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Evaluation of the Rational Environment

Abstract. This report presents an analysis of the Rational R1000 Development Sys-
tem for Ada, also called the Rational Environment. The evaluation combined the use of
the Software Engineering Institute (SEI) methodology for evaluation of Ada environ-
ments, an analysis of functionality not covered by that methodology, and an assess-
ment of the novel environment architecture of the Rational Environment.  In addition to
this report, Experiment Transcripts for the Evaluation of the Rational Environment, by
Grace Downey, Mitchell Bassman, and Carl Dahlke (CMU/SEI-88-TR-21, Software En-
gineering Institute, Carnegie Mellon University, 1988) contains support material for the
experimental results.  The support material is the result of performing experiments
based on the SEI’s environment evaluation methodology.  It consists of transcripts of
the experiments, the detailed answers to the evaluative questions, and the detailed
performance results.
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1. Introduction

This report is organized as follows.  The introductory chapter presents some background infor-
mation for the evaluation, describes the configuration of the environment being evaluated, defines
the scope of the evaluation, and gives the reader a road map to assist in the reading of this
document. Chapter 2 discusses the distinguishing architectural characteristics of the Rational
Environment, highlighting in general its novel aspects compared to more conventional Ada lan-
guage systems.  Chapter 3 summarizes the capabilities of the Rational Environment in terms of
the provided functionality, the user interface, the documentation, and some performance aspects.
The report concludes with a summary of major findings.

1.1. Background

One of the goals of the SEI is to assess advanced software development technologies and to
accelerate the transition of those that appear promising.  Ada Programming Support Environ-
ments (APSEs), Software Development Environments (SDEs), and Integrated Project Support
Environments (IPSEs) have been recognized as a targets of opportunity for the SEI.  In 1985 the
Evaluation of Ada Environments (EAE) Project was started.  The two major results have been the
definition and development of a systematic methodology for evaluating environments and the
study of three of commercial APSEs (ALS, Verdix Ada, and DEC Ada).  A description of the
methodology can be found in [9], and the results of the study are published in [10].

Under the name of Evaluation of Environments Project, a continuation of the EAE Project has
made advances in two areas.  First, the project has started to investigate unconventional environ-
ment architectures by evaluating the Rational Environment. The SEI environment evaluation
methodology assesses the functional capabilities of an environment by performing a predefined
set of experiments.  During the course of this evaluation, it became evident that architectural
issues, especially those relating to unconventional architectures, are not adequately covered by
this methodology, nor are all functionality experiments included in it. This evaluation report ad-
dresses some of these deficiencies.

Second, the Environments Project has extended the coverage of the methodology with an exten-
sive project management experiment for assessment of SDEs and IPSEs [3]. The emphasis of
this experiment is on computer-based support for management of the development process, i.e.,
for project management and its integration with development support.  The project has evaluated
the ISTAR IPSE from Imperial Software Technology.  The results of the ISTAR evaluation are
documented in [5].
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1.2. The Rational Environment as Evaluated

The evaluation of the Rational Environment was performed with the following hardware configura-
tion and software configuration.  The hardware configuration is a R1000 Model 200-20 with the
following components:

• 32 Mb of primary memory.

• Approximately 2,010 Mb of unformatted disk storage (3 disks with approximately 670
Mb capacity each).

• Tape drive PE/GCR 75 ips streaming tape.

• Ethernet connection.

• 8 Rational terminals connected to the R1000 over the Ethernet via a DEC server.

The software configuration is Release D_9_25_1 or delta0 of the Rational Environment.  The
evaluated environment is the base environment, which comes as one package and includes the
following:

• Basic operating system functionality, such as file and directory system, process
management, access control, etc.

• A tiled window system for character terminals.

• An Ada command processor.

• An editor and browser sensitive to Ada syntax and semantics.

• An incremental Ada compilation system.

• A debugging system with extensive coverage of the Ada language.

• Programming-in-the-large support in form of the subsystem concept.

• Configuration management and version control support.

• Workorder management support.

