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Human-Machine Interaction Considerations for 
Interactive Software 

Abstract: This document introduces current concepts and techniques 
relevant to the design and implementation of user interfaces. A user 
interface refers to those aspects of a system that the user refers to, 
perceives, knows and understands. A user interface is implemented by 
code that mediates between a user and a system. This document covers 
both aspects. 

1. Introduction 

This document introduces current concepts and techniques relevant to the design and 
implementation of user interfaces. A user interface refers to those aspects of a system 
that the user refers to, perceives, knows and understands. A user interface is 
implemented by code that mediates between a user and a system. This document 
covers both aspects. 

The first chapter is an introduction to the psychology of human-computer interaction. It 
presents the theoretical models that have had a significant impact on the evolution of 
the field. These models offer a way to organize the design process and help 
understand the cognitive processes involved in interacting with a computer. 

The rest of the document is concerned with the software design of user interfaces and 
shows how the principles established by the cognitive principles can be put into 
practice. Following a presentation on the abstractions involved in the organization of 
an interactive system, attention is then directed to the tools for constructing user 
interfaces:   windowing systems, toolkits and user interface management systems. 
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2.  Models and Design Guidelines 

Human-computer interaction is extensively cognitive. Even the most routine of 
activities, such as text editing, involves problem solving, requires the formulation of 
sequence of commands and implies the communication of these commands to the 
computer. To match the user's tasks, designers must go beyond their intuitive 
judgments and exploit ideas from cognitive psychology and human factors. These 
ideas may be classified into three categories: 

• Theoretical models 

• Practical guidelines 

• Test strategies 

The tutorial concentrates on some of the significant theories such as the Model of 
Human Processor [Card 83], GOMS [Card 83], the theory of Action [Norman 86] and the 
theory of Knowledge [Shneiderman 87]; it also briefly presents some practical 
guidelines based on these theories, on the Command Language Grammar [Moran 81] 
in particular. [Shneiderman 87] can be consulted for detailed comments on test 
strategies. 

2.1. Models from Cognitive Psychology 
2.1.1.   Overview of the Human Processor Model 
The Human Processor Model represents an individual as an information processing 
system. This system is comprised of three interdependent subsystems and operates 
according to a set of principles. As Figure 2.1 shows, the subsystems include 
perceptual, motor and cognitive systems. Each one is comprised of a processor and a 
memory. Processors and memories are characterized by parameters: 

• x, the processor cycle. 

• m, the storage capacity in items. 

• d, the decay time of an item, the time after which the probability of 
retrieving the item is less than 50%. 

• k, the type of item held in memory (e.g., symbolic, physical). 
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Figure 2.1:   The subsystems of the human processor. 

The general principles of operations that Card, Moran and Newell proposed include: 

• The Encoding Specificity Principle: "Specific encoding operations 
performed on what is perceived determine what is stored, and what is 
stored determines what retrieval clues are effective in providing access 
to what is stored." [Card 83, p. 27] 

• The Discrimination Principle: "The difficulty of memory retrieval is 
determined by the candidates that exist in the memory relative to the 
retrieval clues." [Card 83, p. 27] 

• The Rationality Principle: "A person acts so as to attain his goal through 
rational action, given the structure of the task and his inputs of 
information and bounded by limitations on his knowledge and 
processing ability." [Card 83, p. 27] 
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• The Problem Space Principle: "The rational activity in which people 
engage to solve a problem can be described in terms of (1) a set of 
states of knowledge, (2) operators for changing one state into another, 
(3) constraints on applying operators, and (4) control knowledge for 
deciding which operator to apply next." [Card 83, p. 27]. 

• The last two principles have served as a basis for the model presented 
in Section 2.2. 

The following subsections describe the usefulness of the model from the point of view 
of the computer scientist. 

2.1.2    The Perceptual System 
The perceptual system consists of a set of subsystems, each one specialized in the 
processing of a particular class of stimuli. A stimulus is a physical phenomenon that 
can be detected by a perceptual subsystem. A perceptual subsystem includes a 
processor, sensors and memory buffers called the visual image store (for the visual 
subsystem) and the auditory image store (for the auditory subsystem). 

The visual image store holds the output of the visual sensory subsystem. It contains 
the physical representation of some stimuli, i.e., a coding that characterizes the 
physical properties of the stimuli. For example, in the visual image store represented in 
Figure 2.2, the coding of the character P expresses some shape and size but does not 
express the recognition of the character. Recognition is performed by the cognitive 
system described in Section 2.1.4. 

A stimulus which impinges upon the retina at time t, is available in the visual store at 
time T+TS- where xs is the cycle of the visual processor. The mean cycle of the visual 
processor is around 100 msec and varies with the intensity of the stimuli. This means 
that an individual generally needs 100 msec before having the feeling of perceiving. In 
other words, two images produced in the same cycle are perceived as a single one. 
This result means that refreshing the screen will appear instantaneous to the user if the 
image can be produced in less than 100 msec. Satisfying the 100 msec constraint 
relies heavily on hardware technology and has impact in software construction. An 
example is the work of Uebbing [Uebbing 86] in analyzing the objects in object- 
oriented languages. One drawback of object-oriented languages is the overhead due 
to message passing. Uebbing comments on an interesting experiment about code 
optimization. He shows how to reorganize objects and minimize message passing 
times. Knowing : 

1. Tm, the transfer time of a message between two objects (e.g. 0,04 msec 
for Objective-C on a MC68010). 

2. n, the number of elementary objects comprised in a compound object. 

then, the total time x spent in message passing to redraw the compound object is x = 
ntm- If i is greater than the threshold which is a function of the visual processor cycle xs, 
then it is desirable to: 

• Minimize message passing by reorganizing the compound object. 
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Draw part or all of the compound object with low-level tools (even 
assembly language if this turns out to be necessary). 

P. T  = 100 ms 9 
> 

WORKING 
MEMORY 

QTsttie letter p; 

/N /N /N 

COGNITIVE FILTER 

/\    /\ /K /\   /\ 

Figure 2.2: The visual sensory subsystem and its relationship 
 with the cognitive system.  

message passing is the notion of windowing service through local area networks. This 
technique will be subsequently developed in Sections 3 and 4. X-Windows [Scheifler 
86], which is such a server, is able to handle mouse events fast enough to make 
immediate feedback possible without making the user aware of the network. 

2.1.3.   The Motor System 

Shortly after information has reached a perceptual memory, the cognitive system 
receives symbolically coded information in its working memory. The cognitive system 
uses previously stored information in the long -erm memory to make decisions about 
how to respond: the model views thought as translated into actions by activating 
muscle movements. The Motor System is responsible for movements. Movements that 
are of interest for human-computer interaction include arm-hand and eye-head 
gestures. 

A  movement  is   made  of  a  sequence  of  discrete   micromovements.      Each 
micromovement requires one cycle ?m of the motor system. The mean value for xm has 
been evaluated to 70 msec. With the hypothesis that a movement results from a 
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sequence of micromovements, it is possible to compute the theoretical time to move the 
hand to a given target. Figure 2.3 shows the initial situation: the hand is located in Xrj, 
at a distance D from the target (Xrj - D). The size of the target is S. After the first 
micromovement, the hand is in X1, then in X2, etc. One can show that the time T 
required to place the hand on a target depends on the required relative precision, that 
is on the ratio between the distance and the size of the target: 

T = I log 2(D/S + 0.5) 

where I is a constant determined experimentally (around 100 msec), 
known as Fitts's law. 

This equation is 

~s > 

<            — D   ~  " 
r                                       A 

 -> 

X0                 •                                   «1 x2 

TARGET 

Figure 2.3: Hand movement towards a target. 

Fitts's law can be usefully applied to determine the time spent in hand homing between 
input devices or in object selection on the screen. Such computations can serve as a 
quantitative evaluation of alternatives between syntaxes. 

2.1.4.   The Cognitive System 
There are two important memories in the cognitive system: the working memory and 
the long-term memory (see Figure 2.4). The working memory (also called short-term 
memory) holds information under current consideration just like the general registers of 
a computer. It contains the intermediate product of thinking, the representations 
produced by the perceptual system, and a subset of activated items extracted from the 
long-term memory. The long-term memory stores knowledge for future use in the form 
of symbols, called chunks. 

A chunk is a cognitive unit whose nature depends on the user. For example, SNCF is 
made of four chunks (i.e. the four letters S, N, C and F) for someone who does not 
know that SNCF is the acronym for the French train company, whereas it is a single 
chunk for French people. Chunks can be organized into larger units and be related to 
other chunks. For example, the chunk "car" is composed of the chunks "wheel," "body," 
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etc., and the chunk "weather" is related to the chunks "sun," "rain," "cloud." Semantic 
networks have been widely used to represent such relationships between pieces of 
knowledge. 

When a chunk is activated, previously activated chunks are less available because of 
limited capacity of the working memory. The new chunks interfere with the other ones 
which tend to disappear from the working memory if they are not reactivated. Note that 
the working memory behaves like the working set of virtual memory paging systems: 
when a page fault occurs (i.e., when a chunk is activated), pages in the main memory 
that have not been used (i.e., chunks that have not been reactivated) are swapped out 
to let the last referenced page be installed in the main memory. The Room model 
presented in Section 4.7 illustrates this notion of "cognitive working sets" by organizing 
the task space of the user in closely related windows. 

The capacity of the long-term memory is infinite: there is no erasure from the long-term 
memory, but retrieval of a chunk may fail. This failure may have several causes: no 
association can be found or similar association to several chunks interfere with the 
retrieval of the target chunk. As a consequence, the best way to remember something 
later and avoid chunk interference is to associate it with chunks of the long-term 
memory in a unique way. 

While the capacity of the long-term memory is infinite, that of the working memory is 
very limited. It has been demonstrated that the capacity of the short-term memory is 5 ± 
2 [Miller 75]. As a result, not only should software engineers pay attention to short-term 
memory overload but also should devise effective electronic extensions. Section 2.6 
shows that menus and forms constitute such appropriate extensions. 
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Figure 2.4: Perceptual memories, short-term memory and long-term memory. 

2.1.5.    Evaluation of the Human Processor Model 
Clearly, the Human Processor model is a simplification of the complex state of present 
knowledge in cognitive psychology. However, it provides the computer scientist with a 
comprehensible framework on which various aspects of this knowledge can be 
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gradually plugged. Actually, the goal of Card et al. goes beyond providing a framework 
for thoughts. The goal is to create a new discipline that would combine characteristics 
from fundamental and applied sciences. As in physics, this discipline would allow the 
designer to perform approximate evaluations. With the help of a technical theory 
[Newell 86], it would be possible to elaborate models that would allow the designer to 
answer questions about a particular phenomenon in human-computer interaction. The 
model of the Human Processor is a step towards this technical theory. For doing so, it 
introduces parameters that help in formalizing user performance and making predictive 
evaluations. 

Unfortunately, the parameters of the model of the Human Processor are useful for 
computing low-level behavior only. They are useful in determining the optimal rate for 
refreshing the screen; they stress the incidence of size targets on the effectiveness of 
selection actions; they explain why special attention should be devoted to short-term 
memory overload. Although mathematical expressions bring some scientific coloration 
to the development of a domain, the parameters of the model of the Human Processor 
are driven purely by performance considerations. They do not help in the 
understanding of the underlying cognitive processes that lead to such performance. 
The principles of operation that accompany the model are an attempt in this direction. 
One of them, the principle of rationality, serves as a basis to goals, operators, methods, 
and selection [Card 83], described in the next subsection. 

2.2. Practical Guidelines for Design 
GOMS: 

• Is based on the theoretical hypothesis described in the previous 
subsection: a human being acts in a rational manner. 

• Is a model for the performance of the user who does not make errors. 

• Structures the cognitive activity involved in accomplishing a task into 
four components: Goal, Operators, Methods, Selection. 

A goal is a symbolic structure that: 

• Defines a desired state. 

• Determines the set of methods which lead to this goal. 

• Constitutes a backtrack point in case of failure. 

Goals are organized hierarchically. The leaves of the hierarchy are operators. For 
example, when starting to edit a document, the user has the top level goal "edit- 
manuscript." The user segments this larger task into smaller tasks and devises the 
subgoals to achieve the subtasks. Figure 2.5 gives an example of such a subtask, 
which consists of transposing two words. 
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Transpose 
Word1,Word2 

Insert Wordl 
after Word2 

Select Wordl 
with the mouse 

Figure 2.5: The decomposition of a goal (transpose two words) into a hierarchy of 
subgoals. The leaves of the tree denote physical actions. The illustration 

does not make explicit the selection rules applied by the user 
 when several methods lead to the same goal.  

An operator: 

• Is a perceptual, a motor or a cognitive action. 

• Provokes a change in the mental and environmental state. 

• Is characterized by I/O parameters and an execution time. 

A method: 

• Describes the know-how. The know-how is made of learned procedures 
that the user already has at execution time. They are not plans created 
at execution time. The learned procedures express skill built from prior 
experience. They reflect the knowledge of the exact sequence of steps 
to accomplish a task 

• Is a sequence of conditions about goals and operators. 

A selection rule determines the choice between the methods that achieve the same 
goal. 

GOMS can be used to model and predict the users behavior at various levels of 
abstractions. One application of GOMS at a low level of abstraction is the 
KEYSTROKE level model [Card 83] which, given a command language, allows the 
designer to predict the  time   needed  by the  user to  enter  a  command. 
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To summarize, GOMS: 

• Is useful for predicting errorless behavior. 

• Does not deal with concurrent operations: the behavior is assumed to be 
linear. The goal stack model does not fit non linear planning; and non 
linear planning is required to deal with the user's interruptions (e.g. 
errors). 

• Is behaviorist: it is a model about performance. It is not cognitive, as is 
the theory of action in the next section. 

2.3.  The Theory of Action and Conceptual Models 
One of the goals of cognitive engineers is to identify and understand the principles that 
guide the actions of the individual. The theory of D. Norman relies on the hypothesis 
that the user elaborates conceptual models and that task accomplishment involves 
several stages [Norman 86]. 

2.3.1.    Conceptual Models 

A conceptual model: 

• Is a mental representation of oneself and of the environment. 

• Depends on previous knowledge and understanding. 

• Is modified by the nature of the interaction. 

When considering the interaction of a user with an artifact, it is important to consider 
two conceptual models (the designer's and the user's conceptual models) and the 
notion of system image. If the artifact is a computer, there is also the system's model to 
consider. Figure 2.6 represents these models. 
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DESIGNER 

SYSTEM 

USER 

Figure 2.6:  Conceptual models. 

777e Designer's Conceptual Model: 

• Is the model that the designer devises for the artifact. 

• Relies on the representation that the designer has about the typical user 
of the artifact. Ideally, this conceptualization is based on a thorough 
analysis of the user's tasks, requirements, capabilities, background and 
experience. 

7776 User's Conceptual Model: 

• Results from the user's interpretation of the system image. 

• Defines the "view" that the user has about the system. 

7776 System Image: 

• Results from the physical structure that has been built (artifact). 
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• Should be explicit, intelligible and consistent, so that the user may 
elaborate a conceptual model compatible with the design model. The 
burden is placed on the image that the system projects. Accomplishing 
a task will be easier or harder, depending on the system image. 

777© System's Model: 

• Is the model that an intelligent program might build about the user. 

• Allows for automatic customization. 

2.3.2.   Toward a Theory of Action:   Stages of User Activities 

Accomplishing a task involves approximately seven stages (see Figure 2.7): 

1. Establishing the Goal 

A goal is a mental representation of the desired state. It is expressed in terms 
of psychological variables. The system state is defined by the value of its 
physical variables, such as the location of the cursor or a sequence of words 
that forms a sentence. The user compares the system state to the goal. To do 
so, the system state is translated into a psychological representation. 

2. Forming the Intention 

The evaluation of the distance between the goal and the translated state of the 
system gives rise to an intention. An intention is the decision to act toward 
achieving a goal. An intention is stated in psychological terms. It specifies the 
meaning of the input expression that is to satisfy the user's goal. To do so, the 
user must know the mapping between the psychological variables and the 
physical variables; for example, the user must have established the 
correspondence between the notion of insertion point, which is a psychological 
variable, and the location of the cursor, which is a physical variable; As another 
example, in order to achieve the goal "delete wordi" in Figure 2.5, the user 
must know the link between suppressing a word, which is a psychological 
notion, and the command "cut," which is a physical input expression. The user 
must know the effect, the meaning, of the command "cut." 

3. Specifying the Action Sequence 

The intention must be translated into a sequence of actions. To do so, the user 
has to know the mapping between the physical variables and the physical 
control mechanisms. A physical control mechanism allows for the modification 
of physical variables. The specification of an action sequence is a mental 
representation of the actions to perform on the physical control mechanisms. It 
prescribes the form of the input expression that has the desired meaning. For 
example, the user must know that the location of the cursor can be modified 
with the mouse. In the example in Figure 2.5, the user knows the syntactic- 
lexical definition of the command "cut." 
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4. Executing the Action 

The execution of an action is the manipulation of physical control mechanisms. 

5. Perceiving the System State 

The system state is embedded in an output expression. The perception of this 
expression is the translation of the physical variables into psychological 
variables. For example, after typing the character backspace in Figure 2.5, the 
user perceives that the output expression no longer contains the word 
displayed in reverse video in the previous output expression. 

6. Interpreting the System State 

The interpretation of the output expression results in determining the meaning 
of the output expression. For the example in Figure 2.5, the disappearance of 
the word is interpreted as the deletion of the word. 

