Technical Report

CMU/SEI-88-TR-035
ESD-TR-88-036

Experiment Planning
for Software Development:
Redevelopment Experiment

J. M. Perry
K. C. Kang
S. Cohen
R. Holibaugh
A. S. Peterson

November 1988

Technical Report

CMU/SEI-88-TR-035
ESD-TR-88-036
November 1988

Experiment Planning
for Software Development:
Redevelopment Experiment

J. M. Perry

K. C. Kang

S. Cohen

R. Holibaugh
A. S. Peterson

Application of Reusable Software Components Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl H. Shingler SIGNATURE ON FILE
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright 0 1988 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.
The use of any trademark in this publication is not intended in any way to infringe on the rights of the trademark holder.

Reviewed and edited by Information Management, a function of the Technology Transition Program, Software Engineering
Institute.

Experiment Planning
for Software Development:
Redevelopment Experiment

Abstract: The Application of Reusable Software Components Project (ARSC)
formulated an experiment design, data collection plan, and procedures in prepa-
ration for a reuse experiment. The reuse experiment is currently in progress and
the experiment planning and the results to date are presented. While the design,
plan, and procedures were developed to support the investigation of software
reuse, they, as well as the process by which they were formulated, are applicable
to any software development effort. They can be adapted to other technology in-
vestigations or to project-specific goals for improvement.

1. Introduction

Data collection on a software development project can be a time-consuming and costly ef-
fort. If conducted without proper planning it may result in a large volume of data of question-
able value. Proper experiment planning identifies the data that will be sufficient to achieve
explicit goals, provides efficient data gathering methods, estimates the data collection over-
head, and provides methods for the validation and analysis of the data. To these ends, an
experiment-planning framework is presented as a by-product of the reuse-based software
development.

In the sense that a software development can provide empirical information for the improve-
ment of development capabilities, every software development should be regarded as an
"experiment.” Other benefits of this view are that the experience and lessons learned from
the development can be transferred to other projects, and that answers to project-specific
guestions can be obtained. Every software development plan should, therefore, address a
project experiment plan. Specific goals of the experiment should be established and data
collection planning for those goals should be performed. The set of data identified for con-
sideration for collection, the set of data actually selected for collection, along with the ration-
ale for selection, reflect the degree of project planning for improvement of software devel-
opment capabilities.

The Application of Reusable Software Components Project (ARSC) incorporated an
"experiment" into the redevelopment effort to investigate the impacts of software reuse on
the software development process and products. This document reports on the experiment
design and data collection effort of this project. An overview of the project and the reuse
redevelopment experiment are included in Chapter 2. The experiment planning and the
data collection mechanism and validation procedures are discussed in Chapter 3 and Chap-
ter 4, respectively. Chapter 5 summarizes the results to date. This report concludes that
experiment planning and data collection are important mechanisms for process improve-
ment and technology transition and that they should be a standard part of every software
development effort.

CMU/SEI-88-TR-35 1

CMU/SEI-88-TR-35

2. Project Background

Much of the literature and current work in software reuse focuses on techniques or tools for
software reuse. These include components libraries, program generation, standards, design
tools, and programming language features. Less work is available that addresses the appli-
cation of these approaches on an actual development. Moreover, many of these proposals
confine themselves to part of the development process or to particular software artifacts.
There is a need for work on a more comprehensive or integrated approach to reuse and a
need for empirical data on the application of software reuse; these needs motivated the
Software Engineering Institute (SEI) to create the Application of Reusable Software Compo-
nents Project.

2.1. Project Objectives

The reuse-based redevelopment effort is a major task of the ARSC Project. This project has
the following objectives:

e Gain practical experience with state-of-the-art reusable software components,
methods, and tools, and capture lessons learned in their application.

« Assess the impact of software reuse on software development activities and
product.

« |dentify and validate information that facilitates software reuse during system
development.

The project will accomplish these objectives by the construction of a reuse testbed and by
the reuse-based redevelopment of an mission-critical computer resource (MCCR) applica-
tion in an experimental setting.

The project involves the redevelopment of major subsystems of a missile guidance system
using reusable software parts and tools. The rationale behind the choices of application
domain and the particular software reuse techniques is described in [10]. In brief, the mis-
sile guidance domain was chosen because it is a real MCCR application for which program
office support is available, for which reusable parts and reuse tools have been developed,
for which domain expertise can be obtained, and for which a Program Performance Specifi-
cation (PPS) document [8] is available. The software parts and tools selected for this exper-
iment are the Common Ada Missile Packages (CAMP) [4]; EVB [6] and Booch [3] parts;
CAMP/AMPEE (Automated Missile Parts Engineering Expert) System [1]; and GTE ALS
(Asset Library System) [7] [9].

