Technical Report

CMU/SEI-88-TR-033
ESD-TR-88-034

Real-Time Scheduling Theory
and Ada

Lui Sha
John B. Goodenough

November 1988

Technical Report

CMU/SEI-88-TR-033
ESD-TR-88-034
November 1988

Real-Time Scheduling Theory
and Ada

Lui Sha
John B. Goodenough

Real-Time Scheduling in Ada Project

Approved for public release.
Distribution unlimited.

JPO approval signature on file.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Real-Time Scheduling Theory
and Ada

Abstract: The Ada tasking model was intended to facilitate the management of
concurrency in a priority-driven scheduling environment. In this paper, we will re-
view some important results of a priority-based scheduling theory, illustrate its ap-
plications with examples, discuss its implications for the Ada tasking model, and
suggest workarounds that permit us to implement analytical scheduling algorithms
within the existing framework of Ada.

1. Introduction

1.1. Background

Traditionally, many real-time systems use cyclical executives to schedule concurrent
threads of execution. Under this approach, a programmer lays out the execution timeline by
hand to serialize the execution of critical sections and to meet task deadlines. While such an
approach is adequate for simple systems, it quickly becomes unmanageable for large sys-
tems. It is a painful process to iteratively divide high level language code so the compiled
machine code segments can be fitted into time slots of a cyclical executive and that critical
sections of different tasks do not interleave. Forcing programmers to schedule tasks by
fitting machine code slices on a timeline is no better than the outdated approach of manag-
ing memory by manual memory overlay. Such an approach often destroys program struc-
ture and results in real-time programs that are difficult to understand and maintain.

The Ada tasking model represents a fundamental departure from the cyclical executive
model. Indeed, the dynamic preemption of tasks at runtime generates non-deterministic
timelines that are at odds with the very idea of the fixed execution timeline required by a
cyclical executive. From the viewpoint of real-time scheduling theory, an Ada task
represents a concurrent unit for scheduling. As long as the real-time scheduling algorithms
are supported by the Ada runtime and the resource utilization bounds on CPU, I/O drivers,
and communication media are observed, the timing constraints will be guaranteed. Even if
there is a transient overload, a fixed subset of critical tasks can still meet their deadlines as
long as they are schedulable by themselves. In other words, the integration of Ada tasking
with analytical scheduling algorithms allows programmers to meet timing constraints by
managing resource requirements and relative task importance. This makes Ada tasking
truly useful for real-time applications while also making real-time systems easier to develop
and maintain.

CMU/SEI-88-TR-33 1

1.2. Controlling Priority Inversion

To put real-time scheduling on an analytical basis, systems must be built in a way that en-
sures that high-priority tasks are minimally delayed by lower priority tasks when both are
contending for the same resources. Priority inversion occurs when the use of a resource by
a low priority task delays the execution of a high priority task. Priority inversion occurs either
when task priorities are incorrectly assigned or when they are not used correctly when al-
locating resources. One common mistake in priority scheduling is assigning priorities solely
according to task importance.

Example 1: Suppose that T, and 1, are periodic tasks with periods 100 and 10, respectively.
Both of them are initiated at t = 0, and task 1, is more important than task 1,. Assume that
task 1, requires 10 units of execution time and its first deadline is at t = 100, while task 1,
needs 1 unit of execution time with its first deadline at t = 10. If task 1, is assigned higher
scheduling priority because of its importance, task 1, will miss its deadline unnecessarily
even though the total processor utilization is only 0.2. Both tasks can meet their deadlines
using the rate monotonic algorithm [5], which assigns higher priorities to tasks with shorter
periods. In fact, many more new tasks can be added into the system by using the simple
rate monotonic scheduling algorithm.

Although priority inversion is undesirable, it cannot be completely eliminated. For example,
when a low priority task is in a critical region, the higher priority task that needs the shared
data must wait. Nonetheless, the duration of priority inversion must be tightly bounded in
order to ensure a high degree of responsiveness and schedulability. Controlling priority in-
version is a system level problem. The tasking model, runtime support, program design,
and hardware architecture should all be part of the solution, not part of the problem. For
example, there is a serious priority inversion problem in some existing IEEE 802.5 token ring
implementations. While there are 8 priority levels in the token arbitration, the queueing of
message packets is FIFO, i.e., message priorities are ignored. As a result, when a high
priority packet is behind a low priority packet, the high priority packet has to wait not only for
the lower priority packet to be transmitted, but also for the transmission of all medium priority
packets in the network. The result is "hurry-up at the processor but miss the deadline at the
communication network." Using FIFO queueing in a real-time system is a classical case of
priority inversion and can lead to extremely poor schedulability. Priority assignments must
be observed at every level of a system for all forms of resource allocation. Minimizing the
duration of priority inversion is the key to meeting deadlines and keeping systems respon-
sive to aperiodic events.

Section 2 reviews some of the important results in real-time scheduling theory. We begin
with the problem of scheduling independent periodic tasks. Next, we address the issues of
maintaining stability under transient overload and the problem of scheduling both periodic
and aperiodic tasks. We conclude Section 2 by reviewing the problems of real-time
synchronization. In Section 3, we review the Ada tasking scheduling model and suggest
some workarounds that permit us to implement many of the scheduling algorithms within the
framework of existing Ada rules. Finally, we conclude this paper in Section 4.

2 CMU/SEI-88-TR-33

2. Scheduling Real-Time Tasks

In this section, we provide an overview of some of the important issues of a real-time
scheduling theory. We will begin with the problem of ensuring that independent periodic
tasks meet their deadlines. Next, we show how to ensure that critical tasks meet their dead-
lines even when a system is temporarily overloaded. We then address the problem of
scheduling both periodic and aperiodic tasks. Finally, we conclude this section by reviewing
the problems of real-time synchronization and communication.

2.1. Periodic Tasks

Tasks are independent if their executions need not be synchronized. Given a set of inde-
pendent periodic tasks, the rate monotonic scheduling algorithm gives each task a fixed pri-
ority and assigns higher priorities to tasks with shorter periods. A task set is said to be
schedulable if all its deadlines are met, i.e., if every periodic task finishes its execution be-
fore the end of its period. Any set of independent periodic tasks is schedulable by the rate
monotonic algorithm if the condition of Theorem 1 is met [5].

Theorem 1. A set of n independent periodic tasks scheduled by the rate
monotonic algorithm will always meet its deadlines, for all task phasings, if

C C

v OO+ 2" < nUn-1) = U(n)

Tl Tn
where C; and T; are the execution time and period of task t; respectively.