7. Evaluating the System State with Respect to the Goals 

The evaluation establishes the relationship between the meaning of the output 
expression and the user's mental goal. This evaluation may result in a 
modification or in continuing to the next step in the plan. 
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Figure 2.7: Stages in user's activities and gulfs of execution and evaluation. 

Accomplishing a task: 

• Does not necessarily require the presence of the seven stages. 

• Does not require these stages to happen in a specific order. 

• Creates different needs at different stages. For example, menus can 
assist in the stage of forming an intention and specifying an action, but 
frequently make execution more clumsy. 

• Does require a translation between the psychological representations 
and the physical presentations. This translation reveals the existence of 
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a gap between the mental world and the physical world.  Norman calls 
this discrepancy a "gulf." 

The gulf between the user and the system is two-way: from the mental representation 
to the physical presentation, and from the physical world to the mental world. The first 
gap is called the gulf of execution, whereas the second is the gulf of evaluation. 

The gulf of execution consists of the semantic distance and the articulatory distance. 
The semantic distance is covered by the intention, which goes from the goal to the 
specification of the meaning of an input expression that is to satisfy the goal. The 
articulatory distance is covered by the action specification, which goes from the 
meaning of the input expression to its syntactic/lexical form. 

The gulf of evaluation also consists of an articulatory distance and a semantic distance, 
covered respectively by the interpretation of the output expression and the evaluation 
of the meaning of the output expression. 

In summary, this theory stresses the fact that the accomplishing of a task involves 
several stages, that each stage has its own possibly conflicting needs, that these needs 
result from the gulf between the mental representation and the physical presentation, 
and that this gulf should be bridged by the system designer as much as possible 
through the system image. Conversely, if the matches between the psychological and 
the physical variables are weak, the user has to bridge the gulfs by creating more 
plans, more action sequences and more interpretations that move the psychological 
description closer to the physical requirements. 

Opposite GOMS, which provides the designer with a synthetic view of human behavior, 
Norman's theory of action analyzes the mental processes that lead to such behavior. 
Whereas GOMS is limited to the ideal case of errorless interaction, Norman stresses 
the difficulties encountered by the user and provides the designer with a general 
framework for explaining the cause of errors. GOMS is a quantitative model about 
human performance, whereas Norman's theory of action is an informal, explanatory, 
cognitive model about human behavior. The informal nature of Norman's theory 
prevents the designer from making predictive evaluations. However, such a theory can 
serve as a basis for the development of evaluation techniques (e.g., ETIT [Moran 83]). 
The intuitive view of Norman's theory is interestingly complemented by ACT* 
[Anderson 83], a formal theory of human cognition based on production systems. 

2.4. Theory of Knowledge:   The Semantic/Syntactic 
Model of Knowledge 

The nature of knowledge has been studied extensively, resulting in various theories 
about how knowledge is organized and exploited. This section, first describes briefly a 
general theory of knowledge, as well as the semantic/syntactic model of knowledge, 
useful in the context of user interface design. 

2.4.1 A General Theory [Simon 84, Card 83] 

Subsection 2.1.4 explains that knowledge is organized as a network of chunks. This 
network contains two classes of information: 
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• Factual knowledge: a set of assertions, predicates, known facts with 
possibly confidence factors 

• Procedural knowledge: a set of procedures that describe the know-how. 
A procedure is an elementary action, such as a computer instruction. 
Unlike the computer instruction set, the procedure set of the cognitive 
processor evolves with time. 

In the context of human-machine interaction, the chunks of interest here are those that 
constitute the user's conceptual model. This conceptual model contains facts and 
know-how about the system. Today, it is widely agreed that these facts and skill can be 
classified into two categories: syntactic knowledge and semantic knowledge (see 
Figure 2.8) [Shneiderman 87]. 

The User's Model 

Semantic Knowledge Syntactic Knowledge 

Figure 2.8: The Syntactic/Semantic model of knowledge. 

2.4.2. Syntactic/Semantic Knowledge 

Syntactic knowledge: 

• Represents the linguistic conventions that the user must know to specify 
requests to the system (input expressions) or to interpret responses from 
the system (output expressions). These conventions allow the user to 
communicate with the system image. 

• Is system dependent. 

• Is arbitrary, inconsistent, difficult to retrieve and has many other negative 
qualities. 

• Must be acquired by rote memorization and repetition. 
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Semantic knowledge is: 

• An organized hierarchy of factual and procedural concepts: factual 
concepts are in the form of objects or data. Procedural concepts are 
operations on objects or procedures on data. In addition, a distinction 
should be made between domain-dependent objects and operations, 
and system-dependent objects and operations. 

• Potentially transferable across different computer systems. 

• Independent of syntactic details. 

• Acquired by meaningful learning. 

The distinction between syntax and semantics, and between domain-dependent 
concepts and system-dependent concepts, match the usual forms of competence: a 
user may be incompetent in a domain but skillful at using a particular computer. 
Conversely, the user may be knowledgeable in a field, but ignorant in the use of a 
particular computer system. 

2.5  Theoretical Models:   Summary 
Models presented so far are concerned with phenomena related to human-computer 
interaction. 

• Some models, such as the Human Processor Model, GOMS and 
Keystroke, are useful for making quantitative predictions about a 
particular design. However, by oversimplifying the real world, they are 
too limited in scope and too low level. 

• Other models, such as Norman's Theory of Action and Shneiderman's 
model of Syntactic/Semantic Knowledge, provide the designer with 
explanations about the cognitive behavior of the user. Although they 
take a more realistic view of the real world, these models lack of a 
scientific formalism makes them unusable as predictive tools. 

The user interface designer has the difficult task of integrating these various theories 
into a unique "easy-to-whatever" computer system! Combining all of these principles 
leads directly to some kind of combinatory explosion. Combinatory explosion may be 
avoided with the use of heuristics. Heuristics does not guarantee an optimal solution, 
but it provides a reasonable answer. The following section we introduces some general 
heuristics that needs to be flavored with the peculiarities of the specific case at hand. 

2.6.   Practical Guidelines:   Methods and Golden Rules 
The general method presented in this section is an application of the Command 
Language Grammar [Moran 81], although the Command Language Grammar (CLG) is 
not a methodology. CLG conveys a type of top-down approach that can be found 
useful as a framework for designing user interfaces. CLG is a grammatical structure to 
represent computer systems at various levels of abstractions. Each level of 
representation defines a particular view of the system, and each view results from an 
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analysis that any competent designer should perform.   Figure 2.9 illustrates the 
principles of CLG, whose terminology is explained in Section 2.6.1. 

2.6.1.    General Method for User Interface Design 

The design of a particular interactive system may be structured along five axes: 

1. Definition of the profile of the user based on a general classification 
(notion of novice, expert, and occasional user, combined with the notion 
of semantic and syntactic knowledge). 

2. Definition of the profile of the tasks: utility of the system according to the 
needs of the user. This constitutes the task level of CLG. It consists of 
defining the domain-dependent entities as perceived by the user: 

the task entities of the domain. 

the tasks to be performed in the domain. 

the decomposition of the tasks into a hierarchy of subtasks. 

the task procedures (methods) to perform the various tasks. 

the privileged tasks, i.e., tasks that need special attention due, 
perhaps, to their frequency. 

3. Definition of system-dependent notions to implement the domain- 
dependent concepts. This constitutes the semantic level of CLG. It 
includes: 

• the conceptual entities, which act as the electronic 
representations of the conceptual objects and of the additional 
entities that the system uses for its own purposes. 

• the user and system conceptual operations to manipulate the 
conceptual entities (looking for an information on the screen is 
considered a user conceptual operation). 

• the semantic procedures (methods) expressed in terms of the 
user, and system conceptual operations to perform the tasks 
defined in the task level. 

4. The definition of the structure of the dialogue in layers of increasing 
complexity and leading to task closure. This is the syntactic level of 
CLG. It includes: 

• the commands and their arguments. 

• the clustering of commands into contexts and the mechanisms 
for switching between contexts. 

• the syntactic procedures (methods) expressed in terms of the 
commands, as well as in terms of the conceptual operations of 
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the user. A syntactic procedure shows how to perform a task 
defined at the task level. 

5. Definition of the interaction style, choice of the lexical details (e.g. world 
metaphor vs. conversational metaphor). This is the interaction level of 
CLG. It includes: 

• the interaction elements and the primitive actions performed by 
the user and by the system (keystroke and mouse selection are 
examples of user actions; prompts and responses are system 
primitive actions). 

• the order in which the interaction elements must be specified by 
the user or produced by the system. 

• the interaction procedures (methods) expressed in terms of the 
primitive actions and in terms of the conceptual operations of the 
user. An interaction procedure shows how to perform a task 
defined at the task level. 
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Figure 2.9: The CLG layers for the Design of User Interface. 

As the description of CLG shows, a particular system is fully described at various levels 
of abstraction. Each level manipulates its own entities and operators, but these 
elements are combined to fully describe the system. Each level can be viewed as a 
refinement of the previous one (i.e., higher in the hierarchy) and each level is 
independent of the following one (i.e., lower in the hierarchy). By following this 
hierarchical method, CLG yields a top-down approach to the design of a user interface. 
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Although CLG can be usefully exploited as a method, the basic difficulty for the 
designer is defining and structuring the user's tasks. If the description of the task 
domain does not match the mental representation and the cognitive processes of the 
user, the system will probably be hard to use and hard to learn. Unfortunately, an 
appropriate organization of the user's tasks requires an intensive knowledge in the 
domain of cognitive psychology, a knowledge that most computer scientists do not 
master. 

The subsections that follow provide the designer with practical guidelines that may be 
useful to define the syntactic and interaction levels of CLG. 

2.6.2.    Guidelines 
The guidelines presented in this subsection form a very small fraction of hundreds of 
rules currently available in the literature. For a more complete enumeration, refer to 
[Scapin 87, Shneiderman 87]. The guidelines that follow are a selection of general 
human factor principles that computer scientists may apply easily. They are organized 
as a set of seven guidelines: consistency, concision, cognitive load reduction, user- 
driven interaction, flexibility, dialogue structuring, and error prediction. 

2.6.2.1.   Guideline 1:   Consistency 
Consistency implies the absence of exception. Exceptions increase learning time and 
the likelihood of error. System consistency is a concern at all of the stages that D. 
Norman identified for modeling human-computer interaction. This subsection is limited 
to the stage of action specification and to the execution stage. Rules for the perception 
and the evaluation stages derive directly from those considered here. 

• Consistency and the Action Specification Stage 

If a goal is similar in different environments, then the sequence of 
actions to accomplish the goal should be the same. 

For example, a user needs to "duplicate an object and print the copy of 
the object". The object may be a document or an electronic mail 
message. In both environments, the mail system and the document 
preparation system, the sequence of actions should be the same. 

• Consistency and the Execution Stage 

The execution stage includes syntactic, lexical and pragmatic issues. 

• With regard to syntax, the designer should determine the order of 
command arguments. Experiments indicate that when 
commands share arguments, these arguments should appear in 
the same order in every command. 

• Note that the order does not always match the sequencing of 
natural languages and that there is a choice between postfixed 
notation and prefixed notation. It seems that for graphical 
environments, a postfixed notation is more appropriate whereas 
the prefixed notation is adequate for text-based interaction. 
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• With regard to lexical issues, naming should be consistent . I 
some function appears in different contexts, it should be 
designated with the same name. 

A counter example of this rule is the function "terminate'' in the 
Unix world: to terminate a message in the mail system, the user 
must enter a single character line (character"."); to terminate the 
mail system, the user must type "q" (or "x" depending on how the 
user wants to reenter the mail system); typing "logout" terminates 
a Unix session. 

• With regard to pragmatics issues, consistency recommends that 
spatial layout of output information should be preserved. 

This principle of locality helps the user anticipate gesture on 
system outputs. In particular, menu items should always appear 
in the same order. The order must primarily depend on a logical 
sequencing defined by the task; if the task does not show any 
logical order, the frequency criteria should be applied; however, 
if the frequency criteria is not applicable, alphabetical order 
should be used. Similarly, locality rules have been defined for 
forms: at the top of the form, the user should find the fields that 
must be filled whereas optional items can be gathered at the 
bottom. Note that this guideline is consistent with Fitts's Law: it 
minimizes hand movements. 

2.6.2.2.    Guideline 2: Conciseness 
Consiceness is the harmonious combination of brief and powerful expressions. In 
computer-human interaction, conciseness is achieved in the form of abbreviations, 
macrocommands, cut and paste facilities, undo and redo features, and default values. 

This section illustrates the difficulty in applying these guidelines with the use of 
judgement by the designer. For example, conciseness is desirable for the experienced 
user but not for the novice user. It is important to identify the end users of a particular 
interface and tailor the interface to their characteristics. 

•    Conciseness and Abbreviations 

Abbreviations are usefu shortcuts for experienced users. Shortcuts are 
mandatory. For example, menus are adequate as a technique for 
minimizing memory load, but they are clumsy when considering the 
action specification stage (a Keystroke level model can be used to 
support this assertion). However, in order to be understandable, 
abbreviations should be derivable from precise rules. 

Common rules for deriving abbreviations include: 

1. Special character (e.g., escape or control) followed by a letter 
(usually the initial of the command name). EMACS is a good 
example of the application of this rule. 
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4. 

Vowel deletion. For example, the command delete would be 
abbreviated as "dlt". 

Maximum truncation which consists of suppressing characters 
from command names as long as there is no ambiguity. For 
example, given the set of command names "compile, copy, 
delete," the rule respectively derives "com, cop, del". 

Two character truncation. This rule applied to the set "compile, 
copy, delete," would derive "cm, cp, dl". 

Figure 2.10 illustrates the results of a study that compares user performance according 
to the abbreviation rule [John87]. The response time is the mean time the user needs to 
enter an abbreviated command. 

RESPONSE TIME (msec) 

2292 

1754 

2519 

2060 

2-Char        Maximum        Special Vowel 
Truncation    Truncation     Character      Deletion 

Figure 2:10:  Comparative user performance according 
to the abbreviation rule. 

Conciseness and Macrocommands 

A macrocommand is to interaction languages what a procedure is to 
programming languages. It is an abstraction mechanism and an 
extension technique. As an abstraction mechanism, it matches human 
learning cognitive processes that encapsulate related pieces of 
knowledge into a "bigger" chunk. As an extension technique, it allows 
for combining generality and particularity. 
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Considering human-computer interaction, particularity denotes user 
specific needs. Norman's theory of action identifies the semantic 
distance between the formation of the intention and the elaboration of a 
plan of commands. One way to shorten the gulf is to provide the user 
with a high-level language that directly expresses the most frequent 
problem-solving plans. The drawback of a highly tailored language is 
the difficulty to express unusual tasks. 

The conflict between particularly and generality has been solved in Unix 
and Lisp-based systems by providing the user with a fairly low-level, 
general purpose language to build new commands. These commands 
may encapsulate frequently encountered actions into a single 
parametrizable chunk. Unfortunately, the user interface for defining such 
macros forms a highly disappointing cognitive barrier to the newcomer 
or to the unmotivated user. 

Conciseness and Cut and Paste Facilities 

"Cut and Paste" is the electronic version of manual patchwork. As with 
manual patchwork, it offers a way to reuse information. For example, it 
avoids the need to retype information, or it allows the user to enter 
information already provided by the system. Cut and paste is also a 
means for overcoming lack of integration between tools. For example, 
the user can develop a text with a special purpose text editor, then draw 
a picture with a sophisticated interactive editor, and eventually paste the 
picture into the text document. In integrated environments, there would 
be no need for the user to explicitly use different tools. In any case, cut 
and paste operations must appear consistent to the user. 

An example of inconsistency is a round-trip transfer of information 
between MacDraw and MacPaint. MacDraw manipulates graphical 
objects such as circles and polygons, whereas MacPaint handles pixels 
only. Suppose a user performs the following actions: draw a circle C 
with MacDraw, cut C from MacDraw, paste C into MacPaint, cut C from 
Macpaint and finally paste C back into MacDraw. As far as the naive 
user is concerned, C looks like a circle in the MacDraw document, but is 
not editable anymore as a circle. Cut and pasted operations have lost 
"semantic" information about transferred data. 

Consistency in the behavior of "cut and pasted " information relies on the 
existence of a universal format, as well as on a general type translator.. 
A universal format defines a common data representation, i.e., a 
common formalism, for all of the applications, say, of a workstation. A 
type translator performs the required transformations between the data 
representations specific to an application and the universal format. To 
our knowledge, "type recasting" is a research topic that has not been 
investigated in its full generality. 

Conciseness and Undo and Redo Features 

Undo has two advantages: it allows the user to easily correct a mistake 
and it avoids the execution of the plan of actions that would undo the 
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desired effect. A redo feature avoids the repetition of a sequence of 
actions. Both undo and redo support conciseness. 

Conciseness and Default Values 

Default values are another means to reuse information. There are two 
kinds of default values: static and dynamic. Static values do not evolve 
with the session. They are generally wired in the system, or are 
acquired at initiation time from a profile file. On the other hand, dynamic 
default values evolve during the session. They are computed by the 
system from previous user inputs. Figure 2.11 gives an example of the 
default value proposed by a system for the file name of a document 
being saved in the course of an editing session. 

Q Section2-Principes Pratiq... 

D Chaps-Regies <I'I)r 
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[    Saue Cancel   ]        [    Onoe "") 

(§) Entire Document OTeHt Only 

Figure 2.11: An example of a dynamic default value: the default file name for saving 
a document is the name of the document being edited. In order to attract attention, the 
 name is highlighted in reverse video.  

