,3) UNPACK FIRST 14 DIGITS I
UNPK 15(15,2),7(8,3) UNPACK NEXT 14 DIGITS

UNPK 29(3,2),14(2,3) UNPACK LAST 3 DIGITS
SR 4,4 CLEAR R4

iC 4,15(3) GET SIGN OF INPUT

216 CMU/SEI-89-TR-1 6

I
N 4,=X'0000000F' AND OUT NUMERIC PORTION OF BYTE
CL 4,=X'0000000D' CHECK THE SIGN
BE D2NSNEG IF NEGATIVE, GO TO D2NSNEG

MVI 0(2),X' 4E' MAKE POSITIVE
B D2NSTR GO TO D2NSTR

D2NSNEG MVI 0(2),X'60' MAKE NEGATIVE
D2NSTR 01 31(2) ,X'FO' MAKE LAST BYTE EBCDIC

RETURN (2,5)
--

O PROCEDURE LZ

* procedure leadingzeroes (Value MaxDecimal;
integ integer;
digs in out integer);

* -- this procedure returns the number of leading zeroes in the

* -- first "integ" digits of the packed decimal number

--

ENTRY LZ
LZ SAVE (2,8)

BALR 8,0
USING *,a
LM 2,3,0(1) GET PARMS IN R2 AND P-3
BCTR 2,0 OFFSET ADDRESS BY ONE FOR LOOP
SR 5,5 CLEAR R5
SR 6,6 CLEAR R6

LOOP LA 2,1(2) GET NEXT BYTE TO LOOK AT
LA 5,1(5) ADD 1 TO R5 (COUNT OF ZERO DIGITS+1)
IC 6,0(2) GET ANOTHER BYTE OF PARMI
SR 7,7 CLEAR R7
SRDL 6, 4 UPPER NIBBLE OF BYT IN R6, LWR IN R7
C 6,ZERO IF R6 IS ZERO, CONTINUE
BNE DONE IF NOT, DONE
ECT 3,CONT GET NEXT NIBBLE IF MORE TO SCAN
B DONE2 NO MORE TO SCAN

CONT LA 5,1(5) ADD 1 TO R5 (COUNT OF ZERO DIGITS+l)

C 7,ZERO IF R7 IS ZERO, CONTINUE
BN DONE IF NOT, DONE
UCT 3,LOOP GOTO LOOP IF NOT FINISHED
B DONE2 NO NEED TO SUBT 1, ALL ZEROES

DONE BCTR 5,0 R5 NOW CONTAINS COUNT OF ZERO DIGITS
DONE2 ST 5,8(1) STORE RESULT

RETURN (2,8)
--

* PROCEDURE TZ

O procedure trailingzeroes (Value Max Decimal;

* scal dec1Mal_digits;
* U digs : in out integer);

• -- this procedure returns the number of trailing zeroes in. -- the last "scal' digits of the packed decimal number

--

ENTRY TZ
TZ SAVE (2,8)

BALR 8,0
USING *,8
LM 2,3,0(1) PARMS IN R2 AND R3
LA 2,15(2) GET ADDRESS OF LAST BYTE OF DEC NUMB

CMU/SEI-89-TR-1 6 217U

I

IC 6,0(2) GET LAST BYTE OF DEC NUMBER
SRL 6,4 GET LAST DIGIT OF DEC NUMBER
SR 5,5 CLEAR R5

LOOP1 LA 5,1(5) ADD 1 TO R5 (COUNT OF ZERO DIGITS+1)

C 6,ZERO IF R6 IS ZERO, CONTINUE
BNE DONE1 IF NOT, DONE
BCT 3,CONT1 GET NEXT BYTE IF MORE TO SCAN
B DONE3 NO MORE TO SCAN

CONTI BCTR 2,0 GET ADDRESS OF NEXT BYTE OF DEC NUMB
IC 6,0(2) GET PREV BYTE OF DEC DIGIT
SR 7,7 CLEAR R7 FOR SHIFT

SRDL 6,4 UPPER NIBBLE -> R6, LOWER => R7
LA 5,1(5) ADD I TO R5 (COUNT OF ZERO DIGITS+I)
C 7,ZERO IF R7 IS ZERO, CONTINUE
BNE DONE1 IF NOT, DONE
BCT 3,LOOP1 GO TO LOOP1 IF MORE TO SCAN

S DONE3 NO NEED TO SUBT 1, ALL ZEROES
DONE1 BCTR 5,0 R5 NOW CONTAINS COUNT OF ZERO DIGITS
DONE3 ST 5,8(1) STORE RESULT

RETURN (2,8)
*- ---------- - - - - - - - - -

*|

* PROCEDURE INV *n
* procedure inverse (Value in out MaxDecimal;
* Right Max-Decimal);

-- this procedure returns the inverse of Right in Value

--

ENTRY INV
NV SAVE (2,6)

BALR 6,0
USING *,6

LM 2,3,0(1) GET ADDRESSES OF PARAMS
MvC 0(16,2),0(3) MOVE INPUT TO OUTPUT I
IC 4,15(2) LOAD LAST BYTE OF DEC NUMBER

SR 5,5 CLEAR R5 FOR SHIFT
SRDL 4,4 SHIFT RIGHT SO ONLY SIGN IN R5
C 5,POSZCON IS SIGN AN 'F' m
BNE CNTNU GO TO CNTNU IF NOT

L 5,NEGCON ELSE MAKE THE SIGN NEGATIVE
B INVEND GO TO END

CNTNU SLL 5,3 SHIFT TO SEE LOW ORDER BIT OF SIGN
C 5,ZERO IF LOW ORDER BIT IS ZERO, NUM IS POS

BNE POS IF LOW ORDER BIT IS ONE, NUM IS NEG
L 5,NEGCON DEC NUM IS POS => MAKE NEG
B INVEND GO TO END

POS L 5,POSCON DEC NUM IS NEG => MAKE POS

INVEND SLDL 4,4 SHIFT LEFT SO LOW ORDER BYTE IN R4
STC 4,15(2) STORE LOW ORDER BYTE INTO DEC NUM

INVRET RETURN (2, 6)
--

*

PROCEDURE ABSV 3
* procedure absv (Value in out Max Decimal;

Right Ma .Decimal);

* -- this procedure returns the absolute value of Right in Value

--

ENTRY ABSV 3
218 CMU/SEJ-89-TR-16

I
ABSV SAVE (2,4)

" AI R 4,0

USING *, 4
LM 2,3,0(1) GET ADDRESSES OF PARAMS
MVC 0(16,2),0(3) MOVE INPUT O OUTPUT
NI 15(2),X'FO' CLEAR SIGN
01 15(2),X'OC' MAKE SIGN POS
RETURN (2,4)

--

• PROCEDURE S VFi

5 * procedure shft (Result out Max Decimal;
• Value :MaxDecimal ;
• scale :Integer;

• error in out boolean);

-- this procedure shifts the 31 digits of Value by "scale"
• -- digits. if "scale" is positive, the shift is left.
* -- if "scale" is negative, the shift is right. If overflow
• __ occurs on a left shift, then the error boolean is met to

* -- true. The right shift rounds the remaining digits.

* This subroutine expects that the Decimal Overflow mask in the PSW
* has been cleared to prevent the interrupt (bit pos 37).

ENTRY SUFT
SHFT SAVE (2,6)

RALR 6,0
USING *6
LM 2,4,0(1) GET PARMS IN R2 THROUGH R4
MVC 0(16,2),0(3) MOVE THE INPUT TO TER OUTPUT

L 3,-X'0F5' LOAD LENCT81 AND LENGTH2 FOR EX INST
C 4,-F' 64' IF SHIFT COUNT > 64
R SHFTERR THEN COUNT OUTSIDE SHIFT RANGE

C 4,-F'-64' IF SHIFT COUNT < -64IL SHFTERR THEN COUNT OUTSIDE SHIFT RANGE
C 4,-F'0' IF SHIFT COUNT >- 0
SNL S rTCVT THEN CONTINUE, ELSE
L 5,-r'64' SHIFT IS TO RIGHT, 2ND OPND IS

SR 5,4 6 4 -COUNT
LR 4,5 GET COUNT IN R4

SHTTCNT N 4,-X1 00000FrF' ONLY LOWER 12 BITS CONTAINS COUNT
STE 4, INST+4 STORE COUNT INTO SHIFT INSTRUCTION
XX 3, IMST EXECUTE INSTRUCTION
DO SHFTERR IF OVERFLOW, GO TO SHFTERR
a SHFTRZT GO TO SHFTRET

SHFTERR LA 4, 1 LOAD ' TRUE' IN R4
"STC 4,12(l) STORE 'TRUE' INTO ERROR BOOLEAN

SHFTRET RETURN (2,6)

• PROCEDURE 1

le procedure equal (Left, Right MaxDecimal;
* result in out boolea&);

thi- procedure coeares Left and Right, and returns a result

of true If they are equal, or false if they are not equal

ENTRY EQ

I CMU/SEI-89-TR-1 6 219

I

1

EQ SAVE (2,5) 1
BALR 5,0
USING -,5
LM 2,3,0(1) GET ADDRESSES OF 2ARMS
CP 0(16,2),0(16,3) COMPARE TWO PACKZD NUMS
BN! EQRET RETURN 'FALSE' IF NOT EQ
LA 2,1 LOAD 'TRUE' INTO R2
STC 2,8(1) STORE 'TRUE' INTO RESULT BOOLEAN

EQRET RETURN (2,5)
--*

7-OCEDURE LT 5
procedure 1... than (Left, Right Max Decimal;

Sresult uin ot boolan);
*

S-- t~his procodure compares Left and Right. if Left is < Right
* -- then result is met to true" I

ENTRY LT
LT SAVE (2,5)

BALR 5,0
USING *,5
L 2,3,0(1) GET ADDRESSES OF PARKS
CP 0(16,2),0(16,3) COMPARE TWO PACKED NUNS
BNL LTRET RETURN 'FALSE' IF NOT LT
LA 2,1 LOAD 'TRUE' INTO R2
STC 2,8(1) STORE 'TRUE' INTO RESULT BOOLEAN

LTRET RETURN (2,5)
--*I

* PROCEDURE GT

* procedure greater than (Left, Right :ax_Decimal;
* result in out booloan);

* -- this procedure 0 ares Left and Right. if Left > Right
-- esult is sot to true.