The base environment can be extended with additional software packages that are sold as
separate products by Rational or that are unsupported tools contributed by users.  Product
packages include two products that enhance the code development capability of the Rational
Environment, a facility for document production, and a facility for electronic communication. The
products are:

• The Cross-Development Facility for the Motorola 68000 family, the DEC/VAX ar-
chitecture, and the MIL-STD-1750A architecture.

• The Target Build Facility for downloading of Ada source and compilation on other
hosts.

• The Design Facility, which supports the use of Ada as a program design language
(PDL) with structuring of program unit comments and generation of DoD-STD-2167
documentation from information provided therein, as well as a document formatter
language processor.

• An electronic mail facility (Rational Network Mail).

Unsupported tools contributed by users include a reusable component library, metric collection
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tools, and browsing tools. These packages were not included in the evaluated environment
because they either are unsupported tools or they were not available to the evaluators at the time
of evaluation.

1.3. Scope of Evaluation

The evaluation of the Rational Environment involves the use of the SEI methodology for evalua-
tion of environments, the analysis of functionality not covered by the experiments of the SEI
methodology, and an assessment of the Rational Environment architecture.

The SEI methodology requires the evaluator to perform a set of experiments on the environment
and answer questions based on the experience.  The experiments cover different functionality
areas. The current set of experiments consists of system management (system installation and
administration), detailed design and coding, testing and debugging, compiler quality (Ada com-
piler evaluation capability [ACEC]), configuration management, and project management.  The
questions cover four evaluation areas:  functionality, performance, user interface, and system
interface. The methodology is described in detail in [9]. We have performed experiments on the
Rational Environment in a manner similar to previous evaluations.

The Rational Environment, however, provides additional functionality that is not evaluated by the
experiments in the SEI method. Hence, we have analyzed those facilities based upon our own
hands-on experience.  Also, we have assessed the architecture of the Rational Environment for
its properties.  No prescribed method existed for assessing architectural aspects of environments.
Since the Rational Environment’s architecture is quite different from that of conventional environ-
ments, we chose to present the distinguishing aspects that implement the end-user capabilities.

The term conventional environment refers to a toolset on top of a common operating system such
as UNIX, Dec’s VMS, or IBM’s MVS—the toolset consisting of a text editor or language sensitive
editor, a compiler, a linker, a build tool, a debugging tool, and a version control tool.

The set of basic mechanisms provided by the Rational Environment is intended to be used as is,
following conventions outlined in the Rational documentation. However, as the functionality is not
expected to satisfy all needs, the Rational Environment has been made extensible, permitting
customers to add a layer of Ada functions on top of the delivered environment.  This layer would
encode some of the conventions and policies.  We chose to perform the evaluation experiments
on the environment as it was delivered.

The Rational Environment differs from conventional architectures in the following way.  Using
knowledge of the programming language, the program structure, and its semantics, the Rational
Environment optimizes user interaction by providing immediate feedback (even at the semantic
level) upon request, by reducing the number of entities the user has to manage, by limiting them
to logical entities, and by reducing the wait time on processing by processing in small pieces and
only what is minimally necessary.  The result is a more responsive interaction between the user
and the environment, the essence of which cannot be captured by performing measurements of
compilation of lines per minute, or source and object code sizes of program units.
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The execution of the SEI methodology experiments on the Rational Environment resulted in the
collection of some performance measures.  The experiments were designed to collect measures
for space, time, and responsiveness of various commands, operations, files, and objects.  Stress
testing of the environment through these experiments was limited to stress testing of the compiler
by running the ACEC test suite.  The collected measurements do not include performance figures
under system load or for development of very large Ada systems.

Because the Rational Environment is unconventional and readers may not have available a
description of it, this report describes as well as analyzes new and distinguishing concepts of the
Rational Environment.

1.4. Road Map for the Reader

This report does not require the reader to be familiar with the Rational Environment.  Nor does
the reader need to be familiar with the syntax and semantics of the Ada language, although
familiarity with the concepts of module interface descriptions, separation of specification and im-
plementation units, and separate compilation is useful.

Readers who want a quick summary of this report should read the introductory chapter (Chapter
1) and the conclusions (Chapter 4).