2.6.2.3.   Guideline 3:   Cognitive Load Reduction 
The literature describes many ways of reducing the cognitive load.  Among them, we 
select the use of menus and forms, and the informative and immediate feedback. 

•  Cognitive Load Reduction and Menus/Forms 
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Experiments show that the human being is better at recognizing than at recalling. 
Menus and forms, which present alternatives, are good alternatives as short-term 
memory extensions. 

Cognitive Load Reduction and the Immediate and Informative Feedback 

Generally speaking, a feedback is a reaction to some cause. In the context of 
human-computer interaction, the feedback is an output expression produced by 
the system that has processed some user input. The interpretation of the feedback 
by the user leads to the evaluation of the situation before carrying on the plan of 
actions. Thus, the feedback has the responsibility of expressing the state of the 
system. 
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Figure 2.12:  How informative is informative feedback? 

The system state is described by a wide variety of data structures. As far 
as human-computer interaction is concerned, the system state is 
comprised of the data structures that are of interest to the user. These 
data structures are those that match the psychological variables involved 
in accomplishing the task. The system feedback has the responsibility of 
presenting these data structures in a form that helps the evaluation. It is 
also in charge of immediately informing the user of the changes 
happening to such structures. 
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The changing shape of the cursor.is an example of immediate feedback. 
A cursor shape can be used to remind the user that a particular mode is 
active (e.g., drawing or erasing); cursor shapes, such as the hour glass, 
the wrist watch (or the cup of tea) are useful to inform the user of % long 
operation. Dynamic techniques such as progression bars convey more 
information about the evolution of a time-consuming operation. 

As an illustration of how informative an informative feedback can be, we 
consider the presentation of the psychological variable "page number," 
which is of interest in document editing tasks. Figure 1.12 presents three 
possible feedbacks for this variable. On the top left comer of the figure, 
the position of the elevator in the scroll bar indicates that the current 
view is about half-way in the document. On the top right corner, the 
elevator includes extra information: an integer. After some practice, the 
user infers that it refers to a page number. On the bottom screen, the 
user is fully informed of the current position of the window in the 
document. 

In a nutshell, informative feedback should answer the following user questions 
[Nievergelt 80]: "Where am I?, What can I do?, What have I done?" 

2.6.2.4. Guideline 4:    User-Driven Interaction 
Users should have the initiative in a dialogue with a computer. This recommendation 
stems from the view of the computer as a tool: the computer is a submissive server, 
whereas the user is the principal actor. Actually, there is a more generous view of the 
computer: that of a collaborator. 

In a collaboration, each partner acts according to each one's competence. In the 
particular case of human-computer interaction, the computer should behave as the 
extension of the user's skills. It should let the user act freely and take control 
arbitrarily. The difficulty for the user interface designer lies in identifying the transition 
points where control shifts from the user to the computer and back. 

In both cases, whether the computer is a tool or a collaborator, users should not be 
modeled as finite state machines. Automata offer a convenient way for modeling 
relations between predictable and well-defined states. States involved in human 
problem solving are rather unknown and their relations are mostly unpredictable. 
Human problem solving is basically opportunistic, mixing the top-down approach with 
the bottom-up approach [Hayes-Roth 79]. As a result, it must not be constrained by an 
inflexible model of interactions. 

To summarize, give the user the illusion of driving the system. 

2.6.2.5. Guideline 5:    Flexibility 
Flexibility is mainly concerned with the notions of customization and multiple rendition 
of a concept. 

•    Flexibility and Customization 

Customization is the adaptation of the user interface to the user. A user 
interface can be adaptative or adaptable. An adaptative user interface 
automatically evolves depending on the user's mental state.    An 
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adaptable user interface is manually modified to fit the user's 
requirements. In both cases, whether the user interface is adaptative or 
adaptable, the current facilities for customization are rather limited. 

An adaptative user interface relies on the existence of an intelligent 
observer that tracks the actions of the user, infers the user's mental state 
and modifies its behavior accordingly. The notion of intelligent observer 
supports the view of the computer as a collaborator. Unfortunately, the 
realization of an effective observer relies on a thorough understanding of 
human cognitive behavior. Given our limited knowledge in this domain, 
a lot of research needs to be pursued in the area of adaptative user 
interface. Currently, a more practical approach is the manual adaptation 
of user interfaces. 

An adaptable user interface relies on the existence of a software 
architecture that makes a distinction between functional mechanisms 
from presentation policies. Functional mechanisms implement the high 
level semantics of the interaction, whereas presentation policies deal 
with the syntactic and lexical issues. A software architecture that 
satisfies this requirement makes possible the modification of the 
syntactic and lexical aspects of the system without side effects on the 
internal functioning. For example, it is easy to repair the "surface" of the 
interaction, such as changing a command or a parameter name, without 
any code recompilation. Although it is possible to modify the lexical and 
syntactic aspects of the presentation, it is not possible to change the 
structuring of the interaction. This issue is the topic of Guideline 6. 

Other complementary approaches to customization include facilities for 
building new commands (macrocommands) and defining abbreviations. 
These two aspects have already been discussed in 2.6.2.2. 

A priori customization seems to conflict with consistency. In analogy to 
architectural design, a framework is provided that can be moderately 
reorganized and decorated as desired: it will be possible to change the 
location of a secondary wall but certainly not the location of a wall that 
supports the building. It is also possible to choose wallpaper and 
carpeting, because it is independent of the framework. Similarly, with an 
appropriate software architecture, it is possible to change the lexical and 
syntactic aspects of the interactive system without damaging the overall 
organization that is the referential framework for consistency. 

•    Flexibility and Multiple Rendition 

Multiple rendition is a facility for multiple, possibly simultaneous views of 
a given concept. Each view matches a particular need at some stage of 
a given task. For example, in text editing, it could be possible to view the 
document as a table of contents and simultaneously read a particular 
chapter or subsection. The table of contents and the subsection are two 
views of the same data structure that represents the document. 

Figure 2.13 gives an example of a multiple representation of the same concept. 
Chapter 4 describes some software techniques that support multiple rendition. 
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Figure 2.13: Multiple representation of the same concept.   On the left, data are 
presented as bar charts; on the right, the same data are collected in a table. 

2.6.2.6. Guideline 6: Structured dialogue 
Structuring is a general technique for mastering complexity. Dialogue structuring 
consists of organizing the command space into layers of increasing complexity. By 
doing so, the novice user is able to successfully accomplish simple tasks that are 
presented right away in the system image. As the system becomes more familiar, the 
user will gradually discover new functions more complex to handle but not necessarily 
mandatory to get usual tasks done. Dialogue structuring into levels of increasing 
complexity is known as the "training wheels" technique [Carroll 84]. 

This principle of dialogue structuring, which has the nice effect of leading to successful 
task closure (feeling of relief, satisfaction of work done), is certainly not easy to put into 
practice. It requires a thorough task and user analysis which is not often performed by 
computer scientists. 

2.6.2.7. Guideline 7:    Error Prediction 
Errorless interaction is illusory, but the computer system can provide support for error 
detection and error recovery. D. Norman, [Norman 86] identifies two classes of errors: 
mistakes and slips. A mistake results from the formulation of an inappropriate 
intention. A slip is an unintended action. Both of them, mistakes and slips, generally 
come from the inadequacy of the system image. The system image should minimize 
error occurrences, and facilitate error detection and error repair. 

•    Support for minimizing errors and for improving detection 

Occurrences of errors can be minimized and error detection can be 
improved in several ways: an appropriate metaphor of interaction, an 
adequate terminology, and an immediate and informative feedback. 
When considering slips only, techniques dealing with concision avoid 
slips by allowing the user to reuse information without any risks of enter 
incorrect data. 

A metaphor of interaction defines a model to which a novice user 
can refer by analogy to interact with the system. There are 
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currently two major metaphors for interaction: the world 
metaphor and the conversation metaphor [Hutchins 86]. The 
world metaphor electronically mimics objects of the real world. A 
popular example of the world metaphor is the desktop metaphor, 
where icons represent actual folders and documents, and where 
the mouse is the electronic extension of the hand. The 
conversation metaphor is based on a linguistic description of the 
actions to be performed on system objects. Examples of the 
conversation metaphor include the textual command languages 
such as the Unix Shell. In the conversation metaphor, the user 
talks about an implicit world (the user describes what is to be 
done), whereas, in the world metaphor, the user directly 
manipulates objects (the user does not tell how to do it, but does 
it instead). Thus, "direct engagement" of the user shortens the 
gulf between mental and computerized representations. It 
should minimize error occurrences. However, in cases where 
there is a mismatch between the metaphor and its electronic 
implementation, errors might be created rather than reduced. 
Consequently, care should be taken to make clear the limits of 
the metaphor used. 

Adequate terminology has to do with the choice of names. 
Consistency is an important feature in naming but the terms 
should be understandable to the user. Weil designed software 
architecture combined with tools for lexical and syntactic 
customization can overcome an inappropriate wording. 

Immediate and informative feedback has been discussed in 
2.6.2.3 in relation to reducing cognitive load. With regard to 
errors, feedback may avoid slips such as forgetting the current 
mode of interaction. It may protect the user from making wrong 
decisions or wrong inferences. 

Support for Easy Repair 

Error repair is a problem solving activity. The support for such activity 
comes in several forms. It includes undo/redo facilities and informative 
error messages. 

The combination of undo and redo facilities, not only avoid 
possible slips during the respecification of a command, but also 
encourage investigation. As such, they provide the user with an 
effective support for problem solving. 

Error messages, such as "SYNTAX ERRORI," are useful for error 
detection but are far from being helpful for error repair. They 
require a rather fastidious and sometimes frustrating evaluation 
phase. Error messages should clearly express the exact cause 
of the error and provide the user with additional information 
about state variables relevant to the current problem. Figure 
2.14 illustrates the case of an error message helpful for error 
repair. 
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0 There isn't enough room on the disk to 
duplicate or copy the selected items 
(additional 145,408 bytes needed). 

^o 
Figure 2.14: An example of an informative error message for easy repair.    The 

system makes explicit the cause of error and provides the user with additional 
 information useful in the repair problem solving task.  
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3. The Levels of Abstractions in Interactive Software 

This chapter: 

• Identifies the abstractions involved in constructing interactive software. 

• Introduces the terminology that will be used in the remainder of this 
document. 

3.1. Introduction 
An interactive system calls for various levels of services, ranging from low-level 
physical I/O handling to the high-level management of the interaction. As shown in 
Figure 3.1, these services may be viewed as a hierarchy of abstract machines: 

• At the bottom of the hierarchy, device drivers directly control the physical 
devices. A device driver is a program tailored to the physical functioning 
of a particular class of devices. Interactive software includes a driver for 
each class of devices it supports. Generally, these drivers are part of the 
underlying operating system. They define the device dependent layer. 

• The next layer hides the diversity and the functioning of the physical 
devices by defining a virtual terminal. A virtual terminal provides client 
programs with device independence but is not able to support device 
sharing. 

• Device sharing between multiple software activities is implemented by 
window systems. Window systems give client programs the illusion of 
being the unique owners of one (or several) virtual terminal(s). Virtual 
terminals are programmable at a fairly low level of abstraction. This 
level may not be convenient for client programs which deal with highly 
structured data. 

• Abstract image machines shorten the gap between the internal 
representations used by client programs and the external 
representations required by the graphics package provided by (or sitting 
on top of) the window system. An abstract image is an intermediate data 
structure which expresses output rendition at a high level of abstraction 
and which supports high level input facilities. Inputs and outputs, 
whether they are expressed at a high level of abstraction or not, require 
some kind of control that organizes their occurrence. 

• dialogue control shapes the interaction between the application and the 
user down the way through the underlying abstract machines. The 
dialogue machine can be seen as a mediator between the application 
and the user. It bridges the gap between the abstract, media 
independent world of the application and the universe that makes up the 
user interface. 

• At the very top of the hierarchy, the application implements the functional 
core of the interactive system. This core is media independent, that is, 
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At the very top of the hierarchy, the application implements the functional 
core of the interactive system. This core is media independent, that is, 
has no knowledge of the way its data structures and functions are 
exposed to the user. Its purpose is to implement an expertise in a 
specific domain that will allow the user to perform specific tasks in that 
domain. It is not concerned by how this expertise is made accessible to 
the user. 

CLIENT PROGRAM / FUNCTIONAL CORE 

I 
Dialogue  Management 

Abstract Imaging 

Device Sharing 

Device  Independence 

Device   Dependencey 

Figure 3.1:   The levels of abstraction involved in the construction 
of interactive software. 

The following sections detail the nature of the abstractions that respectively allow for 
device independence, device sharing, abstract imaging and dialogue management. 
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3.2.   Device Independence 
Physical independence has multiple facets. It primarily comes in the form of a virtual 
terminal that hides the actual functioning of quite different I/O devices without modifying 
client programs. It may also allow for the addition or suppression of new devices 
without recompiling or even relinking the existing code. In this section, the focus is on 
code reusability. We first identify the problems due to the diversity of physical devices. 
We then sketch the principles of how physical independence is achieved. 

3.2.1.    The Problem 

Reading or writing data with direct control of the physical terminal presents two 
difficulties: first, it imposes a precise knowledge of the functioning of the physical 
devices on the programmer; second, and more important, it compromises software 
portability. For example, to move the cursor to "Hne1,column2" of the physical screen, a 
programmer would provide a VT100 driver with the sequence "ESC[1 ;2f." Clearly, this 
sequence becomes obsolete when the VT100 is replaced by a bitmap display. 

The software solution to the diversity and the complexity is the use of the abstraction 
mechanism. In the case of interest, the abstraction is a virtual terminal which provides 
client programs with a unified and a simplified view of actual terminals. 

3.2.2.    The Notion of Virtual Terminal 

A virtual terminal is an abstract terminal. As such, it provides client programs with an 
instruction set for expressing inputs and outputs, and the instruction set can be 
mapped to a variety of physical terminals. Let's see the principles of these I/O 
primitives. 

CLIENT PROGRAM TERMINAL HANDLER 

Set Cursor (2,3) «—• 

caseLinkedTerminal of 
VT 100 : ESC[1;2f 

end case; 

Figure 3.2: The principles of output operations of a virtual terminal. 

Figure 3.2 illustrates the principles of output operations of a virtual terminal. In this 
example, the primitive SetCursor issued by the client program moves the cursor to 
location (2;3) in the virtual space coordinate. The virtual terminal, whose job is the 
interpretation of primitives from client programs, translates the virtual location into the 
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physical coordinate space and calls device dependent primitives. These primitives 
correspond to the physical device that is currently linked to the client program. 

This example mentions the notion of space coordinate. Virtual space coordinates may 
be integer or fractionary systems. The choice between the two is based on 
compromises between ease of implementation and effectiveness of physical 
independence. As an example of compromise, the virtual terminal defined in X 
Windows is based on the hypothesis that physical screens have square pixels. As a 
result, the primitive that is supposed to draw a circle produces an ellipsis on screens 
whose pixels are rectangular (such as the Apple Lisa or TV screens). 

For inputs, the chaos due to the diversity of physical devices (keyboards, mouse, 
electronic glove, etc.) has been organized in the form of typed classes. The types are 
specific to a particular implementation of a virtual terminal. In general, they include: 

The class key, which models physical keyboards. 

The class locator   to denote the location of a pixel in the virtual 
coordinate space. 

The class choice,  which returns an integer value useful to represent 
mouse buttons. 

The class valuator to model physical devices such as potentiometers 
that generate real values. 

The class modifier, a bit string whose value can be interpreted as a 
modifier of the semantics of the value returned by other classes. 

The class application to allow client programs to synthesize client- 
dependent events. 

The class time-stamp   to indicate the time when a physical action 
happened. 

Input classes such as locator, choice and valuator, were first introduced by GKS [ISO 
85] and Core. Today, they are implicitly embedded in the device-independent layer 
provided by window systems. Other classes, such as modifier, application and time- 
stamp classes have been made popular by window systems. The last two deserve 
additional comments: 

• The application class allows client programs to extend the basic set of 
input classes. Application programs can set up their own protocol of 
communication by defining special purpose events, and exploit the 
communication mechanism provided by the window system. This 
feature is an interesting property of the Macintosh event manager. 

• The time-stamp class is useful to overcome two types of hardware 
limitations. The first limitation is the sequentiality of the interrupt 
mechanism: two actions that appear as simultaneous to the user are 
reflected to the client program as two separate events. A time-stamp 
value may be considered a means to glue the events back into a single 
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abstract one. The second limitation happens at the physical device 
itself. One well-known example is the one-button mouse of the 
Macintosh, which can be used as a two-button (or even a three-button) 
mouse by double (or triple) clicking the unique physical button. Again, 
time-stamps associated with the successive events allow for 
synthesizing events. 

To complete our picture of the functioning of a virtual terminal undertaken in Figure 
3.2, we need to observe Figure 3.3. The client program acquires an event through the 
GetEvent primitive provided by the virtual terminal. This event is a device-independent 
description of some action performed by the user on physical input devices. The job of 
the client program is to interpret the content of the description. The job of the virtual 
terminal is to build the abstract representation of the physical events. In the example of 
Figure 3.3, the returned event is a combination of a locator and a choice that represents 
the screen location pointed to by the user with a mouse. 

