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Command, Control, Communications, and Intelligence
Node: A Durra Application Example

Abstract: Durra is a language designed to support the construction of distributed
applications using concurrent, coarse-grain tasks running on networks of
heterogeneous processors.  An application written in Durra describes the tasks to
be instantiated and executed as concurrent processes, the types of data to be
exchanged by the processes, and the intermediate queues required to store the
data as they move from producer to consumer processes.

This report describes an experiment in implementing a command, control, com-
munications and intelligence (C3I) node using reusable components.  The experi-
ment involves writing task descriptions and type declarations for a subset of the
TRW testbed, a collection of C3I software modules developed by TRW Defense
Systems Group.  The experiment illustrates the development of a typical Durra
application. This is a three-step process:  first, a collection of tasks (programs) is
designed and implemented (these are the testbed programs); second, a collection
of task descriptions corresponding to the task implementations is written in Durra,
compiled, and stored in a library; and finally, an application description is written in
Durra and compiled, resulting in a set of resource allocation and scheduling com-
mands to be interpreted at runtime.

This report illustrates the methodology for building complex, distributed systems
supported by Durra. It does not, however, illustrate all the features of the lan-
guage; in particular, it does not illustrate those features that support dynamic, but
planned, reconfiguration of a running application, or those features supporting un-
planned dynamic reconfigurations as a means to support fault tolerance. These
considerations are the subject of current design and development and will be the
subject of a future report.

1. Introduction to Durra

Durra [1, 2] is a language designed to support the construction of distributed applications
using concurrent, coarse-grained tasks running on networks of heterogeneous processors.
An application written in Durra selects and reuses task descriptions and type declarations
stored in a library.  The application describes the tasks to be instantiated and executed as
concurrent processes, the types of data to be exchanged by the processes, and the inter-
mediate queues required to store the data as they move from producer to consumer
processes.

Because tasks are the primary building blocks, we refer to Durra as a task-level description
language. We use the term ‘‘description language’’ rather than ‘‘programming language’’ to
emphasize that a Durra application is not translated into object code in some kind of ex-
ecutable (conventional) ‘‘machine language.’’  Instead, a Durra application is a description of
the structure and behavior of a logical machine to be synthesized into resource allocation
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Figure 1-1: Compilation of an Application Description

and scheduling directives that are then interpreted by a combination of software, firmware,
and hardware in each of the processors and buffers of a heterogeneous machine.  This is
the translation process depicted in Figure 1-1.

1.1. Type Declarations

The data types transmitted between the tasks are declared independently of the tasks.  In
Durra, these data type declarations specify scalars (of possible variable length), arrays,
simple record types, or unions of other types, as shown in Figure 1-2.

type packet is size 128 to 1024;
-- Packets are of variable length.

type tails is array (5 10) of packet;
-- Tails are 5 by 10 arrays of packets.

type rec is record (rows: integer, columns: integer, data: packet);
-- Rec data consists of two integers and a packet.

type mix is union (heads, tails);
-- Mix data could be heads or tails.

Figure 1-2: Durra Type Declarations
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1.2. Task Descriptions

Task descriptions are the building blocks for applications.  A task description includes the
following information (Figure 1-3): (1) its interface to other tasks (ports); (2) its attributes;
(3) its functional and timing behavior; and (4) its internal structure, thereby allowing for
hierarchical task descriptions.

task task-name
ports -- Used for communication between a process and a queue

port-declarations

attributes -- Used to specify miscellaneous properties of the task
attribute-value-pairs

behavior -- Used to specify task functional and timing behavior
functional specification
timing specification

structure -- A graph describing the internal structure of the task
process-declarations --Declaration of instances of internal subtasks
bind-declarations -- Mapping of internal ports to this task’s ports
queue-declarations -- Means of communication between processes
reconfiguration-statements -- Dynamic modifications to the structure

end task-name

Figure 1-3: A Template for Task Descriptions

The interface information declares the ports of the processes instantiated from the task. A
port declaration specifies the direction and type of data moving through the port.  An in port
takes input data from a queue; an out port deposits data into a queue:

ports
in1: in heads;
out1, out2: out tails;

The attribute information specifies miscellaneous properties of a task.  Attributes are a
means of indicating pragmas or hints to the compiler and/or scheduler. In a task descrip-
tion, the developer of the task lists the actual value of a property; in a task selection, the
user of a task lists the desired value of the property.  Example attributes include author,
version number, programming language, file name, and processor type:

attributes
author = "jmw";
implementation = "program_name";
Queue_Size = 25;

The behavioral information specifies functional and timing properties about the task.  The
functional information part of a task description consists of a pre-condition on what is re-
quired to be true of the data coming through the input ports, and a post-condition on what is
guaranteed to be true of the data going out through the output ports.  The timing expression
describes the behavior of the task in terms of the operations it performs on its input and
output ports.  For additional information about the syntax and semantics of the functional
and timing behavior description, see the Durra reference manual [1].
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The structural information defines a process-queue graph (e.g., Figure 1-1) and possible
dynamic reconfiguration of the graph as shown in Figure 1-4.

task comm
-- red communications processing

ports
SM_Commands : in  system_command;
SM_Responses : out subsystem_response;
Inbound : out comm_if_message;
Outbound : in  comm_if_message;

structure
process

cc : task comm_control;
ci : task comm_inbound;
co : task comm_outbound;
pb : task broadcast

port
in1 : in  system_command;
out1, out2 : out system_command;

end broadcast;
pm : task merge

port
in1, in2 : in  subsystem_response;
out1 : out subsystem_response;

attribute
mode = fifo;

end merge;

bind
SM_Commands = cc.SM_In;
SM_Responses = cc.SM_Out;
Inbound = ci.Inbound;
Outbound = co.Outbound;

queue
q1 : cc.Cmd_Out >> pb.in1;
q2 : pb.out1 >> ci.Cmd_In;
q3 : pb.out2 >> co.Cmd_In;
q4 : ci.Resp_Out >> pm.in1;
q5 : co.Resp_Out >> pm.in2;
q6 : pm.out1 >> cc.Resp_In;
q7 : co.Echo_Out >> ci.Echo_In;

end comm;

Figure 1-4: Compound Task Description

A process declaration of the form

process_name : task task_selection

creates a process as an instance of the specified task.  Since a given task (e.g., convolu-
tion) might have a number of different implementations that differ along different dimensions
such as algorithm used, code version, performance, or processor type, the task selection in
a process declaration specifies the desirable features of a suitable implementation.  The
presence of task selections within task descriptions provides direct linguistic support for
hierarchically structured tasks.

A queue declaration of the form



CMU/SEI-89-TR-9 5

queue_name [queue_size]: port_name_1 > data_transformation > port_name_2

creates a queue through which data flow from an output port of a process (port_name_1)
into the input port of another process (port_name_2). Data transformations are operations
applied to data coming from a source port before they are delivered to a destination port.

A port binding of the form

task_port = process_port

maps a port on an internal process to a port defining the external interface of a compound
task.