Theorem 1 offers a sufficient (worst-case) condition that characterizes the schedulability of
the rate monotonic algorithm. This bound converges to 69% (In 2) as the number of tasks
approaches infinity. Table 2-1 shows values of the bound for one to nine tasks.

U()=1.0 U(4) = 0.756 U(7) = 0.728
U(2) = 0.828 U(5) = 0.743 U(8) = 0.724
U(3) = 0.779 U(6) = 0.734 U(9) = 0.720

Table 2-1: Scheduling Bounds for One to Nine Independent Tasks

The bound of Theorem 1 is very pessimistic because the worst-case task set is contrived
and unlikely to be encountered in practice. For a randomly chosen task set, the likely bound
is 88% [3]. To know if a set of given tasks with utilization greater than the bound of Theorem
1 can meet its deadlines, the conditions of Theorem 2 must be checked [3].

Theorem 2: A set of n independent periodic tasks scheduled by the rate
monotonic algorithm will always meet its deadlines, for all task phasings, if and
only if

CMU/SEI-88-TR-33 3

Oi, 1<i<n, min <1
J 1T, Tk
(k1) e R|
where C and T are the execution time and period of task T respectively and

R ={ (K, Dl1<ksil=1, [0 [T/T, 3.

This theorem provides the exact schedulability criterion for independent periodic task sets
under the rate monotonic algorithm. In effect, the theorem checks if each task can complete
its execution before its first deadline by checking all the scheduling points.! The scheduling
points for task T are Ts first deadline and the ends of periods of higher priority tasks within
T's first deadline. In the formula, i denotes the task to be checked and k denotes each of the
tasks that affects the completion time of task i, i.e., task i and the higher priority tasks. For a
given i and k, each value of | represents the scheduling points of task k. For example, sup-
pose that we have tasks 1, and 1, with periods T, = 5 and T, = 14. For task T; (i = 1) we
have only one scheduling point, the end of task t,’s first period, i.e., i=k=1 and
(=1, I 0y/T 0= 04/T;0=1). The scheduling point is, of course, ;s first deadline
(I Ty=51=1,k=1). FortaskT (i =2), there are two scheduling points from all higher pri-
ority tasks, 1, (k=1), i.e., (I =1, I O0;/T, 0= [O0,/T; = 2). The two scheduling points are,
of course, the two end points of task 1,’s period within the first deadline of task 1, at 14, i.e.,
(ITg=5I1=1,k=1)and (I T, =10,1 =2,k=1). Finally, there is the scheduling point from
T,’s own first deadline, i.e., (I T, = 14, =1, k= 2). At each scheduling point, we check if the
task in question can complete its execution at or before the scheduling point. This is il-
lustrated in detail by Examples 3 and 8 below.

Example 2: Consider the case of three periodic tasks, where U; = C,/T;.

» Taskt1: C;=20;T,=100,; U; =0.2
» Task1,: C, =40, T,=150; U, = 0.267
» Task 150 C3=100; T; =350 ; U3 =0.286

The total utilization of these three tasks is 0.753, which is below Theorem 1's bound for
three tasks: 3(21/3 — 1) = 0.779. Hence, we know these three tasks are schedulable, i.e.,
they will meet their deadlines if 1, is given the highest priority, T, the next highest, and 15 the
lowest.

The remaining 24.7% processor capacity can be used for low priority background process-
ing. However, we can also use it for additional hard real-time computation.

Example 3: Suppose we replace 14’s algorithm with one that is more accurate and computa-
tionally intensive. Suppose the new algorithm doubles 1,’s computation time from 20 to 40,
so the total processor utilization increases from 0.753 to 0.953. Since the utilization of the

1it was shown in [5] that when all the tasks are initiated at the same time (the worst-case phasing), if a task
completes its execution before the end of its first period, it will never miss a deadline.

4 CMU/SEI-88-TR-33

first two tasks is 0.667, which is below Theorem 1’s bound for two tasks, 2(21/2 —-1)=0.828,
the first two tasks cannot miss their deadlines. For task 13, we use Theorem 2 to check
whether the task set is schedulable, i.e., we set i = n = 3, and check whether one of the
following equations holds:

2 [T
Ok I, 1<kl <3, — 5C < IT,
;lTj%J X

To check if task 13 can meet its deadline, it is only necessary to check the equation for
values of | and ksuch that | T, < T; = 350. If one of the equations is satisfied, the task set is
schedulable.

C,+C,+C3<T, 40+40+100> 100 l=1,k=1
o 2C,+C,+Cy<T, 80+40+100> 150 l=1,k=2
of 2C,+2C,+ Cy<2T, 80+ 80+ 100> 200 l=2,k=1
or 3C,+2C,+Cy3<2T, 120+80+100=300 |=2,k=2,0rl=3 k=12
or 4C,+3C,+Cy3<T, 160+120+100>350 |=1,k=3

The analysis shows that task 15 is also schedulable and in the worst-case phasing will meet
its deadline exactly at time 300. Hence, we can double the utilization of the first task from
20% to 40% and still meet all the deadlines. The remaining 4.7% processor capacity can be
used for either background processing or a fourth hard deadline task, which has a period
longer than that of r33 and which satisfies the condition of Theorem 2.

A major advantage of using the rate monotonic algorithm is that it allows us to separate
logical correctness concerns from timing correctness concerns. Suppose that a cyclical ex-
ecutive is used for this example. The major cycle must be the least common multiple of the
task periods. In this example, the task periods are in the ratio 100:150:350 = 2:3:7. A minor
cycle of 50 units would induce a major cycle of 42 minor cycles, which is an overly complex
design. To reduce the number of minor cycles, we can try to modify the periods. For ex-
ample, it might be possible to reduce the period of the longest task, from 350 to 300. The
total utilization is then exactly 100%, and the period ratios are 2:3:6; the major cycle can
then be 6 minor cycles of 50 units. To implement this approach and minimize the splitting of
computations belonging to a single task, we could split task 1, into two parts of 20 units
computation each, Cl,l and Cl,z- The computation of task 1, similarly could be split into at
least two parts such that task 15 need only be split into four parts. A possible timeline in-

2That is, after 300 units of time, T, will have run three times, T, will have run twice, and T, will have run once.
The required amount of computation just fits within the allowed time, so each task meets its deadline. [5] showed
that since the tasks meet their deadlines at least once within the period T,, they will always meet their deadlines.

STask 1, just meets its deadline at 300 and hence we cannot add a task with a priority higher than that of task
L

CMU/SEI-88-TR-33 5

dicating the amount of computation for each task in each minor cycle is shown in the follow-
ing table, where 20, on the first line indicates the first part of task 1,'s computation, which
takes 20 units of time.