CLIENT  PROGRAM TERMINAL   HANDLER 

repeat 

GetEvent (myevent)    *~ 

of 
case myevent.class 

locator :  
choice   :  

end case; 

until (condition) 

Figure 3.3: The principles of input operations of a virtual terminal 

To sumn .arize, device independence is: 

• Primarily intended to increase software portability by allowing the 
substitution of physical devices without damaging existing code. 
Although this capability is a desirable feature for programmers, it should 
be stressed that, from the point of view of the user, physical devices are 
not equivalent. Card, Moran and Newell suggested [Card 83] that the 
mouse is adequate for the selection of 2D objects, whereas the joystick 
is more appropriate for 3D manipulations. 

• Embedded in window systems. 

• Hard to achieve fully. 
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3.3.   Device Sharing 

Device sharing is built on device independence. Its purpose is to make available not a 
single virtual terminal as device independence does, but instances of virtual terminals. 
Why is this interesting? What are the principles of its realization in windowing systems, 
and what is the trend in current windowing systems? 

3.3.1.    Justification 

A virtual terminal, as provided by the device independence layer, is a resource that 
may be simultaneously accessed by multiple activities. In the late sixties, 
multiprocessing was not accessible to the user. Processes were internal creatures that 
helped the system do its job. Today, the user can explicitly or implicitly launch multiple 
activities, all of which act as producers and consumers of the terminal. In the same way 
that system engineers introduced the notion of virtual resources (e.g. virtual memory) to 
extend the capabilities of the core hardware components, interactive software 
engineers defined windowing systems to extend the capability of terminals. 
Windowing systems behave like virtual resource generators by providing client 
programs with any number of virtual terminals. 

Device sharing is necessary for multiprocessing environments. Whether the 
environment is multiprocess or not, it is also useful as a technique for organizing 
information on the screen: output expressions that are linked by some logical criteria 
need to be physically gathered on the screen. Regions that result from such grouping 
compete for rendition. This competition also occurs for input events which are to be 
dispatched to the appropriate destinatary (process, region, etc.). This is the familiar 
multiplexing/demultiplexing problem that is commonly encountered in operating 
systems. In the case of interest, the solution to the problem is based on the notion of 
window. 

3.3.2.    The Window at the Center of the   Multiplexing/Demultiplexing 
Mechanism 

The notion of window and the terminology vary widely from one window system to 
another. It is necessary to distinguish between the window as the elementary drawing 
surface that is mapped onto the screen, the notion of drawing surface that needs not be 
mapped onto the screen, and the window as the object that the user manipulates. The 
way these notions are implemented and organized together depends on the window 
system. Tie primary interest in this section is the window as the elementary drawing 
surface mapped onto the screen. More details are provided in Chapter 4. 

A window as an elementary drawing surface is a drawing context. This context 
includes a set of pixels and a system coordinate space. The set of pixels is used for 
rendering output expressions and for returning pixel locations expressed in the window 
coordinate space. To take advantage of possible hardware support for raster 
operations, the set of pixels usually forms a rectangular area. This area is conceptually 
visible on the screen and defines the sharing unit. 

Sharing uses the notion of owning: a window has an owner (e.g. a particular process). 
The way the owner is identified is out the scope of this subsection. Output requests 
issued by client processes are demultiplexed by the window system; input requests are 
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multiplexed. For output, the window system clips any information that lies outside the 
drawing area of a window. Input events are dispatched according to two possible 
techniques. Either the window system, such as NeWS [SUN 87], broadcasts the event 
to all of the windows that have expressed their interest in this type of event, or, such as 
X Windows [Scheifler 86], sends the event to the "current focus window." The fact that 
a particular window is the current focus for keyboard events or for any combination of 
typed events is decided by some client process by issuing the appropriate request. 

3.3.3.    Trends In Windowing Systems 

At first sight, window managers look very similar: client programs can create windows, 
move windows, resize windows, etc. Nevertheless, there is no common terminology; 
the basic functional concepts such as the way events are dispatched differ profoundly 
for one windowing system to another; as showed in Chapter 4, windowing systems 
also differ in their architecture. However, the new generation of window systems 
illustrated by NeWS and X-Windows have several features in common: 

• Presentation policies are distinct from functional services. By doing so, 
the "look and feel" of windows can be customized without changing the 
code that implements terminal resource sharing; 

• A server is in charge of the execution of the functional services. By 
doing so, client programs and the windowing system need not be 
running on the same physical machine and client programs can create 
remote windows. 

These issues will be further discussed in Chapter 4. To summarize the topic about 
device sharing, we take the point of view of the user. Window systems allow the user to: 

• Carry several activities concurrently. 

• Gather information that are semantically connected by some 
psychological or task criteria. 

• Ask for multiple views of the same concepts in distinct regions of the 
screen. 

So far, we have identified and described abstractions that make possible the 
expression of inputs and outputs in a device independent way and without any risk that 
a client process will damage other processes space. We need now to analyze the 
information that is carried by these expressions. 

3.4.  Abstract Imaging 

Abstract imaging is a technique for acquiring inputs and for rendering outputs at a level 
of abstraction compatible with client programs and windowing systems requirements. 
The problem posed by input and output operations is identified in the next paragraph. 
The principles of one possible solution is then presented. 
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3.4.1. The Problem 

Primitives provided by window systems for the expression of l/O's are device 
independent but the concepts they manipulate generally lie at a fairly low level of 
abstractions: pixels, lines, circles, rectangles, splines are the usual notions. At most, 
one finds the encapsulation of graphical requests in very much the same way a 
macrocommand denotes a set of commands: PostScript proposes the notion of path 
[SUN 87], QuickDraw implements the notions of region and picture [Rose 86], and GKS 
the notion of segment [ISO 85]. These encapsulations help structuring the output 
expressions but the operators they allow are very limited in scope. In particular, the 
entity described in a graphic macro can be rotated, enlarged, moved as a whole but its 
content cannot be dynamically modified. This restriction is in conflict with the editing 
nature of interaction. 

In Chapter 5, we will describe tools that are more appropriate for this sort of 
requirement. For now, the principles of the approach is presented in the next 
subsection. 

3.4.2. The Principles of the Notion of Abstract Image 

The purpose of an abstract image is to hide the functioning of the virtual terminal. An 
abstract image is a data structure that acts as a mediator between some client data 
structure to be exposed to the user, and a real image expressed in terms of some 
graphics package. The exact nature of abstract images will be made more explicit in 
the Chapter 5. For now, we Jimit the description to the principles. Figure 3.4 illustrates 
the role of an abstract image. 

The client program builds an abstract image that represents a domain-dependent data 
structure. The abstract image is automatically processed by an abstract image 
machine. This machine generates graphic requests that are interpreted by the 
underlying graphics package. The "concrete" or real image can be produced either in 
an offscreen bitmap, or in a window. If there is no windowing system, then the image 
must be generated on the physical screen. The choice between the two first 
techniques depends on the facilities provided by the window system. 
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REAL IMAGE 

a) Offscreen Bitmap 
PHYSICAL SCREEN 

DOMAIN DEPENDENT 
DATA STRUCTURE     ABSTRACT IMAGE 

if (a>b) then a >a+1 else b :-c; 

if (a>c) then 
begin 

a :=a+l; 
b>b+1; 

end 

/     V 

b)Window 

if (a>b) then 
a :=a+1 

else 
b :-c; 

c) Physical Screen 

if (a>b) then 
a >a+1 

else 
b:=c; 

if (a>c) then 
begin 

a >a+l; 
b >b+1; 

Figure 3.4: An abstract image is a mediator between a domain dependent 
 data structure and a real image.  

For some windowing systems such as X Windows-V10, offscreen bitmaps accept a very 
limited set of operations. In particular, it is impossible to draw on an offscreen bitmap, 
but it is possible to solely fill it with pixels with raster operations. In such circumstances, 
the real image must be produced in a window. The advantage of an offscreen bitmap 
over the direct mapping in a window, is its use as a "visual cache.'' An offscreen 
bitmap can be larger that a window. As a result, it may contain extra information useful 
for repainting the content of an enlarged or scrolled window. 

Abstract imaging is not only useful for hiding the functioning of the virtual terminal and 
for processing syntactic user tasks such as scrolling and resizing windows, but also as 
a convenient technique for multiple rendition of a given concept. The capability for the 
user to observe different views of the same concept enhances the flexibility of the 
interaction.  (Flexibility is one of the ergonomics rules described in 1.6.2).  Figure 3.5 
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shows how multiple views are obtained from the same abstract image. In the example, 
the client data structure represents the concept of a house. Its corresponding abstract 
image is interpreted in two ways. One possible interpretation provides a picture of the 
house as a floor plan with a lot of details (room names and furniture). In the second 
interpretation, irrelevant details are suppressed. Both real images may be 
simultaneously visible on the screen and both are automatically updated as the 
abstract image is modified. 

REAL IMAGES ON 
OFFSCREEN BfTMAPS 

PHYSICAL SCREEN 

| Bed-roomO "C 

%P         i Kitchen 
Bath 

I   Li 

Figure 3.5: Multiple presentations of the same concept 
 provided by an abstract image.  

So far, we have described the contribution of abstract images as an output mechanism. 
Figure 3.6 shows how input is processed: from the selection of a point on the screen to 
the concept of the client program. Let (x,y) be the location of the point in the screen 
coordinate system. The selection is first interpreted by the windowing system as a 
location (x\ y') relative to the top window which owns (x,y). The abstract image 
machine receives a triple which identifies the window and a point (x\ y') in this window. 
The window identification allows the abstract image machine to identify the abstract 
image, and (x\ y') allows it to determine which item of the abstract image owns the 
selected point. If an item is linked to a concept or a part of a concept, then the client 
program is directly informed of which concept element the user has selected. 
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Figure 3.6: From locators to concepts with an abstract image. 

While abstract imaging automatically translates low-level input information into client 
dependent concepts and takes care of multiple rendition and window resizing and 
scrolling, abstract imaging does not control the interaction between the user and the 
application. This task is the purpose of dialogue handling introduced in the next 
section. 

3.5.   Dialogue Handling 

Dialogue handling is concerned with the control and the maintenance of the 
interaction. This section introduces this issue by making the analogy with actual 
dialogues between human beings. Dialogue handling is then discussed from the 
computer side, stressing the fact that the responsibility of the interaction must be shared 
between the application and the user interface itself. 

3.5.1.    Introduction 

In a conversation between individuals, the control of the dialogue is distributed among 
the partners. At some point in time, one of the partners initiates the dialogue by 
submitting an expression or a sequence of expressions to interlocutors. The 
expressions are processed by the partners and new expressions are produced as 
results of the processing. Expressions are not elaborated by chance. Their meaning 
and their syntax depend on the mental representation that each partner maintains of 
interlocutors in the dialogue. 

The interaction between a computer system and a human being should be organized 
in a similar way. The control of the dialogue should be ruled according to the 
respective competence of the user and the computer (see Rule 4 about user driven 
interaction in Section 2.6.2.4). The user makes use of a conceptual model that gathers 
semantic and syntactic knowledge about the functioning of the computer system (see 
the definition of conceptual models in Section 2.3). In short term memory (see Section 
2.1.4), the user maintains the state of the interaction. Similarly, the computer system 

CMU/SEI-89-TR-4 45 



maintains a conceptual model as well as the state of the interaction. As mentioned in 
Section 2.6.1, CLG offers the designer a convenient way for representing the 
conceptual model and the state of the interaction with the conceptual and the 
communication components. 

The conceptual component describes the concepts and operations that can be 
handled by the user, whereas the communication component deals with their 
presentation. When considering the practical business of designing a software 
architecture, the conceptual component is naturally mapped into a software component 
called the application whereas the communication component constitutes the user 
interface itself. Figure 3.7 shows a simplified view of the software architecture of an 
interactive system. Given this view as a basis, dialogue handling is handled partially in 
the application and partially in the user interface. 

—            i nteractive System           ~*» ^                         i 

Application User Interface 

Figure 3.7: A simplified view of the software architecture of an 
interactive system. 

3.5.2. Dialogue Handling In the Application 

In the application, the conceptual model is comprised of a set of domain-dependent 
abstractions that allow the user to accomplish domain specific tasks. These 
abstractions are data structures and operations. This is a static view of an application. 
The dynamic view is concerned with the way states of the application relate to each 
other. A state is the model that an application has for the interaction. It includes: 

• The conditions which describe its relations with other states. 

• The set of abstractions that are accessible to the external world. 

For the application, the external world is the user interface: the user interface is its only 
partner. The application receives requests from the user interface when its data 
structures need to be accessed; it sends output requests to the user interface to 
express changes about its state and data structures. As device independence is 
guaranteed by windowing systems, so low-level details of the user's actions are hidden 
from the application. 

3.5.3. Dialogue Handling In the User Interface 

In the user interface, the conceptual model and the state of the interaction are 
maintained in a set of agents specialized in human-machine interaction. These agents 
are mediators between the abstractions handled by the application and the actions of 
the user.  Each one takes part to the interaction.  Each one is a miniature interactive 
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system which handles a piece of the conceptual model and a piece of the state of the 
interaction. A judicious collection of such active agents defines an instantiation of a 
user interface for an application. Considered as a whole, a user interface is a 
translator between the formalism recognized by the application and the formalism 
employed by the user. At the opposite of the translation process involved in a virtual 
terminal, the translation process involved in a user interface is very difficult to achieve. 

Translation between formalisms for terminals rely on well understood techniques and 
theories such as finite state automata. The translation process is easy to formalize 
because the functioning of the source and the target agents are well defined. In the 
case of human-computer interaction, our knowledge about human behavior is rather 
fuzzy. However, we do know that human behavior is not well modeled by deterministic 
computer science techniques. It is not surprising then that the construction of user 
interfaces is an active area of investigation. Tools for implementing user interfaces are 
being progressively made available. Such tools are the topic of Chapters 4, 5 and 6. 
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4. Windowing Systems 

4.1. Introduction 
Modern computing systems have multiple simultaneous processes ongoing, each of 
whose processes might have some interaction with the end user. Each process hides 
its interaction from other processes. The hiding is accomplished through the use of 
virtual terminals. Chapter 2 introduced the abstractions associated with the notion of a 
virtual terminal. Multiple virtual terminals all sharing a single physical terminal require 
management of the terminal's resources. A window sytem is a resource manager for 
the resources associated with a particular physical terminal. This section discusses 
some of the issues associated with that resource management, and then discusses an 
experimental method of managing the complexity associated with multiple windows. 

The resources that a real terminal is assumed to have and which are managed by the 
window manager are: 

• High resolution screen. The screen can be bitmapped, rastor or vector. 

• Keyboard. 

• Pointing device. A multibutton mouse is the most common pointing 
device, but joysticks, track balls and various gesturing devices also 
exist. 

• Graphic context. The color map for a particular terminal determines 
which bit patterns represent which colors. The graphic context 
determines other stataic information such as style and thickness of lines. 

4.2. Virtual Terminal 
As introduced in Section 3.2.2, Figure 4.1 gives a picture of a single client interacting 
with a physical terminal. The client provides, at some level of abstraction, images that 
are displayed on the screen and handles, again at some level of abstraction, inputs that 
come from the keyboard and the mouse. As a way of making concrete the hierarchy of 
abstract machines introduced in Chapter 3, consider the user action of selecting an 
image on the screen. Since at this point we have a client interacting directly with a 
physical device, the virtual machines that are of concern are the device driver and the 
terminal handler. 

CMU/SEI-89-TR-4 4 9 



screen 
client 

keyboard III 
mousi 

Terminal 
Figure 4.1: Single Client System. 

The current cursor position is displayed through some image on the screen. The user 
moves the mouse. With each increment of movement, the physical controller generates 
a message to the device driver software. This software calculates the current pixel 
location of the mouse and reports the location to the terminal handler. The terminal 
handler generates instructions to move the cursor image to a new position on the 
screen and passes those instructions to the device driver which generates the new bit 
map to be displayed. When the user performs a button down, an interrupt is generated, 
the interrupt is passed through to the terminal handler. The terminal handler then 
informs the client of a button down operation that occurred at a particular location on the 
screen. When the button is released, the terminal handler is informed of another 
interrupt and, in turn, informs the client of a button up at a particular location. 

Note here several themes which will reoccur. The first is that the feedback associated 
with the movement of the mouse and reflected in the movement of the cursor is handled 
by the terminal handler. The second theme is the level of abstraction reflected in the 
button events. The location of the cursor is hidden by the terminal handler and is 
reported to the client only in association with another event. Another example of the 
level of abstraction of the terminal handler is that it does not deal with objects on the 
screen or with interpretation of events. The mapping of the cursor position into a 
particular object and the interpretation of the button down, button up as a select are all 
handled at a higher level of abstraction than the terminal handler. 
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Figure 4.2:  Multiple Client System. 

Once the client becomes one of a collection of clients, then the real terminal becomes a 
virtual terminal. The level of abstraction managed by the virual terminal handler is the 
same as with a real terminal, but the virtual terminal handler must map the multiple 
virtual terminals onto the single real terminal. The common name for this level of 
abstract machine is window manager. Figure 4.2 gives a representation for the role of 
the window manager. Figure 4.3 shows a collection of windows. 
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Figure 4.3: Actual screen. 

4.3.  Single Window 
A window is the screen portion of the virtual terminal of a process and provides the 
output portion of that process. Since the window manager manages the window it is no 
longer tied to the physical screen size or shape. The window may be represented by 
an icon (the lower left corner of Figure 4.3 is ah icon representing the mailbox used in 
rural areas of the United States. It represents the output of the mail process). Windows 
may also have different sizes and locations on the screen. 