* I
--

ENTRY GT
GT SAVE (2,5)

BALR 5,0
USING *,5
L 2,3,0(1) GET ADDRESSES OF PARMS
CP 0(16,2),0(16,3) COMPARE TWO PACKED NUNS
BNE GTRET RETURN 'FALSE' IF NOT GT
LA 2,1 LOAD 'TRUE' INTO R2
STC 2,8(1) STORE 'TRUE' INTO RESULT BOOLEAN

GTRET RETURN (2,5)

*1

PROCEDURE LEQ 1

* procedure less_than equal (Left, Right MaxDocimal;
* result in out boolean);

-- its procedure coapares Left and Right. if Left <= Right
* -- then result is set to true.
*

--

ENTRY LEQ

220 CMU/SEI-89-TR-16 3

I
LEQ SAVE (2,5)3ALR 5,0

USING -,5
Ll 2,3,0(1) GET ADDRESSES OF PARKS
CP 0(16,2),0(16,3) COMPARE TWO PACKED NUMS
BRE LEQET RETURN 'FALSE' IF NO% LEQ
LA 2,1 LOAD 'TRUE' INTO R2

STC 2,8(1) STORE 'TRUE' INTO RESULT BOOLEAN
LEQRET RETURN (2,5)

--

* PROCEDURE GEQ

procedure greaterthanequal (Left, Right MaxDecimal;
result in out boolean);

* -- this procedure compares Left and Right. if Left >- Right

* -- then result is set to true.

--

ENTRY GEQ

GEQ SAVE (2,5)
BALR 5,0

USING *,5
1m 2,3,0(1) GET ADDRESSES OF PARKS
CP 0(16,2),0(16,3) COMPARE TWO PACKED NUMS
BL GEQRET RETURN 'FALSE' IF NOT GEQ
LA 2,1 LOAD 'TRUE' INTO R2
STC 2,8(1) STORE 'TRUE' INTO RESULT BOOLEAN

GEQRET RETURN (2,5)
--

* PROCEDURE ADD

* procedure add (Result : in out Max Decimal;

* Left, Right :Max Decimal;
* error : in out boolean);

-this procedure adds Left and Right, and stores the result

in Result. if an overflow occurs during the operation, then
"error" is set to true.

*This subroutine expects that the Decimal Overflow mask in the PSW
Ihas been cleared to prevent the interrupt (bit po0 37).

--
*

ENTRY ADD
ADD SAVE (2,5)

RALR 5,0
USING *,5
Im 2,4,0(1) GET ADDRESSES OF PARKS

KVC 0(16,2),0(3) MOVE 'LEFT' TO 'RESULT'
AP 0(16,2),0(16,4) ADD 'LEFT' AND 'RIGHT' IN PLACE
DO ADDERR GO TO ADDERR ON OVERFLOW

B ADDRET GO TO ADDRET
ADDERR LA 3,1 LOAD 'TRUE' INTO R3

STC 3,12(1) STORE 'TRUE' INTO ERROR BOOLEAN
ADDRET RETURN (2,5)
--

I PROCEDURE SUB

* procedure subtract (Result in out Max Decimal;

CMU/SEI-89-TR-16 221I

I
* Left, Right : Max Decimal;

* error : in out boolean);

* -- this procedure subtracts Right from Left, and stores the result
* -- in Result. if an overflow occurs during the operation, the

* -- "error" boolean is set to true. 3
* This subroutine expects that the Decimal Overflow mask in the PSW
* h. been cleared to prevent the interrupt (bit pos 37).

--

ENTRY SUB
SUB SAVE (2,5)

BALR 5,0
USING *, 5
AL 2,4,0(1) GET ADDRESSES OF PARMS

MVC 0(16,2),0(3) MOVE 'LEFT' TO 'RESULT'
SP 0(16,2),0(16,4) SUBTRACT 'RIGHT' FROM 'LEFT'
sO SUBERR GO TO SUBERR ON OVERFLOW
B SUBRET GO TO SUBRET

SUBERR LA 3,1 LOAD 'TRUE' VALUE INTO R3
STC 3,12(l) STORE 'TRUE' INTO ERROR BOOLEAN

SUBRET RETURN (2,5)
--* I

*PROCEDURE MUL

* procedure multiply (Result : in out Max Decimal;

Left, Right : x ecimal;
* " error : in out bolean);

* -- this procedure multiplies Left by Right, and stores the result
-- in Result. if an overflow occurs during the operation, the I

* -- "error" boolean is set to true.

* This procedure will cause a numeric error to occur in the application

* if there are not enough leading zeros in the multiplicand to U
* accomodate the UP instruction.

ENTRY MUL
MUL SAVE (2,10)

BALR 10,0
USING *,10
IM 2,4,0(1) GET ADDRESSES OF PARKS
BCTR 3,0 OFFSET 'LEFT' TO PREPARE FOR LOOPA
LA 5,31 GET NUMBER OF DIGITS TO SCAN
SR 6,6 CLEAR R6
SR 8,8 CLEAR R6

LOOPA LA 3,1(3) GET ADDRESS OF NEXT BYTE TO SCAN
LA 6,1(6) ADD 1 TO R6 (COUNT OF ZERO DIGITS+l)
IC 8,0(3) GET ANOTHER BYTE OF LEFT
SR 9,9 CLEAR R9
SRDL 8 4 UPPER NIBBLE OF BYT IN R8, LWR IN R9
C 8,ZERO IF R8 IS ZERO, CONTINUE
BNE DONZA IF NOT, DONE
BCT 5, COnTA CONTINUE IF MORE TO SCAN

B DONEAI NO MORE TO SCAN
CONTA LA 6,1(6) ADD 1 TO R6 (COUNT OF ZERO DIGITS+I)

C 9,ZERO IF R9 IS ZERO, CONTINUE I
SNE DONEA IF NOT, DONE
BCT 5, LOOPA GET NEXT BYTE IF MORE TO SCAN
B DONEA1 NO NEED TO SUBT 1, ALL ZEROES 3

222 CMU/SEI-89-TR-1 6 I

I
DONEA BCTR 6,0 R6 NOW CONTAINS COUNT OF ZERO DIGITS

DONEAl LA 5,31 GET NUMBER OF DIGITS TO SCAN
SR 7,7 CIEAR R7
BCTR 4,0 OFFSET 'RIGHT' TO PREPARE FOR LOOPB
SR 8,8 CLEAR R8

LOOPB LA 4, 1 (4) GET ADDRESS OF NEXT BYTE TO SCAN
LA 7,1(7) ADD 1 TO R7 (COUNT OF ZERO DIGITS+l)
IC 8,0(4) GET ANOTHER BYTE OF RIGHT
SR 9,9 CLEAR R9
SRDL 8,4 UPPER NIBBLE OF BYT IN RS, LWR IN R9
C 8,ZERO IF R8 IS ZERO, CONTINUE
BN DONEB IF NOT, DONE
BCT 5,CONTB SCAN NEXT NIBBLE IF MORE TO SCAN

B DONER1 NO MORE TO SCAN
CONTE LA 7,1(7) ADD I TO R7 (COUNT OF ZERO DIGITS+1)

C 9,ZRO IF R9 IS ZERO, CONTINUE
BNE DONEB IF NOT, DONE
BCT 5,LOOPB GET NEXT BYTE TO SCAN IF MORE
B DONEB1 NO NEED TO SUET 1, ALL ZEROES

DONEB BCTR 7,0 R7 NOW CONTAINS COUNT OF ZERO DIGITS
DONEBI LM 3,4,4(1) GET ADDRESSES OF LEFT AND RIGHT

CR 6,7 WHICH OPERAND HAS MORE ZEROES?
BE MULV2 GO TO MULV2 IF RIGHT HAS MORE ZEROES

MULVi SRL 6,1 CLEAR LOW ORDER BIT
SLL 6,1 MAKE ODD # OF LEADING O'S EVEN
LR 8,6 LOAD R8 WITH # LEADING 0'S OF LEFT
AR 8,7 ADD IN # LEADING 0'S OF RIGHT
C 8, THTYTWO IF NOT GREATER THAN 31, THEN
EL MULERR MULTIPLY WILL RAISE AN EXCEPTION
MVC 0(16,2),0(4) LEFT HAS MORE ZEROES: MOVE RIGHT
LA 8,32 TO RESULT
SR 8,6 RB CONTAINS NUM DIGITS IN LFT
SRL 8,1 DIVIDE NUM DIGS BY 2 TO GET NUM BYTS
LA 8,1(8) ADD IN REM TO GET NUN BYTES IN LEFT

LA 3,16(3) ADD 16 TO LEFT
SR 3,8 SUB NUN BYTES TO GET CORRECT OFFSET
BCTR 8,0 OFFSET LENGTH OF LEFT BY 1
0 8,=X'000000F0' OR IN LENGTH OF RESULT
Ec 8, ULVIA EXECUTE MP INSTR USING LENGTHS IN R9
B MULRET GO TO MULRET

MULV2 SRL 7,1 CLR LOW ORDER BIT, ODD # OF LDNG O'S
SLL 7,1 JMKE ODD # OF LEADING 0' S EVEN

LA 8,7 LOAD RB WITH # LEADING 0'S OF RIGHT
AR 8,6 ADD IN # LEADING O'S OF LEFT
C 8,THTYTWO IF NOT GREATER THAN 31, THEN
BL NULERR MULTIPLY WILL RAISE AN EXCEPTION
mvC 0(16,2),0(3) RIGHT HAS MORE ZEROES: MOVE LEFT

LA 8,32 TO RESULT
SR 8,7 R8 CONTAINS NUM DIGITS IN RIGHT
SRL 8,1 DIEVID NUM DIGS BY 2 TO GET NUM BYTS
LA 8,1(8) ADD IN REM TO GET NUM BYTES IN RIGHT
LA 4,16(4) ADD 16 TO RIGHT
SR 4,8 SUB NUM BYTES TO GET CORRECT OFFSET
BCTR 8,0 OFFSET LENGTH OF RIGHT BY 1
0 8,=X'000000F0' OR IN LENGTH OF RESULT
EX 8,MULV2A EXECUTE MP INSTR USING LENGTHS IN R9
B NULRET GO TO NULRET

MULERR LA 3, 1 PUT VALUE ' TRUE' INTO R3
STC 3,12(1) STORE R3 INTO ERROR

MULRET RETURN (2,10)

* PROCEDURE DIV

CMU/SEI-89-TR-16 223I

I

* procedure divide (Result : in out MaxDecimal;
* Left, Right : MaxDecimal;
* Shift in out integer;

* error in out boolean); u
* -- this procedure divides Left by Right, and stores the result
* -- in Result. no overflow can occur using this instruction.