Cyclic Timeline for Example 3
112 (3|4 |5)|6
1,204 | 20, | 204 | 20, | 20, | 20,

1, |30, | 10, 30, | 10,

15 20, | 30, 20,30,

Table 2-2: Minor Cycle Timeline: Each minor cycle is 50.

When processor utilization level is high and there are many tasks, fitting code segments into
time slots can be a time-consuming iterative process. In addition, later modification of any
task may overflow a particular minor cycle and require the entire timeline to be redone. But
more important, the cyclic executive approach has required us to modify the period of one of
the tasks, increasing the utilization to 100% without in fact doing more useful work. Under
the rate monotonic approach, all deadlines are met, but machine utilization is 95.3% instead
of 100%. This doesn’'t mean the rate monotonic approach is less efficient. The capacity
that isn’t needed to service real-time tasks can be used by background tasks, e.qg., for built-
in-test purposes. With the cyclic executive approach, no such additional work can be done
in this example. Of course, the scheduling overhead for preemptive scheduling needs to be
taken into account. If S is the amount of time needed for a single scheduling action, then
since there are two scheduling actions per task, the total utilization devoted to scheduling is
2S/T, + 2SIT, + 2S/T4. In the cyclic case, the scheduling overhead is partly in the time
needed to dispatch each task’s code segment in each minor cycle and partly in the utili-
zation wasted by decreasing the period for task 3. For this example, the scheduling over-
head for the cyclic approach is at least 4.7%:

Actual_Utilization — Required_Ultilization, i.e.,

100/300 — 100/350 = .333 —.286 = .047

Thus, although the rate monotonic approach may seem to yield a lower maximum utilization
than the cyclic approach, in practice, the cyclic approach may simply be consuming more
machine time because the periods have been artificially shortened. In addition, cyclic ex-
ecutives get complicated when they have to deal with aperiodic events. The rate monotonic
approach, as will be discussed later, readily accommodates aperiodic processing. Finally,
the rate monotonic utilization bound as computed by Theorem 2 is a function of the periods
and computation times of the task set. The utilization bound can always be increased by
transforming task periods, as described in the next section.

6 CMU/SEI-88-TR-33

2.2. Stability Under Transient Overload

In the previous section, the computation time of a task is assumed to be constant. However,
in many applications, task execution times are often stochastic, and the worst-case execu-
tion time can be significantly larger than the average execution time. To have a reasonably
high average processor utilization, we must deal with the problem of transient overload. We
consider a scheduling algorithm to be stable if there exists a set of critical tasks such that all
tasks in the set will meet their deadlines even if the processor is overloaded. This means
that under worst-case conditions, tasks outside the critical set may miss their deadlines.
The rate monotonic algorithm is stable in the sense that the set of tasks that never miss their
deadlines does not change as the processor gets more overloaded or as task phasings
change. Of course, which tasks are in the critical task set depends on the worst-case
utilizations of the particular tasks being considered. The important point is that the rate
monotonic theory guarantees that if such a set exists, it always consists of tasks with the
highest priorities. This means that if a transient overload should develop, tasks with longer
periods will miss their deadlines.

Of course, a task with a longer period could be more critical to an application than a task
with a shorter period. One might attempt to ensure that the critical task always meets its
deadline by assigning priorities according to a task’s importance. However, this approach
can lead to poor schedulability. That is, with this approach, deadlines of critical tasks might
be met only when the total utilization is low.

The period transformation technique can be used to ensure high utilization while meeting
the deadline of an important, long-period task. Period transformation means turning a long-
period important task into a high priority task by splitting its work over several short periods.
For example, suppose task 1t with a long period T is not in the critical task set and must
never miss its deadline. We can make t simulate a short period task by giving it a period of
T/2 and suspending it after it executes half its worst-case execution time, C/2. The task is
then resumed and finishes its work in the next execution period. It still completes its total
computation before the end of period T. From the viewpoint of the rate monotonic theory,
the transformed task has the same utilization but a shorter period, T/2, and its priority is
raised accordingly. It is important to note that the most important task need not have the
shortest period. We only need to make sure that it is among the first n high priority tasks
whose worst-case utilization is within the scheduling bound. A systematic procedure for
period transformation with minimal task partitioning can be found in [7].

Period transformation allows important tasks to have higher priority while keeping priority
assignments consistent with rate monotonic rules. This kind of transformation should be
familiar to users of cyclic executives. The difference here is that we don’t need to adjust the
code segment sizes so different code segments fit into shared time slots. Instead, T simply
requests suspension after performing C/2 amount of work. Alternatively, the runtime
scheduler can be instructed to suspend the task after a certain amount of computation has

CMU/SEI-88-TR-33 7

been done, without affecting the application code.*

The period transformation approach has another benefit — it can raise the rate monotonic
utilization bound. Suppose the rate monotonic utilization bound is U, < 100%, i.e., total
task utilization cannot be increased above U, without missing a deadline. When a period
transformation is applied to the task set, U, will rise. For example:

Example 4: Let
» Taskt,: C;=4;T,=10; U, =.400
The total utilization is .828, which just equals the bound of Theorem 2, so this set of two
tasks is schedulable. If we apply Theorem 2, we find:
C,+C,sT, 4+6=10 l=1,k=1

or 2C,+C,<T, 8+6=14 l=1,k=2

So Theorem 2 says the task set is just schedulable. Now suppose we perform a period
transformation on task 14, so C; =2 and T; = 5. The total utilization is the same and the set
is still schedulable, but when we apply Theorem 2 we find:

C,+C< T, 2+6>5 l=1,k=1
or 2C,+C,<2T; 4+6=10 l=2,k=1
or 3C;+C,<T, 6+6<14 l=1,k=2

The third equation shows that the compute times for tasks t; and/or 1, can be increased
without violating the constraint. For example, the compute time of task 1, can be increased
by 2/3 units to 2.667, giving an overall schedulable utilization of 2.667/5 + 6/14 = .961, or the
compute time of Task 1, can be increased to 8, giving an overall schedulable utilization of
2/5 + 8/14 = .971. So the effect of the period transformation has been to raise the utilization
bound from .828 to at least .961 and at most .971. Indeed, if periods are uniformly har-
monic, i.e., if each period is an integral multiple of each shorter period, the utilization bound
of the rate monotonic algorithm is 100%.° So the utilization bound produced by the rate
monotonic approach is only an upper bound on what can be achieved if the periods are not
transformed. Of course, as the periods get shorter, the scheduling overhead utilization in-

4The scheduler must ensure that T is not suspended while in a critical region since such a suspension can
cause other tasks to miss their deadlines. If the suspension time arrives but the task is in a critical region, then
the suspension should be delayed until the task exits the critical region. To account for this effect on the
schedulability of the task set, the worst-case execution time must be increased by ¢, the extra time spent in the
critical region, i.e., T's utilization becomes (0.5C+¢)/0.5T.