One of the virtues of abstracting functionality into specific locations is that the 
functionality can then be embellished without affecting the remainder of the client. In 
particular within a window system, a window has decorations, geometry, and content. 
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4.3.1.     Decorations 

Figure 4.4 displays a single window with its components identified. It has not only the 
window and its contents, but also it has been decorated with additional functions. 
These functions are: 

1. Title Bar. The window may have a title bar which provides the end user 
with a cue as to the process that owns the window. The size and title 
within the title bar can be set by the client. 

2. Close Tabs. In the lower right hand comer is a box that enables the end 
user to iconify the window. That is, when the end user selects this box, 
the window is turned into an icon by the window manager and additional 
action is required to expand the window again. 

3. Scroll Bars. It is possible that all the information that the client wishes to 
display cannot be placed simultaneously on the screen. The scroll bars 
allow the end user to navigate over the whole screen and display the 
portion desired. This point is further explained in the section on 
geometry. 

Note an additional consequence of performing the abstraction. The original motive 
behind providing the abstraction was to relieve the client of the management of lower 
level details. Once the abstraction existed, then it became embellished and the client 
now has to inform the abstraction manager (the window manager in this case) of 
additional information to support the embellishments (title for title bar, shape when 
iconified in the example). The end result of performing the abstraction is that additional 
functionality is available to the client at lower cost than directly implementing that 
functionality but the use of the implementation of the abstraction is not free. 
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Figure 4.4:   Decorated Single Window. 

4.3.2.     Geometry 

The client interacts with a virtual terminal with a single screen size. One of the functions 
provided by the window system is the resizing of the window. The end user may 
indicate to the window system that a particular window is to be resized and then 
indicate the new size. The problem then becomes how to map from the size that the 
client assumes to be the size visible to the user. Three options are available. 

1. Display only a portion of the client screen (viewport). 

2. Resize the contents to fit the visible window. 

3. Report to the client that the visible window has changed size and allow 
the client to control the display. 

4.3.2.1.    Viewport 
Figure 4.5 displays the situation when a resize has occurred and the resulting window 
is smaller than the client's virtual terminal. The client has a collection of information, a 
portion of which has been sent to the virtual terminal. The information available to the 
virtual terminal represents a canvas of information (or an offscreen bitmap). The 
information available through the window is a viewport onto the canvas. The 
information is maintained on the canvas using the same scale and proportions as the 
information sent from the client. 
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Figure 4.5:  Canvas concept. 

The viewport can be moved around on the canvas presenting the user with different 
visible portions of the canvas. This moving around is controlled, typically, with the scroll 
bars on the viewport window. 

The distinction between the information that the client thinks is visible (the canvas) and 
the information that is actually visible allows the client to generate output to the portion 
of the canvas that is obscured. The two alternatives when this occurs are to block the 
client until the information becomes visible to the end user or to allow the output to be 
placed (logically) on the obscured portion of the canvas. 

Note that the size of the information on the canvas does not change when a resize 
occurs. Only the portion of the information visible to the end user changes. 

4.3.2.2. Resizing Contents 
Another option when resizing a window is for the window manager to maintain the 
same information visible to the end user. In this case, the scale of the information must 
be changed. Pixel replication or sampling techniques are used to expand or shrink the 
view. Handling aspect ratio changes (the ratio of the sides of the window) becomes a 
very difficult problem and is typically not dealt with by the window manager. For 
example, if a circle is displayed in a window and the resize extends the x direction 
without modifying the y direction, stretching the image to fill the new window will result 
in the circle being displayed as an ellipse. 

4.3.2.3. Informing Client 

Informing the client that a resize event has occurred is the final option for the window 
system. This option can be used in conjunction with the other two. For example, 
suppose the viewport becomes larger than the underlying canvas. This client may wish 
to enlarge the canvas and the window system has no knowledge of how this is to be 
accomplished. 
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4.3.3.    Shape of Windows 

In most systems, windows are rectangular. This simplifies the management of the 
windows and the clipping of the information within the canvas to the window. On the 
other hand, rectangular windows make certain selection and display problems difficult. 
For example, two diagonal lines become difficult to separate with rectangular regions. 

In at least one system (NeWS) it is possible to have an arbitrarily shaped window. The 
boundary of the window is represented by spline curves and the canvas is clipped by 
the curves. 

4.4.   Multiple Windows 

Window systems manage multiple virtual terminals. This gives the end user a view of 
the physical screen such as that displayed in Figure 4.3. The management of the 
resources of the physical terminal involves both the input portion of the terminal and the 
output. In general, the problem is to allow the end user to differentiate between the 
various active processes and provide input to the processes as desired. 

4.4.1.    Input Management 

The physical terminal being managed has two different types of input devices. These 
are the keyboard and a pointing device (a mouse is assumed). Each of the devices 
generates events of the classes discussed in Chapter 3. The terms key event and 
choice event will be used to refer to the actions of the key class and.the choice class. 
The basic problem of the window manager is to direct the various events to the 
appropriate client process. Since each window is assigned to a particular process, this 
is equivalent to directing the events to the appropriate window. To assist the end user 
in determining the current state of the window manager two different types of cues are 
used—the mouse cursor and the text cursor. Each provides the location of one of the 
types of input devices. Together, they determine to which active process an input event 
is directed. 

4.4.1.1.    Mouse Cursor 
The mouse is assumed to have a single position within the physical screen. The 
location of that position is displayed to the end user by means of a mouse cursor. The 
shape of the mouse cursor can be different depending upon context allowing 
processes to give the end users a general cue as to the activities of the process. 

The position of the mouse cursor is maintained by the window manager level and is 
available to the client upon request or when a choice event (button press) occurs. The 
client can also move the mouse cursor to a desired position on a particular window. 

Choice events are always directed to the window within which the mouse cursor is 
located. More properly to the process which owns the window. When windows are 
overlapping then the event is possibly directed to the window which is invisible below 
the current window (see Section 4.4.4 for a discussion of window ordering). In certain 
cases, the overlapping windows are designed to support a single cognitive task (a 
menu, for example) and in this case, it is the responsibility of the top window to pass the 
event on to underlying windows. 
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4.4.1.2. Text Cursor 
Some windows are created as text windows. This allows them to receive key events. 
Within these windows is an additional cursor, the text cursor, which indicates current 
keystroke position. 

4.4.1.3. Current Focus 
Keystrokes are assigned to the window that is currently the user's focus of attention. 
Two models exist to determine the current focus: 

1. Mouse focus. Keyboard events are assigned to the window within which 
mouse cursor is located. 

2. Click to focus. The end user must explicitly assign keyboard to a window by 
selecting that window with a choice event. Keyboard events are assigned to 
that window unless explicitly changed by the end user or by the client. 

4.4.1.4. Cognitive Aspects 
Both models for assigning keyboard events present problems. If keyboard events are 
assigned to the window within which the mouse currently resides, end users can shift 
their focus of attention and forget to move the mouse to reflect the shift. This results in 
input being directed to the incorrect process (from the end user's perspective). 

The same problem occurs within click to focus systems. The end user can shift the focus 
of attention without performing the actions required to inform the system of that shift. 

One method that systems use to avoid these problems is to give the end user cues 
which indicate which window is currently the focus. In Figure 4.3, the window in the 
middle right is the current focus. The text cursor is a square block in that system. The 
current focus is indicated in two ways. First, the title bar for the window in the current 
focus is darkened and secondly, the text cursor is filled in within the current window and 
hollow within the other windows. 

Since the window system performs actions for the client (resizing, moving windows, 
scrolling windows) certain events must be dedicated to specifying these actions. These 
events then permeate the window system and restrict the types of interactions that a 
client can specify. For example, if a resize is specified with the right button of the mouse 
and the client cannot override that specification then the right button is unavailable for 
the client to use. If the client can override that specification then resize is either 
unavailable or must be specified in a different fashion depending upon which window is 
to be resized. This problem is called the button overload problem. 

One technique used to avoid the overloading problem is to utilize the title bars and 
scroll bars as areas where window manager functions are specified. If the mouse 
cursor is within a title bar or a scroll bar then the buttons perform one task and if they 
are inside a window the buttons perform other tasks. 

4.4.2.    Output Management 
The window manager displays multiple virtual screens on the same physical screen. 
Typically, all of the active virtual screens will not simultaneously fit on the physical 
screen. This leads to the problem of the arrangement of the windows on the physical 
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screen. Figure 4.3 shows seven different active windows. Two of these (the two in the 
lower left corner) are represented by icons. Three are text windows (the ones in the 
middle of the screen) and two are graphic windows (in the upper left and lower right 
corners). The particular arrangement of windows obscures portions of some of the 
active windows. The issues involved in output management are: 

1. Window placement 

2. Management of obscured windows 

3. Hierarchy of windows 

4. Graphic contexts 

5. Data interchange between windows 

4.4.2.1. Window Placement—Overlapping 
One strategy for the placement of the window on the physical screen is to allow 
overlapping windows. This is usually associated with allowing the end user to specify 
the placement of windows. The client generates a window in a particular location and 
with a particular size and the user then has the ability to move and resize the window. 
The user also has the ability to make windows visible. 

The basis for managing overlapping windows is to-maintain a list of active windows. 
Each window has a size and physical location. The windows are placed on the physical 
screen in the reverse order of the list. Those windows on the top of the list then become 
the ones displayed last and, consequently, become the visible windows. 

There are two operations available to manage the windows on the list (other than the 
create, delete operations). These are: move to top of list and move to bottom of list. 
Move to top of list makes a particular window visible and move to bottom of list removes 
a particular window from its visibility (assuming there are windows being obscured by 
the particular window). The window system has a mechanism to allow the end user to 
specify those two types of events. 

The window system also has a mechanism for iconifying and de-iconifying a window. 
The iconification will not change the position of the window on the screen but will 
usually cause it to take up less space on the physical screen and make visible other 
windows. 

4.4.2.2. Window  Placement—Tiled 
A tiled window manager is responsible for the size and placement of the individual 
windows. The rationale for such systems is: 

1. Screen real estate can be more efficiently and more simply managed by 
the system than by the end user 

2. If the end user can only see a portion of a window then that portion 
should define the client's virtual terminal and since there are no 
obscured windows, the problems of output to obscured windows do not 
exist. 
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Within a tiled window system, each client defines the minimum and maximum window 
size for a virtual terminal. When less than the minimum is available, the process is 
suspended. The output from a process is mapped directly into the available virtual 
terminal. 

Tiled window systems will shift the location and size of a window when new windows 
are created. This can be disconcerting to the end user. Evidence on receptiveness of 
end users to tiled window systems is mixed. It does seem clear that massive and 
frequent screen reorganizations, unless user initiated, are undesirable [Bly 86]. 

4.4.3. Management of Obscured Windows 

Output occurs to virtual terminal regardless of window visibility. Windows are also 
obscured by being overlapped by other windows. This leads to the problem of 
redrawing the window which is newly exposed. There are two techniques for dealing 
with exposure of obscured windows: 

1. Generate "exposed" event for the client process. This places the client in 
charge of redrawing the exposed portion of the window. It simplifies the 
problem of the window manager and saves window manager storage. If 
the window manager is to have the ability to redraw each virtual terminal 
then it must maintain a current copy of each window, whether visible or 
not. This can be expensive in terms of memory. 

2. Maintain virtual terminal in separate buffer which is then mapped onto 
screen. Performance considerations dictate that a separate "frame 
buffer" is maintained which is used to do the screen mapping. The 
separate frame buffer limits the number of virtual terminals which can be 
managed in this fashion. 

4.4.4. Hierarchies of Windows 

Up to this point, all of the windows were assumed to be bound to distinct processes and 
to be independent. This allows one window to be repositioned without any effect on the 
other windows. For some purposes, windows should be considered to be related and 
either moved together or constrained not to be moved outside a particular region. Some 
examples are: 

1. Figure 4.6 displays a menu. The items of the menus are, in fact, windows 
ail residing within a parent menu. Because the window system will 
determine within which window the cursor is located, this formulation is 
more convenient for the client than treating the menu items as the 
contents of a single window. If the menu items are treated as the 
contents of a single window then the client must determine which item 
was chosen when a choose event occurs. Using the parent, child 
concept, the window system will do the determination. When the parent 
window is positioned, all of the items of the window should be positioned 
relative to the parent window. 

2. Figure 4.5 displays the canvas, viewport concept. An easy mechanism 
for managing this relationship is the parent child. The way it is done is 
slightly counter-intuitive and relies on the fact that the window system 
clips a window based on its parent. The viewport is the parent window 
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and the canvas is the child window. Then the portion of the canvas that 
is visible is determined by the clipping mechanism applied to the 
viewport window. Scrolling is accomplished by moving the canvas 
rather than the viewport. 

Window 1 

Window 2 

Window 3 

Window 4 

Window 5 

Figure i 4.6: Example of menu. 

Windows can be specified by the client to form a hierarchy. Within this hierarchy, 
children are positioned relative to the parent. The children can be moved 
independently of the parent but the calculation of their position on the screen is done by 
first determining the position of the parent and then the position of the child within the 
parent. Children are clipped based on their parents. Thus, when a child window is 
moved off of the edge of the parent, only a portion of the child remains visible. 

A choice event or a key event is directed to the visible window. If that window does not 
wish to handle the event, it will direct it to its parent, and so on up the hierarchy. All 
windows are children of the root window and it consumes any unwanted event. 

The hierarchy notion allows many complications. Menus have already been discussed. 
Another use of hierarchies is the title bar, scroll bar concepts that have been discussed. 
The parent window has children windows which represent the title bar and the scroll 
bars, etc. Again, this allows the window system to determine the cursor position rather 
than forcing the client to perform the determination. It, of course, is possible for the client 
to attach its own title bar, scroll bars to the window and use different mechanism than 
the window mechanism. 

One determining factor in whether children windows are used for auxiliary functions 
such as menus and title bars is the performance nf the window system. Using the 
window manager for such purposes will generate several hundred windows very 
quickly. If the window manager is efficient enough to manage a large number of 
windows then the window abstraction provides for a very attractive solution to choice 
problems. See Section 5.2.3.3 for a discussion of facilities for manipulating direct 
manipulation user interfaces. 
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4.4.5. Graphic Context 

The graphic context defines color maps, line style and other graphic attributes (Section 
5.3 gives a fuller discussion of graphic concepts). Within a window system, each 
process has a graphic context and the system typically changes the current graphic 
context whenever the window focus changes. 

4.4.6. Data Interchange Across Windows 

Since multiple windows are being managed by the same window manager, it becomes 
possible to transfer information from one process to another through the window 
manager. This "cut and paste" facility is implemented by retrieving information from one 
window (client process) at the level of abstraction of the underlying communication 
mechanism (see the next section) and communicating that information to a second 
window (client process). The second process must be able to recognize the structure of 
the information received but windowing systems automatically have a level of 
interchanging data from one process to another which is at a higher level of abstraction 
than pure bit maps. 

4.5.   Networking Considerations 
The functionality of the window manager can be implemented in a variety of different 
manners. The possible partitioning of the functionality are [Gosling 86]: 

1. Replicate the window manager functionality in the address space of 
each client process. 

2. Install the window manager functionality in the kernel of the operating 
system, outside the address space of the clients. 

3. Have a separate window server process which is outside both the kernel 
and the client address spaces. 

The problem with the first option (replication) is the difficulty in multiple processes 
accessing the same window since the window is maintained in the address space of 
the process. The problem with the second option (embed in kernel) is that overloads 
the functionality of the kernel. In order to modify the window manager the kernel must 
be modified and this introduces configuration problems on most systems. The 
technique being used by most window systems is the third option. The client processes 
are considered to be clients of a single server. A number of consequences flow from 
this partitioning of the functionality. 

4.5.1.    Communication 

Since the client is in a distinct address space from the server, they must communicate 
through some fixed protocol. The fixed protocol uses the underlying operating system 
inter-process communication mechanism and performance issues become important. 
The performance of inter process communication mechanisms depends upon the 
volume of traffic sent through the mechanism. Within window systems, the protocol for 
communication is defined at a higher level of abstraction than bit maps in order to 
reduce the volume of traffic. The X Window system [Scheifler 86] has commands which 
"draw circle" or "draw line" and graphical communication is handled at that level of 
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abstraction. The NeWS system [SUN 87] sends messages which carry PostScript 
programs [Adobe 85]. PostScript is a display formatting language described in more 
detail in Section 5.3. 

This ability to communicate at higher levels of abstraction is also exploited to allow the 
client to change the interpretation of key or choice events. The use of PostScript allows 
the "downloading" of actual programs which can change any facet of the window 
system behavior. 

The use of the operating system's inter-process communication mechanism means that 
the communication between the client and the process is asynchronous. Order of 
communications in one direction is maintained but the sequencing of messages is not. 
Each window could have a collection of clients and each client could have a variety of 
different windows being managed by the server. 

4.5.2.    Networking 

The use of the operating systems inter-process communication mechanisms for 
communication between client and server allows the client and server to be distributed 
across a local area network. Figure 4.7 displays a network which exploits the distinction 
between clients and servers. A client resides on one workstation and can have a server 
which resides on a different physical workstation and manages a different physical 
terminal. The implications of that type of structure are still being explored for various 
client domains. 

client 1 client 2 

i ~~w 
server 1 server 2 

Terminal 1 Terminal 2 

Figure 4.7 ': Network of servers. 

4.6.  Desirable Features of Window Systems 
A number of the items discussed are important features in the evaluation of any window 
system. They are: 

1. Does the system separate basic mechanisms for managing windows 
from the policies involved in the management. NeWS or the X window 
system, for example, support either tiling or overlapped windows. It is the 

62 CMU/SEI-89-TR-4 



responsibility of the client to adopt a policy and the window system will 
provide the mechanisms. 