* -- this procedure does not protect the application from the
* -- divide-by-zero run-time exception.

* This procedure causes a numeric error exception to occur in
* the application if the result is too large for the space I
* set aside for the quotient by the DP (divide packed) instruction,
* or if the actual number in the divisor is larger than 8 bytes.*|

ENTRY DIV
DIV SAVE (2,11)

BALR 11,0 I
USING * II

LM 2,4,0(1) GET ADDRESSES OF PARKS

BCTR 3,0 OFFSET R3 TO PREPARE FOR LOOPC
LA 10,31 GET NUMBER OF DIGITS TO SCAN
SR 6,6 CLEAR R6
SR 8,8 CLEAR R8

LOOPC LA 3,1(3) GET ADDRESS OF NEXT BYTE TO SCAN
LA 6,1(6) ADD 1 TO R6 (COUNT OF ZERO DIGITS+l) I
IC 8,0(3) GET ANOTHER BYTE OF LEFT
SR 9,9 CLEAR R9
SRDL 8,4 UPPER NIBBLE OF BYT IN R8, LWR IN R9
C SZERO IF RS IS ZERO, CONTINUE
ENE DONEC IF NOT, DONE
BCT 10,CONTC SCAN NEXT NIBBLE IF MORE LEFT
B DONECI NO MORE TO SCAN

CONTC LAL 6, 1(6) ADD I TO R6 (COUNT OF ZERO DIGITS+I)
C 9,ZERO IF R.9 IS ZERO, CONTINUE

BNE DONEC IF NOT, DONE
ECT 10,LOOPC GET NEXT BYTE IF MORE TO SCAN
B DONEC1 NO NEED TO SUBT 1, ALL ZEROES 1

DONEC BCTR 6,0 R6 NOW CONTAINS COUNT OF ZERO DIGITS

DONECI BCTR 4,0 OFFSET R4 TO PREPARE FOR LOOPD
LA 10,31 GET NUMBER OF DIGITS TO SCAN

SR 7,7 CLEAR R7
SR 8,8 CLEAR R8

LOOPD LA 4,1(4) GET ADDRESS OF NEXT BYTE TO SCAN

LA 7,1(7) ADD 1 TO R7 (COUNT OF ZERO DIGITS+l)

IC 8,0(4) GET ANOTHER BYTE OF RIGHT I
SR 9,9 CLEAR R9
SRDL 8,4 UPPER NIBBLE OF BYT IN R8, LWR IN R9

C $,ZERO IF R8 IS ZERO, CONTINUE
BNE DONED IF NOT, DONE
ECT 10, CONTD CHECK NEXT NIBBLE IF MORE TO SCAN
B DONEDI NO MORE TO SCAN

CONTD LA 7,1(7) ADD 1 TO R7 (COUNT OF ZERO DIGITS+1)

C 9, ZERO IF R9 IS ZERO, CONTINUE
BNE DONED IF NOT, DONE
BCT 10,LOOPD GET NEXT BYTE IF MORE TO SCAN
a DONEDI NO NEED TO SUBTRACT 1, ALL ZEROES

DONED BCTR 7,0 R7 NOW CONTAINS COUNT OF ZERO DIGITS
DONEDI LX 3,4,4(1) RESTORE ADDRESSES OF PARKS

C 7,SXTEEN IS DIVISOR BIGGER THAN 8 BYTES
BL DIVERR ERROR IF YES

224 CMUISEI-89-TR-16 3

I

LA 8,31 GET MAX DIGITS
SR 8,6 GET NUN DIGS IN DIVIDEND
LA 9,31 GET MAX DIGITS
SR 9,7 GET NUM DIGS IN DIVISOR

SRL 7,1 DIVIDE BY 2 => # BYTES OF QUOTIENT
LA 6,16 LOAD R6 WITH 16
SR 6,7 R6 CONTAINS # BYTES IN DIVISOR
MVC 0(16,2),0(3) MOVE DIVIDEND TO RESULT FOR TEMP USE
SR 10,10 CLR RI0 TO HOLD NUMB DIGS OF RIGHT
SR 9,s COMP LENGTH (LEFT) WITH LENGTH (RIGHT)
BZ DIVCONT GOTO DIVCONT IF EQUAL
BP SEFTOP GOTO SEFTOP IF LENGTH (L) < LENGTH (R)
LCR 10,9 MV #DIGS SBFTD RGHT TO #DIGS IN RES

SHFTOP SRP 0(16,2) ,9,5 SHIFT DIVIDEND FOR COMPARE W/DIVISOR
DIVCONT NI 15(2),X'FO' CLEAR SIGN OF LEFT

01 15(2),X'OC' MAKE SIGN OF LEFT POSITIVE
IC 8,15(4) GET SIGN OF RIGHT
LR 9,8 SAVE SIGN FOR LATER
N 8,=X'FFFFFFF0' CLEAR SIGN OF RIGHT
0 8,=X'oo00000C' MAKE SIGN OF RIGHT POSITIVE
STC 8,15(4) STORE SIGN IN RIGHT

CP 0(16,2),0(16,4) COMPARE RIGHT AND LEFT
BL DIVCNT1 IF LEFT > RIGHT, THEN RESULT WILL
LA 10,1(10) CONTAIN ONE MORE DIGIT

DIVCNT1 STC 9,15(4) REPLACE ACTUAL SIGN INTO RIGHT
AR 4,7 GET OFFSET INTO DIVISOR OF ACTL NUM
LR 8,7 SAVE #BYTES IN QUOTIENT
SLL 7,1 GET NUN OF DIGITS + 1 OF QUOTIENT
BCTR 7,0 GET NUM OF DIGITS OF QUOTIENT
SR 7,10 COMP #DIGS IN QUOTNT TO #DIGS IN RES
E3M DIVERR OVERFLOW => GO TO DIVERR

MVC 0(16,2),0(3) RESTORE LEFT IN RESULT
BZ DODIV IF EQUAL, THEN PERFORM DIVISION

SRP 0(16,2),7,5 SHIFT LEFT TO GET MAX PREC OF RESULT
B DODIVA GO TO DODIVA

DODIV SR 7,7 NO SHIFT TOOK PLACE
DODIVA BCTR 6,0 OFFSET #YTES IN DIVISOR BY ONE

0 6,=X000O0oF0' ADD LENGTH OF DIVIDEND
EX 6, DMISN PERFORM DIVIDE OPERATION
L& 9,16 MOVE 16 INTO R9
SR 9,8 R9 HAS #BYTES OF ZEROS
LR 3,2 GET ADDRESS OF RESULT INTO R3
LA 3,15(3) GO TO LAST BYTE
AR 2,8 GET LAST BYTE OF RESULT + 1
ECTR 2,0 GET LAST BYTE OF RESULT

MOVLOOP MVC 0(1,3),0(2) MOVE CHARACTER
BCTR 8,0 SUBTRACT 1 FROM TOTAL TO MOVE
iZ NXTLP FINISHED
BCTR 2,0 GET NEXT BYTE
ECTR 3,0 GET NEXT BYTE
B MOVLOOP MOVE NEXT BYTE

NXTLP BCTR 2,0 GET NEXT BYTE
MOVLP1 MVI 0(2),X'00' STORE ZERO

BCTR 9,0 SUBTRACT ONE FROM R9
BZ FINMOV FINISH IF NO MORE TO MOVE
BCTR 2,0 OTHERWISE, DEcREMENT ADDRESS
B MOVLPI MOVE ANOTHER BYTE OF ZEROES

FINMOV ST 7,12(1) STORE AMOUNT OF SHIFT INTO PARAM
B DIVRET GO TO DIVRET

DIVERR LA 3,1 PUT VALUE 'TRUE' INTO R3

STC 3,16(1) STORE R3 INTO ERROR
DIVRET RETURN (2,11)
LOWER DC PL16' -2147483648'

CMU/SEI-89-TR-1 6 225U

UPPER DC PL16'2l474S3648'
POSCON DC X'COOOOOOO'
NEGCON DC VDOOOOOO'
POSZCON DC X'FOOOOOOO'

ZERO DC F'O'I
ONE DC F'l'
SXTZEN DC F116,
TRTYTWqO DC F'32'

MULV1.A MP 0(0,2),0(0,3)
MULV2A MP 0(0,2),0(0,4)
DIVISN DP 0(0,2),0(0,4)