CMU/SEI-88-TR-35 3

2.2. Reuse-Based Redevelopment

The reuse-based redevelopment [11] is a single team, single project experiment. It is an
empirical study of software reuse, collecting goal-directed data during the development of a
real-time system. Starting with the PPS, the project will develop the navigation, guidance,
and autopilot subsystems utilizing CAMP, EVB, and Booch parts using the CAMP/AMPEE
and GTE ALS tools.

The CAMP parts originated with the analysis of ten systems and their requirements. This
analysis identified requirement, subsystem, and module commonality, which became the
basis for the CAMP parts.

The reuse project is redeveloping the guidance, navigation, and autopilot subsystems of one
of the ten original systems that were included in the CAMP commonality analysis. The ex-
periment will utilize only the PPS from one of the original systems; hardware and the pro-
gramming language are different from the original system, and the design will be new, incor-
porating reuse. A redevelopment of one of the original systems has the advantages of pro-
viding a high degree of reuse for the development, having available customer experience for
the evaluation of the results of the experiment, directly addressing the use of the special-
ization of generalized parts (thus, providing the natural setting for evaluating the use of the
parts, see Figure 1 below), and enabling the possibility of comparisons with the original sys-
tem.

The redevelopment of one of the original systems leads to the concept of the reuse cycle
shown in Figure 1. The top path of the figure corresponds to development without software
reuse, with the rest corresponding to development with reuse. The branch into the top path,
labeled-use, corresponds to new development that uses the reusable parts and generic sub-
systems. The branch to the right (also labeled use) corresponds to redevelopment of exist-
ing systems using the reusable parts and generic subsystems. Our experience on the reuse
experiment suggests that reuse-based redevelopment as shown in this figure may be a nec-
essary step in the development and evolution of reusable parts, like CAMP, and a helpful
step that can be exploited to initiate the formation of a generic model of the application.

4 CMU/SEI-88-TR-35

New

NeW Re(QS--------m - s mmm oo oo > Devel oprent
" I
Use | Extend |
| _________________
| I
Regqgs 1 ----- > System1 \ \Y
\
Vo > Reusabl e part s\
: / Abst ract - - >Redevel opnent
Regs n ----- > Systemn /[...... > Ceneric System Use
/
Donai n / A |
| I
| Evol ve |
| I

Figure 1. The Reuse Cycle

2.3. Software Reuse Assumptions

The application of reuse on a software development project is influenced by assumptions on
the nature of reuse itself and on the approach used in its practice. It is helpful to make
these assumptions explicit since they influence the goals of the experiment, the experiment
planning, and data collection activities.

Software reuse is the practice of systematically acquiring software solutions, representing
them, and applying them to new development problems. One approach for applying reuse
consists of the steps of specifying problems; searching, assessing, and comparing candi-
date solutions; selecting, modifying, and integrating solutions to the problems; and evalu-
ating the final results. These steps follow from the view of software reuse as a problem-
solving strategy. Reuse-based development is essentially analogical problem solving, i.e.,
analogical development, where a new development is based on a previous development
having similar requirements. Given a problem of the form "develop a system," problem solv-
ing begins with the selection of a solution model that includes an architectural framework. It
is assumed that the selected framework has associated reuse forms, such as a library of
system packages, of reusable application parts, and of subsystems. The solution system is
derived from the model by successive refinement, through construction of new parts, and by
the integration of reusable ones. Each refinement begins with a specification of sub-
problems. This specification is used as is, or modified as necessary, and used to search the
reuse libraries. The search results in a collection of reusable parts, which are assessed for

CMU/SEI-88-TR-35 5

application to the derivation of the subsystem. If appropriate, reusable parts are selected
and modified, when necessary. The reusable parts are then integrated into the model. The
resulting refinement is evaluated with respect to implementing the specification and adher-
ing to any imposed constraints.

Our notion of software reuse includes three approaches:

1. The use of application-independent software systems, for example, a data-
base system and database commands to satisfy requirements for a data
storage and retrieval system.

2. Derived development where features of a base product are removed, added,
or modified to satisfy new requirements.

3. Construction whereby the software system is built out of collections of layers,
subsystems, and application-independent parts.

In practice, instances of each of these approaches are utilized, with the third approach being
the most common. To promote them, a reuse-based software development
methodology [12] was developed and tailored [13] to integrate and adapt them to the reuse
redevelopment effort.

The tailored reuse methodology reflects our assumptions on the nature of reuse. These as-
sumptions will be evaluated using the data collected during the experiment.

6 CMU/SEI-88-TR-35

3. Experiment Planning

3.1. Planning Frameworks

The redevelopment experiment is being done within the goal/question/metric framework de-
veloped and promoted by NASA’'s SEL [2]. In this framework, the actual application devel-
opment is preceded by experiment definition (goal definition) and planning. The framework
consists of six steps:

1. Establish goals of the experiment.

2. ldentify questions of interest that derive from the goals.
3. Identify appropriate data categories.

4. Design and test data collection instruments.

5. Collect the data and validate it.

6. Analyze and interpret the data.

The goal/question/metric framework is summarized in Figure 2.