2. Does the system provide one communication channel per client 
process. When this is so the client is guaranteed to receive events in the 
right order. If there were one communication channel per window then 
distinguishing the order of events across windows becomes difficult. 
Having one communication channel per client also avoids polling by the 
client on all of the channels to see if an event has arrived. 

3. Does the system allow the definition of a hierarchy of windows. When 
using a direct manipulation interface, it is important to be able to handle 
object overlapping. Object overlapping is easily handled within a 
hierarchy of windows. Movement of the parent will move the entire 
object. 

4. Does the system provide the client with offscreen bitmaps (or canvases 
with the same graphics operations as visible windows. If the client needs 
to distinguish between visible and obscured windows in order to perform 
basic operations then the interaction between the client and the window 
system becomes needlessly complex. Also, the offscreen bitmap acts as 
a cache for pixels and becomes a performance enhancement 
mechanism. 

5. Does the system allow the clients visiblity into and use of non window 
management facilities. For example, communication between various 
clients is greatly simplified if the window systems communication 
facilities are available. 

6. Does the system allow the clients control in the case of failures. For 
example, if the client requests an unavailable font then the window 
system should have a well defined, consist method of allowing the 
clients to determine strategy. This facility is important in the building of 
robust systems. 

4.7.   Rooms 
A particularly interesting user interface which has been developed on top of a window 
system is Rooms by Card and Henderson [Card 87]. It is an example of how cognitive 
studies and information can be used to develop better user interface software. 

The first step in the development of Rooms was to analyze the way in which people 
used windows. The data gathered showed that people used windows in groups. That is, 
there was one group of windows in which there was activity and that activity was 
localized in that one group and then activity was transferred to a second group of 
windows and activity was localized in that second group and so on. The pattern of 
activities supports the hypothesis that an end user performs one task at a time. The 
windows in which activity was localized were those windows which supported the 
particular task being performed. 

The second step was the realization that the set of all existing windows could be 
collected into the groups within which activity was localized and that these groups 
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could be made the basis for a system. The metaphor of rooms in a building and the 
windows within each room was used as the basis for building a system. 

In Rooms, the end user is provided with a collection of rooms in a building. Examples 
might be the mail room or the project meeting room. Within each room windows could 
be created or destroyed. A particular room is current at any point in time and within this 
room all of the windows are exposed. Rooms which are not current (in the metaphor, 
rooms in which there are no occupants) are represented as icons. Thus, when a user 
moves from one room to another (changes tasks), the windows in the room being exited 
become unavailable and the windows in the room being entered become available. 

Each room is given a different background so the user can tell which room is currently 
active and an architectural plan of the building is kept available so that the user can 
determine how to navigate from one room to another. 

There are a number of additional features to Rooms (window sharing and expanding 
upon the metaphor) but the heart of the system came from the realization that people 
used windows in a localized manner and that if the system supported this localization 
then windows would be used more efficiently. Pre and post studies showed that the 
typical user managed about three times as many windows using Rooms than using a 
normal window manager. Since users manage as many windows as they can 
comfortably handle, Rooms increased the number of windows with which a user is 
comfortable. Rooms is an outstanding example of the connection between 
understanding the cognitive machine of the end user and the requirements of software. 
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4.8.   Introduction to Toolkits 
The level of abstraction available from a window manager is really too low for 
convenient use by a client programmer. The client receives detailed knowledge of 
choice events (button up and button down are separate events, for example) and the 
ability to determine the location of the mouse cursor within a window. The client also 
specifies precisely the type of output to be placed within a window. 

At a higher level of abstraction, the client programmer would have available a library of 
interaction objects. Each with its own geometry and behavior. Such things as command 
buttons, dials, sliders could be used to interact with the client at the level of "object 
selected" and "value set." These types of interactors are available in toolkits and are 
discussed extensively in the next section. 
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5. Toolkits 

Tools for implementing user interfaces are becoming more available. Although they 
aim at the same goal, they are not all equivalent. The purpose of this chapter is to 
present a classification that organizes the space of existing tools into classes. Each 
class is characterized by the level of services it offers to the implementer. Tools for the 
construction of user interfaces range from the low-level toolkits to the more elaborate 
User Interface Management Systems (UIMS). 

A brief taxonomy for user interface tools is presented in the first section. In Section 5.2, 
attention is focussed on toolkits per se. One important component of toolkits includes 
facilities for graphics. This topic is presented in the last section of the chapter. 
Sophisticated tools known as User Interface Management Systems are described in 
Chapter 6. 

5.1.  A Taxonomy of Tools for User Interface 
As shown in Figure 5.1, tools for the development of user interfaces come in two 
categories: toolkits and User Interfaces Management Systems (UIMS). 

Legend 

Tools for the Construction 
of User Interface 

4— "Is-Built-On-Top-Of" Relation 

4— "Is-A" Relation 

Toolkit User Interface 
Run Time Kernel 

User Interface 
Environment 

 *.  

Library 
Ready for Use 
Architecture 

Specification 
System 

Figure 5.1:   A taxonomy of tools for the construction of user interfaces. 

A toolkit is a set of building blocks that the implementer assembles to manufacture a 
user interface. It provides the programmer with a wide range of functions from the low- 
level management of the workstation such as windowing, graphics, sound and text 
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editing, to the higher level of dialogue handling in the form of menus, buttons, control 
panels, etc. 

User Interface Management Systems come in two forms: user interface run time kernels 
and user interface environments. A user interface run time kernel is a skeleton upon 
which the functional components of applications can be embedded. A user interface 
environment automatically generates a user interface from the specification provided by 
the designer and link the interface to the application. For doing so, it includes a run 
time kernel into which the application and the "compiled" specification are plugged. 

In summary, toolkits provide the building blocks, run time kernels package the code that 
implements the foundation of an interactive system into a reusable and extensible 
skeleton, and a user interface environment automatically generates the specific aspects 
of a user interface from high-level specifications. When considering the ease of 
construction, the level of service increases from toolkits to user interface environments. 

5.2.  Toolkits 

5.2.1.    Overview: General Services 

Figure 5.2 shows a classification of the types of services provided by any toolkit. These 
services can be organized in two categories: services related to the management of the 
workstation and services for the management of the dialogue. 

Services for the management of the workstation define a virtual terminal as presented 
in Chapter 4. Abstractions vary from one toolkit to another, but they usually include: 

• Foundations for graphics (e.g., offscreen bitmaps or canvas, viewports, 
windows). 

• Primitive graphic entities (e.g., icons, cursor shapes). 

• Elements for text processing (fonts), and sound. 

• Support for event handling. 

Services for the management of the dialogue rely on the abstractions defined for the 
management of the workstation. They inch de: 

• Elementary entities for dialogue handling such as buttons and scrollbars. 

• Compound objects such as menus and forms. 

In addition, recent toolkits such as X Toolkit, propose a model and a general 
mechanism for building special purpose dialogue objects. 

For some toolkits, such as the Macintosh Toolbox [Rose 86], workstation management 
and dialogue management are gathered in a single library. For others, the distinction 
between the two levels of services is more explicit. For example, in the X-Windows 
environment, services for the management of the workstation are accessible through X- 
Lib whereas services for the management of the dialogue are gathered in X-Toolkit. 
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Figure 5.2: Services provided by a user interface toolkit. 

5.2.2.    Advantages and Drawbacks of Toolkits 

5.2.2.1.    Advantages 
As for any library, a toolkit is a convenient support for portability and flexibility. Its last 
advantage is specific to the domain to which it applies by defining a consistent style of 
interaction. 

1. Portability. Software portability is one of these practical problems that 
computer scientists face continuously. Knowing that the user interface 
part of an interactive system can represent up to 80% of the code, the 
portability of user interfaces deserves special attention. Toolkits offer a 
convenient and natural way for defining levels of portability. 

2. Flexibility. Software flexibility covers issues about diversity and 
extensibility. Diversity is concerned with the availability of various levels 
of abstractions. With user interface toolkits, the programmer has the 
choice between the low-level services that allow him to control the 
workstation at a very fine grained detail and high-level services that 
provide him with ready for use local dialogues. Extensibility is the ability 
to add new features. As mentioned earlier, recent toolkits provide the 
programmer with a mechanism for building new interaction techniques. 
Other toolkits, in particular those integrated to an object-oriented 
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environment, encourage software ^utilization through the subclassing 
mechanism. 

3. Consistent style of interaction. Toolkits include a variety of interaction 
techniques that can be reused from one application to another. As a 
result, they define a style of interaction with which the user can 
progressively become familiar. In addition, the behavior of the 
interaction techniques has been determined in accordance with 
ergonomics principles. For example, in order to facilitate the evaluation 
stage, a button displays itself in reverse video as it is visited by the 
mouse. 

The ability to determine the arrangement of the building blocks allows the implementer 
to fully control the behavior of a user interface. Unfortunately, this freedom has its 
counterparts. 

5.2.2.2.    Drawbacks 
Toolkits do not embed any software architecture; they are hard to use and they lead to 
duplication of efforts. 

1. Wrong Software Architecture. A library does not embed an architecture. 
In particular, user interface toolkits do not enforce the modular distinction 
between the application and the user interface. As a result, toolkits may 
lead to suspicious software architectures where the expression of the 
user interface is mixed with the expression of domain dependent 
functions. Mixing the two aspects impedes the maintenance of the 
interactive system and does not make it possible to iteratively adjust the 
user interface. 

2. Long Learning Phase. As Figure 5.3 demonstrates, a toolkit is a big bag 
of functions. Finding the right arrangement may be a tremendous 
technical barrier specially for the first time developer. 

3. Duplication of Efforts. Making the glue must be carried out for each 
interactive system. It is not surprising then that a strong interest has 
recently emerged for run time kernels that provide implemented with 
reusable code organized in a ready for use architecture. This facility will 
be further described in Chapter 6. 
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Figure 5.3: Toolkits provide the implementer with a set of building blocks 
 to be glued together.  

5.2.3.    Comparative Analysis 

Toolkits differ mainly in the control strategy they embed, the ability to allow the 
programmer and the user to overload and customize presentation policies, and facilities 
for implementing direct manipulation interfaces. This issues are successively 
developed in the next paragraphs. 

5.2.3.1.    Control Strategy 
Protocols for acquiring and processing events have a strong impact on the control 
structure of a system. With regard to user interface toolkits, there are two types of 
protocols whether or not the control strategy is embedded in interaction techniques. 

When the control strategy is embedded, the interaction techniques have a mechanism 
to process events. This mechanism is automatically activated when an event is of 
interest to the technique. (A technique can express interests for classes of events at 
any time). When the technique has completed processing an event, it automatically 
calls a procedure provided by the client program. This procedure performs some 
domain dependent computation. If no callback procedure has been specified for the 
event class, there is no further processing. It means that this event class has no domain 
dependent meaning. X-Toolkit widgets and NeWS interactive objects are built 
according to this policy. 

When the control strategy is not embedded in interaction techniques, the processing 
sequence has to be specified by hand. The programmer needs to explicitly ask each 
possible interaction techniques whether it is concerned by the event. If so, the 
programmer chooses one of the possible methods attached to the techniques. The 
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technique has no event handler. It has a collection of methods that can be invoked. The 
technique is not an agent endowed with capabilities for decision making. It is a passive 
server. The Macintosh Toolbox is based on a non embedded control strategy. 

To summarize, the embedded control strategy automatically performs the sequence of 
actions for processing events and client programs are called for complementary 
processing. At the opposite, when the control strategy is not embedded, the 
programmer is in charge of gluing the pieces of processing together. 

5.2.3.2. Overloading and Customizing Interaction Techniques 
A consistent style of interaction is a desirable feature. However, the style defined by a 
toolkit cannot be expected to be satisfactory for every situation. In some circumstances 
standard behavior needs to be adjusted. The adjustment can be performed either by 
the programmer or by the user. 

Programmers may desire to modify the visible behavior of an interactive object or the 
internal functional behavior. Toolkits based on the object-oriented paradigm such as 
ones in the Smalltalk-80 [Goldberg 84] or Loops [Bobrow 83] environments encourage 
such overloading: the programmer defines a new subclass and overloads the inherited 
methods with his special purpose code. Toolkits such as the Macintosh Toolbox, 
although they claim to be designed according to the object-oriented paradigm, make 
the modification much harder, hard enough to be discouraging! 

Users may want to customize a user interface without getting involved in a 
programming task. The type of customization that is currently feasible without 
programming is concerned with the lexical level only. For doing so, a toolkit must 
provide an external permanent representation for interaction techniques. External, 
means that the description of the interaction technique is not wired in the code of the 
user interface. Permanent, means that the existence of the representation is not tied up 
to the execution of the interactive system. Files provide a convenient way for 
maintaining permanent data. Finally, the external representation can serve as input 
data to an editor which allows the user to interactively customize the lexical aspects of 
the interaction techniques. The notion of resource developed for the Macintosh 
Toolbox is an excellent illustration of how lexical customization can be performed by 
any user. 

5.2.3.3. Facilities for Implementing Direct Manipulation Interfaces 
User interfaces based on the direct manipulation metaphor are very demanding on the 
software side. In particular, an object may, as a whole, be constrained to follow the 
movements of the mouse and, as a part, be locally edited in real time. 

Mouse tracking requires a loop of three software actions: erase the object from its 
previous location, repair the surface that has been damaged, and draw the object at the 
new location. Current toolkits do not provide much support for satisfying these 
requirements. The Macintosh Toolbox offers the notion of region that the client program 
can drag around as long as the user holds the mouse button down (cf primitive 
DragGreyRgn). However, this local facility, although very convenient, is not a general 
mechanism to deal with overlapping objects. X Windows with its recursive notion of 
overlapping windows offers an attractive foundation for implementing overlapping 
objects. 
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Editing part of an object is a second heavy requirement on software programming. 
Objects are usually compound entities. Sometimes, they are treated as wholes (as in 
mouse tracking) and sometimes as parts (as in editing tasks). Graphics tools available 
in user interface toolkits either do not have any facilities for encapsulation or they have 
encapsulation facilities which hide access to the parts. In the first case, there is no way 
to consider the object as a whole. In the second case, there is no way to edit part of the 
object. For example, pictures and regions of the Macintosh Toolbox, and GKS 
segments are like graphics macrocommands. The client program can execute them 
with different parameters involving location, rotation and scaling. Pictures, regions and 
segments are mechanisms for encapsulation. They allow for the definition of a 
graphics object from elementary graphics primitives. However, if the client program 
needs to modify a line segment of the object as the user moves the mouse, the picture, 
the region and the segment do not allow this. The picture, region and segment must be 
destroyed and rebuilt with the new line segment! The following paragraph describes 
graphics tools that are more appropriate for interactively editing graphics objects. 

5.3.  Graphics Tools for Abstract Imaging 
Information layout can be viewed as a sequence of transformations from internal 
domain dependent data structures to actual images. Information acquisition from a 
selected point in an actual image to some internal data structure is the reverse 
sequence of transformations. This subsection presents two general techniques that 
automatically perform these two way transformations. The first category focuses 
attention on structural relationships between the components of an image. The second 
one is based on a general constraint problem solver approach. Before describing these 
techniques, we need to briefly review low-level graphics tools.     * 

5.3.1.     Low-level Graphics Tools 

Low-level graphics tools such as CGI [ISO 86b] define a graphics machine for drawing 
lines, circles etc. in a graphics space coordinate. Other tools such as PostScript [Adobe 
85], QuickDraw [Rose 86] and GKS [ISO 85] include a simple encapsulation 
mechanism. They respectively propose the notions of path, region/picture and 
segment. Although encapsulation is a convenient way for grouping logically connected 
information, it is not adequate for interactively editing parts of graphics compound 
objects. PostScript, however, deserves additional comments. 

PostScript is a powerful programming language that has the ability to describe the 
appearance of any type of information on a rendition surface (paper or screen). Its 
power is Turing equivalent; the syntax incorporates a postfix notation and the data 
model includes, like LISP, the ability to treat programs as data. PostScript imaging 
model is very general and very simple. Figure 5.4 illustrates the model. Imaging is 
based on a stencil/paint model. A stencil is an outline specified by an infinitely thin 
boundary that is piecewise composed of spline curves. Paint is some pure color or 
texture or even an image which is be dropped on the drawing surface through the 
stencil. PostScript has been extended to serve as the programming interface for 
NeWS: client programs are not limited to a predetermined set of requests but they can 
download PostScript programs to the NeWS server. 
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Rgure 5.4: The PostScript imaging model. 
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Figure 5.5 gives an overview of the level of abstractions of graphics tools. 

Client 
Program 

I 
ABSTRACT IMAGE MACHINES 1 

ex: Boites, PHIGS, Thing Lab 

i 
REAL IMAGE MACHINES LEVEL 1 

ex:GKS 

REAL IMAGE MACHINES LEVEL 0 
ex: QuickDraw, Postscript 

Figure 5.5: How graphics tools relate to each 
other with regard to their level of abstraction. 

5.3.2.    Abstract Imaging and Structural Relationship » 

As described in Chapter 3, an abstract image is an intermediary data structure between 
structures maintained by the application program and the actual image on a rendition 
surface. It shortens the distance between the representation convenient for the 
application program and the representation required by windowing systems. Its 
purpose is to express logical relationships maintained in the application data structures 
into graphic relations. The goal is not to express all of the logical relationships but the 
relationships that help the user perform the execution and the evaluation stages. One 
important class of relations is the structural relationship. A number of tools based on 
the notion of box and the graphics ISO standard PHIGS propose abstract imaging 
around the notion of structure. 