C.22 SQLChar Pkg Specification3
with SQLSystem; use SQLSystem;5
with SQL-folean_Pkg; use SQL BooleanPkg;
with SQL Standard;

package SQLChaPg

subtype SQLChar Length is natural

range 1. . IMiXCBP.EN;
subtype SQL_-Unpadded Length is natural

range 0 .. MM.CBRLEN;

type SQL_Char_NotNull is new SQLStandard.Char;3

type SQLChar (Length : SQLChar -Length) is limited private;

function Null SQL Cha return SQL _Char; I
-pragma MNINE (Null SQLChar);

-the next three functions convert between
-- null-bearing and non null-bearing-types

-Without NullEase and WithNullEase are
-- Inverses (mod. null values)

-see, also SQL_Char_Ops generic package below
function With NullE ase (Value :SQL_CharNotNull)I

return SQLChar;
-pragma INLINE (WithNull Base);
-- WithoutNullE ase and WitihoutNull Base_-Unpadded raise

-- null_value_error on the null Lnpu t
function WithoutNullEase (Value : SQL_-Char) return SQLCha -Not-Null;

-pragms INLINE (WithoutNullBase);

-Without NullUnpadded Base remove& trailing blanks fromI

function WithoutNull_UnpaddedEase (Value :SQLChar
return SQLCharNotNull;

-pragma 33LINE (Without-Null UnpaddedEase);I
-- axiom: unpadded Length(m)

-- WithoutNull_Unpadded Ease (i) 'Length
-both functions raise null value-error if zn is null3

-the next six functions convert between Standard. String
-- types and the SQLChar and SQL Char Not.-Null types

function ToString (Val1ue :SQL Chat: Not7 Null)

return String;I

226 CMU/SEI-89-TR-163

I
function ToString (Value : SQLChar)

return String;
function ToUnpaddedString (Value SQLCharNotNull)

return String;
function ToUnpadded_String (Value SQL_Char)

return String;

-- pragnma INLINE (ToUnpadded_String):
-- this INLINE works for BOTi func-4.....ons!1

function To SQL Char Not Null (Value : Str.Ang)

return SQL Char Not ill;
function ToSQL_Char (Value : String)

return SQL_Char;
-- prgma INLINE (ToSQL_Char);

function Unpadded_Length (Value : SQL_Char)
return SQLUnpaddedLength;

pragma INLI E (UnpaddedLength);

procedure Assign(
Left out SQLChar;
Right SQLChar

-- pragma INLINE (Assign);

-- Substring (x, k, m) returns the substring of x starting

-- at position k (relative to 1) with length m.
-- returns null value if x is null
-- raises constraint-error if Start < 1 or Length < 1 or
-- Start + Length - 1 > x.Lngth

function Substring (Value : SQL Char;
Start, Length : SQLCharLength)

return SQL_Char;
-- pragma INLINE (Substring);

-- "&" returns null if either parameter is null;
-- otherwise performs concatenation in the usual way,
-- preserving all blanks.
-- may raise constraint error implicitly if result is

-- too large (i.e., greater than SQL Char Length'Last
function "&" (Left, Right : SQL Char)

return SQL ger;
-- pragma INLINE ("&");

-- Logical Operations --
-- type X type => Boolean with unknown --

-- the comparison operators return t he boolean value

-- UNKNOWN if either parameter is null; otherwise,
-- the ocomparison is done in accordance with

-- ANSI X3.135-1986 para 5.11 general rule 5; that is,
-- the shorter of the two string parameters is
-- effectively padded with blanks to be the length of

-- the longer string and a standard Ada comparison is
-- then made
function Equals (Left, Right : SQLChar) return Boolean withUnknown;
-- pragma INLINE (Equals);
function NotEquals (Left, Right : SQL_Char)

return BooleanwithUnknown;
-- pragma INLINE (NotEquals);
function "<" (Left, Right SQLChar) return Boolean withUnknown;
-- pragma INLINE ("<");
function ">" (Left, Right SQL_Char) return Boolean-withUnknown;
-- pragma INLINE (">");
function "<-" (Left, Right SQL Char) return Boolean withUnknown;

CMU/SEI-89-TR-1 6 227U

I

-- pragma INLINE ("<="): I
function ">-" (Left, Right : SQLChar) return Boolean withUnknown;
-- pragma INLINE (">=");

-- type => boolean -- 3
function Is Null(Value : SQL Char) return Boolean;
-- pragma ITLINE (IsNull);
function Not_Null(Value : SQL_Char) return Boolean;
-- pragma INLINE (NotNull);

-- These functions of class type => boolean
-- equate UNKNOWN with FALSE. That is, they return TRUE
-- only when the function returns TRUE. UNKNOWN and FALSE
-- are mapped to FALSE.
function "=" (Left, Right SQL_Char) return Boolean;
-- vraoma INLINE ('=");

function "<" (Left, Right : SQLChar) return Boolean;
-- pragma INLINE ("<");
function ">" (Left, Right SQLChar) return Boolean;
-- pragwa INLINE (">");

function "<=" eft, Right SQLChar) return Boolean;
-- pragma INLINE ("<=");
function ">=" (Left, Right . SQL_Char) return Boolean;
-- pragma INLINE (">");

-- the purpose of the following generic is to generate
-- conversion functions between a type derived from
-- SQL_CharNotNull, which are effectively Ada
-- strings and a type derived from SQL Char, which
-- mimic the behaviour of SQL string&.
-- the subprogram formals are meant to default; that is, U
-- this generic &,=1 4 be instantiated in the scope
-- of an use clausa for SQL_Char_Pkg.

generic

type With NullType is limited private;
type WithoutNull_Type is array (positive range 0')

of sql standard. Charctar_type;
with function With Null Base (Value: SQL Char NotNull)

return With Null_Type is <>;
with function Without Null _ase (Value: With NullType)

return SQL Char Not Null is 0;
with function Without_Null_Unpadded_Rase (Value: WithNull_Type)

return SQL_Char_NotNull is 0;
package SQL Cham Ops is

function With Null (Value : WithoutNullType)
return With_Null_Type;

-- pragma INLINE (WithNull);
function Without Null (Value : WithNull_Type)

return Without_NullType;
-- pragma INLINE (WithoutNull);

function WithoutNullUnpadded (Value : WithNullType)
return Without _Null_ Type;

-- pragma INLINE (WithoutNullUnpadded);
end SQL CharOp.;

private

type SQL _Ch a (Length : SQL_CharLength) is record
Is-Null: Boolean : true;
Unpadded_Length: SQL_UnpaddedLength;
Text: SQL_Char NotNull(I .. Length);

end record;

I

3 end SQLCharPkg;

C.23 SQLCharPkg Body
With SQL Exceptions;
with SQL Standard;

package body SQLCharPkg is

use SQLSandard.CharactorSot; -- literals to be interpreted in
DBMS native character not

Null_-ValueError exception ranames SQL Zxceptions.Null Value Error;

prq .- dure smii
Left out SQLChar;
Right SQLChaLr)
is

begin

if Right.!._Hull then Left.IsNull :=True;
also

Left.!. Null :=False;
if Left. Length >= Right. UnpaddedLength then

-no need to tr.ncate; blank pad
Left .UnpaddedLength := Right. UnpaddedLength;
Left. Text :- ight. Text (1. .Right. unpaddedLength)

SQL Char NotNull'
(Right unpaddeod Length + 1 .. Left .Length =

*lSO
-- truncate; may need to strip blanks
Loftremovl-etlngth blnk i tunatd st.g h

e mvext ftlngth b ln&Iruncht.edt1 st eng t;

unaddlength_ctr Natural :- Left. length;I begin
for i. in reverse I . Left. length loop

exit when Jtight.Text(i) /= 1'1
unpadded-length _ctr :- unpadded-length_cptr -1;

end loop;

en;Left. unpadded-length :- unpadded length _ctr;

end if;
end if;

end Assign;

function WithNullEase (Value :SQLCharNotNull)

return SQL Char is
-- Calculate the Unpadded ILength of the input string
-- without the trailing b;lank*3 -- The input is stored in the output

UnpaddedLengthCtr :Natural :- Value' Length;
subtype Intermed is SQLCharNot-Null (I .. Valuo'Length); -- allows slicens
beginU for i in reverse Value'First .. Valu Last

loop
exit when Value(i)/'
Unpadded Length_Ctr UnpaddedLength_Catr -1;I end loop;-

return (Length => Value' Length,
Is-Null -> False,

CMU/SEI-89-TR-1 6 229

Unpadded_Length => Unpadded_Length _Ctr,
Text => Intermed(Value));

end With NullBase;

function Without kNuI±_Base(Value :SQLChar) return SQL -Char Not Null is3
begin

if Value.1sNull then
raise Null Value Error;

alreturn ValueText;
end if;

end WithoutNullBase;

function Without NullUnpadded. Bass (Value SQLChar
return SQLCharNot-Null is

begin

if Valuels_ Null then
raise Null ValueError;

also
return (Value. Text (1..Value.UnpaddedLength));

end if;_
end WithoutNullUnpaddedBase;

function NullSQLChar return SQLChar is

NullHolder :SQL Chr(1);
begin

return(NullHolder); -- relies on default expression for Is-Null
end Null SQL Char;

I

function ToString (Value :SQL_-Char_ Not_-Null)
return SitrIng is Separate;

function ToString (Value SQL_Char-
return String Is

begin
If Value.Is Null then

raise Null ValueError;
else

return (To String{Valu*.Text.));
end if;

end ToString;

function ToUnpaddedString (Value :SQL_CharNotNull)
return String is

beginI
return (To String(Without Null UnpaddedBase(With NullBase(Value))));

end ToUnpadded String;

function ToUnpaddedString (Value :SQLChar)
return String is

begin
if Value.lsNull then

raise Null ValueError;I
olseo

return (ToStriLng(Value.Text (1..Value.UnpaddedLngth)));
an if;

end ToUnpaddedString;

function ToSQLChar_-NotNull (Value :String)

return SQLCharNotNull is separate;

function ToSQLChar (Value String)
return SQLChar is3

230 CMU/SEI-89-TR-1 6

C- alculate the UnpaddedLength of the input str2ing
-- without the trailing blank&
-The input is stored in the output