Establ i sh For nul at e
Goals -------- > (Questions -------- > | dentify Data
AN AN \ /
e \ /
Y, Y, \ /
Resul ts \ /

AN AN \ /

\ \ /

\/ \VARY,

Anal yze & <-------- Collect & <------- Devel op
I nterpret Val i date Data Data Col | ection
Dat a I nstrunents

Figure 2. Goal/Question/Metric Framework

The results of a software development effort are affected by factors that pertain to the nature
of the software development process (tasks) and products (software artifacts). A factor of
particular interest in this investigation is the reuse-based software development. The reuse-
based software development is influenced by the approach that is adopted for practicing
software reuse. The reuse approach, in turn, follows from certain beliefs, expectations, and
assumptions regarding software reuse; these are expressed as a thematic hypothesis.

CMU/SEI-88-TR-35 7

Software development factors (artifacts and tasks) and a theme were incorporated into the
goal/question/metric framework to create a reuse experiment framework. Based on the
theme, experiment goals were formulated and relevant factors were identified. These were
used to formulate questions that, in turn, were used to identify data needed to answer the
questions and accomplish the goals.

The reuse experiment framework is depicted in Figure 3.

Goal
/ .o\
/ : \ / /
/ . Tasks ----- > [Question / Data
/ : / :
Artifacts--->/ o=
Thene : \ : \
O her \ : \ :
\ . Factors----- > \ Question \ Data
\ : / \ \
\ CGoal /
N N N N

Figure 3. Reuse Experiment Framework

Following the experiment framework, the reuse-based redevelopment project was planned.
The project-specific theme, goals, factors, and questions were defined, and the data to sup-
port the questions were identified. These are presented in the following sections.

3.2. Reuse-Based Redevelopment Experiment Planning

3.2.1. Theme

Preparatory work of the reuse project involved extensive literature and conference investi-
gation on software reusability, and on software engineering experimentation and data collec-
tion. The scope of this preparatory investigation is embodied in a project bibliography [10].

From this preparatory investigation and based on the project team’s experience, a view of
the state-of-the-art and state-of-the-practice of software reuse was arrived at. This back-
ground research identified a diversity of work pertaining to software reuse spanning a diver-
sity of topics, both managerial and technical, including reuse libraries, economics, tools,
techniques, and methods for achieving reuse. Our context for considering this diversity of

8 CMU/SEI-88-TR-35

work was that of a software development project; that is, if our goal was building a software
system exploiting reuse, how should we proceed? What resources would we need? What
problems relating to reuse would be encountered? We categorized work from the literature
in terms of reuse resources (i.e., reusable components, tools and methods), the develop-
ment of reuse resources, and the application of these resources. Given our context, we
were particularly interested in the latter, but work and data on applications of reuse were
rare. Our first step was to identify critical elements that would affect the application of reuse.
These were:

« Availability of reusable resource: artifacts from requirements through code; tool
support for working with the artifacts.

« Attributes of reuse resources: domain dependence/independence, level of ab-
straction, applicability to the application, maturity, and formality.

» Maturity of the body of knowledge for solving problems and building systems in
the application domain(s) of interest.

« Existence of a model, framework, methodology, paradigm, or integration con-
cept for guiding the application of reuse throughout the software development.

» Learning necessary to utilize the reuse resources for the domain(s) of interest.

This view of software reuse was expressed as a hypothesis that we called the theme of the
experiment. The nature of the experiment, i.e., single team/single development, is such that
it will produce data that can help others prepare for potential problems in their application of
software reuse. The theme is stated below:

Theme. Current software reuse technology can have a significant positive impact
on software development and be more effectively utilized if:

1. There is a sufficiently rich and powerful collection of reusable compo-
nents, reuse methods, and tools for the application.

2. The domain of application is sufficiently mature and well understood so
that there is a standard model for a class of systems in that domain.

3. There is a basis—in terms of a model, paradigm, or concept—that sup-
ports a reuse methodology for integrating and systematically applying
various reuse methods.

The effort to effectively utilize reuse will initially be significant. The learning curve
of project personnel will increase due to reusable components, reuse methods,
and tools; and there will be major adjustments to the requirements, design, and
integration phases. These changes will introduce new problems in the develop-
ment. Moreover, improvements in cost and productivity from software reuse will
not necessarily occur for a single project, but will result when cost and effort are
amortized over several system life cycles.

CMU/SEI-88-TR-35 9

3.2.2. Goals

The goals of the reuse redevelopment experiment were established based on the
project objectives and the thematic hypothesis discussed earlier. They are to:

1. Formulate and improve a reuse-based methodology for software devel-
opment.

2. Gain experience and lessons learned in the application of the reuse-
based methodology of the CAMP, EVB, and Booch parts, and of the
CAMP and GTE tools.