SFor example, by transforming the periods in Example 3 so T) and T, both have periods of 50, the utilization
bound is 100%, i.e., 4.7% more work can be done without missing a deadline.

8 CMU/SEI-88-TR-33

creases, so the amount of useful work that can be done decreases. For example, before a
period transformation, the utilization for a task, including scheduling overhead, is (C + 29)/T.
After splitting the period into two parts, the utilization is (.5C + 25)/.5T, so scheduling over-
head is a larger part of the total utilization. However, the utilization bound is also increased
in general. If the increase in utilization caused by the scheduling overhead is less than the
increase in the utilization bound, then the period transformation is a win — more useful work
can be done while meeting all deadlines.

2.3. Scheduling Both Aperiodic and Periodic Tasks

It is important to meet the regular deadlines of periodic tasks and the response time require-
ments of aperiodic events. ("Aperiodic tasks" are used to service such events.) Let us
begin with a simple example.

Example 5: Suppose that we have two tasks. Let 1; be a periodic task with period 100 and
execution time 99. Let 1, be an aperiodic task that appears once within a period of 100 but
the arrival time is random. The execution time of task 1, is one unit. If we let the aperiodic
task wait for the periodic task, then the average response time is about 50 units. The same
can be said for a polling server, which provides one unit of service time in a period of 100.
On the other hand, we can deposit one unit of service time in a "ticket box" every 100 units
of time; when a new "ticket" is deposited, the unused old tickets, if any, are discarded. With
this approach, no matter when the aperiodic event arrives during a period of 100, it will find
there is a ticket for one unit of execution time at the ticket-box. That is, T, can use the ticket
to preempt 1, and execute immediately when the event occurs. In this case, 1,’s response
time is precisely one unit and the deadlines of 1, are still guaranteed. This is the idea behind
the deferrable server algorithm [4], which reduces aperiodic response time by a factor of
about 50 in this example.

In reality, there can be many periodic tasks whose periods can be arbitrary. Furthermore,
aperiodic arrivals can be very bursty, as for a Poisson process. However, the idea remains
unchanged. We should allow the aperiodic tasks to preempt the periodic tasks subject to
not causing their deadlines to be missed. It was shown in [4] that the deadlines of periodic
tasks can be guaranteed provided that during a period of T, units of time, there are no more
than C, units of time in which aperiodic tasks preempt periodic tasks. In addition, the total
periodic and aperiodic utilization must be kept below (Uy +In[(2 + U)/(2U 4 + 1))], where
U, =C,/T, And the server’s period must observe the inequality "T, < (T = C,)", where T is
the period of a periodic task whose priority is next to the server.

Compared with background service, the deferrable server algorithm typically improves
aperiodic response time by a factor between 2 and 10 [4]. Under the deferrable server algo-
rithm, both periodic and aperiodic task modules can be modified at will as long as the utili-
zation bound is observed. Figure 2-1 illustrates the relative performance between back-
ground execution, the deferrable server algorithm, and polling. The workload is 60% peri-
odic and 20% aperiodic. We assume a Poisson arrival process and exponentially distri-

CMU/SEI-88-TR-33 9

buted execution time for the aperiodic tasks. Since the mean aperiodic workload is fixed at
20%, short mean interarrival times imply short mean execution times. As we can see from
Figure 2-1, the deferrable server is most effective for frequent arrivals with small service
times.

Figure 2-1: Scheduling Both Aperiodic and Periodic Tasks

A variation to the deferrable server algorithm is known as the sporadic server algorithm [9].
As for the deferrable server algorithm, we allocate C, units of computation time within a
period of T, units of time. However, the C, of the server’s budget is not refreshed until the
budget is consumed.® From a capacity planning point of view, a sporadic server is equiv-
alent to a periodic task that performs polling. That is, we can place sporadic servers at
various priority levels and use only Theorems 1 and 2 to perform a schedulability analysis.
Sporadic and deferrable servers have similar performance gains over polling, because any
time an aperiodic task arrives, it can use the allocated budget immediately. When polling is
used, however, an aperiodic arrival generally needs to wait for the next instant of polling.
The sporadic server has the least runtime overhead. Both the polling and the deferrable
servers have to be serviced periodically, even if there are no aperiodic arrivals.” There is no
overhead for the sporadic server until its execution budget has been consumed. In partic-
ular, there is no overhead if there are no aperiodic arrivals. Therefore, the sporadic server is
especially suitable for handling emergency aperiodic events that occur rarely but must be
responded to quickly.

BEarly refreshing is also possible under certain conditions. See [9].

"The ticket box must be refreshed at the end of each deferrable server's period.

10 CMU/SEI-88-TR-33

2.4. Task Synchronization

In the previous sections we have discussed the scheduling of independent tasks. Tasks,
however, do interact. In this section, we will discuss how the rate monotonic scheduling the-
ory can be applied to real-time tasks that must interact. The discussion is limited in this
paper to scheduling within a uniprocessor. Readers who are interested in the multiproces-
sor synchronization problem should see [6].

Common synchronization primitives include semaphores, locks, monitors, and Ada rendez-
vous. Although the use of these or equivalent methods is necessary to protect the consis-
tency of shared data or to guarantee the proper use of non-preemptable resources, their use
may jeopardize the ability of the system to meet its timing requirements. In fact, a direct
application of these synchronization mechanisms may lead to an indefinite period of priority
inversion and low schedulability.

Example 6: Suppose J;, J,, and J; are three jobs arranged in descending order of priority
with J; having the highest priority. We assume that jobs J; and J; share a data structure
guarded by a binary semaphore S. Suppose that at time t;, job J; locks the semaphore S
and executes its critical section. During the execution of the critical section of job J,, the
high priority job J; is initiated, preempts J, and later attempts to use the shared data. How-
ever, job J; will be blocked on the semaphore S. We would hope that J;, being the highest
priority job, is blocked no longer than the time for job J; to complete its critical section. How-
ever, the duration of blocking is, in fact, unpredictable. This is because job J; can be
preempted by the intermediate priority job J,. The blocking of J;, and hence that of J;, will
continue until J, and any other pending intermediate jobs are completed.

The blocking period in this example can be arbitrarily long. This situation can be partially
remedied if a job in its critical section is not allowed to be preempted; however, this solution
is only appropriate for very short critical sections because it creates unnecessary blocking.
For instance, once a low priority job enters a long critical section, a high priority job that
does not access the shared data structure may be needlessly blocked.