Although not illustrated in the figure, Durra provides a reconfiguration statement of the form

if condition then
remove process-names
process process-declarations
queues queue-declarations

end if;

as a directive to the scheduler.  It is used to specify changes in the current structure of the
application (i.e., process-queue graph) and the conditions under which these changes take
effect. Typically, a number of existing processes and queues are replaced by new
processes and queues, which are then connected to the remainder of the original graph.
The reconfiguration predicate is a Boolean expression involving time values, queue sizes,
and other information available to the scheduler at runtime.

1.3. Scenario

We see three distinct phases in the process of developing an application using Durra:  the
creation of a library of tasks, the creation of an application using library tasks, and the ex-
ecution of the application.  These three phases are illustrated in Figure 1-5.

During the first phase, the developer writes descriptions of the component tasks and
declarations of the data types.  The type declarations specify the kinds of data that will be
produced and consumed by the tasks in the application.  The task descriptions specify the
properties of the task implementations (programs).  For a given task, there may be many
implementations, differing in programming language (e.g., C or assembly language), proces-
sor type (e.g., Motorola 68020 or IBM 1401), performance characteristics, or other at-
tributes. For each implementation of a task, a description must be written in Durra, com-
piled, and entered in the library.

During the second phase, the user writes an application description. Syntactically, an ap-
plication description is a single task description and could be stored in the library as a new
task. This allows writing of hierarchical application descriptions.  When the application
description is compiled, the compiler generates a set of resource allocation and scheduling
commands or instructions to be interpreted by the scheduler.

During the last phase, the scheduler loads the task implementations (i.e., programs cor-



6 CMU/SEI-89-TR-9

Compiler
Durra

Description
Application

Descriptions
(Durra)

Library of Task

"program"
Scheduler

(C,Lisp,Ada,etc.)
Implementations
Library of Task

Heterogeneous
Machine

Figure 1-5: Scenario for Developing an Application in Durra

responding to the component tasks) into the processors and issues the appropriate com-
mands to execute the programs.

1.4. Runtime Components

There are three active components in the Durra runtime environment: the application tasks,
the Durra server, and the Durra scheduler.  Figure 1-6 shows the relationship among these
components.

After compiling the type declarations, the component task descriptions, and the application
description, as described previously and illustrated in figure 1-5, the application can be ex-
ecuted by performing the following operations:

1. The component task implementations must be stored in the appropriate
processors.
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Figure 1-6: The Durra Runtime Environment

2. An instance of the Durra server must be started in each processor.

3. The scheduler must be started in one of the processors. The scheduler
receives as an argument the name of the file containing the scheduler
program generated by the compilation of the application description.  This step
initiates the execution of the application.

1.4.1. The Scheduler
The scheduler is the part of the Durra runtime system responsible for starting the tasks,
establishing communication links, and monitoring the execution of the application.  In ad-
dition, the scheduler implements the predefined tasks (broadcast, merge, and deal) and
the data transformations described in [1]. The scheduler is invoked with the name of the file
containing the scheduler instructions generated by the Durra compiler.  A complete descrip-
tion of the scheduler instructions can be found in [3].

After these instructions have been read and processed, the scheduler is ready to start the
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execution of the application.  In the current UNIX implementation, this is done by performing
the following steps:

1. Allocate a UNIX socket for communication with the application tasks.

2. Establish communication with each of the processors running a Durra server.

3. For each of the task_load instructions, issue to the appropriate server a
run_task remote procedure call.

4. Listen in on the UNIX socket allocated in the first step for remote procedure
calls from the application tasks.

5. Process the remote procedure calls from the application tasks.

The scheduler waits until all tasks have completed their execution before it, in turn, finishes
its execution.

1.4.2. The Server
The server is responsible for starting tasks on its corresponding processor, as directed by
the scheduler.  One copy of the server must be running on each processor that is to execute
Durra tasks.

When a server begins execution, it listens in on a predetermined socket for messages from
the scheduler.  Once a communication channel is open, the scheduler communicates with
the server using a set of remote procedure calls to initiate task execution (run_task), or to
shutdown or restart the server (shutdown, and restart). Complete details of these remote
procedure calls can be found in [3]. The server sits in a loop responding to the requests
from the scheduler, executing them as directed.

1.4.3. Application Tasks
The component task implementations making up a Durra application can be written in any
language for which a Durra interface has been provided. As of this writing, there are Durra
interfaces for both C and Ada.  The complete interfaces appear in [3].

When a task is started, the scheduler supplies it with the following information (via a server):
the name of the host on which the scheduler is executing, the UNIX socket on which the
scheduler is listening for communications from the task, and a small integer to be used in
identifying the task in future messages.

Application tasks use the interface to the scheduler to communicate with other tasks. From
the point of view of the task implementation, this communication is accomplished via proce-
dure calls, which return only when the operation is completed. The following remote proce-
dure calls (RPCs) are provided:

init Opens a connection to the scheduler.

finish Informs the scheduler that the task is terminating.

get_portid Returns a descriptor for the application task to use when referring to a
port.
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get_typeid Returns a descriptor for the application task to use when referring to a
type.

send_port Sends data through an output port of the application task.

get_port Gets data from an input port of the application task.

test_input_port Tests whether data is available on an input port.

test_output_port Tests whether there is room in a queue attached to an output port.

Durra tasks typically use these RPCs in the following order:

1. Call init to establish communication with the scheduler.

2. Call get_portid for each of the task ports (these ports must correspond to the
ports used in the task description).

3. Call get_typeid for each of the task types (these types must correspond to the
data types used in the task description).

4. Call send_port and get_port as necessary to send and receive data.

5. Call finish to break communication with the scheduler.
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2. Introduction to the TRW C3I Testbed

The TRW command, control, communications, and intelligence (C3I) testbed is a collection
of programs that implement a variety of functions found in command, control, communica-
tions, and intelligence systems.  They have been developed as a part of the Reusable C3I
Node Independent Research and Development Project at TRW Defense Systems Group.
The overall objective of this project is to reduce the cost and schedule for fielding state-of-
the-art, next generation C3I systems.  TRW plans to achieve this objective by developing a
standardized architectural framework for C3I systems and reusable hardware and software
components that are applicable over a wide range of target systems. The technical objec-
tives for the Reusable C3I Node Project are to 1) develop a reusable C3I system architec-
ture, including hardware and software components; 2) develop software and, if necessary,
hardware components as building blocks within the architecture; and 3) test the flexibility of
the architecture and components by demonstrating them on several actual target C3I sys-
tems.

In the remainder of this chapter we will address only one of several tasks identified by TRW
as critical to their overall objective, namely the development of an architecture framework in
which various C3I system building blocks fit.  This would be used to define the interfaces
and the possible combinations of building blocks during the definition of the reusable system
baseline, and to help during the integration and testing of the application system.  Other
major tasks, not addressed in this report, include software component definition and
development, hardware component selection and integration, and testbed integration and
demonstration.