3. Assess the impact of software reuse on software development activities
and products, particularly design.

The methodology defines reuse-based software development life-cycle activities,
identifying where in the lifecycle reuse activities occur. Lessons learned include
problems and difficulties encountered in the application of the methodology and
reuse forms, and any solutions or recommendations to resolve them. Impact
refers to changes to development activities and their associated costs, effort, ben-
efits, or shortcomings.

Based on the experiment goals, any process, product, and environment factors
that affect the outcome of the experiment were identified. These factors are de-
scribed in the next section.

3.2.3. Factors

Literature on experiments and data collection for software development, as well as
our own understanding of the development process, identified factors that affect
the software development. These factors are:

» Characteristics of the development team

» The development environment

« The software engineering technology, including reuse technology and the
methodology for applying it during software development

« Customer involvement in the development
* The application domain and system characteristics

To address the goals of the study, we examined the software process factors rela-
tive to the theme and the goals. This resulted in the need to identify reuse-related
tasks and artifacts, which in turn raised the need for a methodology for applying
reuse. The task and artifact factors are discussed below; the other process fac-
tors are discussed in the high-level and detailed plans for the reuse
experiment [14], [10].

The methodology for applying reuse is an extension of [5] with refinement of each
phase to identify reuse activities. The reuse activities that are common across the
life-cycle phases are identified as:

« Studying the problem and available solutions to the problem, and devel-
oping a reuse plan or strategy.

« Identifying a solution structure for the problem following the reuse plan.

10 CMU/SEI-88-TR-35

» Reconfiguring the solution structure to improve reuse at the next phase.
» Acquiring, instantiating, and/or modifying existing reusable components.

* Integrating the reused and any newly developed components into the
products for the phase.

« Evaluating the products.
« ldentifying the components that are reusable.

These activities are used as the base model for defining the specific activities at
each phase of the life cycle. Artifacts of the methodology are those typically found
in a traditional phased software development, like [5]. The reuse methodology is
general; tailoring of the methodology for the project is described in [13].

Specific questions that are relevant to the experiment goals and that are directly
addressed in the experiment were formulated considering the experiment factors.
They are described in the following section.

3.2.4. Experiment Questions

A large amount of effort was devoted to the formulation of objectives in the form of
guestions. The process for producing the questions involved joint work by the
project team over many meetings, and individual analysis by team members on
assigned gquestions. A candidate list of twenty questions was generated from an
examination of the implications of reuse on software development activities and
from consideration of the factors from the perspective of software reuse. The can-
didate questions were subjected to examination and analysis.

The candidate questions were categorized into four groups: Usage, Product, Proc-
ess, and Application Domain. The categories were derived from the goals and
theme of the experiment. Then the questions were mapped to the goals. The clas-
sification and mapping of the questions provided information on the coverage of
the questions with respect to the goals and on the relationships among the ques-
tions.

These twenty questions were then applied to three candidate application systems,
each involving specific reuse resources. The three were: navigation and
guidance subsystem/CAMP, LAN control subsystem/TCP-IP generics, and inertial
navigation subsystem/data structure parts. These three subsystem/reuse
resource combinations were those that were available to us at the time. For each
of these domains and reuse resource combinations and for each question, the
data needed to answer the question were identified and a possible answer was
conjectured. Attempting to answer each question in the context of a specific
domain and specific reusable parts and reuse methods/tools provided information
on the answerability of each question and suggested data collection forms needed
for gathering the data to answer that question.

Questions were eliminated on the basis of interest, answerability, or importance
and relevance to the theme and goals. Similar questions were combined or used
to generate a single question. The resulting list consisted of nine questions. The
nine questions were allocated to the five team members, one or two questions to
an individual, for question analysis. The analysis of a question included research,

CMU/SEI-88-TR-35

draft, team meeting for team consensus, and final report. The reports included
definitions of relevant terms, discussion of the question, identification of data
needed to answer the question, metrics, data collection forms, and the type of
analysis to be performed on the data. The analysis reports were reviewed and
consensus was reached on the definitions, scope, and data for each question.

The nine questions that resulted from the question formulation process are sum-
marized below. Where necessary, annotations are given.

1. What is the extent and frequency of use of the available reuse forms
(reusable parts, reuse methods, and reuse tools)?

The scope of this question includes both process and product, and extent
and frequency can be interpreted with respect to both of these dimen-
sions. For a product, "use" pertains to both derivation and operation.
Derivation of a product is the construction of the product from reusable
parts. Operation is the execution of the product in an operational envi-
ronment. "Extent" is a measure of how widespread the use is, i.e.,
where; and "frequency" is a measure of how often the use occurs, i.e.,
when.

2. How much training, experience, and external support for the subsystem
application domain or reuse was needed to use the available reuse
forms?

The purpose of this question is to understand how dependent the soft-
ware development is on domain knowledge and reuse technigues. In the
context of our experiment, this question becomes: how much training, ex-
perience, and external support was needed to apply the reusable compo-
nents (CAMP, EVB, Booch), the CAMP/AMPEE constructors, and the
library tool (ALS) in the development of a missile guidance system?