The priority ceiling protocol is a real-time synchronization protocol with two important
properties: 1) freedom from mutual deadlock, and 2) bounded blocking, i.e., at most one
lower priority task can block a higher priority task [1, 8]. There are two ideas in the design of
this protocol. First is the concept of priority inheritance: when a task T blocks the execution
of higher priority tasks, task t executes at the highest priority level of all the tasks blocked by
1. Secondly, we must guarantee that a critical section is allowed to start execution only if
the section will always execute at a priority level that is higher than the (inherited) priority
levels of any preempted critical sections. It was shown in [8] that such a prioritized total
ordering in the execution of critical sections leads to the two desired properties. To achieve
such prioritized total ordering, we define the priority ceiling of a binary semaphore S to be
the highest priority of all tasks that may lock S. When a task T attempts to execute one of its
critical sections, it will be suspended unless its priority is higher than the priority ceilings of
all semaphores currently locked by tasks other than 1. If task T is unable to enter its critical

CMU/SEI-88-TR-33 11

section for this reason, the task that holds the lock on the semaphore with the highest prior-
ity ceiling is said to be blocking T and hence inherits the priority of . As long as a task T is
not attempting to enter one of its critical sections, it will preempt every task that has a lower
priority.

Example 7: Suppose that we have two jobs J; and J, in the system. In addition, there are
two shared data structures protected by binary semaphores S; and S, respectively. Sup-
pose the sequence of processing steps for each job is as follows.

J={ O P(Sy), I P(Sy), LITIV(Sy), IT]V(Sy), 11}
J2 :{ D:El P(SZ)! ED] P(S]_)’ D:El V(S]_)1 ED] V(SZ)’ D:Q

Recall that the priority of job J; is assumed to be higher than that of job J,. Thus, the priority
ceilings of both semaphores S; and S, are equal to the priority of job J;. Suppose that at
time f,, J, is initiated and it begins execution and then locks semaphore S,. At time t;, job
J, is initiated and preempts job J, and at time t,, job J; tries to enter its critical section by
making an indivisible system call to execute P(S;). However, the runtime system will find
that the priority of J; is not higher than the priority ceiling of locked semaphore S,. Hence,
the runtime system suspends job J; without locking S;. Job J, now inherits the priority of job
J; and resumes execution. Note that J; is blocked outside its critical section. As J; is not
given the lock on S; but suspended instead, the potential deadlock involving J; and J, is
prevented. Once J, exits its critical section, it will return to its assigned priority and immedi-
ately be preempted by job J;. From this point on, J; will execute to completion, and then J,
will resume its execution until its completion.

Let B; be the longest duration of blocking that can be experienced by task 1;,. The following
two theorems indicate whether the deadlines of a set of periodic tasks can be met if the
priority ceiling protocol is used.

Theorem 3: A set of n periodic tasks using the priority ceiling protocol can be

scheduled by the rate monotonic algorithm, for all task phasings, if the following
condition is satisfied [8]:

C C, B
s EIZI]+_I__+ mex { =, 1], T” 1) < n(2Un-1)

Theorem 4: A set of n periodic tasks using the priority ceiling protocol can be
scheduled by the rate monotonic algorithm for all task phasings if the following
condition is satisfied [8].

Hi, 1<i<n, IZ |T|(|IET[?*|Tk ITk)

keR
where C;, T;, and R; are defined in Theorem 2, and B; is the worst-case blocking
time for T;.

12 CMU/SEI-88-TR-33

Remark: Theorems 3 and 4 generalize Theorems 1 and 2 by taking blocking into considera-
tion. The By's in Theorems 3 and 4 can be used to account for any delay caused by
resource sharing. Note that the upper limit of the summation in the theorem is (i — 1) in-
stead of i, as in Theorem 2.

In the application of Theorems 3 and 4, it is important to realize that under the priority ceiling
protocol, a task t can be blocked by a lower priority task 1, if T__may lock a semaphore S
whose priority ceiling is higher than or equal to the priority of task 1, even if T and 1, do not
share any semaphore. For example, suppose that 1, locks S first. Next, T is initiated and
preempts 1, . Later, a high priority task T, is initiated and attempts to lock S. Task Ty, will be
blocked. Task 1, now inherits the priority of 1., and executes. Note that T has to wait for the
critical section of T, even though 1 and 1, do not share any semaphore. We call such block-
ing push-through blocking. Push-through blocking is the price for avoiding unbounded prior-
ity inversion. If task 1, does not inherit the priority of T, task T, can be indirectly preempted
by task 1 and all the tasks that have priority higher than that of 1. Finally, we want to point
out that even if task 1, does not attempt to lock S but attempts to lock another unlocked
semaphore, 1, will still be blocked by the priority ceiling protocol because the priority of 1, is
not higher than the priority ceiling of S. We term this form of blocking as ceiling blocking.
Ceiling block is the price for ensuring the freedom of deadlock and the property of a task
being blocked at most once.

2.5. An Example Application of the Theory

In this section, we give a simple example to illustrate the application of the scheduling the-
ory.

Example 8: Consider the following task set.

1. Emergency handling task: execution time = 5 msec; worst case interarrival
time = 50 msec; deadline is 6 msec after arrival.

2. Aperiodic event handling tasks: average execution time = 2 msec; average
inter-arrival time = 40 msec; fast response time is desirable but there are no
hard deadlines.

3. Periodic task t4: execution time = 20 msec; period = 100 msec; deadline is at
the end of each period.

In addition, 15 may block 1, for 10 msec by using a shared communication
server, and task 1, may block 1, for 20 msec by using a shared data object.

4. Periodic task 1,: execution time = 40 msec; period = 150 msec; deadline is 20
msec before the end of each period.

5. Periodic task t5: execution time = 100 msec; period = 350 msec; deadline is at
the end of each period.

Solution: First, we create a sporadic server for the emergency task, with a period of 50
msec and a service time 5 msec. Since the server has the shortest period, the rate
monotonic algorithm will give this server the highest priority. It follows that the emergency
task can meet its deadline.

CMU/SEI-88-TR-33 13

Since the aperiodic tasks have no deadlines, they can be assigned a low background prior-
ity. However, since fast response time is desirable, we create a sporadic server executing at
the second highest priority. The size of the server is a design issue. A larger server (i.e., a
server with higher utilization) needs more processor cycles but will give better response
time. In this example, we choose a large server with a period of 100 msec and a service
time of 10 msec. We now have two tasks with a period of 100 msec, the aperiodic server
and periodic task 1,. The rate monotonic algorithm allows us to break the tie arbitrarily, and
we let the server have the higher priority.