2.1. C3I Node Hardware Architecture

The architecture adopted for the reusable C3I node and its testbed is open so that any
vendor’s equipment could be connected and the node software integrated with the vendor-
supplied hardware and system software.  To reach this goal of an open system architecture,
it is necessary to have a paradigm for programming loosely-connected networks of multiple
special- and general-purpose processors. This is the role played by the Durra language and
methodology. The need for experimenting with paradigms for heterogeneous networks
provided the motivation for a joint effort between TRW Defense Systems Group and the
Software Engineering Institute.

C3I systems have similar requirements and functions whether the system is for tactical or
strategic forces, whether it is fixed-base or mobile, or whether it is controlling planes, tanks,
or ships.  The purpose of all such systems is to give up-to-the-minute information to com-
manders at each echelon to assist them in making decisions and to speed implementation
of these decisions.  The top-level description of a typical tactical C3I system is shown in
Figure 2-1.  This system consists of a network of geographically separated nodes where
each node is a local area network of processors.  Communication among the nodes (located



12 CMU/SEI-89-TR-9

at command posts) is via combat net radios or land lines and consists of messages whose
format and protocol is tightly controlled by Army standards and doctrine.  Each node con-
tains a database representing the battle situation (deployment of friendly and enemy forces)
and the status of forces controlled by this command post.  The overall information flow for
the system is predominantly hierarchical, with messages containing orders or requests for
information flowing from upper echelons to lower echelons and messages containing status
and situation reports flowing back to the upper echelons.

Each node consists of a network of computers whose purpose is to process operator re-
quests for information, to act on incoming messages (by showing them to an operator or
replying automatically), and to maintain the situation and status database.  The computers
at a node may be concentrated in a command post structure (shelter, tent, or parked
vehicle) or dispersed among several structures for concealment.  They typically communi-
cate via Ethernet or fiber-optic equivalents. At this level the communications protocols are
not restricted and may support exchange of message text, database information,
keyboard/screen information, etc. At each node in the system common processing is done:
communications equipment management, message processing, data management,
management of the LAN, and interaction with the operators.  In addition, a node may have
unique application responsibilities such as resource allocation, planning, and decision
making.

2.2. C3I Node Software Architecture

TRW has defined a nodal software architecture which supports both the common process-
ing functions and site- or system-specific ones.  As shown in Figure 2-2, the architecture is
extensively layered to support the open architecture concepts described above.  In addition
to multiple vendors, the architecture supports redistribution of functions among processors
to support networks containing from 1 to 50 processors.  The reusable C3I node IR&D
Project is building software components for the shaded functional areas in the diagram.
These components are implemented as Ada tasks and packages.  The tasks communicate
via messages using services provided by the Heterogeneous InterProcess Communication
(IPC) function; in the testbed, alternative IPC functions have been implemented, one with
the Durra runtime environment and one with a TRW-developed IPC.  Figure 2-3 shows the
top-level data flow in a system constructed from the components.

The ‘‘communication processing’’ area is a support subsystem which performs all of the
processing associated with sending and receiving messages to or from other nodes in the
system. It typically consists of a collection of hardware and firmware interfaces to the com-
munications media and software to coordinate the operation of the subsystem.  The tasks,
which are top-level components of the communication processing subsystem, include media
service, inbound message processing, outbound message processing, data services (log,
archive, etc.), and communication control.

The ‘‘automated message handling (amh)’’ area is a subsystem which performs all process-
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Figure 2-1: C3I System Structure — Army Tactical System
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Figure 2-2: Reusable C3I Node Architecture Layers
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Figure 2-3: Data Flow Among Nodal Software Components
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ing of the text of incoming and outgoing messages for a node.  For incoming messages, it
identifies the message type and verifies that it is correctly formatted, extracts data from the
message to update the database, and disseminates the message to intended recipients at
the workstations.  Outgoing message processing consists of review and message release
routing within the node.  The tasks which are the top-level components of the ‘‘AMH’’ sub-
system are inbound message processing, outbound message processing, and control.

The ‘‘system management’’ area performs all of the executive and control functions for the
nodal network.  This includes:

• system startup, shutdown, and reconfiguration

• user login, access verification, and logout

• error reporting and monitoring

• health and performance monitoring

The components of system management are the overall system manager task and a sub-
sidiary workstation manager task at computers for each operator station.  Computers which
perform only background processing do not contain a workstation manager.

The ‘‘data management’’ area performs all database access and control functions for a
node. In most systems this is a commercial relational database management system such
as SYBASE, ORACLE, etc., but may be as simple as a flat-file record handling system
which keeps the data in primary memory.  The components of this subsystem are the DBMS
servers and the distributed server and client control logic.

The ‘‘user/system interface (usi)’’ area manages all interaction with the operators at each
workstation in the node.  This is a complicated subsystem which contains window
managers, main menu (or other user selection mechanism) managers, text and graphic, tool
support libraries, and other software to support a multi-window, networked environment.

The ‘‘application support’’ area provides interface and scheduling services for application
tasks and contains the common office automation applications like electronic mail, word
processing, and spreadsheets.  The scheduling services include message event scheduling,
database event scheduling, and time scheduling of application tasks.

The definition of the architecture and the implementation of the software components for the
C3I testbed coincide with the Durra paradigm in many ways:

• Utilizing libraries of reusable "black-box" tasks.

• Describing the connectivity of the system outside the code of the task.

• Using message-oriented communication between the tasks.

• Describing data transformations during the transmission of the messages.

The flexibility and control over system operation provided by this paradigm are central to the
open architecture concept and the ability to reuse the developed software modules.  In the
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remainder of this report, we will illustrate the use of Durra to build applications consisting of
C3I node software modules in which the various tasks connected through queues exchange
messages.
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3. Task and Application Descriptions

In this chapter we illustrate the various kinds of descriptions that would be written in a typical
application of Durra. The examples depict increasingly more complex task descriptions. We
first show a simple task description, of a task implemented by a single program and capable
of running on one of the processors in a heterogeneous network. We then show a
compound task description, that is, a task that consists of several simpler tasks whose ports
are connected via data queues. Finally, we show an application description which, syntac-
tically, looks like a compound task description and ties together all of the component tasks
(simple or otherwise) of an application.

3.1. A Simple Task Description and Its Implementation

In this section we illustrate the relation between a Durra task description, a task implemen-
tation, and the interface between the task implementation and the Durra runtime environ-
ment. The task we have selected is the control module of the Automatic Message Handler
in the C3I node.