3. What is the relative contribution and value of the available reuse forms;
and what was the effort to use them relative to the total system devel-
opment and final products?

Value is a quality indicative of the degree to which a part, method, or tool
is useful with respect to the software system and its development.
"Value" can be relative to formulating a problem, solving a problem, or
achieving desired properties of the system.

This question seeks to identify the more useful parts, methods, and tools,
as well as those that are least useful, and, ultimately, the reasons, why.
Of special interest is the identification of groups of parts that are utilized
together and the ways in which they are interconnected to comprise a
single entity. Question 3 is the qualitative counterpart to Question 1.

4. What requirements and design decisions were related to the reusable
forms?

The above question addresses the role the reusable parts, reuse meth-
ods, and tools play in design decisions. A design decision involves re-
guirements, constraints, choices, frames of reference, and artifacts. The
scope of the question includes which reuse forms were related to these
design decision elements and what the nature of the relationship was.

5. What are the attributes, static and dynamic, of the resulting system and
its design?

12

CMU/SEI-88-TR-35

6. What is the impact of using the reuse forms on the system quality factors
(adaptability, performance, reliability)?

7. Is there a standard, application model, paradigm, or integral concept that
forms the basis for a reuse methodology for the missile subsystem
domain? If so, what are its limitations or strengths for promoting reuse?

Our assumptions concerning approaches to reuse suggest the formula-
tion of a generic architectural application model and its use as a context
for the derivation of the system under development. The tailored reuse-
based methodology employs such a model. This question addresses the
degree of evolution and refinement of the model and its effectiveness in
promoting reuse.

8. How effective were the Common Ada Missile Packages (CAMP) compo-
nents and tools in rebuilding one of the source systems (the source sys-
tems are the ten missile subsystems used in the CAMP commonality
study)? How does the reuse-based developed subsystem compare with
the original system?

The interest of this question is in the generalization/specialization proc-
ess of the reuse cycle depicted in Figure 1 above and the collection of
parts that were used to construct the system, as well as the parts that
were not used in the construction.

9. What are the distributions of "standard" data (effort, cost, time, changes,
errors) with respect to various dimensions (tasks, product/structure,
phases, reuse/non-reuse, application dependent/independent, time)?

Question formulation and the analysis process identified the data required to an-
swer the questions. The identified data were classified and organized into forms.
The data collection forms and collection procedures are discussed in the following
chapter.

CMU/SEI-88-TR-35

14

CMU/SEI-88-TR-35

4. Data Collection and Validation

4.1. Forms

A candidate list of data that supports the questions was generated. From the can-
didate list, the final list was generated considering the relevance to the experiment
goals, the resources required to collect the data, redundancy, collection difficulty,
and measurability. The selected data were categorized according to the time of
collection and process, product, and development-team orientations. The data
categories are:

1. reuse
. team background
. design decision
. external support
. product attributes
. changel/error
. cost
. task

0 ~NOoO ol WN

These data are collected using seven forms: Daily Activity, Design Decision,
Reuse Process, Support, Training, Error/Change, and Personnel Background.
There is currently no form to collect data on product attributes. This data will be
collected during post mortem. Cost data will be derived from activity data. The
forms are summarized below. Copies of the forms appear in [10].

The Daily Activity Form collects effort data by time spent on non-project, related
activity and project-related activity. Project-related activity is classified into the
categories of experiment-related, training, management, domain, reuse, and task
(of the methodology). This form contains pointers to other forms to collect detailed
data on specific activities, e.qg., training.

The Design Decision Form collects data on high-level design decisions and on
major detailed design decisions. Data collected include the problem or decision
being addressed, the resources used, the resources that are not used, constraints
that apply, constraints that do not apply; partitioning, data structure, and algorithm
alternatives; choices made and corresponding rationale.

The Reuse Process Data Form collects reuse usage data on the reusable parts,
reuse methods and tools. Categories of usage include specifying, searching, as-
sessing, modifying, integrating, and evaluating. Attributes for usage include date
and time, duration, frequency, objects, mechanism, context, and results.

The Support Data Form focuses on dependency on domain knowledge and
reuse techniques provided by non-project team members from outside organiza-
tions. Data identify the parties involved, the nature and duration of the support,
and the results.

CMU/SEI-88-TR-35

The Training Form captures data on pertinent training to supports the develop-
ment. This includes domain and reuse-related training. The data consist of who
provide the training, who attends what the training is, how long it lasts, where it is
provided, the cost, schedule, and relevance.

Error and Change Forms are typical configuration-control forms that have been
adapted to the reuse redevelopment. They have been extended to cover
modifications made to accommodate reuse and to cover errors related to the reus-
able parts, reuse methods and tools.

The Personnel Background Form records, in particular, the domain, reuse, Ada,
and software engineering experiences of the team members.