We now have to check if the three periodic tasks can meet their deadlines. Since under the
priority ceiling protocol a task can be blocked by lower priority tasks at most once, the max-
imal blocking time for task t, is B; = max(10, 20) msec = 20 msec. Since 153 may lock the
semaphore S, associated with the communication server and the priority ceiling of S is
higher than that of task t,, task T, can be blocked by task 15 for 10 msec.8 Finally, task T,
has to finish 20 msec earlier than the nominal deadline for a periodic task. This is equivalent
to saying that 1, will always be blocked for an additional 20 msec but its deadline is at the
end of the period. Hence, B, = (10 + 20) msec = 30 msec.? At this point, we can directly
apply Theorem 4. However, we can also reduce the number of steps in the analysis by
noting that period 50 and 100 are harmonics and we can treat the emergency server as if it
has a period of 100 msec and a service time of 10 msec, instead of a period of 50 msec and
a service time of 5 msec. We now have three tasks with a period of 100 msec and an execu-
tion time of 20 msec, 10 msec, and 10 msec respectively. For the purpose of analysis, these
three tasks can be replaced by a single periodic task with a period of 100 msec and an
execution time of 40 msec (20 + 10 + 10). We now have the following three equivalent
periodic tasks for analysis:

* Taskt: C; =40, T, =100;B,=20;U; =04
» Task1,: C,=40;T,=150; B, =30 ; U, = 0.267
* Task 150 C3=100; T;=350; B;=0; U3 =0.286
Using Theorem 4:
1. Task 14: Check C; + B; < T;. Since 40 + 20 < 100, task 14 is schedulable.
2. Task 1,: Check whether either

C,+C,+By< T, 40 + 40 + 30 > 100
or 2C;+C,+B,<T, 80 + 40 + 30 = 150

Task 1, is schedulable and in the worst-case phasing will meet its deadline
exactly at time 150.

8This may occur if T, blocks 1, and inherits the priority of T,.

9Note that the blocked-at-most-once result does not apply here. It only applies to blocking caused by task
synchronization using the priority ceiling protocol.

14 CMU/SEI-88-TR-33

3. Task 15: Check whether either

CL+C,+Cy< Ty 40 + 40 + 100 > 100
of 20, +C,+Cy<T, 80 + 40 + 100 > 150
of 2C, +2C,+Cy<2T, 80 + 80 + 100 > 200
of 3C,+2C,+Cy<2T, 120 + 80 + 100 = 300
of 4C +3C,+Cy3<T, 160 + 120 + 100 > 350

Task 15 is also schedulable and in the worst-case phasing will meet its deadline exactly at
time 300. It follows that all three periodic tasks can meet their deadlines.

We now determine the response time of the aperiodics. The server capacity is 10% and the
average aperiodic workload is 5% (2/40). Because most of the aperiodic arrivals can find
"tickets," we would expect a good response time. Indeed, using a M/M/1 [2] approximation
for the lightly loaded server, the expected response time for the aperiodics is W = E[S]/(1 —
p) = 2/(1 — (0.05/0.10)) = 4 msec, where E[S] is the average execution time of aperiodic
tasks and p is the average server utilization. Finally, we want to point out that although the
worst-case total periodic and server workload is 95%, we can still do quite a bit of back-
ground processing since the soft deadline aperiodics and the emergency task are unlikely to
fully utilize the servers.

CMU/SEI-88-TR-33 15

16

CMU/SEI-88-TR-33

3. Real-Time Scheduling in Ada

The Real-Time Scheduling in Ada Project at the Software Engineering Institute is a coopera-
tive effort between the SEI, system developers in industry, Ada vendors, and DoD agencies.
It aims at applying the scheduling theory reviewed in Section 2 to the design and implemen-
tation of hard real-time systems in Ada. The deferred server, sporadic server, and priority
ceiling scheduling algorithms have all been developed at Carnegie Mellon University. We
call these analytic scheduling algorithms because the overall timing behavior of a system is
subject to mathematical analysis, starting with the basic rate monotonic theorems. The proj-
ect is implementing these analytic scheduling algorithms using an Ada runtime system, and
is coding examples of real-time systems to evaluate the suitability of the whole approach.

While the use of Ada for real-time systems presents many practical, implementation-
dependent questions such as the cost of performing a rendezvous, there are other important
guestions about the suitability of the concepts and scheduling rules of Ada. For example,
tasks in Ada run non-deterministically, making it hard for traditional real-time programmers
to decide whether any tasks will meet their deadlines. In addition, the scheduling rules of
Ada don’t seem to support prioritized scheduling well. Prioritized tasks are queued in FIFO
order rather than by priority, high priority tasks can be delayed indefinitely when calling low
priority tasks, and task priorities cannot be changed when application demands change at
runtime. Fortunately, it appears that none of these problems present insurmountable dif-
ficulties; solutions exist within the current language framework, although some language
changes would be helpful. In the SEI Real-Time Scheduling in Ada Project, we are investi-
gating how to apply analyzable scheduling algorithms within the Ada scheduling rules; we
are also investigating how the scheduling rules of Ada might be changed to make Ada more
directly suitable for real-time work. In addition, we are formulating Ada coding guidelines to
use when coding hard real-time systems. These guidelines allow the project’s scheduling
algorithms to be applied and supported within the existing language rules. The guidelines
are still evolving and being evaluated, but so far, it seems likely they will meet the needs of a
useful range of systems.

3.1. On Ada Scheduling Rules

First of all, the Ada tasking model is well-suited, in principle, to the use of real-time schedul-
ing algorithms. When using this approach, a programmer doesn’t need to know when each
task is running to be sure that deadlines will be met. That is, both Ada and the theory
abstract away the details of an execution timeline and view tasks as the basic unit of ab-
straction for the management of concurrency. Although Ada tasks fit well with the theory at
the conceptual level, Ada and the theory differ on the rules for determining when a task is
eligible to run and its execution priority. For example, if a high priority task calls a lower
priority task that is in rendezvous with another low priority task, the rendezvous continues at
the priority of the task being served instead of being increased because a high priority task
is waiting. Under these circumstances, the high priority task can be blocked as long as
there are medium priority jobs able to run. But there are a variety of solutions to this prob-

CMU/SEI-88-TR-33 17

lem. The most general solution within the constraints of the language is simply to not use
pragma PRIORITY at all. If all tasks in a system have no assigned priority, then the
scheduler is free to use any convenient algorithm for deciding which eligible task to run. An
implementation-dependent pragma could be used to give "scheduling priorities" to tasks,
i.e., indications of scheduling importance that would be used in accordance with analytic
scheduling algorithms. This approach would even allow "priorities" to be changed dynami-
cally by the programmer because such changes only affect the scheduling of tasks that, in a
legalistic sense, have no Ada priorities at all. The only problem with this approach is that
tasks are still queued in FIFO order rather than by priority. However, this problem can often
be solved by using a coding style that prevents queues from having more than one task,
making the FIFO issue irrelevant. Of course, telling programmers to assign "scheduling
priorities” to tasks but not to use pragma PRIORITY, and being careful to avoid queueing
tasks surely says we are fighting the language rather than taking advantage of it.