As described in Section 2.2, the automated message handling subsystem of the C3I node
performs all processing of the text of incoming and outgoing messages for a node.  As we
show in this and in later sections, this subsystem consists of several tasks. One of these
tasks, ‘‘amhs_control,’’ is responsible for the overall operation of the subsystem and per-
forms its job by sending requests to the other components of the subsystem and processing
their responses. In addition, it provides the interface to other subsystems of the C3I node,
specifically, the system manager subsystem.

task amhs_control
ports

SM_In : in system_command;
SM_Out : out subsystem_response;
Cmd_Out : out system_command;
Resp_In : in subsystem_response;

attributes
implementation = "amh_control";
x10window = "=80x12+0+0";
x11window = "-geometry 80x12+0+0";
processor = sun;

end amhs_control;

Figure 3-1: AMHS_Control Task Description

Figure 3-1 shows the Durra description of the ‘‘amhs_control’’ task. The interface portion of
the task description indicates that it consumes data of type ‘‘system_command’’ and
‘‘subsystem_response’’ through input ports ‘‘SM_In’’ and ‘‘Resp_In,’’ and produces data of
type ‘‘subsystem_response’’ and ‘‘system_command’’ through output ports ‘‘SM_Out’’ and
‘‘Cmd_Out,’’ respectively.
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The attributes of the task description provide additional information about the task.  These
include the name of the task implementation (i.e., ‘‘amh_control’’ is the actual executable
program), the name of the processor or processor class on which this implementation can
execute (‘‘sun’’), and the specifications of a window geometry to be used for communication
between a human operator and the task. Notice that two alternative window specifications
are provided, depending on which version of the window manager is running on the proces-
sor to which the task will be allocated at runtime.

As indicated in Figure 1-5, for each task description, there is a corresponding task im-
plementation. The latter is a program that will be loaded, at runtime, on one of the machines
on the network and will communicate with other task implementations through ports. The
task description indicates that this is a program that can run on a Sun workstation and that it
communicates with a human operator through a small window (12 lines of 80 characters).
This window specification is necessary because this task runs as an independent, inter-
active program, with its own terminal emulator running in the window. The server [3] running
on the Sun workstation uses the window specification as part of the UNIX task initiation com-
mand.

with Ipc_Types; use Ipc_Types;
with Text_Io; use Text_Io;
with Interface;

procedure AMH_Control is
pragma Priority(4);
Process_ID : Integer := 1001;
size : Integer;
bound : Integer;
Verbose : constant Boolean := True;

SM_In_Port : Positive;
SM_Out_Port : Positive;
Cmd_Out_Port : Positive;
Resp_In_Port : Positive;

procedure AMH_Control_Processing( Process_ID : in Integer)
is separate;

begin
Put_Line( "***** amh_control *****" );
Interface.Init;
Interface.Get_PortID("SM_In", SM_In_Port, bound, size);
Interface.Get_PortID("SM_Out", SM_Out_Port, bound, size);
Interface.Get_PortID("Cmd_Out", Cmd_Out_Port, bound, size);
Interface.Get_PortID("Resp_In", Resp_In_Port, bound, size);

Amh_Control_Processing (Process_ID);

Interface.Finish;
return;

end AMH_Control;

Figure 3-2: AMHS_Control Task Implementation
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The task implementation in this example is an Ada program, as shown in figure 3-2.  This
program consists of a main unit, the procedure listed in the Figure (‘‘AMH_Control’’), and a
separately compiled procedure (‘‘AMH_Control_Processing’’), not shown here. The main
unit in this program is responsible for 1) establishing a connection with the Durra scheduler
(call to ‘‘Init’’), 2) getting a small integer token to identify each of its ports (calls to
‘‘Get_PortID’’). 3) invoking the separate procedure, where the bulk of the application
specific work is done, and, finally, 4) notifying the Durra scheduler when it has completed its
execution (call to ‘‘Finish’’).

Notice the correspondence between the port names used in the calls to ‘‘Get_PortID’’ in the
task implementation of Figure 3-2 and the port names used in port declarations in the task
description of Figure 3-1.

The separately compiled procedure (‘‘AMHS_Control_Implementation’’) uses the port iden-
tifier tokens collected by the main procedure to invoke various input and output operations
on these ports. This procedure is rather lengthy, and instead of including the entire text , we
illustrate these port operations via a small segment of ‘‘AMH_Control_Processing’’, the pro-
cedure (‘‘Read_Next_Message’’) shown in Figure 3-3. The small procedure loops con-
tinuously, testing for the presence of messages on the input ports (calls to
‘‘Test_Input_Port’’). If there is at least one message on either of the ports, the procedure
reads the message into a buffer (calls to ‘‘Get_Port’’) and returns to the caller.

There are a few more interface procedures to support the communication between the user
task implementations and the Durra scheduler. However, for the purposes of this report, it is
not necessary to go into further details.  The complete interface to the scheduler is
described in [3]. Appendix G contains the specifications of the interface package for Ada
programs.

3.2. A Compound Task Description and Its Structure

The Durra language supports hierarchical task descriptions. The previous section illustrated
a simple task description and its implementation. The task used in that example is one of
several components of the Automated Message Handling System (AMHS). In this section
we will use this and other similar, simple tasks to describe the complete message handler
shown in figure 3-4.

The ‘‘AMHS’’ subsystem consists of five tasks.  Three of these tasks, ‘‘AMHS_control,’’
‘‘AMHS_inbound,’’ ‘‘AMHS_outbound,’’ are user-implemented (‘‘AMHS_control’’ was shown
in the previous section, the other two appear in Appendix B). The other two tasks, ‘‘broad-
cast’’ and ‘‘merge’’ are predefined in the Durra language and implemented directly by the
Durra runtime system. A ‘‘broadcast’’ task takes data from a single input port and copies it to
multiple output ports (the number of output ports is specified in the task selection. A ‘‘merge’’
task takes data from multiple input ports (specified in the task selection) and copies them
into a single output port.
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procedure Read_Next_Message(Msg_Type: in out Message_Type) is
Read_Cycle_Delay : Duration := 0.5;
Durra_type, size, n : natural;

begin
Read_Loop:

loop
Interface.Test_Input_Port( SM_In_Port,

Durra_Type,
size,
n);

if n > 0 then
Interface.Get_Port( SM_In_Port,

Cmd_Msg’Address,
size,
Msg_Type);

exit Read_Loop;
end if;
Interface.Test_Input_Port( Resp_In_Port,

Durra_type,
size,
n);

if n > 0 then
Interface.Get_Port( Resp_In_Port,

Rsp_Msg’address,
size,
Msg_Type);

exit Read_Loop;
end if;
delay Read_Cycle_Delay;

end loop Read_Loop;
return;

end Read_Next_Message;

Figure 3-3: Sample Sequence of Port Operations

The application description instantiates five processes (‘‘ac,’’ ‘‘ai,’’ ‘‘ao,’’ ‘‘pb,’’ and ‘‘pm’’),
corresponding to the five tasks mentioned above and six queues (‘‘q1’’ through ‘‘q6’’) that
connect the processes’ ports. Notice that not all the internal-task ports are connected.  This
group of tasks implements a subsystem which can be used as a building block for a larger
system (the C3I node, in this case,) and therefore must also have ports to communicate with
other subsystems.  Since the subsystem is really an abstraction and does not really cor-
respond to a executable program, its ports (‘‘SM_Commands,’’ ‘‘SM_Response,’’
‘‘COMM_Inbound,’’ ‘‘COMM_Outbound,’’ ‘‘WS_Inbound,’’ and ‘‘WS_Outbound’’) must be im-
plemented by internal-task ports. This is the purpose of the bind declarations, which declare
the internal-task ports that implement or correspond to the subsystem ports.