The forms are interrelated by pointers that provide traceability among the forms.
For example, traceability enables the gathering of the design decisions, external
support, reuse resources, and errors/changes pertaining to a specific requirement.

4.2. Procedures

Data are collected using paper forms that are controlled by a data collection ad-
ministrator. The entries called for on the forms follow from an elaboration of each
of the nine questions above, with respect to the meaning of the terms employed in
the question and the defined scope of the question. The forms are coded, distri-
buted, collected, and entries are validated by the administrator. The Daily Activity
Form is filled out by the project team members on a work-day basis; the other
forms are filled out on an activity basis. The collected forms are compiled into
monthly notebooks and filed. Data from the forms will be entered, at some future
time, into an Ingres database by the administrator. The Ingres database will sup-
port the analysis to answer the experiment questions.

Data are currently kept in notebooks of completed data collection forms. They are
collected and grouped by month by type of form. The total time spent by each
team member per entry per data form is accumulated as the completed form is
validated. This time summary is kept in the notebooks. The notebooks are filed in
the data-base administration office.

Plans call for the data to be entered into an Ingres database. An Ingres form has
been defined for each manual data collection form. The forms will be accessed
from a main menu that will allow updating and reporting. Once a form has been
filled in and completed, it will be closed; otherwise it remains open. Open and
closed forms can be reported on by user, date, or form type.

The mapping of the data to a database design requires careful consideration with
respect to the definition of the records and fields. Names, display format, display
attributes, type of field, default value, and relationships between the data collec-
tion forms have been identified.

16 CMU/SEI-88-TR-35

5. Experience and Issues to Date

5.1. Data Analysis

The data collected from February 1988 through August 1988 consists of daily acti-
vity data, training data, and personnel background data. Personnel background
data was collected on each member of the project team. Training data was col-
lected on STATEMATE, GTE ALS, CAMP, and VMS training. Daily activity data is
summarized in Figure 4.

The data in Figure 4 is organized by month, from February (the start of data
collection) through August. A pair of data is presented for each category. The
data on the left is the percentage of time over the total work hours, and the data
on the right is the percentage of time over the total work hours minus SEI over-
head. The SEI overhead includes efforts that are considered unique for the SElI,
for example, technology transition effort and the effort by the affiliates for their or-
ganizations. The project team consisted of six members for February through
May, five members for June, and four members for July and August. Two mem-
bers who left the project are industry affiliates.

Percent of effort-hours by category per month by a six member team

February March April May
Training 3/4 14/22 4/5 0/0
Communication 17125 3/5 6/8 3/5
Experiment 22/31 7112 10/13 4/6
Management 7/9 517 517 5/7
Data 2/3 0.6/1 0.6/1 1/2
Domain Study 0/0 0.3/0.5 2/3 3/5
Reuse Related 0/0 7/10 8/11 22/34
Task Related 14/20 20/31 28/39 18/28
Proj Overhead 6/8 8/12 9/12 9/13
SEI Overhead 30/- 35/- 28/- 35/-
Work hours 786 1057 982 950
Workdays 17 23 21 21

June July August
Training 7113 0/0 0/0
Communication 3/6 3/4 0/0
Experiment 2/3 1/1 0/0
Management 5/10 6/7 4/4
Data 6/12 2/3 2/2
Domain Study 1/2 2/2 0/0
Reuse Related 6/12 11/13 0/0
Task Related 14/28 22127 55/62
Proj Overhead 7114 36/43 27/31
SEI Overhead 49/- 17/- 12/-
Work hours 868 600 711

CMU/SEI-88-TR-35

Workdays 22 20 23
Figure 4. Summary Data, 2/88 through 8/88

Training hours consisted of two three-day CAMP workshops, one two-day
STATEMATE workshop, one three-day ALS workshop, a one-day VMS Workstation
class, and a five-day Ada training attended by a project member. Most of the
trainings took place in the first three months.

Communication is all forms of interaction, such as project meetings and conver-
sations dealing with the development. The 17% expended here for February in-
dicates a relatively high startup need.

Management is project management. The percentage of effort here remains
somewhat constant over the months at about 5% level.

Experiment denotes experiment design and review. The experiment design was
essentially completed prior to February. This category includes time spent for the
review of the methodology task list and for refinement of the data collection forms
and procedures. The 22% on experiment for February, together with the 17% on
communication, indicates a relatively high startup cost of the experiment. There
were frequent meetings to review and discuss the data collection forms and pro-
cedures.

Data includes data collection, validation, and analysis efforts. The Daily Activity
Form takes little time to complete. It is filled out daily by each team member in
units of hours or .5 hours. Typically the form takes less than 15 minutes to fill out.
This time to fill out the form amounts to about 1 to 2% for the team. Hours for
data validation and analysis are somewhat sporadic, due to changeover in data
collection personnel. The data validation and analysis activity in June increased
the overall data collection effort to 6%. A consistent effort on data validation and
analysis is of paramount importance.