While this kind of drastic approach may be necessary in some cases, it nonetheless seems
likely that many real-time systems can be programmed satisfactorily using the concept of
priorities in Ada and giving an appropriate interpretation to Ada scheduling rules. The
relevant Ada rules are:

» Task priorities: fixed. This rule is inappropriate when task priorities need to be
changed at runtime. For example, when a new mode is initiated, the frequency
of a task and/or its criticality may change, implying its priority must change. In
addition, the priority of a sporadic server for aperiodic events needs to be
lowered when "tickets" are used up, and needs to be raised when new "tickets"
arrive.

Solution: When an application needs to adjust the priority of a task at runtime,
this task should be declared as having no Ada priority. The runtime system can
then be given a way of adjusting the priority of the task.

» CPU allocation: priorities must be observed. Ada requires that the highest prior-
ity task eligible to run be given the CPU when this is "sensible." "Sensible" for a
uniprocessor is usually interpreted to mean that if a call by an executing task
can be accepted, the call must be accepted and no lower priority task can be
allowed to execute. Although this interpretation may seem to be obviously the
best, it is in fact not correct for the priority ceiling protocol, which gives better
service to high priority tasks by ensuring that they are blocked at most once by
lower priority tasks. For example (see Figure 3-1), suppose a critical region is
implemented as a server task S, whose accept statements are the critical
regions guarded by a semaphore, and suppose a low priority task is in rendez-
vous with S. Also suppose the priority ceiling of S is H (i.e., the highest priority
task that can call S has priority H). Now suppose execution of the rendezvous
is preempted by a medium priority task M, whose priority is less than
H. Suppose M tries to call T, a server other than S. The priority ceiling protocol
says that the call from M must be blocked, but the normal interpretation of
Ada’s scheduling rules would imply that the call of M must be accepted since M
is the highest priority task that is eligible to run and T is able to accept the call.

Solution: M can be suspended just as it is about to call T because the priority
ceiling protocol says it isn't "sensible" to let server T execute on behalf of M. So
M is suspended, and the execution of S continues to the end of the rendezvous.
At that point, the priority ceiling protocol allows the call from M to succeed.

18 CMU/SEI-88-TR-33

Alternatively, give S and T an undefined priority. That is, the Ada rules say S
has no defined priority outside a rendezvous and within a rendezvous; it has "at
least" the priority of the calling task. These rules give an implementation suf-
ficient freedom to support the priority ceiling protocol directly. For example, S is
allowed to preempt M just at the point where M is about to call T.

Figure 3-1: Blocking Due to the Priority Ceiling Protocol

» Hardware task priority: always higher than software task priorities. This Ada
rule reflects current hardware designs, but hardware interrupts should not al-
ways have the highest priority, from the viewpoint of the rate monotonic theory.

Solution: When handling an interrupt that, in terms of the rate monotonic theory,
should have a lower priority than the priority of some application task, keep the
interrupt handling actions short (which is already a common practice) and in-
clude the interrupt handling duration as blocking time in the rate monotonic
analysis.

* Priority rules for task rendezvous:

+ Selective wait: priority can be ignored. That is, the scheduler is allowed,
but not required, to take priorities into account.

Solution: Ensure the runtime system takes priorities of waiting tasks into
account.

* FIFO entry queues: the priority of calling tasks must be ignored.

Solution: Often, it is possible to prevent queues from being formed (as
explained in the next section). If there are no queues, no issue of FIFO
gueueing arises. If it is impossible to prevent the formation of an entry
gueue, entry families can be used to get the effect of prioritized queueing.

+ Called task priority: only increased during rendezvous.

CMU/SEI-88-TR-33

19

Solution: Don't specify the priority of the called task. If the called task
has no assigned priority, its effective priority can be increased according
to priority inheritance or other scheduling rules. Alternatively, give the
called task a priority just higher than the priority of any of its callers.
From an analytical point of view, this causes no additional blocking in the
worst case, i.e., this approach does not reduce the schedulability of the
system. However, when the server is called by a low priority task, it can
now preempt some tasks that would otherwise be executable under the
priority ceiling protocol. This can cause the average response time for
aperiodic servers to be worse, and can increase the probability that a
non-critical task will miss its deadline in a transient overload situation.
But if the service time for low priority tasks is short, these negative effects
will be negligible, so this is often a viable approach that can be used with
today’s Ada runtime systems.

From what our project has learned so far, it seems to be possible in practice to support
analytic scheduling algorithms under current Ada rules by using a combination of runtime
system modifications and appropriate coding protocols. Of course, it would be better if the
language did not get in the way of priority scheduling principles. The future revision of Ada
should probably revise some of these rules so priority-based scheduling can be supported
more directly within the language.

3.2. Ada Real-Time Design Guidelines

While different guidelines can be applied to different real-time programming problems, the
guidelines developed in the SEI project reflect a basic principle of real-time programming —
write systems in a way that minimizes the duration of priority inversion. In other words, mini-
mize the time a high priority task has to wait for the execution of lower priority tasks.

For example, consider a set of periodic tasks that must exchange data among themselves
or that must call a communication server. The periodic tasks are called client tasks. They
do not call each other. Whenever they must read or write shared data or send a message,
they call a server task whose entries represent the critical regions. The client tasks are
given priorities according to rate monotonic principles, i.e., tasks with the shortest periods
are given the highest priorities. There are two options when assigning a priority to a server.
If the Ada runtime system supports the priority ceiling protocol directly, then give the server
a low priority or an undefined priority. In addition, tell the runtime system the priority ceiling
of the server, i.e., the highest priority of all its clients. The server will then, in effect, execute
at its client’s priority when there are no other callers. When a high priority client wants to
call a server, the call may be blocked in accordance with priority ceiling rules because these
rules specify when it is "sensible" to allow the high priority task to continue to execute.