3.3. An Application Description

In this section we illustrate a complete application description. There are no special lan-
guage features beyond those used to describe a compound task. An application description
is simply a compound task description which is compiled and stored in a Durra library and,
conceivably, could be used as a building block for a larger application.
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task AMHS
-- Automated Message Handling Subsystem
ports

SM_Commands : in  system_command;
SM_Responses : out subsystem_response;
COMM_Inbound : in  comm_if_message;
COMM_Outbound : out comm_if_message;
WS_Inbound : out workstation_if_message;
WS_Outbound : in  comm_if_message;

structure
process

ac : task AMHS_control;
ai : task AMHS_inbound;
ao : task AMHS_outbound;
pb : task broadcast

port
in1 : in  system_command;
out1, out2 : out system_command;

end broadcast;
pm : task merge

port
in1, in2 : in  subsystem_response;
out1 : out subsystem_response;

attribute
mode = fifo;

end merge;
bind

SM_Commands = ac.SM_In;
SM_Responses = ac.SM_Out;
COMM_Inbound = ai.COMM_Inbound;
COMM_Outbound = ao.COMM_Outbound;
WS_Inbound = ai.WS_Inbound;
WS_Outbound = ao.WS_Outbound;

queue
q1 : ac.Cmd_Out >> pb.in1;
q2 : pb.out1 >> ai.Cmd_In;
q3 : pb.out2 >> ao.Cmd_In;
q4 : ai.Resp_Out >> pm.in1;
q5 : ao.Resp_Out >> pm.in2;
q6 : pm.out1 >> ac.Resp_In;

end AMHS;

Figure 3-4: AMHS Subsystem Description

From the point of view of the users of Durra, the main difference between a task description
and an application description is that application descriptions are translated into directives to
the runtime scheduler by executing an optional code generation phase of the Durra com-
piler, as described in [3].

Continuing with the examples of the previous sections, let’s assume that the C3I node con-
stitutes the complete application (i.e., we are ignoring the rest of the network -- it would
consist of multiple instances of nodes and communication tasks). In addition to the
Automated Message Handling System, there are several other components of the C3I node,
as illustrated in figure 3-5.
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task configuration
structure

process
-- real system processes

sm : task system_manager;
com : task comm;
amh : task amhs;
w1p : task wkstn;
w2p : task wkstn;

-- auxiliary system processes
dmxp: task broadcast -- message demultiplexor

ports
in1 : in  workstation_if_message;
out1, out2 : out workstation_if_message;

end broadcast;
muxp: task merge -- message multiplexor

ports
out1 : out comm_if_message;
in1, in2 : in  comm_if_message;

attribute
mode = fifo;

end merge;
bc : task broadcast -- command broadcast

ports
in1 : in  system_command;
out1, out2 : out system_command;

end broadcast;
mg : task merge -- response multiplexor

ports
in1, in2 : in  subsystem_response;
out1 : out subsystem_response;

attribute
mode = fifo;

end merge;
queues

-- system command propagation
q_c1 : sm.SM_Out >> bc.in1;
q_c2 : bc.out1 >> com.SM_Commands;
q_c3 : bc.out2 >> amh.SM_Commands;
-- subsystem response propagation
q_r1 : com.SM_Responses  >> mg.in1;
q_r2 : amh.SM_Responses  >> mg.in2;
q_r3 : mg.out1 >> sm.SM_In;
-- inbound message propagation
q_i1 : com.Inbound >> amh.COMM_Inbound;
q_i2 : amh.WS_Inbound >> dmxp.in1;
q_i3 : dmxp.out1 >> w1p.Inbound;
q_i4 : dmxp.out2 >> w2p.Inbound;
-- outbound message propagation
q_o1 : w1p.Outbound >> muxp.in1;
q_o2 : w2p.Outbound >> muxp.in2;
q_03 : muxp.out1 >> amh.WS_Outbound;
q_o4 : amh.COMM_Outbound >> com.Outbound;

end configuration;

Figure 3-5: C3I Node Description
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The C3I node consists of five main subsystems (‘‘system_manager,’’ ‘‘comm,’’ ‘‘amhs,’’ and
two instances of ‘‘wkstn’’). In addition, there are four predefined tasks (two broadcast and
two merge) that serve to multiplex and demultiplex messages exchanged between the main
subsystems, as shown in Figure 3-6.

The complete set of task descriptions and type declarations used to build the application are
included in the appendices.
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Figure 3-6: C3I Node Structure
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4. Software Development Methodologies

A great deal of effort has been devoted to the development of improved software develop-
ment process models. As described in [5], models have evolved from the early ‘‘code-and-
fix’’ model, through the ‘‘stagewise’’ and ‘‘waterfall’’ models (which attempt to bring order to
the process by recognizing formal steps in the process), through the ‘‘evolutionary’’ and
‘‘transform’’ models (which attempt to address the need for experimentation, refinement of
requirements, and automation of the code generation phase.) The spiral model of the
software process has evolved over several years at TRW, based on experience on a num-
ber of large software projects and, as indicated in [5], accommodates most previous models
as special cases.

The spiral model is basically a refinement of the classical waterfall model, providing for suc-
cessive applications of the original model (requirements, design, development, testing, etc.)
to progressively more concrete versions of the final product.

One of the advantages of this model is that it allows the identification of areas of uncertainty
that are significant sources of risk.  Once these critical areas are identified, the spiral model
allows for the selective application of an appropriate development strategy to these risk
areas first.  Thus, while at first sight the spiral model looks no better than the waterfall
model, a key difference is that the spiral allows the designers to concentrate on selected
problem areas rather than following a predetermined order. Once the highest-risk problem
has been taken care of, the next higher risk area can be attacked, and so on.

To be successful, any approach based on successive refinements, such as the spiral model,
must be supported by tools appropriate to the task at hand.  Users of the spiral model must
be able to selectively identify high-risk components of the product, establish their require-
ments, and then carry out the design, coding, and testing phases. Notice that it is not neces-
sary that this process be carried out through the testing phase -- higher-risk components
might be identified in the process and these components must be given higher priority,
suspending the development process of the formerly riskier component.

4.1. Durra as a Tool for Successive Refinement

The programming paradigm embodied in Durra fits very naturally this style of software
development. Although we don’t claim to have solved all problems or identified all the
necessary tools, we would like to suggest that a language like Durra would be of great value
in the context of the spiral model. It would allow the designer to build mock-ups of an ap-
plication, starting with a gross decomposition into tasks described by templates that are
specified by their interface and behavioral properties.  Once this is completed, the applica-
tion can be emulated using tools like MasterTask [4] as a stand-in for the yet-to-be-written
task implementations.