UnpaddedILength _Ctr :Natural :=Value'Longth;

subtype Intermed is SQL CharNotNull (1 .. Value'Length); -- allows slices
begin

for i in reverse Value'First. Value'Last

lopexit when Value(i) /= I

UnpaddedLength_Ctr :-= Unpadded_Length_Cqtr -1;
end loop;
return (Length => Value' Length,

IsNull => False,
UnpaddedLength => Unpadded Le6ngth,_Ctr,
Text => Interned(ToSQLCharNotNull(Value)));

end ToSQLChar;

function UnpaddedLength (Value :SQLChar)
return SQLUnpaddedLength is

begin__ _

if Value.1sNull then
raise NullValueError;

else
return Value.Unpadded Length;

end if;
end Unpadded Length;

3function Substring (Value :SQL_-Char
Start, Length : SQLCharLength)

return SQLCha is
begin

if Value.IsNull then
return NullSQLChar

elsif (Start + Length - 1) > Value .Length then
-no need to check Start and Length here to see that

-- they are>O0

el he rag osritso utp SQL Char -Length

wi-1 garateetha a un-imzcheck is made of

thoe vlus a tey repasedinto "Substrimg"

retrn ithNul-Ba*(VlueTex(Strt . Sart+ Length -1));

and if;

end Substring;

function "&" (Left, Right :SQL-Char

return SQLChar is
begin__

if Left.IsNull or else Right.IsNull then
return NullSQLChar;

aloreturn_
__

_

WithNullEase (Without_-NullEase (Left)
& WithoutNullEase (Right));

and if;

end "&";

function Equals (Left, Right: SQLChar) return Boolean With Unknown is
begin

if Left~lsNull or else Right.Is Null then
return Unknown;3 else

CMU/SEI-89-TR-1 6 231

if Left.Text(l. .Left.UnpaddedLength)
Right.Text (1..Right.UnpaddedLength) then

return True;
also

edi;return False;I
end if

end Equals;3

function NotEquals (Left, Right: SQLChar) return Boolean WithUnknown is
begin

if Left.IsNull or else Right.Is Null then

srturn Unknown;I

i2f Left.Text (1..Left.UnpaddedLength)/
Right.Text (1. .Jight.UnpaddeodLength) then

return True;I
ele

return False;
end if;

end if;I

function ">" (Left, Right: SQLChar) return B~oolaan-With. Unknown is3
begin

if Left.I I.Null or else Right.IsNull then
return Unknown;

aloIf Left.Text (1..Left.UnpaddedLength) >

Right.Te-t V' .Right .tnpadded-Length) then
return True;

ao return False;I

end if;
end if;

end;

function ">-n" (Left, Right: SQL Char) return BooleanWith-Unknown is
begin

if Left.IsNull or else Right.IsNull then
return Unknown;

alse
if Left. Text (1.. Left .UnpaddedLength) >-

Right. Text (1. .Right.UnpaddeodLength) then
return True;

olse
return False;

end if;I

end;

function "<" (Left, Right: SQLChar) return Boolean-With Unknown isI
begin

if Left.IsNull or else PRight.IsNull then
return Unknown;

if Left.Text (1..Left.UnpaddedLength) <
Right.Text (1..Right.UnpadddLength) then

olo return True;

relur Fase
end if;

end if;

232 CMU/SEI89-TR-1 63

U end;

function "<-" (Left, Right: SQLChar) return Boolesn With Dnknown is
begin

if Left.IsNull or else R.LghtIls Null then1 .1 ~~~return Unknown;Lf.naddegh< te

U return True;
also

return False;I end if;
end if;

end;

3 function IsNull(Value : SQLChar) return Boolean is
begin

return Value.IsNull;5 end IsNull;

function Not Null(Value : SQLChar) return Boolean is
begin

return not Value.IsNull;I end NotNull;

function "=" (Left, Right: SQLChar) return Boolean is
begin3 if Left.INull or elso PRight.Is-Null then

return FALSE;
else

if Left.Text(l. .Left.Unpadded Leng-th)U Right.Tert (1..Right.tlnpaddedLekngth) then
return True;

also

edi;return False;

end if;
end 1= ;

function "<" (Left, Right: SQLC'har) return Boolean is
begin

if Left.IsNull or else Right.IsNull then

elereturn FALSE;

if Left.Text (1..Left.lnpadded Length) <
Right.Text (1..Right.tUnpaddedLength) then

also return True;

return False;
end if;

end if;
end 11<11

function ">" (Left, Right: SQLChar) return Boolean isIbegin
if Left.IsNull or elso Right.IsNull then

return FALSE;
elso

If Left.Text (1..Left.Unpadded Length) >

Righ.Tet~l.P-iht.npadeLength) then

CMU/SEI-89-TR-1 6 233

adi;return False;3
nd if;

end if11;

function "<" (Left, Right: SQL Chbar) return Bloolean is
begin

if Left.Is -Null or also Right.ImNull than

also return FALSZ;U
if Left.Text(l. .Left.UnpaddedLength) <=

Right.Tezt (1..Right.UnpaddedLength) then

also return True;I
return False;

end if;
end if;

end "<=";

function ">=" (Left, Right: SQLChar) return Bloolean is

begin__I
if Left.Is_-Null or else Right.IsNull then

return FALSE.;

alif Lft.Taxt(. .Left.UnpaddedLength) >-
Right.Text (1..Right.UnpadddLength) then

return True;

endsif return False;I

end if
nd i~;3

package body SQL_Char_Ops is
function WithNull (Value : Without-Null Type)

return WithNull_Type is
begin_ __ _ _I

return WithNullBase(SQLCharotNull(Value));
end WithNull;3

function Without Null (Value : With Null-Type)
return Witho;ut Null TYPe Is

begin

return Withnut_-NullType(
SQL-CharNot Niull' (WithoutNullEase (Value)));

end Without-Null;

function WithoutNullUnpadded (Value : WithNt.ll_Type)3
return WithoutNullType is

begi~n
return WithoutNullType(

SQL CharNotNull' (WithoutNullUnpaddedEase (Value)));
end WithoutNullUnpadded;

end SQL_Char_Ops;5

end SQLCharP3kg;

234 CMU/SEI-89-TR-1 6

I
3 C.24 Subunit ToString

-- assuming an ascii host character set
-- that is SQLStandard. Character_Type is Standard. Character
separate (SQL_Char Pkg)
function ToString (Value : SQLChar NotNull)

return String is
begin

return (String (Value));
end To String;

I C.25 Subunit ToSQLCharNotNull

-- assuming an ascii host character set
-- that is SQLStandard. Character-Type is Standard.Character
separate (SQL_CharP kg)
function ToSQLChar Not Null (Value : String)

return SQLCharNot Null is
begin

return (SQL_Char Not Null(Vlue));
end ToSQL-CharNot_-Null;I
C.2V SQL EnumerationPkg Specification
with SQLBooloen_Pkg; use SQLBooleanPkg;
with SQLChar_Pkg; use SQLChar_Pkg;
generaic

type SQLEnumeration Not Null is (O);
package SQL_EnumrationPkg

--... Possibly Null Enumration ----
type SQL_Enumeation is limited private;

function NullSQL_Enumeration return SQLEnuzmration;
-- pragma INLINE (Null SQL Enumeration) ;

-- this pair of functions convert between the
-- null-bearing and non-null-bearing types.
function WithoutNull(Value : in SQL_Enumration)

return SQL_EnumerationNotNull;
pragma INLINE (Without-Null);

-- With Null raises Null Value Error if the input
-- value is null
function WithNull(Value : in SQL_Enumeration NotNull)

return SQLEnumration;3 -- pragma INLINE (WithNull);

procedure Assign (
Left : in out SQL_Enumeration; Right : in SQLEnumeration);3 -- pragma INLINE (Assign);

-- Logical Operations --
-- type X type -> Dooleant with unknown --

-- these functions implement three valued logic

-- if either input is the null value, the functions
-- return the truth value UNKNOWN; otherwise they

perform the indicated comparison.

CMU/SEI-89-TR-16 235I

-those functions raise no exception&
function Equals (Left, Right :SQLnumeration)

return Booloan-withUnknown;

functio No quals (Loft, Right :SQLEnumration)
return i;oolean withUnknown;

-- pragma INLINE (Not,_Equals) ;
function <"(Left, Right SQLnumration) return Boolean with Unknown;
function >"(Loft, Right SQLnumration) return Boolean-withUnknown;

function "i"(Loft, Right SQLEnumeration) return Booloan with -Unknown;I
function ">"(Loft, Right SQL Enumeration) return Doolean with-Unknown;

-- type -> boolean --

function IsNull (Value :SQLEnumeration) return Boolean;
-- praghia INLINE (IsNull);
function Not Null (ValIue SQLEnumeration) return Booloan;
-- pragma INLINE (NotNull);

function "-n" (Left, ight SQLEnumeration) return Boolean;
-- pragma INLINE ('i-");

function "<' (Left, Right SQLnumration) return Boolean;
-- pragma INLINz (',<,);
function ">" (Left, Right SQL Enumration) return Boolean;I
-- pragma ININE (">");I

function "<=" (Left, Right SQLEnumration) return Boolean;
-- pragma IMINE ("<-n");

function ">-" (Left, Right SQLnumeration) return Boolean;
-pragma niNN C*>-");

-the following six functions mimic theI
-- 'Prod, 'SUec, 'Image, 'Poo, 'Val, and 'Value
-- attributes of the SQLEnumerationNot Null type, passed
-- in, for the associated SQL nur-ation (null) type

-they all raise the NullValueError exception if a null
-- value is passed in

-Prod raises the Constraint Error exception If the value
-- passed in is equal to SQLEnumerationNotNull' Lat