The distinguishing characteristics of the Rational Environment architecture and the conceptual
models of its novel features are discussed in Chapter 2, while the practicality of the provided
capabilities is summarized and analyzed in Chapter 3.  The following outline of the report gives a
synopsis of the various sections of these two central chapters:

1. Distinguishing Architectural Characteristics: This chapter highlights three areas
in which the Rational Environment distinguishes itself from conventional environ-
ments: being an interactive, language-centered code development and main-
tenance environment, being an environment with specialized hardware and
software, and being an environment that provides innovative version and configura-
tion control.

• A language-centered environment for code development and main-
tenance: The Rational Environment as evaluated can be called a language-
centered code development and maintenance environment. This section
defines language-centered and describes the benefits of such. The two fac-
tors that are the major contributors to this are discussed in detail.

• Consequences of Diana as primary system structure: This section
describes Diana and the way in which the Rational Environment ex-
ploits its use.  It discusses the benefits of Ada objects over the use of
multiple files, the way in which the user modifies Ada objects and com-
piles them, the benefits of treating all environment structures uniformly
as objects, and the benefits of uniform use of Ada as a consequence of
using Diana.

• Smart processing: This section discusses the basis for effective
smart processing, the benefits of processing in pieces, a cooperative
approach to minimizing reprocessing, the concept of subsystem as a
partitioning and composition mechanism for large systems, and the
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ability to support execution of incomplete programs—making the Ra-
tional Environment a candidate for exploratory programming and
prototyping.

• A specialized system: The Rational Environment is a specialized system in
several respects.  Its functionality is concentrated on Ada code development,
its style of interaction with users differs from that of conventional Ada environ-
ments, its user interface and terminal are unconventional, and the processor
was specifically designed to support the execution of Ada. The con-
sequences of such specialized hardware and software are discussed.

• Consequences of specialized hardware: This section first discusses
the benefits of a processor that is an Ada machine in terms of execu-
tion speed and a hardware-supported, persistent object management
system. Next, space utilization is discussed since the space consump-
tion of Diana representations can be an issue.  Being a special pur-
pose machine, the Rational Environment will have to be integrated into
the regular computing environment.  In that context, issues such as
use as a compilation engine, network support, and remote access are
discussed.

• Consequences of specialized software: This section discusses con-
sequences of the specialized software in the Rational Environment.
The consequences are organized into the following issues:  the ease
with which the environment is learned, the maturity of the environment,
the acquisition and porting of software from other hosts and Ada en-
vironments, the extension of the environment through integration of
tools and tailoring, and support for host/target development.

• Multiple user support: The Rational Environment emphasizes support for
large-scale development of Ada systems.  Key elements to such support are
versioning, composition, and configuration control facilities and support for
managing and tracking the tasks of developers.

• Version and configuration control: The version and configuration
control model (CMVC) supported by the Rational Environment is an
improvement over common approaches of combining conventional Ada
compilers and program library facilities with separate source code ver-
sion control tools.  This section discusses the benefits of the CMVC
model, which is built around the subsystem concept and nicely in-
tegrates Ada program libraries and version and configuration support.
The section also talks about the implementation of CMVC.

• Workorder management: The Rational Environment provides some
support for management and tracking of user tasks.

2. Capabilities of the Rational Environment: This chapter analyzes the capabilities
provided by the Rational Environment in some detail.  The major portion of the
chapter concentrates on the functionality provided by the Rational Environment.
The remaining three sections discuss the quality of documentation, the on-line help
facility, and the user interface model supported by the Rational Environment, as
well as some of the performance figures.

• Functionality: This section covers the spectrum of available functionality in
the environment, with the exception of workorder management since it is dis-
cussed in the previous chapter.  Subsections present brief overviews of the
available functionality in that area. The section starts out with highlighting the
concept of common operations on objects, elaborates on general editing and
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browsing capabilities, and then details the area of Ada code
development—beginning with code creation and including debugging and
testing. The section continues with configuration management support and
closes with a discussion of operating system and system administration
facilities such as file handling and logging, job and program control, archiving,
access control, and tailoring of displays.

• Documentation: This section analyzes the organization and quality of the
documentation and on-line help that is provided with the Rational Environ-
ment.

• User interface: This section describes the user interaction model of the
Rational Environment and the ease with which the user interface is learned.