The result of the emulation would identify areas of risk in the form of tasks whose timing
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specifications are more critical or demanding. In other words, the purpose of this initial
emulation is to identify the component task more likely to affect the performance of the en-
tire system.  The designers can then experiment by writing alternative behavioral specifica-
tions for the offending task until a satisfactory specification (i.e., template) is obtained. Once
this is achieved, the designers can proceed by replacing the original task descriptions with
more detailed templates, consisting of internal tasks and queues, using the structure
description features of Durra. These more refined application descriptions can again be
emulated, experimenting with alternative behavioral specifications of the internal tasks, until
a satisfactory internal structure (i.e., decomposition) has been achieved. This process can
be repeated as often as necessary, varying the degree of refinement of the tasks, and even
backtracking if a dead-end is reached. It is not necessary to start coding a task until later,
when its specifications are acceptable, and when the designers decide that it should not be
further decomposed.

Of course, it is quite possible that a satisfactory specification might be impossible to meet
and a task implementation might have to be rejected. The designers would then have to
backtrack to an earlier, less detailed design and try alternative specifications, or even alter-
native decompositions of a parent subsystem.  This is possible because we are following a
strictly top-down approach. The effect of a change in an inner task would be reflected in its
impact on the behavioral specifications of a parent task.  The damage is, in sense, con-
tained and can not spread to other parts of the design.

4.2. Incremental Development of the C3I Node

To illustrate an incremental development process using Durra, in this section we will show
three alternative development sequences for the C3I node. In all three cases we start from
the same basic configuration for the node shown in Figure 4-1. The node consists of four
subsystems: System Manager, Communications, Application Message Handler, and
Workstation.

These subsystems correspond to the first four process declarations in the structure of the
Durra application description in Figure 4-1.  In addition, the application description declares
two auxiliary tasks which are used for communications between the system manager and
the communication and application message handler subsystems. These auxiliary tasks
broadcast commands from the system manager to the other two subsystems, and merge
their responses to the system manager. The queue declarations in the Figure connect the
task ports in the appropriate manner.

For brevity, we are not showing a simpler configuration that could have been our initial
design. For example, we could have started with a node consisting of two subsystems:
(combined) Communications, and Workstation.  A first step could be to divide the first sub-
system into three components:  System Manager, Application Message Handler, and Com-
munications proper. We take this as our initial design.
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Workstation

AMHCOM

System manager

task configuration
structure

process
-- real system processes

sm : task system_manager;
com : task comm;
amh : task amhs;
wp : task wkstn;

-- auxiliary system processes
bc : task broadcast -- command broadcast

ports
in1 : in  system_command;
out1, out2 : out system_command;

end broadcast;
mg : task merge -- response multiplexor

ports
in1, in2 : in  subsystem_response;
out1 : out subsystem_response;

attribute
mode = fifo;

end merge;
queues

-- system command propagation
q_c1 : sm.SM_Out >> bc.in1;
q_c2 : bc.out1 >> com.SM_Commands;
q_c3 : bc.out2 >> amh.SM_Commands;
-- subsystem response propagation
q_r1 : com.SM_Responses  >> mg.in1;
q_r2 : amh.SM_Responses  >> mg.in2;
q_r3 : mg.out1 >> sm.SM_In;
-- inbound message propagation
q_i1 : com.Inbound >> amh.COMM_Inbound;
q_i2 : amh.WS_Inbound >> wp.Inbound;
-- outbound message propagation
q_o1 : wp.Outbound >> amh.WS_Outbound;
q_o4 : amh.COMM_Outbound >> com.Outbound;

end configuration;

Figure 4-1: Initial Application Description
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Figure 4-2 shows the tasks descriptions for the subsystems of the initial configuration.
Since at this stage of the development we might not be ready to commit to any particular
structure for the subsystems, these are described as simple, unstructured tasks. This infor-
mation is sufficient to do static checks, including port (i.e., type) compatibility and graph con-
nectivity. We could continue the design in this fashion, successively refining the subsystem
descriptions until, at the end, the application is fully described as a hierarchical graph struc-
ture in which the innermost nodes are implemented as separate programs, specified by the
‘‘implementation’’ attribute of the corresponding task description.

However, if we want to carry out some preliminary dynamic tests, we need to provide a
pseudo-implementation for each subsystem. That is, we need to write ad hoc programs that
emulate the input/output behavior of each of the subsystems and then specify these
programs as the ‘‘implementation’’ attributes in the subsystem task descriptions.  Alter-
natively, if a subsystem’s behavior is relatively simple and repetitive, we could use ‘‘Master-
Task’’ [4] as a subsystem emulator.  To use MasterTask, we need to include a timing ex-
pression in the subsystem task description, and specify ‘‘master’’ as its ‘‘implementation’’
attribute. In fact, we can mix the two approaches and have some subsystems emulated by
ad hoc programs, while other subsystems are emulated via MasterTask, as shown in Figure
4-2.

Figures 4-4, 4-5, and 4-6 show three possible design sequences starting from the original
design of Figure 4-1 and ending with the final design shown in Figure 4-3.  In Figure 4-4 we
first replicate the workstation, then we decompose the communication and application mes-
sage handlers, and finally we decompose the workstations. In Figure 4-5 we first decom-
pose the communication and application message handler subsystems, then we replicate
the workstation, and finally we decompose the workstation. In Figure 4-6 we carry out the
design in yet a different order. First we decompose the communication and application mes-
sage handler subsystems, then we decompose the workstation, and finally we replicate the
workstation.

There are a number of other alternative design sequences leading to the same final design
and we do not need to belabor the point.
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task system_manager
ports

SM_In : in  subsystem_response;
SM_Out : out system_command;

attributes
implementation = "system_manager_emulator";
processor = "Vax";

end system_manager;

a -- System Manager Subsystem

task comm
-- red communications processing

ports
SM_Commands : in  system_command;
SM_Responses : out subsystem_response;
Inbound : out comm_if_message;
Outbound : in  comm_if_message;

attributes
implementation = "comm_emulator";
processor = "Vax";

end comm;

b -- Communications Subsystem

task AMHS
-- Automated Message Handling Subsystem
ports

SM_Commands : in  system_command;
SM_Responses : out subsystem_response;
COMM_Inbound : in  comm_if_message;
COMM_Outbound : out comm_if_message;
WS_Inbound : out workstation_if_message;
WS_Outbound : in  comm_if_message;

attributes
implementation = "amhs_emulator";
processor = "Vax";

end AMHS;

c -- Application Message Handler Subsystem

task wkstn
ports

Inbound : in  workstation_if_message;
Outbound : out comm_if_message;

behavior
timing

loop
( (Inbound.dequeue delay[5, 60]) ||

(delay[*, 180] Outbound.enqueue) );
attributes

implementation = "master";
processor = "Vax";

end wkstn;

d -- Workstation Subsystem

Figure 4-2: Initial Task Descriptions
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Figure 4-3: Final Structure of the C3I Node
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5. Conclusions and Future Developments

This report contains the results of the first phase of a joint project between the Software
Engineering Institute and TRW Defense Systems Group.  The objective of this project is to
demonstrate a new technology for developing distributed applications on networks of
heterogeneous machines.  We have chosen as the initial application domain prototype C3I
applications built using the C3I testbed developed by TRW and the Durra language and
methodology developed by the SEI.