Domain Study includes efforts expended in learning the application domain. This
effort primarily consisted of reading literature on missile systems.

Reuse Related work consists of classification of reusable components, and infor-
mal learning of CAMP and ALS tools, and of the CAMP, EVB, and Booch parts.
Features analysis which is part of the tailored reuse methodology is done during
the software requirements analysis phase to which significant effort began to be
devoted in July and August.

Task Related is the set tasks of the development other than reuse related ones.
This category, combined with the reuse related effort, indicates the effort which is
directly devoted to developing the system. This combined effort was increasing
from February (14%) through May (40%), decreased in June (to 20%) because of
the Affiliates Symposium, was relatively low in July (at 33%) because of vacations,
and significantly increased (to 55%) in August.

Project Overhead includes all non-developmental project activities that are con-
sidered typical in industry. This includes personal time, vacations, and sick-days.
The high percentage of project overhead in July and August is due to vacation
activity.

nology transition work done in preparation for the Affiliates Symposium, and the
overhead was very high at 49%. However, this category has significant per-

centages for the other months as well. This non-project effort, thus, poses a rela-
tively large "loss" of effort to the project.

5.2. Lessons Learned

Although the redevelopment effort is still in the design phase, a number of exper-
iment and/or development problems have surfaced. Lessons pertaining to the ex-
periment design and data collection are discussed below.

At the beginning of the experiment, there was a concern among project members
that the Daily Activity form, which is filled in the unit of half an hour, would be
intrusive to the development effort and that the data would be biased. However,
the experience with the form by the members is that it is not as intrusive as initially
thought. Project members usually record their daily activities twice a day, before
lunch break and at the end of the day, and then complete the forms weekly, be-
fore submitting them to the data administrator. The effort expended on data collec-
tion was less than 2% of the total effort.

The primary data collection problem is the difficulty of collecting subjective data
(and the reliability of it). The Daily Activity, Personnel Background, and Training
forms are well defined, that is, the set of data they are intended to capture and the
data they actually capture are expected to coincide and when each form is to be
filled out is clear. However, the Design Decision, Reuse Process, and Support
forms collect subjective data, and the forms tend to be too dependent on the indi-
vidual and too complex, which often cause misinterpretation of the forms and the
loss of data. Reuse data is not well understood and, as a result, there is a ten-
dency for the form to ask for a large amount of data. Some external support and
reuse activity has been reported on the Daily Activity form, and these should be
detailed on Support and Reuse Process forms. Moreover, although the project is
in software requirements, experience tells us that design decisions can still be
made during this phase. In fact, the reuse-based methodology entails a look-
ahead to following phases, in order to increase reusability during the later phases.
Thus, one would expect there to be more data related to this area. This is man-
ageable, but tells us that data analysis must be ongoing in order to address prob-
lems and to identify lessons, as soon as possible.

After data collection was underway, it became apparent that the data collection
forms should be supplemented by a project journal which would record influential
project incidents and help capture lessons learned. Without such a journal, these
incidents may, at best, only be named on a daily activity form along with a time
duration allocation, and the significance or insight of the incident left to memory.
A project journal has since been instituted and a weekly interview of each project
member is being conducted to capture significant events.

The issues of loss of data and need for a project journal are in part due to assign-
ment of data administrator duties to part time personnel. This position has had
two changeovers in six months and is currently vacant. Duties are currently as-
signed to a project secretary who has other responsibilities. The availability of a
data administrator is essential to data collection and analysis.

CMU/SEI-88-TR-35

Capturing process data requires a detailed software development methodology.
This methodology is important, not only for guiding the development, but as a
check list for assuring that all desired process data is being collected. The Daily
Activity Form was used to collect effort data by methodology task. On correlating
the data against the tasks of the methodology, one finds a lack of data for some
tasks. This could indicate that some of the tasks called for in the methodology are
not being done, the data on the tasks is not being collected, the tasks were not
identified in the methodology, or the tasks are too detailed to separate. In the first
case, there is a need for methodology enforcement or a change to the method-
ology. In the second case, the newly established interviews or completion of the
proper data collection form will collect the data. In the last two cases, the method-
ology task list needs to be adjusted.

These problems and difficulties and those yet to arise, as well as their resolution,
will help identify lessons to support the improvement of the data collection
framework, the application of the reuse resources, and the methodology.

20

CMU/SEI-88-TR-35

6. Summary and Conclusion

The Application of Reusable Software Components Project is investigating the im-
pact of software reuse on the software development process and products in an
experiment framework. The experiment framework is developed based on the
goal/question/metric data collection framework, with adaptations for the reuse in-
vestigation. The instantiation of this framework for our reuse-based redevelop-
ment is shown in Figure 5 below. It is a summary of the thematic hypothesis,
goals, factors, questions, and data given previously.