If the priority ceiling protocol is not supported directly by the runtime system, the priority
ceiling protocol can be approximated by assigning each server task a unique priority that is
one greater than the priority of its highest priority caller. This approach can be used today
with all Ada implementations. Theoretically, assigning the server the same priority as its

20 CMU/SEI-88-TR-33

highest priority caller is sufficient for the approximation. However, different Ada implemen-
tations treat tasks of equal priority differently. We have found that some implementations are
inconsistent with the treatment demanded by the priority ceiling protocol for equal priority
tasks, namely, they do not give preference to the server. Increasing the priority by one
avoids this problem as long as there is no client task at this priority level.

With either approach, as long as a server need not synchronize with external events, it will
be either waiting for a client or serving its first caller at a priority that prevents other clients
from calling the server. As a result, the server task never has more than one client on its
gueues, so prioritized queueing is not a problem. However, when a server needs to syn-
chronize with external 1/0O events, it is suspended while in a rendezvous. Other client tasks
can then execute and attempt to call the server, and FIFO queues can develop. To ensure
that entry queues do not develop, the runtime system should suspend tasks that attempt to
call a server and allow some lower priority task to run. This has the same effect as a
prioritized queue because the suspended tasks will be awakened in priority order; the
highest priority calling task will have its call accepted first. If this solution is not supported by
the runtime system, then entry families must be used to simulate priority queues.

From a theoretical viewpoint, the time spent in each rendezvous with a server is counted as
part of the computing time, C, for the client task 1. Since the use of servers is a
synchronization problem, Theorems 3 and 4 apply. Under the priority ceiling protocol, the
maximal blocking time for a client task at priority level i is the longest entry call by a lower
level client task to a server whose priority ceiling is equal to or higher than the priority of i.
The worst-case blocking time is the same whether the ceiling protocol is implemented direct-
ly or is approximated by giving the server an appropriately high priority. The essential dif-
ference between the direct implementation and the approximation method is that for the di-
rect implementation, the server priority will be raised only when necessary. This tends to
generate less blocking on average and hence better response time when aperiodic tasks
have a priority below that of a server’s ceiling; in addition, in transient overload situations,
non-critical periodic tasks having a priority lower than a server’s ceiling are less likely to miss
their deadlines. In short, the direct implementation gives better average case behavior,
especially when the entry calls are relatively long. When the entry calls are short compared
with client task execution times, the performance difference is insignificant.

CMU/SEI-88-TR-33 21

22

CMU/SEI-88-TR-33

4. Conclusion

Ada tasking was intended to be used for real-time programming. However, the Ada tasking
model represents a fundamental departure from the traditional cyclical executive model.
Indeed, the dynamic preemption of tasks at runtime generates non-deterministic timelines
that are at odds with the very idea of a fixed execution timeline required by a cyclical execu-
tive.

In this paper, we have reviewed some important results of priority scheduling theory. To-
gether with Ada tasking, they allow programmers to reason with confidence about timing
correctness at the tasking level of abstraction. As long as the analytic scheduling algorithms
are supported by the runtime system and the resource utilization bounds on CPU, I/O
drivers, and communication media are observed, the timing constraints will be guaranteed.
Even if there is a transient overload, the tasks missing deadlines will be in a predefined
order.

Although the treatment of priorities by the current Ada tasking model can and should be
improved, most of the scheduling algorithms can be used today within the existing Ada rules
if an appropriate coding and design approach is taken, and if schedulers are written to take
full advantage of certain coding styles and the existing flexibility in the scheduling rules. Ad-
ditional reports on how this can be done are in preparation at the Software Engineering Insti-
tute.

CMU/SEI-88-TR-33 23

24

CMU/SEI-88-TR-33

References

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Goodenough, J. B., and Sha, L.

The Priority Ceiling Protocol: A Method for Minimizing the Blocking of High Priority
Ada Tasks.

To appear in the Proceedings of the 2nd ACM International Workshop on Real-Time
Ada Issues , 1988.

Kleinrock, L.
Queueing Systems, Vol I.
John Wiley & Sons , 1975.

Lehoczky, J. P., Sha, L. and Ding, Y.

The Rate Monotonic Scheduling Algorithm—Characterization and Average Case
Behavior.

Technical Report, Department of Statistics, Carnegie Mellon University, 1987.

Lehoczky, J. P., Sha L. and Strosnider, J.
Enhancing Aperiodic Responsiveness in A Hard Real-Time Environment.
IEEE Real-Time System Symposium , 1987.

Liu, C. L. and Layland J. W.
Scheduling Algorithms for Multiprogramming in a Hard Real Time Environment.
JACM 20 (1):46 - 61, 1973.

Rajkumar, R., Sha, L., and Lehockzy J.P.
Real-Time Synchronization Protocols for Multiprocessors.
To appear in Proceedings of the IEEE Real-Time Systems Symposium , 1988.

Sha, L., Lehoczky, J. P. and Rajkumar, R.
Solutions for Some Practical Problems in Prioritized Preemptive Scheduling.
IEEE Real-Time Systems Symposium , 1986.

Sha, L., Rajkumar, R. and Lehoczky, J. P.
Priority Inheritance Protocols: An Approach to Real-Time Synchronization.
To appear in IEEE Transactions on Computers , 1987.

Sprunt, B., Sha, L. and Lehoczky, J. P.
Scheduling Sporadic and Aperiodic Events in a Hard Real-Time System.
Technical Report (in preparation) , 1988.

CMU/SEI-88-TR-33 25

26

CMU/SEI-88-TR-33

Table of Contents

1. Introduction
1.1. Background
1.2. Controlling Priority Inversion

2. Scheduling Real-Time Tasks
2.1. Periodic Tasks
2.2. Stability Under Transient Overload
2.3. Scheduling Both Aperiodic and Periodic Tasks
2.4. Task Synchronization
2.5. An Example Application of the Theory

3. Real-Time Scheduling in Ada
3.1. On Ada Scheduling Rules
3.2. Ada Real-Time Design Guidelines

4. Conclusion

References

O N wWww NP -

11
13

17
17
20

23
25

CMU/SEI-88-TR-33

CMU/SEI-88-TR-33

List of Figures

Figure 2-1: Scheduling Both Aperiodic and Periodic Tasks
Figure 3-1: Blocking Due to the Priority Ceiling Protocol

10
19

CMU/SEI-88-TR-33

CMU/SEI-88-TR-33

List of Tables

Table 2-1: Scheduling Bounds for One to Nine Independent Tasks
Table 2-2: Minor Cycle Timeline: Each minor cycle is 50.

CMU/SEI-88-TR-33

	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	2. Scheduling Real-Time Tasks
	3. Real-Time Scheduling in Ada
	4. Conclusion
	References