-Succ raises the Constraint Error oxcepti, n if the value
-- passed in is equal to SQLEnumerationNotNull' Wirat

-- Val raises the ConstraintEirror exception if the value passed
-- in is not in the range FPS(P'FIRST)..P'POS(P'L.ST) for type PI

-- Value raises the Constraint -Error exception if the sequence of
-- characters passed in does not have the syntax of an enumeration
-- literal for the instantiated enumeration tyrpe

function Prod (Value :in SQLEnumeration) return SQL Enumeration;I
-- pragma INLINE (Prod);
function Succ (Value :in SQLnumeration) return SQLnumeration;
-- pragma INLINE (Succ);

function Pos (Value :in SQLEnumeration) return Integer;I
-- pragma INLINE (Poo),-
function Image (Value in SQL_-Enumeration) return SQLChar;
function Image (Value in SQL_-Enumration Not Null)

return SQLCharNotNull;I
-- pragma INLIiE (Imnage);
function Val (Value :in Integer) return SQLnumeration;
-- pragma INLINE (Val);

function Value (Value in SQLChar) return SQLEnumeration;
function Value (Value in SQLCharNotNull)'

return SQLEnumeration Not Null;,
-- pragma INLINE (Value);

private

type SQLEnumeration is record

236 CMU/SEI-89-TR-1 6

Is Null: Boolean :- true;
Value: SQL_EnumerationNotNull;

end record;

end SQLEnumerationPkg;

C.27 SQL_Enumeration_Pkg Body

With SQL_Exceptions;
package body SQLEnumerationPkg

is

Null Value Error : exception renames SQLExceptions.NullValueError;

function NullSQL_Enumeration return SQL_Enumeration is
NullHolder : SQL_Enumeration;

begin
return NullHolder;

end NullSQLEnumeration;

function WithoutNull(Value : in SQL-Enumeration)

return SQL_EnumerationNotNull is

begin
if Value.IsNull then

I aleraise NullValueError;

end return Value.Value;

and if;

end Without_ull;

function WithNull(Value : in SQLEnumerationNotNull)
return SQLEnumeration is

begin
return (Is Null => false,

Value a> Value);

end With Null;

3 procedure Assign (Left : in out SQLEnumeration;
Right in SQLEnumeration) is

begin
Left :- Right;

end Assign;

function Equals (Left, Right : SQLEnumeration)
return BooleanWithUnknown is

begin
if Left.! ._Null or else Right.IsNull then

return Unknown;

elsif Left.Value = Right.Value then

return True;
else

return False;
end if;

end Equals;

function Not-Equals (Left, Right : SQLEnumeration)
return BooleanWithUnknown is

begin
if Left.!._Null or eleo Right.Is Null then

return Unknown;

CMU/SEI-89-TR-1 6 237I

elsif Left.Value /= Right.Value thenI
return True;

return False;
and if;

end NotEquals;

function "<" (Left, Right :SQLEnumration)3
return Bool*anWithUnknown is

begin
if Left.Is Null or else Right.Is Null then

return U~nknown;

elsif Left.Value < Right.Value then
return True;

else
return False;

end if;
end "<";

function ">" (Left, Right :SQLEnumeration)3
return Boolean With Unknown is

begin
if Left.Is_-Null or else Right.IsNull then

return Unknown;
els,.f Left.Value > Right.Value then

return True;
else

,return False;I

end ">";

function "<--" (Left, Right :SQL_7Enumeration)3
return SooleanWithUnknown is0

begin
if Left.IsNull or else Right.IsNull then

return Unknown;I
elsif Left.Value <- Right.Value then

return True;

aloreturn False;I

end if;
end '<="

function ">-" (Left, Right :SQLEnumeration)I
return Boo leanWithUnknown is8

begin
if Loft.IsNull or else Right.1s Null then

return7Unknown;I
elsif Left.Value >- Right.Valu. then

return True;

elereturn False;
end if;

end >"

function IsNull (Value :SQLnumertion)
return iocoen is

begin

return Value.10_Null;
end IsNull;

function NotNull (Value :SQL Enunmration)

return Booan is

238 CMU/SEI-89-TR-163

begin
return not Value IsNull;

end Not-Null;

function ="(Left, Right :SQLnumeration)

return Boolean is
begin

if Left.IsNull or else Right.IoNull then
return False;I elsif Left.Valuo = Right.Value then
return True;

els4e
return False;U end if;

end *~

function "<' (Left, Right :SQL Enumeration)
return Boolean is

begin
if Left.1 sNull or else Right.Is Null then

return False;

elsif Left.Value < Right.Valu* then
return Truie;

else
return False;

end if;
end '1<0';

function ">" (Left, Right :SQL Enumeration)

return Boolean is
begin

if Left.Is_-Null or else Right.1sNull then
return False;

elsif Left.Value > Right.Valuo then

return True;
elso

return False;
end if;

end 11>11;

3 function "<=" (Left, Right :SQL-Enumration)
return Boolean is

begin
if Loft.Is_-Null or else Right.IoNull then

return Yalse*;
elsif Left.Value <- Right.Value then

return True;

elereturn False;

end if;

end "<="

U function ">-" (Left, Right :SQLnumeration)
return Boolean is

begin
if Left.1 sNull or else Right.leNull thenI return False;
elsif Left.Valuo >- Right.Valuo then

return True;

als return False;
end if;

end I>=,,;

CMU/SEI-89-TR-1 6 239

function Pred (Value :in. SQL Enumeration)3
return SQLEnumeration i&

begin
if ValuelsNull then

else

return (WithNull(SQLEnumeration Not Null'Pred(Value.Value)));
end if;

and Prod;

function Suoc (Value :in SQLnumeration)
return SQLnumeration Is

beginI
if Value.IsNull then

return NullSQLEnumeration;

aloreturn (WithNull (SQLEnumration NotNull' Suco (Value. Value)));
and if;

end Succ;

function Pos (Value: in SQLnumeration) return Integer is
begin

if Value.IsNull then

aloraise N4ullValueError;

return SQLnumerationNotNull'Pos(Value.Value);
end if;

end Poo;

function Image (Value :in SQL_-Enumeration Net Null)
return SQL_CharNotNull is8

begin_ _I

return ToSQLCharNot Null(
SQL,_numrtion_ NotNull' Image (Value));

end Imago;

function Image (Value in SQL Enumeration)
return SQLChar is

begin

if Value.Is Null then
raise NullValueError;

also
return ToSQLChar(SQLEnumerationNotNull' Image(Value.Value));

and Image;

function Val (Value :in Integer) return SQLEnumeration is

begin__I
return (WithNull(SQLEnumeration Not Null'Val(Value)));

end Val;

function Value (Value :in SQL CharNotNull)I
return SQLnumerationNotNull is

begin
return (SQL Enumration Not Null'Value(To String(Value)));

end Value;

function Value (Value :In SQL Char)
return SQLnumration is

beginI
If IsNull(Value) then

return NullSQLEnumration;
oleo

240 CMU/SEI-89-TR-1 6

I
return With Null(SQL_EnumerationNotNull'Value(

ToString (Value)));
and if;

end Value;

and SQLEnumeration Pkg;

C.28 SQL_DatabaseErrorPkg Specification

3 package SQL_DatabaseError_Pkg is

-- The following procedure must be present in every version of
-- SQLDatabase_Error Pkg. It's purpose is to perform standard
-- processing of unexpected exceptional conditions. It should not

-- attempt error recover.

procedure ProcessDatabaseError;

end SQL Database Error Pkg;

I C.29 SQL_DatabaseErrorPkg Body

with Text iO, SQL_CommunicationsPkg, SQL_BaseTypesPkg;

pakg oySLDtbs rouse Test 10, SQL-Comunictions-Pkg, SQLBaseTypes_Pkg;package body SQL Database-Error Pkg is

procedure ProcessDatabaseError is

begin

-- Procedure Process Database Error is called in response
-- to an unexpected database exception (an error incident).
-- The procedure may be modified per
-- the needs of the Abstract Interface developer

-- This is a minimal implementation.
-- Ge' a descriptive error message from the DBMS

-- (through the package SQL CemunicationsPkg)
-- and display it on standard output.

putline (ToString(SQL_Cha_ Not Null(SQLDatabaseErrorMessage)));

3 end Process Database Error;

and SQL_Database_Error_Pkg;

I C.30 SQL DatePkg Specification

3 with SQL_Standard;
with Calendar; use Calendar;

with SQLBooleanPkg; use SQLBoolean_Pkg;
with SQLCharPkg; use SQLCharPkg;
package SQL DatePkg

Ze

I type precision is range 0..10;

CMU/SEI-89-TR-1 6 241I

m
type SQLDatetimeField is (year, month, day, m

hour, minute, second, fraction),;
type SQLDateNotNull is new SQLChar_NotNull;
type SQL-Dateo(From SQLDatetime Fiel"

To SQLDatotimeoField;
Fractional : precision) is limited private;

type SQLInterval(Frm SQL DatetimeField;
Leading precision;
To SQL Datotime Field; m
Fractional : precision) is limited private;

function NullSQL_Date return SQL Date;
-- pragma INLINE (Null_SQL_Date); u
function Null SQLInterval return SQL Interval;
-- pragma INLINE (NullSQLIntrval);n

-- these functions return the not-null portion of the null-bearing type
function Without Null Base (Value : SQL_Date) return SQLDateNotNull;
function Without-Null-Base(Value : SQLInterval) return SQLDate-Not Null;
-- pragma INLINE (WithoutNullEase);

-- this function returns an object of the standard.duration type, after
-- converting to it from the input object of type SQL Interval
function To Duration (Value : SQL_Interval) return duration;
-- pragma ITLINE (ToDuration);