To help provide direction to the effort and to evaluate our progress we identified three major
phases: Basic Demonstration, Study of Networking Issues, and Advanced Demonstration.
This report describes the results of the first phase. The second and third phases will be the
subject of a report scheduled for the fall of 1989.

5.1. Basic Demonstration

The goal of the first phase was to demonstrate the basic functionality of a command and
control application developed using Durra and the capability of supporting heterogeneous
networking. In addition to demonstrating the application development methodology, the
sample applications developed for the demonstration will provide an experimental facility for
future performance measurements and evaluations. We accomplished this goal through
several intermediate subgoals:

Defined common communication/scheduler primitives. The Durra model of computation
assumes the use of a small set of message passing primitive operations. The TRW testbed
tasks also use a message passing paradigm but their original interface was not as narrowly
defined as in Durra.  The narrow interface was adopted as the first step of the project and
we modified the testbed software to use the Durra scheduler interface.

Developed Durra descriptions of C3I tasks, subsystems, and node. We analyzed the
testbed modules and developed Durra descriptions of the tasks.  Writing these descriptions
required an understanding of the behavior of the testbed tasks, their performance and com-
munication requirements (ports and message types), and the structure of typical applica-
tions in the C3I domain.  We also developed Durra descriptions of the subsystems, defined
by TRW as the architecture of the C3I node.

Demonstrated the methodology. All of the Durra task descriptions and the modified
testbed modules were compiled and the distributed C3I node executed as expected, on the
computer networks at the SEI and at TRW Defense Systems Group, using two types of
workstations (MicroVax and Sun), two versions of UNIX (Ultrix-32 and BSD-4.3), and two
versions of X windows (X10 and X11).
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5.2. Study of Advanced Networking Issues

Following the successful demonstration of the basic methodology, we need to explore the
extension or modification of the Durra paradigm of networking to meet more realistic C3I
requirements.

System robustness issues. The current implementation of Durra uses a centralized
scheduler. This was done mostly for expediency, to get the system up and running in a short
time. It was always understood that a centralized critical resource was not acceptable as a
long term solution. We are in the process of designing and implementing a distributed
scheduler to enhance the reliability and availability of the applications.

Dynamic application startup/reconfiguration. The initial reconfiguration features of Durra
are based on a preset (i.e., compile time) description of the conditions for a change and the
nature of the change in the configuration of an application.  This model might be too restric-
tive for a number of applications, and we will investigate the issues involved in developing
an interactive scheduler interface to allow human operators to invoke arbitrary application
reconfigurations.

Default reconfiguration actions. These two styles of reconfiguration (preset and inter-
active) might not be adequate to cope with all possible system anomalies that would trigger
a reconfiguration. A Durra description that would attempt to cover all possible anomalies will
be unwieldy, unreadable, and most likely incomplete.  By the same token, an operator might
be swamped by the speed of events or confused as to the best action to take under real-
time conditions. Thus, there is need for default reconfiguration actions to be followed by the
scheduler. These defaults should not be built-in but rather should be a property of the ap-
plication and might vary over time, during the life of the application. We will investigate ap-
propriate policies for taking default reconfiguration actions and the languages for specifying
these policies.

5.3. Advanced Demonstration

The goal of this phase will be to demonstrate dynamic reconfiguration features (preset and
interactive) to support fault tolerance. This is planned to be completed by September 1989.
To achieve this goal, we have adopted the following intermediate subgoals:

Demonstrate preset dynamic reconfiguration. Augment the Durra application descrip-
tions developed during the first phase (these descriptions are contained in this report) with
dynamic reconfiguration statements. This requires the identification of typical reconfiguration
requirements in C3I applications and their expression in Durra.

Develop/demonstrate interactive dynamic reconfiguration. We will implement a system
operator program to allow direct communication between an operator and the runtime
scheduler. This program will consist primarily of a simple user interface and a command
interpreter that will take requests from an operator and will translate these into scheduler
instructions to perform interactive reconfigurations.
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Develop/demonstrate policy language concepts. We will implement a simple policy lan-
guage and associated mechanisms to handle system anomalies when neither the preset nor
interactive reconfiguration facilities are adequate.
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Appendix A:  C3I Node Application Description
task configuration
structure

process
-- real system processes

sm : task system_manager;
com : task comm;
amh : task amhs;
w1p : task wkstn;
w2p : task wkstn;

-- auxiliary system processes
dmxp: task broadcast -- message demultiplexor

ports
in1 : in  workstation_if_message;
out1, out2 : out workstation_if_message;

end broadcast;
muxp: task merge -- message multiplexor

ports
out1 : out comm_if_message;
in1, in2 : in  comm_if_message;

attribute
mode = fifo;

end merge;
bc : task broadcast -- command broadcast

ports
in1 : in  system_command;
out1, out2 : out system_command;

end broadcast;
mg : task merge -- response multiplexor

ports
in1, in2 : in  subsystem_response;
out1 : out subsystem_response;

attribute
mode = fifo;

end merge;
queues

-- system command propagation
q_c1 : sm.SM_Out >> bc.in1;
q_c2 : bc.out1 >> com.SM_Commands;
q_c3 : bc.out2 >> amh.SM_Commands;
-- subsystem response propagation
q_r1 : com.SM_Responses  >> mg.in1;
q_r2 : amh.SM_Responses  >> mg.in2;
q_r3 : mg.out1 >> sm.SM_In;
-- inbound message propagation
q_i1 : com.Inbound >> amh.COMM_Inbound;
q_i2 : amh.WS_Inbound >> dmxp.in1;
q_i3 : dmxp.out1 >> w1p.Inbound;
q_i4 : dmxp.out2 >> w2p.Inbound;
-- outbound message propagation
q_o1 : w1p.Outbound >> muxp.in1;
q_o2 : w2p.Outbound >> muxp.in2;
q_03 : muxp.out1 >> amh.WS_Outbound;
q_o4 : amh.COMM_Outbound >> com.Outbound;

end configuration;
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Appendix B:  Application Message Handler Description

B.1. Subsystem Description
task AMHS
-- Automated Message Handling Subsystem
ports

SM_Commands : in  system_command;
SM_Responses : out subsystem_response;
COMM_Inbound : in  comm_if_message;
COMM_Outbound : out comm_if_message;
WS_Inbound : out workstation_if_message;
WS_Outbound : in  comm_if_message;

structure
process

ac : task AMHS_control;
ai : task AMHS_inbound;
ao : task AMHS_outbound;
pb : task broadcast

port
in1 : in  system_command;
out1, out2 : out system_command;

end broadcast;
pm : task merge

port
in1, in2 : in  subsystem_response;
out1 : out subsystem_response;

attribute
mode = fifo;

end merge;
bind

SM_Commands = ac.SM_In;
SM_Responses = ac.SM_Out;
COMM_Inbound = ai.COMM_Inbound;
COMM_Outbound = ao.COMM_Outbound;
WS_Inbound = ai.WS_Inbound;
WS_Outbound = ao.WS_Outbound;

queue
q1 : ac.Cmd_Out >> pb.in1;
q2 : pb.out1 >> ai.Cmd_In;
q3 : pb.out2 >> ao.Cmd_In;
q4 : ai.Resp_Out >> pm.in1;
q5 : ao.Resp_Out >> pm.in2;
q6 : pm.out1 >> ac.Resp_In;

end AMHS;
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B.2. Component Task Descriptions