5.3.2.1.    Box-Based Abstract Imaging 
The notion of box has first been used for TgX [Knuth 79] for output rendition only. Since 
then, the notion of box has been extended by a number of tools [Mikelsons 81, Coutaz 
85a, Coutaz 85b, Alhers 86, Quint 87] to consider inputs as well. 

The box as described in [Coutaz 85a and Coutaz 85b] is a tree-like structure. A tree 
facilitates the definition of an inheritance and a synthesis mechanisms for computing 
attributes. Attributes decorate nodes to express spatial relations (such as alignment 
and indentation), visual effects (such as highlighting and coloring), polymorphism (such 
as elision), and links to application dependent data structures. Leaves contain 
displayable application dependent information. They are recipients. They do not have 
any semantic knowledge about their content but its type (e.g. image, text). As a 
recipient, a leaf wraps an imaginary rectangle around the information. Nodes are 
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compound boxes.  A compound box is the result of a formatting composition from 
subtrees. 

Figure 5.6 shows one possible tree of boxes that corresponds to an "if statement" 
maintained by a syntactic editor. 

if 

(HorV)f Box 

<H>(COND)  (""^•'WTSS.I     (Hlndent=5)( *»E 

{Cond} then {Stmt} else {Stmt} endif 

Figure 5.6: A tree of boxes as an abstract image for an "IF statement". 

The formatting attributes HorV first tries to concatenate the subtree horizontally. If the 
resulting rectangle is too wide to fit the available width of the rendition surface, a 
vertical composition is applied automatically. The attribute H concatenates the 
subtrees horizontally. Hind specifies the value of the horizontal indentation if one has 
to be performed. 

If   {Cond}    Then   {stmt}    Else  {Stmt}   endif 

Figure 5.7:  Layout in a wide enough window. 

The interpretation of the tree will generate the actual images shown in Figures 5.7 and 
5.8 depending on the effective width of the output window. Note that when the user 
resizes the window, the new formatting is automatically handled by the abstract image 
interpreter. The application is not bothered by syntactic user actions that are irrelevant 
to its expertise. 
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If    {Cond} 

Then {Stmt} 

Else   {Stmt} 

endlf 

Figure 5.8: Layout in a too narrow window. 

5.3.2.2.     PHIGS 
PHIGS [ISO 86a] is a standard for graphics which takes GKS as a point of departure. 
However, the static notion of segment has been replaced by the editable notion of 
structure. Figure 5.9 shows an example of a structure definition. The interpretation of 
the request POST_STRUCTURE(A) executes the definition of A. The definition of A is 
comprised of graphics elements included between the requests 
OPEN_STRUCTURE(A)     and     CLOSE_STRUCTURE. The     element 
EXECUTE_STRUCTURE behaves just like a procedure call: it saves the current 
context, deviates to a new context and comes back to the calling context. 
EXECUTE_STRUCTURE(B) saves the current graphics context about A, interprets the 
definition of B and, once B has been made part of A, returns to the execution of A. For 
inputs, PHIGS uses an extension of the GKS notion of logical units to take into account 
the structural organization. In particular, a PICK returns a path which uniquely denotes 
the selected element. 

CMU/SEI-89-TR-4 77 



POST-STRUCTURE (A) 

OPEN-STRUCTURE(A) 

EXECUTE-STRUCTURE(B) 

EXECUTE-STRUCTURE(E) 

CLOSE-STRUCTURE 

OPEN-STRUCTURE(B) 

EXECUTE-STRUCTURE(C) 

EXECUTE-STRUCTURE(D) 

CLOSE-STRUCTURE 

OPEN-STRUCTURE(E) 

EXECUTE-STRUCTURE(F) 

EXECUTE-STRUCTURE(D) 

CLOSE-STRUCTURE 

Figure 5.9: A PHIGS STRUCTURE is an oriented acyclic graph. 

In contrast to GKS segments, PHIGS structures can be dynamically modified. The 
model for modification is inspired from line text editors. Figure 5.10 shows an example 
of a structure edition. As for text editors, you first need to open the recipient: 
OPEN_STRUCTURE(MYHOUSE) opens the structure MYHOUSE. By doing so, the 
interpreter places the insertion point at the end of the structure definition and sets itself 
in input mode. This means that subsequent graphics elements will be automatically 
added at the end of the current structure. If the client program needs to delete the 
window element, then a DELETE_ELEMENT(MYWINDOW) will do the job. The LABEL 
(MYWINDOW) is a symbolic way of denoting a graphics element, just like a line number 
designates text lines in line based text editors. Similarly, if one wants to replace the 
definition of the door, then the insertion point can be set at the appropriate point in the 
structure definition and the replace mode will substitute old graphics elements by new 
ones. 
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Initial Definition of MY HO USE 

OPEN-STRUCTURE (MYHOUSE) 

LABEL (MYWINDOW) 

LABEL (MYDOOR) 

CLOSE-STRUCTURE 

Editing MYHOUSE 

OPEN-STRUCTURE (MYHOUSE) 
DELETE_ELEMENT( MYWINDOW) 
SET_ELEMENT_POINTER(MYDOOR) 
SET_EDIT_MODE (REPLACE) 

SET_EDIT_MODE( INSERT) 
CLOSE-STRUCTURE 

Figure 5.10: A PHIGS structure can be dynamically edited. 

5.3.3.    Constraint-Based  Imaging 

A constraint describes a relation which must always be satisfied. The set of relations 
maintained in the abstract image machines presented in Paragraph 5.3.2 is limited in 
scope. More general mechanisms for expressing any type of graphics constraints need 
to be developed. ThingLab [Borning 86], although its goal is not abstract imaging, is an 
interesting illustration of a graphics constraint solver. 

ThingLab is an interactive environment built on top of Smalltalk-80. It allows a user to 
specify constraints between graphics objects. At the opposite of the box mechanism, 
these constraints are not restricted to a predetermined set. A ThingLab constraint is 
comprised of a predicate and one or several methods. The predicate is an algebraic 
expression which is used for constraint checking. The methods modify the entities 
referenced in the predicate in order to guarantee visual consistency. The power of 
ThingLab is that these methods are automatically generated from the specification of 
the predicate. Figure 5.11 shows an example. 
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Figure 5.11: Principles of constraint specifications in ThingLab. 

The bottom window contains the object MyBar as it will appear at runtime. The upper 
window gathers the usual Smalltalk browser menus which allow the user to define an 
algebraic expression, identify the constants, the variables, and indicate which class is 
reused to build the new object (currently, the rectangle class is appropriate to construct 
MyBar). The middle window is the workshop. The goal is to define a vertical bar to 
represent an integer n comprised between 0 and 100. The algebraic expression 
defines the height of the rectangle where: hi and h2 are respectively the top left and 
bottom right corners of the rectangle; pi and p2 are two constant points such that the 
length of the segment [plp2] determines the height of the rectangle when n is 100; h-jy 
and h2y denote the vertical coordinates of H1 and h2. 

ThingLab has served as a basis for the implementation of more specialized 
environments: Animus [Duisberg 86], which introduces the notion of time, and the Filter 
Browser [Ege 87] for the specification of user interfaces. 
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6.   User Interface Management Systems (UIMS) 

6.1.   User Interface Runtime Kernels 

6.1.1. Introduction 

Toolkits provide components with which it is possible to construct a user interface. 
Each component is specific to a particular information presentation or acquisition task. 
A complete interface, however, must contain multiple components which act together to 
convey information to and from the functional portion of the interactive system. 

A user interface runtime kernel is a skeleton or a packaging of the tools in a toolkit to 
provide a collection and a sequencing mechanism for the tools and a communication 
mechanism for information to and from the functional portion. The issues involved in 
the runtime kernel are: 

1. The software structure used in the runtime kernel. In particular, the 
architectural model underlying the software and the interface between 
the particular components of the architectural model. 

2. Threads of control. 

3. The model used to describe the interactions between the end user and 
the functional portion. This is usually called the dialogue model. 

4. The management of multiple views of the same application data 
instance. 

5. Feedback issues. 

These issues are discussed in the sections that follow. 

6.1.2. Software Structure 

There is general agreement that a complete interactive application can be partitioned 
into three components [Pfaff 85]. These three components are the functional core of the 
application, the user interface runtime kernel and the lower level presentation layer. 
Each component can be implemented using whatever tools are available. In Chapters 
4 and 5, the presentation layer has been discussed in terms of window systems and 
toolboxes. In this section some of the structural issues associated with the runtime 
kernel are discussed. In particular, a method for dealing with the interfaces between 
the layers based on the Serpent UIMS [Bass 88] and a method for using an object- 
oriented decomposition of the runtime structure based on the PAC model [Coutaz 87a, 
87b] are discussed. 

Figure 6.1 gives a high-level view of the components of an interactive application. The 
application component consists of the functional core and a communication portion with 
the user interface. The objects in this communication portion are at the level of 
abstraction of the application and have no presentation components.   The user 
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interface has two portions: the presentation components and the dialogue controller. 
The objects in the presentation component are presentation objects and have no 
application knowledge within them. The behavior of these objects must convey 
application semantics but the objects themselves have no application knowledge. The 
dialogue controller performs the mapping between the application objects and the 
presentation objects. Application domain knowledge can be embedded into the 
dialogue controller to perform the mappings or can be restricted to the functional core. 
These decisions depend upon the particular circumstances of the application. 

Interactive Application 

Application 
Communication 

Zone 
Dialogue 

Controller 

Communication 
Zone Presentation 

Formalism of 
the Application 

Formalism of 
the Presentation 

Figure 6.1: High-level view of the components of an interactive application. 

Note that the mapping between the application objects and the presentation objects is 
bidirectional. End user actions will both modify the application objects and provide 
commands to the application core to perform its functions. Also, the mapping is not 
necessarily one to one. Suppose the display shows a fluid boiling. The application 
has one object which represents temperature and another which represents pressure. 
The boiling point depends upon both. The dialogue controller must combine the two 
application objects into a single presentation object. This is an example of a situation 
where the dialogue controller has application domain knowledge. 

6.1.3.    Serpent Component Interface Management 
Serpent is an example of such a runtime kernel and will be used to explain the 
concepts in more detail. An application using Serpent has explicitly three components. 
These are: the application functional core, the runtime kernel and the presentation 
level. The presentation level is composed of an X toolkit component and other 
components which use different technologies for input and output (e.g. video output and 
gesturing input). Serpent is designed to allow for easy integration of additional 
interaction mechanisms and explicit separation between the application functional core 
and the runtime kernel. The integration of additional interaction mechanisms is 
accomplished by having an explicit separation between the presentation layer and the 
dialogue manager. The interface between the layers allows for different presentation 
layers with only a modification of the dialogue manager and no modification of the 
application. 
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The separation between the components is accomplished by providing an explicit 
interface description. On one side of the interface is the Serpent runtime kernel. On the 
other is either the functional core of the application or the presentation layer. Figure 6.2 
displays this structure. 

The application and the presentation layer view the Serpent runtime kernel as an active 
data base manager. The application views Serpent as a manager of data of which the 
end user might be interested and the presentation layer views Serpent as the manager 
of data which control their presentation and interactions. In either case, there is an 
explicit specification of the data which is to go through the Serpent runtime kernel. This 
specification takes the form of a schema which is similar in form to a schema for a 
traditional data base system. 

Whenever the application modifies a data item in the data base managed by Serpent 
then the runtime kernel of Serpent manages all of the implications of that. When the 
end user performs an action which affects a data item in the data base which Serpent 
manages for the application then the application is informed of the change. 

The schema which defines the form of the data to pass over the interface is processed 
prior to Serpent runtime. The processor produces a C header file (or Ada package) for 
the application to include. This guarantees that both sides of the interface have the 
same data description and, consequently, helps insure the integrity of the data which 
crosses the interface. 

application 
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dialogue 
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other 
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other 
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technology 
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Figure 6.2:  Serpent architecture. 
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The use of a schema to define the data that Serpent manages allows Serpent to be 
reusable. Data of arbitrary complexity can be described in terms of the schema 
description used in the interface and, consequently, additional interaction mechanisms 
can be added and arbitrary applications can use Serpent. 

6.1.4. Threads of Control 

One motivation for the Rooms system (Section 4.7) is the end user's desire to move 
from one task to another, whether the current task is completed. The dialogue 
controller must be able to maintain the context for the interrupted task and restore it 
when that task is to be resumed. This is one example of having multiple threads of 
control within a dialogue. Another example is the simultaneous use of multiple input 
and output devices. Some types of interaction require two handed input utilizing 
different devices [Buxton 86a]. If the devices are not integrated at the presentation level 
then the dialogue manager must simultaneously process the input from both devices, 
coordinate it and determine the mapping into desired application actions. In the 
Macintosh toolkit, for example, this type of activity must be performed in the top level 
controller and cannot be pushed into the presentation level. 
In either case, the requirements imposed on the dialogue manager by both the end 
user task switching and the multiple simultaneous devices mean that the dialogue 
manager must support parallelism. 

6.1.5. The Model Used to Describe User Interactions 

A number of different models have been used to describe (and hence to specify) the 
user interactions. These models are: 

1. Formal grammar models, in particular BNF 

2. Finite state machines, usually augmented 

3. Production or event models 

4. Object-oriented models 
Any implementation of these models has two portions. First is a language for 
describing interactions in terms of the model. A program in this anguage becomes a 
specification of the behavior of the runtime kernel. The second portion of the model is 
the runtime interpretation of the specification. An implementation decision is whether 
the specification language is compiled into a lower level description or is directly 
interpreted. 

6.1.5.1.    Formal Grammar Models 
An early system, SYNGRAPH [Olsen 83], used BNF to specify the user interactions. 
Each non terminal in the BNF had an associated action routine which describes the 
presentation and the actions associated with the presentation. A legal interaction is 
one which can be parsed through the BNF. BNF, by its nature, has an explicit legal 
sequence of ordering of events. This imposes a particular style upon the interfaces 
specified using BNF. For example, suppose different parameter orderings are allowed. 
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Different BNF rules must be used to specify each ordering. Therefore, in order to allow 
the end user to choose an ordering at runtime multiple sets of BNF rules must be 
specified. 

Furthermore, since all actions in BNF must be explicitly stated, allowing a user to 
change the current task in the middle (which, as has been described in Section 6.3 is a 
desirable feature), specifying complete interactions using BNF is a formidable chore. 

6.1.5.2. Transition Networks 
An alternative to BNF as a specification model is to use a finite state machine. The finite 
state machine is typically augmented to allow a richer description mechanism than finite 
state automata. USE [Wasserman 85] is an example of such a system. Finite state 
machines suffer from the same sequencing problems as BNF. An additional problem 
that both specification techniques suffer from is lack of model support for levels of 
abstraction. 

The specification of a selection of an object (cursor over object, button click) is one level 
of abstraction, the specification of the ordering of parameters to a command is a higher 
level. A transition network does not distinguish between these levels of abstraction 
and, consequently, a specification using a transition network becomes difficult to code 
and decipher. 

Some extensions to transition networks allow the nesting of transitions in an attempt to 
support the different levels of abstraction [Kieras 85, Harel 87]. 

6.1.5.3. Production Model 
Production models are collections of rules of the form if "firing rule" then "action". 
Productions are data driven in the sense that the rules are fired when the firing rules are 
satisfied and no particular sequencing constraints are placed on the firing rules. 
Production rules [Garrett 82, Hill 87a, Hill 87b, Brownston 85] have been used recently 
to attempt to specify the parallelism that end users seem to require. The CLG [Moran 
81] is also a use of the concepts of production models for describing the interaction 
level although not explicitly discussed. 

The Serpent model for dialogue uses "view controllers" to specify the mapping between 
the application objects and the presentation objects. Each view controller has a 
creation condition which corresponds to the firing rule. The creation condition is a 
condition on the application objects or on local objects. Local objects are maintained 
for dialogue control purposes only and are not visible to either the application or the 
presentation. Each view controller controls a collection of presentation objects. The 
methods of these presentation objects perform the reverse mapping from the 
presentation layer to the application. View controllers can be nested and the lower 
levels inherit the application objects which created the parent levels. The use of 
production rules solves the explicit ordering problems associated with transition 
networks and BNF grammars. On the other hand, there is still no model support for 
levels of abstraction. The support for levels of abstraction comes from the structural 
ideas of PAC or the nested objects used in the production model of Serpent. 

Systems based on production rules suffer from several problems. Since control is not 
explicitly transferred within the specification of the dialogue, the system must monitor a 
large data space in order to decide which rules to fire. This monitoring of a large data 
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space may lead to performance problems. The appearance of more efficient production 
systems [Forgy 84] has reduced the magnitude of this problem. Preliminary indications 
are that performance within Serpent (which uses OPS83) is driven by the performance 
of the presentation layer and not by the production manager. 

A second problem associated with the use of a production rule model is, precisely, the 
lack of explicit transfer of control. Programmers are taught to think of algorithms 
sequentially and the data driven nature of production models requires a heavily parallel 
method of thinking. This is a problem that can be overcome with training and if 
production rule systems prove to be suitably useful, then programmers will be taught 
earlier to think in terms of parallel solutions to problems. 

6.1.5.4.    Object-Oriented Model 
A different approach to the specification of the mapping from application objects to 
presentation objects is to use an object-oriented approach. This approach underlies 
the PAC model [Coutaz 87b]. 

In the PAC model, an interactive application is comprised of three parts: Presentation, 
Abstraction and Control. 