-- this function returns an object of the calendar.time type, after
__ converting to it from the input object of type SQLDate
function To Time (Value : SQLDate) return time;
-- pragma INLINE (ToTime);

these procedures parse the input of type SQL_DateNot Null, and assign
-- the datetime and interval field values to the objocts of type

-- SQL Date and SQL Interval, using discriminants that it determines are
-- the-correct ones-for the object. if these discriminants differ from
-- the ones supplied in the abstract domain for the object when it was
-- declared, a constraint error will be raised.
procedure Parseand_AssignJ aos(LeZt: in out SQLDate;

Right : SOL_Date Not Null);
procedure Parse_and_Assign_Ease (Left: in out SQLnterval;

Right :SQLDateNotNull);
-- pragma INLINE (ParseandAssign); 3
-- this function accepts input of type standard.duration, and
-- returns an object of type SQL Interval whose not-null portion
-- has the correct SQL "interval" value specification format,

-- (FROM => day, LEADING => 2, TO => fraction, FRACTIONAL => 3)
function To_SQL_Interval (Value : duration) return SQL Interval;
-- pragma INLINE (ToSQLInterval);

-- this function accepts input of type standard.time, and 3
-- returns an object of type SQL_Date whose not-null portion
-- has the correct SQL "datotime" value specification format
function To_SQL_Date (Value : time) return SQLDate;
-- pragma IiLINE (ToSQLDate);

-- the assign procedure assigns Right to Left
procedure Assign(Left : in out SQL_Date; Right : SQLDate);
procedure Assign(Left : in out SQL_Int -val; Right : SQL_interval);
-- pragma INLINE (Assign);

-- the following three functions implement unary "+", "", "abel

242 CMU/SEI-89-TR-1 6

I
-- for the SQL_Interval type
function "+"(Right :SQLInterval) return SQLInterval;
function "-"(Right SQL_Interval) return SQLInterval;
function "abs" (Right : SQL_Interval) return SQLInterval;

-- pragma INLINE ("abe");

-- the following functions implement three valued
-- arithmetic

-- if either input to any of these functions is nullS-- the function returns the null value; otherwise
-- they perform the indicated operation
-- these functions raise no exceptions
function "+" (Left, Right : SQL Interval) return SQL Interval;

function Plus(Left : SQL_Interval; Right : SQLDate) return SQLDate;
function Plus(Left : SQL_Date; Right : SQL_Interval) return SQLDate;
-- pragma INLINE ("+");
function "-" (Left, Right : SQL Interval) return SQL Interval;

function Minus(Left, Right : SQL Date) return SQL_Interval;
function Minus(Left : SQL_Date; Right : SQLInterval) return SQLDate;
-- pragma INLINE (...);

function "*" (Left SQL_Interval; Right integer) return SQLInterval;
-- pragma INLINE (*") ;_
function "/" (Left SQL Interval; Right integer) return SQLInterval;
-- pragma INLINE ("/");

-- Logical Operations --
-- type X type => Boolean with unknown --

-- these functions implement three valued logic
-- if either input is the null value, the functions
-- return the truth value UNKNOWN; otherwise they
-- perform the indicated comparison.
-- these functions raise no exceptions
function Equals (Left, Right SQL_Date) return Boolean with Unknown;
function Equals (Left, Right SQL_Interval) return Boolean with Unknown;
-- pragma INLINE (Equals);
function Not Equals (Left, Right : SQLDate)

return Boolean with Unknown;
function NotEquals (Left, Right : SQLInterval)

return Boolean-with Unknown;
-- pralne INLINE (NotEquals);
function "<" (Left, Right SQL Date) return Boolean with Unknown;
function "<" (Left, Right SQLDaterval) return Boolean with_Unknown;
-- pragma INLINE ("<");
function ">" (Left, Right SQL Date) return Boolean with Unknown;
function ">" (Left, Right SQLInterval) return Boolean with Unknown;
-- pragma INLINE (">");

function "<=" (Left, Right SQL Date) return Boolean with Unknown;
function "<= (Left, Right SQLInterval) return Booleanwith Unknown;

-- pragma INLINE ("<=");
function ">=" (Left, Right SQL Date) return Boolean withUnknown;
function ">=" (Left, Right SQLInterval) return Boolean withUnknown;3 -- ~pragma INLINE (>)

-- type -> boolean --

function IsNull(Value SQL_Date) return Boolean;
function IsNull(Value SQL_Interval) return Boolean;

-- pragma INLINE (IsNull);
function Not Null(Value SQLDate) return Boolean;
function Not Null(Value SQL_Interval) return Boolean;
-- pragma INLINE (Not Null);

function Is YearMonth (Value : SQLInterval) return Boolean;
-- pragma IWLINE(IsYear-Month);
function IsDay_Time(Value : SQL_Interval) return Boolean;

CMU/SEI-89-TR-1 6 243I

I

-- pragma INLINE(Is_DayTime); I
function Not Year Month(Value : SQL Interval) return Boolean;
-- pragma INLINE (NotYearMonth);

function Not Day_Time(Value : SQLInterval) return Boolean;

-- pragma INLINE (NotDayTime);

-- the procedure Current returns the current system Datetime, using
-- the precision of the input variable I
procedure Current (Value : in out SQL Date);
-- pragma INLINE(Current);

-- the procedure Extend returns the value of the Right input object with
-- the datetime qualifier of the Left object, if a valid datetime I
-- value is generated by the extension process

procedure Extend (Value : in out SQL Date);
-- pragma INLINE (Extend);

-- this generic is instantiated once for every abstract
-- SQL Date domain, and once for every abstract SQLInterval
-- domain, based on the type SQLDateNotNull.

the two subprogram formal parameters are meant to I
-- default to the programs declared above.

-- that is, the package should be instantiated in the
-- scope of a use clause for SQLDatePkg.

-- the two .ct1 types together form the abstract I
-- domain.
-- the purpose of the generic is to create functions
-- which convert between the two actual types

-- the bodies of these subprograms are calls to I
-- subprograms declared above and passed as defaults to

-- the generic.

generic

type WithNull_Type is limited private;
type Without Null Type is array (positive range <>)

of SQL Standard. Character_type;
with procedure Parse andAssignBase

(Left : in out With Null_Type; Right : SQLDate_Not_Null) is <>;
with func --ion Without -Null I ase(Value : WithNullType)

return SQLDate_Not Null is <;
package SQLDate_Op. is -

procedure ParseandAssign (Left : WithNullType;
Right : WithoutNullType);

-- pragma INLINE (Parse_and_Assign);
function WithoutNull (Value : WithNullType)

return WithoutNulltype;
-- pragma INLINE (WithoutNull);

ead SQLDateOps;

generic
type WithNullDateType is limited private;

type WithNullinterval_Type is limited private;
with function Plus (Left With Null Date_Type; Right SQLInterval)

return With NullDate_Type is <>;
with function Plus (Left SQLInterval; Right : WithNullDateType)

return With NullDate_Type is <>;

with function Minus (Left : With NullDate_Type; Right : SQLInterval)

return With NullDateType is <>;
with function Minus (Left, Right : With-Null_Date_Type)

return SQL Interval is <>;

package SQLDate_Interval_Ops is
function "+" (Left : WithNullDateType; Right : WithNullInterval Type)

return WithNullDate Type;

function "+" (Left : WithNullIntervalType; Right : WithNullDate_Type)
return WithNullDateType; I

244 CMU/SEI-89-TR-16 •

function " (Left :With -Null__Date_ Type; Right With Null Interval_Type)
return With NullDateType;

functioA - (Left, Right :WithNullDate_Type)
return With-Null IntervalTYPe;

end SQLDtInter-valOps;

private

type SQIyear number is range 1600. .9999;
type SQL month: -number is range 1. .12;

tyeSQL day_n umber is range l.1

typ SQL 7fraction number is range 0.. (2**31) -1;
tyeSQL~interval~number is8 range -(2**31)..(2**31)-l;

type SQLDate (Frcin SQL_-Datetime Field;
To SQLDatetime Field;

Fractional precision)
is record

IsMull Boolean :=true;
yeart SQLjyeaxr numbor;
month SQL -month-number;
day SQL -dayjnumber;
hour SQL hour number;
minute SQL minute number;

secoznd SQL seconod number;
fraction SQLfraction number;

end record;

type SQL Interval(From SQLDatetime Field;

Leading :precisiOn;

To -S QLDatetime Field;
Fractional :precision)

is record
IsNull boolean :a True;

IsyarMnth boen: re

dea* SQL interval -number;

minutes SQL _interval-number;
seconds SQL interval number;
fraction SQL inter-val -number;

a nd record;

end SQLDatePkg;

csiINGRESDate Pkg Specification
with SQL Standard;
withi SQLSystem; use SQLSystem;
with Calendar; use Calendar;

with SQL_oolean-Pkg; use SQL NooleanPkg;
with SQLCharlPkg; use SQIL Char _Pkg;
package fIGZSDatePkg

is

type fl4GRZS_-Date_-Not Null is new SQL Char Not -Null;

--- Possibly Null Datetime -- ---

C-'''SE-89-TP.-1 6 245

type INGRES Date Format is (Datetime, Interval, Unknown);
type INGRESDate (Format :INGRESDateFormat := Unknown)

is limited private;

function NullINGP.ESDate return INGPRESDate;
-pragma INLINE (NullINGRESDate);

-this function accepts input of type INGRESDateNotNull, and

-- returns an object whose -not-null portion is the input
function WithNullEase (Value :INGRESDateNotNull)

return INGRES Date;
-pragma INLINE (WithNullEase);3

-this function returns the not-null portion of the null-beariLng type
function Without_-Null Ease (Value INGPESDate)

return INGRESDateNotNull;

-pragma INLINE (Without Null Ease);

-this function returns the not-null portion of the null-beariLng type
-- this function differs from Without NullEase in that the output
- is extended to include all fields,I
-- even if they contain a value of zero