Thene: Coal s: Fact ors: Questions: Dat a:
Reusabl e [/ Met hodol ogy Extent ?
Conponent s / Tasks [/ Design \
/ | npact ---->] Deci si ons? \ Usage
Mature / / Support? \ Decision
Domai n/ Evol ve / Val ue? Support
\ Reuse Syst em Change- Error _

\ Team Properties? Task
Integral\ Lessons Envi r onnent \ Quality? /' Post
Concept s \ Technol ogy \ I nt egral / Mort em

\ Customer ----> \ Concept ?

I

I

|

I

Domai n \ Effectiveness? |
St andard Dat a? |

|
I

—_—— >

Figure 5. Reuse Experiment Framework Summary

The information collected from the experiment will help us to understand how the
availability of reuse forms influences the development process and products, and
to identify when reuse presents benefits and when not. The reuse experience
from this experiment will place the SEI in a position to advise those who employ
reuse-based development on how to structure the reuse-based development life
cycle, which areas to emphasize or to avoid, and how to measure the effective-
ness of their reuse initiatives. Organizations can use this data as a basis for es-
timating reuse costs and benefits. They can also use our experiment-planning
framework as a means of planning their own data collection activity.

A software development effort can provide empirical information for the improve-
ment of development capabilities. In this sense, every software development
should be regarded as an "experiment,” and experiment design and data collec-
tion planning should be a standard part of software development. A new tech-
nology, such as reuse, will mature through application, evaluation, and improve-
ment.

CMU/SEI-88-TR-35

22

CMU/SEI-88-TR-35

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

McDonnell Douglas Astronautics Co.

Software User’s Manual for the Ada Missile Parts Engineering Expert Systems
of the Common Ada Missile Packages (CAMP) Project.

McDonnell Douglas Astronautics Co., P.O.Box 516, At. Louis, MO 63166, 1987.

Basili, V. and Selby, R.

Data Collection and Analysis in Software Research and Management.

Proc. American Statistical Association and Biometric Society Joint Statistical
Meeting. :Pages 21-30, August, 1984.

Booch, G.
Software Components with Ada.
Benjamin/Cummings, Menlo Park, CA, 1987.

McDonnell Douglas Astronautics Co.

Common Ada Missile Packages (CAMP): Overview & Commonality Study
Results.

McDonnell Douglas Astronautics Co., P.O.Box 516, At. Louis, MO 63166, 1985.

DOD-STD-2167A.
Defense System Software Development (draft).
Military Standard , October, 1987.

EVB Software Engineering, Inc.

Grace Notes.

EVB Software Engineering, Inc., 5303A Spectrum Dr., Frederick, MD 21701,
1986.

Jones, G. and Prieto, R.
Asset Library System: Summary Report.
GTE Technical Note (No. 87-126.06):, December, 1987.

McDonnell Douglas Astronautics Co.

Computer Program Performance Specification Cruise Missile Land Attack
Guidance System BGM-109C.

McDonnell Douglas Astronautics Co., P.O.Box 516, At. Louis, MO 63166, 1985.

Prieto-Diaz, R. and Freeman, P.
Classifying Software for Reusability.
IEEE Software, Vol. 4(No. 1):6-16, January, 1987.

ARSC.

An Experiment to Analyze a Reuse-Based Software Development: Detailed De-
sign.

Software Engineering Institute (technical report in preparation), December,
1988.

Holibaugh, R., Perry, J. and Sun, A.
Subsystem Redevelopment: Analysis.
Software Engineering Institute (CMU/SEI-TR-88-014), November, 1988.

CMU/SEI-88-TR-35

23

[12] Kang, K.C., Cohen, S., Holibaugh, R., Perry, J. and Peterson, A.S.
A Reuse-Based Software Development Methodology.
Software Engineering Institute (technical report in preparation), November,
1988.

[13] Perry, J.
Perspective on Software Reuse.
Software Engineering Institute (CMU/SEI-TR-88-022), November, 1988.

[14] ARSC.
An Experiment to Analyze a Reuse-Based Software Development: High-Level
Design.
Software Engineering Institute (technical report in preparation), November,
1988.

24 CMU/SEI-88-TR-35

Table of Contents

6.

. Introduction

. Project Background

2.1. Project Objectives
2.2. Reuse-Based Redevelopment
2.3. Software Reuse Assumptions

. Experiment Planning

3.1. Planning Frameworks
3.2. Reuse-Based Redevelopment Experiment Planning
3.2.1. Theme
3.2.2. Goals
3.2.3. Factors
3.2.4. Experiment Questions

. Data Collection and Validation

4.1. Forms
4.2. Procedures

. Experience and Issues to Date

5.1. Data Analysis
5.2. Lessons Learned

Summary and Conclusion

References

oo NN Ok WW -

CMU/SEI-88-TR-35

	Table of Contents
	1. Introduction
	2. Project Background
	3. Experiment Planning
	4. Data Collection and Validation
	5. Experience and Issues to Date
	6. Summary and Conclusion
	References