The Presentation defines the concrete syntax of the application, i.e., the input and 
output behaviour of the application as perceived by the user. The Abstraction part 
corresponds to the semantics of the application. It implements the functions that the 
application is able to perform. The Control part maintains the mapping and the 
consistency between the abstract entities involved in the interaction and implemented 
in the Abstract part, and their presentation to the user. It embodies the boundary 
between semantics and syntax. 

For example, the application "Clock" implements and involves two abstract entities in 
the dialogue: the data structure "Time" and the function "SetTime". "Time" may be 
presented as a digital or a dial clock, SetTime may be explicitly presented as a button 
or implicitly presented through the direct manipulation of the needles of the dial clock. 
The job of the Control part is to invoke SetTime on specific user's actions and provoke 
the update of the dial clock when the application (i.e the Abstract part) makes a request. 

The Presentation of an application is implemented with a set of entities, called 
interactive objects, specialized for man-machine communication. As with applications, 
an interactive object is organized according to the PAC model. Consider for example 
the pie chart shown in the Figure 6.3. 

1. The Presentation is comprised of: 

• for output—a circular shape and a color for each piece of the 
pie. 

• for input—the mouse actions that the user can perform to 
interactively change the relative size of the pieces. 

2. The Abstraction is comprised of an integer value within the range of two 
integer limits. 
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The Control maintains the consistency between the Presentation and 
the Abstraction. For example, if the user modifies the size of one piece, 
Control provokes the update of the integer value. Conversely, if the 
application or another interactive object modifies the value of the 
integer, the size of the pieces is automatically adjusted. 

Abstraction 

M1n = 0 
Max = 400 - 
Value = 50 

Presentation 
Control 

c 
Figure 6.3: An elementary PAC interactive object. 

Compound objects can be built from elementary interactive objects. They also adhere 
to the PAC model. Consider, for example, the super pie chart shown in the Figure 6.4. It 
is made from two elementary objects: the pie chart described above and a numerical 
string which shows the current abstract value of the pie chart. If Control C receives a 
message notifying him of the modification of the abstract value, it notifies both C1 and 
C2 of the alteration. Conversely, if the user changes the size of a piece of the pie with 
the mouse, C1 reflects the modification to C who, in turn notifies C2. 

Abstraction Control 
Min = 0 

Max - 360 
Value - 45 

Value  * 45 

Min - 0 
Max = 360 
Value = 45 

-<- 

Figure 6.4: A compound PAC interactive object. 

In summary, by applying PAC recursively at every level of abstraction of the user 
interface, everything in an interactive application is a PAC object, from the elementary 
interactive object to the whole application. As shown in the upper rectangle of Figure 
6.5, the whole interactive application is a PAC entity. The Abstraction part of the 
application involves three domain dependent concepts in the dialogue. The Controller 
at the top of the hierarchy bridges the gap between the Abstraction and the 
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Presentation. The Presentation is made of 4 interactive objects. The second lower 
rectangle shows the PAC structure of the compound interactive object represented as a 
black circle. This object is built from two elementary PAC objects and one compound 
object which, in turn, is composed of two elementary PAC objects. 

In addition, the user interface of a workstation (generally refered to as a shell) may be 
modelled in a straightforward manner by adding an extra PAC layer on top of the 
application level. The Abstract part of that layer may include such global data structures 
as the "clipping board" or the "network status." The Presentation would present these 
data structures and allow for the initial invocation of applications. Finally, the Control 
part would, of course, bridge the gap between the abstract and the concrete sides. It 
would as well supervise the control parts of all of the active applications. Such an 
arbitrator should provide the basis for a uniform mechanism for transferring data 
between applications. 

Abstraction Control Presentation 

Top 
Controller 

Abstraction 

CZHHZI 

Control - 

Abstraction —\ Co«trnlHPr*s«nt<tiow 

3E3& 
Figure 6.5:  The design model. 

This recursive object-oriented organization presents some advantages which are 
described in the following paragraph. 

6.1.5.5.    The Interest Aspects of the PAC Model 
The PAC model has three interesting aspects: 
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1. It defines a consistent framework for the construction of user interfaces 
that is applicable at any level of abstraction. As a direct consequence, 
the units of exchange between the application (i.e., the Abstract part) 
and the UIMS (i.e., the PAC controller) are application concepts, not low- 
level details semantically irrelevant to the application. 

2. It cleanly distinguishes functional notions from presentation policies and 
introduces the control part to bridge the gap between the abstract and 
the concrete worlds. The role of the control part may be extended from 
consistency maintenance between the two worlds, to the management 
of local contextual information that may be useful for help, error 
explanation and automatic adaptation to the user. 

3. It takes full advantage of the object-oriented paradigm with the notion of 
interactive object. 

An interactive object is an active entity. It evolves, communicates and maintains 
relationships with other objects. Such activity, parallelism and communication are 
automatically performed by the Object Machine, the generic class of the interactive 
objects. The Object Machine defines the general functioning that is made common to 
all of the interactive objects by means of the inheritance mechanism. In particular, each 
object owns a private finite state automaton for maintaining its current dialogue state. 
On receipt of a message, an object is thus able to determine which actions to undertake 
according to its current state. In particular, The PAC controller at the top of the 
hierarchy of controllers, maintains the global state of the dialogue with the application. 

Interactive objects implement the dialogue in a distributed way. This feature can serve 
as a basis for the implemention of facilities related to the notion of context. It also 
provides the necessary grounds for concurrent multiple I/O in the following way. The 
set of automata (one automaton per interactive object) defines the global state of the 
interaction between the user and the application. The control of the interaction is 
therefore distributed in an evolutive network of interactive objects. Dialogue control is 
not handled by a unique monolithic dialogue manager difficult to maintain, extend and 
implement, in particular when one wants a pure user-driven style of interaction. 
Conversely, since interactive objects are able to maintain their own state, it is easy to let 
the user switch between objects in any order. Thus, an object-oriented approach 
provides for free the maintenance of the user's arbitrary manipulations. 

Interactive objects are easily customizable. Object-oriented programming languages 
support data abstraction which makes it possible to change underlying 
implementations without changing the calling programs. In the present case, this 
principle allows the internal modification of an interactive object without changing its 
presentation and abstract interfaces. Interestingly, it also allows the modification of one 
interface without any side-effect on the other interface. For example, one can modify 
the presentation of an interactive object (such as attaching a different key translation 
table to an interactive object of type string) without reflecting on its abstract behaviour. 
This property makes possible fine grained dynamic adjustments of the user interface 
without massive modifications to the presentation of the whole application. 
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6.1.6. Multiple Views of Data 
One problem associated with the separation of the user interface from the functional 
core of the application is the management of multiple presentations of the same 
application data item. Since the application is written to be media independent it has 
no knowledge of any presentation issues, in particular, how many times a particular 
piece of its data is presented to the user and in what forms. 

For example, suppose the pressure within a pipe is represented both by the color of the 
fluid in the pipe and by a separate pressure gauge. When the pressure changes both 
presentations should change. Managing these multiple views of the same data item is 
the responsibility of the runtime kernel. The kernel must have a mechanism to 
determine which data items determine the nature of a particular presentation. 
Otherwise, the kernel cannot automatically manage the presentation. This mechanism 
must allow the determination that two different presentations depend upon the same 
data item. 

The determination that two different presentations depend upon the same data item 
depends upon the interface between the functional core and the runtime kernel and the 
information presented to the runtime kernel. In Serpent, for example, two presentations 
are determined to depend upon the same data item if they both depend upon a 
particular element in the data base schema which describes the data. This allows the 
automatic modification of an aggregate in the presentation when a component changes 
if the runtime interface is in charge of maintaining the aggregate. It does not allow the 
automatic modification of the aggregate if the application is in charge of maintaining the 
aggregate. 

6.1.7. Feedback 

One of the most troublesome issues associated with the separation of the functional 
portion of the application from the user interface is that of feedback [Hudson 88]. 

Feedback is the displaying to the user some indication of the system's understanding of 
the actions being performed. For example, in the X toolkit, a widget will reverse video 
when the cursor is within the widget. It is possible to change cursor shape when the 
cursor goes from one window to another. These are examples of lexical feedback and 
are handled at the prese itation level. 

Another type of feedback comes from the runtime kernel. On the Macintosh, certain 
options within a menu are displayed in gray scale to indicate that they are not currently 
available. The runtime kernel knows the current context of the action and makes the 
decision to display certain items in a fashion that gives feedback to the end user about 
the current state of that item. This is an example of syntactic feedback (based on the 
current context). 

A deeper level of feedback might be changing the color of a beam in a CAD/CAM 
application to represent the stress currently being placed on that beam. This is an 
example of semantic feedback since the determination of the current color depends 
upon knowledge that only the functional core of the application maintains. 
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These three types of feedback represent different levels of abstraction and should be 
performed in separate portions of the software. This implies that the software structure 
must be available to allow that separation. The hierarchical decomposition of PAC is 
explicitly designed to allow the separation of various levels of feedback. 

The reason that feedback is a troubling issue is because of the performance 
implications. Feedback, by its nature, should be fast. The end user should, ideally, be 
given indications of the meaning of an action when that action is occurring. It is not 
clear that this is always possible in the case of deep semantic feedback and the 
architectural structure of a system may not always support both the performance 
requirements of rapid feedback and the separation of the functional core of the 
application from the user interface. In any case, the human processing model gives a 
bound on required functionality. Since events occurring in less than 0.1 second are 
seen to be instanteous, feedback performance requirements will be satisfied if they can 
be met within that time period. 

6.2.    User Interface Environments 

6.2.1.     Introduction 

The actions of the runtime kernel are determined by a language used to describe the 
dialogue. The mechanism for specification of that language plays a large part in 
acceptability of the user.interface runtime system. One possibility, which won't be 
further discussed, is to use a standard programming language to interact directly with 
the runtime kernel. MacApp [Schmucker 86], APEX [Coutaz 87a] and EZWin 
[Liebermann 85] are examples. The approach is to treat the runtime kernel as an 
extension of a toolkit. 

More interesting are cases where specialized language or specification mechanisms 
exist. The examples to be discussed are: 

1. Textual language specification 

2. Graphical editor specification 

3. Complete environments 

Figure 6.6 represents the usage of the specification. The dialogue specifier creates a 
dialogue using some tool and the created specification provides the mechanism for the 
runtime kernel to operate. The specification can be distinct in time from the execution of 
the runtime kernel or specification time and runtime can be intertwined. The textual 
language specification which is discussed first is, inherently, distinct in time from 
runtime. 
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User Interface Specification 
or Construction 

a 
User Interface 

Designer 

I     EdRer 

T 
Prototype Evaluation 

Production 
System 

User Interface Use 

Figure 6.6:  Specification of dialogues. 

6.2.2.    Textual language specification 

Domain [Schulert 85] is a commercial user interface nanagement system available 
from Apollo. The model that Domain uses is given in Figure 6.7. This is also the model 
used in Cousin [Hayes 83]. The interface between the domain dependent portion of the 
program and the user interface is defined to be a group of Tasks". Each task has a 
computation portion. The user interface is defined in terms of building blocks which 
define the presentation in terms of the tasks. The application places values in the task 
which cause the presentation to change and the building blocks place values in the 
tasks which affect the application. Figure 6.8 shows the user interface for a simple 
example. Figure 6.9 gives the tasks, Figure 6.10 gives the building blocks and Figure 
6.11 gives the application code for this example. 
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Domain-dependent 
Code 

fund 
func2 

funcq 

Specifications 

Taskl 
Task2 

Taskp 

Techniquel 
Technique2 

Technique n 

Figure 6.7: The model used by Domain. 

15 false 

This program determines if an integer is 
even or odd.  Position the cursor vith 
the mouse (left button).  Then type a 
number between 0 and 20, and <RETURN> 

Figure 6.8: The user interface of a simple example. 
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nmesmranFfflBRHras example  
exit-task:=NULL: 

COMP => <CALL odd-or-even> 
MTN=0; 
MAX=20 
END 

true-false-task:=BOOL: 
COMP =>o 
END 

message-task:=MSG: 
VALUE= 

"This program determines if an integer is even or odd." 
&"Position the cursor with the mouse (left button)." 
&"Then type a number between 0 and 20, and <RETURN>." 

END  

 Figure 5.9: The tasks for the example of Figure 5.8. 
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USER-WTl^'A^ example  

exit:=ICON: 
TASK = exit-task; 
BACKGROUND = GREY; 
SHAPE = ROUNDED; 
SIZE - (100 350) PIXELS; 
STRING = "exit" 
END 

numben=ENT_FIELD: 
TASK = number-task; 
BACKGROUND = OFF 
SHAPE = ROUNDED 
HELP-TEXT = "you must give an integer from 0 to 20" 
END 

true-false:=BOOL-FIELD 
TASK = true-false-task; 
BACKGROUND = OFF; 
SHAPE = ROUNDED; 
HELP -TEXT = "true=even number" & "false = odd number" 
END 

row-bottom:=ROW 
BACKGROUND = ON; 
ORIENTATION = HORIZONTAL; 
BORDER-WIDTH = 10; DrVTSION -WIDTH = 5; 
OUTLINE = ON; SHAPE = ROUNDED, 
CONTENTS = (exit number true-false) 
END 

messages DISPLAY TEXT 
TASK = message-task; 
SHAPE = ROUNDED 
END 

row-all:=ROW 
BACKGROUND = ON; 
ORIENTATION = VERTICAL; 
BORDER-WIDTH = 10; DrVISION-WIDTH = 5; 
OUTLINE = ON; SHAPE = ROUNDED, 
CONTENTS = (row-bottom message) 
END 

std-window: 
CONTENTS = row-all 
END  

Figure 6.10: The building blocks for the user interface for the 
 example in Figure 6.8.  
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MAIN PROGRAM 
-initiate DIALOG 
- set initial values and defaults to tasks 

dp-$bool-set-value(true-false-task,true,status); 
- activate a task or a group of tasks 

dp-$task-activate (dp-$all-task-group,...); 
- wait for an input event 

dp-$event-wait ( ); 
- exit Dialogue 

dp-$terminate (...); 

A MODULE: die procedure which checks the parity 
odd-or-evenO 

int value-int, value-bool; 
begin 

- get input data 
dp-$int-get-value (number-task, value-int, status); 

- check parity 
if ((value-int/2) = 0) then 

value-bool = true 
else 

value-bool = false; 
- send the result to die task 

dp-$bool-set-value (true-false-task, value-bool, status); 
end  

Figure 6.11: The application code for the example of Figure 6.7. 

6.2.3.    Graphical Editor Specification 

Since so much of the user interface is graphical in nature, it makes sense to have 
editors which are used to specify the graphical portion of the interface. Such editors 
have been created such as Menulay [Buxton 83]. The editors become layout editors. 
That is, the graphical editors are used to specify the appearance of a display and where 
on the display various presentation objects will reside. Once the layout has been 
specified then the connections between the presentation objects and the dialogue 
control are established. One problem with the usage of such editors is how to 
represent the dependencies upon application data. This issue goes to the heart of the 
timing distinction between specification time and runtime. 

6.2.3.1.    Realization 
The dialogue gives a mapping between application objects and presentation objects. 
Implicit in this mapping is a dependency of certain attributes of the presentation object 
upon application values. If there were no such dependencies then the presentation 
would be totally independent of the application. When the display is presented to the 
specifier it must be realized with some set of application values. In order to be totally 
realistic, the values should be generated by the application and, hence, runtime and 
specification time are the same. In some systems (e.g. Serpent), the specifier provides 
fixed values for the attributes of the presentation objects which depend upon 
application objects. These fixed values then show the specifier one possible display. 
The problem of how to realize the interface leads into the idea of having a total 
environment for the development of user interface.   Before discussing that issue, 
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however, some of the power possible with having a separate tool to construct the editor 
will be shown. 

6.2.3.2.    Smart Editors 
When an interface is being constructed, typically there is a particular style being used 
for some of the components such as menus. Peridot [Myers 87] is a system that uses 
expert system techniques to make inferences about what style is being used for 
particular components. For example, the specifier would completely construct one 
menu and then whenever another menu was being constructed, Peridot would propose 
that it have the same style as the previous menu. This is one example of the type of 
intelligence that could be put into separate dialogue construction tools. 

6.2.4.     Environment 
Although integrated user interface development and execution environments are 
desirable, they have not yet been produced. One system that comes close to an 
integrated environment is HyperCard [Harvey 88]. HyperCard is a system that manages 
textual and graphical objects in a multidimensional fashion. Each task that is to be 
accomplished is represented by a stack of cards. Cards within a stack can be linked to 
other stacks to represent associations that the specifier wishes to maintain. Cards can 
be searched to locate those that have information of relevance to the implementor. 

HyperCard integrates the specification and the runtime by allowing scripts tp be 
developed while data resides in the stacks. These scripts can then be executed, the 
results displayed and the scripts modified. This interaction between specification and 
execution allows the development of applications in a very smooth and continuous 
fashion. 

Within HyperCard, the distinction between the application functional core and the user 
interface is blurred. This makes difficult the clear separation of functionality, which is 
the basis of the UIMS. 

6.2.5.    State of the Art 

Within the field of user interfaces, today, we know how to do things which are 
application independent. Menus, scroll bars, etc are methods of allowing for user input 
with low-level feedback which have proven very valuable. What is not known is how to 
do things which are application dependent. Semantic feedback (feedback depending 
upon application semantics) is not well understood and current tools do a poor job of 
supporting this type of feedback while still providing a clear separation of functionality. 
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