B.2.1. Control Task
task amhs_control
ports

SM_In : in system_command;
SM_Out : out subsystem_response;
Cmd_Out : out system_command;
Resp_In : in subsystem_response;

attributes
implementation = "amh_control";
x10window = "=80x12+0+0";
x11window = "-geometry 80x12+0+0";
processor = sun;

end amhs_control;

B.2.2. Inbound Message Task
task amhs_inbound
ports

Cmd_In : in  system_command;
Resp_Out : out subsystem_response;
COMM_Inbound : in  comm_if_message;
WS_Inbound : out workstation_if_message;

attributes
implementation = "amh_inbound";
x10window = "=80x12+0+190";
x11window = "-geometry 80x12+0+190";
processor = sun;

end amhs_inbound;

B.2.3. Outbound Message Task
task amhs_outbound
ports

Cmd_In : in  system_command;
Resp_Out : out subsystem_response;
COMM_Outbound : out comm_if_message;
WS_Outbound : in  comm_if_message;

attributes
implementation = "amh_outbound";
x10window = "=80x12+0+380";
x11window = "-geometry 80x12+0+380";
processor = sun;

end amhs_outbound;
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Appendix C:  Communications

C.1. Subsystem Description
task comm

-- red communications processing
ports

SM_Commands : in  system_command;
SM_Responses : out subsystem_response;
Inbound : out comm_if_message;
Outbound : in  comm_if_message;

structure
process

cc : task comm_control;
ci : task comm_inbound;
co : task comm_outbound;
pb : task broadcast

port
in1 : in  system_command;
out1, out2 : out system_command;

end broadcast;
pm : task merge

port
in1, in2 : in  subsystem_response;
out1 : out subsystem_response;

attribute
mode = fifo;

end merge;

bind
SM_Commands = cc.SM_In;
SM_Responses = cc.SM_Out;
Inbound = ci.Inbound;
Outbound = co.Outbound;

queue
q1 : cc.Cmd_Out >> pb.in1;
q2 : pb.out1 >> ci.Cmd_In;
q3 : pb.out2 >> co.Cmd_In;
q4 : ci.Resp_Out >> pm.in1;
q5 : co.Resp_Out >> pm.in2;
q6 : pm.out1 >> cc.Resp_In;
q7 : co.Echo_Out >> ci.Echo_In;

end comm;
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C.2. Component Task Descriptions

C.2.1. Control Task
task comm_control
ports

SM_In : in system_command;
SM_Out : out subsystem_response;
Cmd_Out : out system_command;
Resp_In : in subsystem_response;

attributes
implementation = "rcom_control";
x10window = "=80x12+510+0";
x11window = "-geometry 80x12+510+0";
processor = sun;

end comm_control;

C.2.2. Inbound Message Task
task comm_inbound
ports

Cmd_In : in  system_command;
Resp_Out : out subsystem_response;
Inbound : out comm_if_message;
Echo_In : in  comm_if_message;

attributes
implementation = "rcom_inbound";
x10window = "=80x12+510+190";
x11window = "-geometry 80x12+510+190";
processor = sun;

end comm_inbound;

C.2.3. Outbound Message Task
task comm_outbound
ports

Cmd_In : in  system_command;
Resp_Out : out subsystem_response;
Outbound : in  comm_if_message;
Echo_Out : out comm_if_message;

attributes
implementation = "rcom_outbound";
x10window = "=80x12+510+380";
x11window = "-geometry 80x12+510+380";
processor = sun;

end comm_outbound;
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Appendix D:  System Manager Description
task system_manager
ports

SM_In : in  subsystem_response;
SM_Out : out system_command;

attributes
implementation = "system_manager";
x10window = "=80x12+200+570";
x11window = "-geometry 80x12+200+570";
processor = sun;

end system_manager;
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Appendix E:  Workstation Description

To preserve proprietary information, we do not show the various tasks constituting the user’s
workstation subsystem. For the purposes of our demonstration, their functions were carried
out by the workstation manager task.

E.1. Subsystem Description
task wkstn
ports

Inbound : in  workstation_if_message;
Outbound : out comm_if_message;

structure
process

wm: task wkstn_manager;
bind

Inbound = wm.Inbound;
Outbound = wm.Outbound;

end wkstn;

E.2. Component Task Descriptions

E.2.1. Manager Task
task wkstn_manager
ports

Inbound : in  workstation_if_message;
Outbound : out comm_if_message;

attributes
processor = sun;
x10window = "=80x12+0+740";
x11window = "-geometry 80x12+0+740";
implementation = "usi_sim";

end wkstn_manager;
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Appendix F:  Type Declarations
type byte is size 8;

type comm_if_message is array of byte;

type string is array of byte;

type subsystem_response is array of byte;

type system_command is array of byte;

type workstation_if_message is array of byte;
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Appendix G:  Scheduler Interface for Ada Task
Implementations

with system; use system;
------------------------------------------------------------------------
package Interface is
------------------------------------------------------------------------
--| Durra Scheduler Interface (Low Level)
--|
--| This package provides the interface to the Durra scheduler for tasks
--| written in Ada.
--|
--| The init_* variables are the parameters passed by the server when a
--| task is initialized. The server in turn gets them from the scheduler.
-----------------------------------------------------------------------

-- REVISION HISTORY
-- 01/03/88 mrb Package spec created.
-- 06/13/88 dd Test_Port expanded to separate routines for
-- input and output ports.
-- 07/5/88 dd Constant environment names changed to function calls.

function User_Task_Name return STRING;
function Scheduler_Host return STRING;
function Scheduler_Port return STRING;
function User_Process_ID return STRING;
function Scheduler_Debug_Level return STRING;
function User_Source_Parameter return STRING;

procedure Finish;

procedure Get_Port (Port_ID : in POSITIVE;
Data : in System.Address;
Data_Size : out NATURAL;
Type_ID : out NATURAL);

procedure Get_PortId (Port_Name : in STRING;
Port_ID : out POSITIVE;
Queue_Bound : out POSITIVE;
Data_Size : out NATURAL);

procedure Get_TypeId (Type_Name : in STRING;
Type_ID : out NATURAL;
Type_Size : out NATURAL);

procedure Init;

procedure Send_Port (Port_ID : in POSITIVE;
Data : in System.Address;
Data_Size : in NATURAL;
Type_ID : in NATURAL);

procedure Test_Input_Port  (Port_ID : in POSITIVE;
Type_of_Next_Input : out NATURAL;
Size_of_Next_Input : out NATURAL;
Inputs_in_Queue : out NATURAL);

procedure Test_Output_Port (Port_ID : in POSITIVE;
Spaces_Available : out NATURAL);

end Interface;
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