-INGRES may output a date in a format
-- that is unacceptable as INGRES input.
-- Therefore this function extends the output format into an acceptableI
-- INGRES input format, and should be used when interacting with INGRES

function Without_-Null-DEMEBase (Value INGRESDate)
return INGRES DateNotNull;

-pragma INLINE (withoutNullDBMSEase);

-th~is function raises constraint-error if the object of type
INGRESDatANotNull is not in the correct INGDRES "interval" format

-- of the INGRiS date data type
function To_-Duration (Value :INGP.ESDate) return duration;

-pragma INLINE (ToDuration);3

-this function raises constraint error if the o~ject of type
-- NGRESDateNotNull is not in the correct INGRES "datetime" format
-- of the INGRiS date data type

functL.jon ToTime (Value :INGRESDate) return time;
-pragma INLINE (To-Time);

-this function accepts iLnput of type standard, duration, and

-- returns an object whose not-null portion has the correct INGRESI
-- "interval" format of the INGRES date data type

function To INGRESDate (Value :duration) return INGRESDate;

-this function accepts input of type standard, time, and
-- returns an object whose not-null portion has the INGRES "dstetine"
-- format of the INGRES date data type

function To INGRESDate (Value :time) return INGRESate;

-- pragma INLINE (To_INGRES_Date);

procedure Assign(Left :in out INGRESDate; Right INGRES Date);
-pragma INLINE (Assign);

-the following three functions implemnent unary 11+"1, "" as
function "+" (Right INGRESDate) return INGRESDate;

function "-" (Right INGRESDate) return INGRESDate;I

function "abs" (Right :INGRESDate) return INGRES Date:,
-- pragma INLINE ("abs');

246 CMU/SEI-89-TR3-1 6

I
-- the following functions implement three valuedI-- arithmetic
-- if either input to any of these functions is null
-- the function returns the null value; otherwise
-- they perform the indicated operation
-- these functions raise no exceptions
function "+"(Left, Right INGRESDate) return INGRESDate;
-- pragma INLINE ("+");I function "-"(Left, Right :INGRZS Date) return INGRESDate;

-- pragma INLINE(...);

-- Logical Operations --
-- type X type -> Boolean with unknown --

-- those functions implement th; . vaued logic
if either input is the null value, the functions

-- return the truth value UNKNOWN; otherwise they
perform the indicated comparison.

-- these functions raise no exceptions
function Equals (Left, Right : INGRES Date) return Boolean withUnknown;
function NotEquals (Left, Right : INGRESDate)

return Boolean withUnknown;

function "<" (Left, Right INGRZSDate) return Boolan_withUnknown;
function "> (Left, Right INGRESDate) return Boolean withUnknown;
function "<i" (Left, Right :INGRZS Date) return Boolean witb Unknown
function ">" (Loft, Right :INGRES Date) return Bolean_withUnknown;

-- type -> boolean --
function Is Null(Value : INGRESDate) return Boolean;
-- pragma MINE (IsNull);

function NotNull(Value : INGRES_Date) return Boolean!
-- pragma INLINE (Not Null);
function Equals (Left, Right : INGRESDate) return Boolean;
-- pragma INLINE (Equals);

function Not_Equals (Left, Right : INGRES_Date)
return Boolean;

-- pragma INLINE (NotEquals);
function "<" (Left, Right INGMES Date) returr Boolean;
-- pragma INLINE ("<");
function ">" (Left, Right INGES Date) return Boolean;
-- pragma INLINE (">");
function "<- (Left, Right INGRZSDate) return Boolean;
-- praa INLINE ("<-");
function ">-" (Left, Right INGRES Date) return Boolean:
-- pragma ILINE (">-");

-- this generic is instantiated onoe for every abstract
-- dommni based cn the type INGRZS Date Not-Null.
-- the two subprogram formal parameters are meant to

-- default to the program declared above.
dhethat is, the package should be instantiated in the

-- sope of a use clause for INCRES_Date Pkg.
-- the two actual types together form the abstract
-- doanain.

-- the purpose of the generic is to create functions
which onvert between the two actual types

the bodies of these subprograms are calls to
-- subprograms declared above and passed as defaults to
-- the generic.

generic
type With_NullType is limited private;

type WithoutNullType is array (positive range 0)
of SQLStandard.Character_Type:

with function WithNullBase(Value : INGRES Date NotNull)

I
CMU/SEI-89-TR-1 6 247

I

return With_-NullType _ise(au <>;hNllTy
with untoihu-ulBs(&u Wt_Nul_Ty

return INGRESDateNot-Null is <>:
with function Without NullDRKSBase(Value : With Null_Type)

return INGRESDateNot Null is <>:U
package rNGRESDateOp is

function With Null (Value :Without_Null_type)

return With_-Null_Type:
-- pragma INLINE (With_-Null);
function WithoutNull (Value :WithNull_Type)

return WithoutNull--type:
-- pragma INLInM (WithoutNull);
function Without Null DO&S (Value : With-N ull Type)

return WithoutNll-type:
-- pragma INLINE (WithoutNullDBMS):

end INGRESDteo-ps;

Private

type INGRESyv.ir_number is range 1582. .2382:
type INGRES-month number is range 1-. 12:
type rNGRES-day__number is range 1. .31:
type INGRES hour number is range 0.. 23;

type INGRES minute number is range 0. .59:
type INGRES-second numkber is range 0. .59:
type years_niumber is range -000. .900:
type months-numbor is range -(800*12)..(00*12):

type days_,number is range -(292200)..(292200); -- 00 *365.25
type hours-number is range -(29220024)..(292200024):
type minuts&number is range -(29220024060).. (29220024060):
type seconds-_number is range -(2**31)..(2**31) -1:

type INGRESDate(Format : NGRES -Date Format UUnknown) is record
IsNull: Boolean :true:
case Format is

when Datetime a

year : NGRSyear number:
month : flGRSmont-nmber;
day : NGPZS day number:
hour :INGRES hour number:
minute NGPZS-minute-number:
second :INGRES second number;

when Interval ->
years years number;
month* month.. number:
days :days__number:
hour* hours number:

minutes : minutes number:
&;condo seconds number:

when Unknown>

end case;ul
end record:

end INGRES Date Pkg;3

248 CMU/SEI-89..TR-163

3 SCURIT CL.A SILA~ T QN o r ,-..

REPORT DOCUMENTATION PAGE

I. REPO~ SECUR TI CLASSI fICAI ION jlb t tSTRiCTIV(IARItI'(.

UNCLASSIFIED NONE
2 SF. CURITY CLA!S&.S CA TION Lj1H()NtV 0 -,.TRIdUT ION/AVAi AdlLITV OF RPORT

N/A APPROVED FOR PUBLIC RELEASE
2b OECLASSIFICATION'OOWNGRAOING SCHEOULE DISTRIBUTION UNLIMITED

N/A

E AOR.4oNG ORGANI'ATION rEPORT NUmERISI S MONITORING ORGANIZATION REPORT NUMOECRISI

CMU/SEI-89-TR- l6 ESD-TR-89-24

6a. NAME Of PERFORMING ORGANIZATION is. OFFICE SYMBOL 7&_ NAMIE OF MONITORING ORGANIZATION
fi evolcow ttl

SOFTWARE ENGINEERING INST. ISEI JOINT PROGRAM OFFICE

61. ADORESS lCity. Ste(dmd ZIP Coda) 7b AOORESS IC,i,. Sidl *.d ZIP Codel

CARNEGIE-MELLON UNIVERSITY ESD/XRSI

PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE
HANqCnu- mA n17ll

S. NAME OF FUNOING/SPONSORING
6
b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IOENTIFICATIOV.,NUM8ER

ORGANIZATION it i able

SF! JOINT PROGRAM OFFICE ESD/XRSI F1962885C0003
&. AOORESS (City. Stte and ZIP Co4) 10. SOURCE OF FUNOING NoS

CARNEGIE-MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT

PITTSBURGH, PA 15213 ELEMENT NO. NO. NO. NO.

S IT S 63752F N/A NA N/AI GUIDELINES FOR THE USE OF THE SAME ...
12- PERSONAL AUTHOR(S)

Marc H. Graham
13. TYPE OF REPORT 13b. TIME COVEREO 14. OATE OF REPORT (Yr.. Mo.. Day) IS. PAGE COUNT

FINA., FROM TO May 1989 249
16. SUPPLEMENTAR e NOTATION

17. COSATI COOES 1
I
& SUSJECT TERMS (Coa nlue oft rVere if neetry and Iidentfy by block unumberl

FIELO I GROUP Sue. GR. Ada SQL (structured language query)
data base SAME (SQL Ada Module Extensions)
DBMS (data base management system)

19. ABSTRACT fConesnod on f.EYU, if necw¢esry w den . f, '6 bly k umoberl
These guidelines describe the Structured Query Language (SQL) Ada Module Extensions, or
SAME, a method for the construction of Ada applications that access database management
systems whose data manipulation language is SQL. As its name implies, the SAME extends
the module language defined in the ANSI SQL standard to fit the needs of Ada. The de-
fining characteristic of the use of the module language is that the SQL statements appear
together, physically separated from the Ada application, in an object called the module.
The Ada apprication accesses the module through procedure calls.

The primary audience for this document consists of application developers and technicians
creating Ada applications for SQL database management systems. The document contains a
complete description of the SAME, including its motivation.

20. OISTRIOUTIONIAVAILAIILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

U -CLASSIFIED/UNLIMITEO JP SAME AS RPT. 0 OTIC USERS 1i UNCLASSIFIED, UNLIMITED DISTRIBUTION

2. NAME OF RESPONSIBLE INDIVIDUAL 22b, TELEPHONE NUMBER 22c. OFFICE SYMBOL
I KARL H. SHINGLER eInoclud Av.a Code)

L 412 268-7630 SEI JPO

DO FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE.

SECURITY CLASSIFICATION OF T"S P c.