• Performance: This section discusses the major results from the perfor-
mance data collected during the execution of the experiments.  The perfor-
mance results are in terms of space consumption, timing, and responsive-
ness. (The reader is reminded that given the time frame for the evaluation
we have not been able to perform stress tests on the Rational Environment
other than execution of the ACEC test suite.)
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2. Distinguishing Architectural Characteristics

This chapter summarizes the Rational Environment architecture, including its derived charac-
teristics. We consider the Rational Environment as it was evaluated to be a language-centered
environment for code development and maintenance, and discuss the components of its architec-
ture that characterize it as such.  These components are the use of Diana as primary program
representation, the introduction of the concept of subsystems, and the application of smart
reprocessing techniques.  This is followed by a discussion of the benefits and handicaps of such
a specialized system, including the effects of specialized hardware as well as software in terms of
performance and space utilization, integration of the Rational Environment into an organization’s
computing environment, and portability of Ada software.  This section closes with a discussion of
the support for large program development by multiple users, highlighting the configuration
management and version control model and the workorder management model provided by the
Rational Environment.

2.1. A Language-Centered Environment for Code Development
and Maintenance

We have analyzed environments by categorizing them along several dimensions.  Two of these
dimensions are functionality and environment architectures.

Functionality can be viewed in terms of how much of the life cycle is supported or what develop-
ment and management roles are supported.  The Rational Environment as evaluated in this
report (see Section 1.2) is best described as an Ada code development and maintenance
environment. It provides support for interactive coding and debugging of Ada programs. Detailed
design is supported in as far as Ada can be used for that purpose. Testing is supported in limited
form with the capability of generating program unit stubs and executing incomplete programs.
System integration is supported through the concept of subsystems.  It permits partitioning of a
system and efficient composition with different versions of subsystems. The Rational Environ-
ment provides support for version control and configuration management of Ada program units
and text files.  It specializes in supporting the management of Ada programs through subsystem
interface checking and through selection and dynamic composition of subsystem versions.  In
addition, the Rational Environment provides mechanisms for workorder management—primitives
for a task management facility.

Environment architectures can be characterized by categories defined in [1]. Environments can
be language-centered, structure-oriented, toolset-based, or method-based. Language-centered
environments are centered around a single programming language, are responsive (making use
of, and available to the user, semantic information about the program), tend to be implemented in
the language they support, and embed the application in the development environment, giving it
access to many of the facilities used to implement the environment.  Language-centered environ-
ments tend to provide little support for multiple programmers.  Structure-oriented environments
view programs as structures and allow users to manipulate them as such.  Different from
language-centered environments, language-specific information is not hard-coded in structure-
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oriented environments, but passed to the environment in a generation process.  Toolkit environ-
ments represent collections of tools that use a standard operating system as their common plat-
form. Generic programming-in-the-large tools can be found.  Efforts are underway to raise the
level of functionality of the platform, especially in the areas of data management and networking.
Method-based environments support a particular method of software development.  They fall into
two groups:  interactive (and often graphical) tools supporting one or several methods in a par-
ticular phase of the life cycle (such as design) and environments with support for managing the
development process.  The latter are often referred to as Integrated Project Support Environ-
ments (IPSE).

The Rational Environment architecture can be characterized as a language-centered
environment. As such, the Rational Environment is tailored to support the Ada programming
language. It provides a responsive facility for code development and maintenance.  It makes
effective use of a representation that maintains the structural and semantic information of
programs rather than storing programs with text as its primary program representation.  Through
partitioning, runtime type and interface checking, and incremental processing, the Rational En-
vironment is able to provide a language-sensitive facility for exploratory programming and
prototyping in Ada.  The Rational Environment is implemented in Ada.  Application programs
have a rich base on which to build components of the Rational Environment and execute com-
ponents embedded in it.  By the same token, version control and configuration management
facilities are provided to support the production of large Ada systems with teams of developers.

The following subsections discuss two key components of the Rational Environment as a
language-centered environment:  the representation and effective use of structural and semantic
information of programs and incremental processing techniques to achieve a responsive environ-
ment for a language with a high degree of static semantic checking.

2.1.1. Consequences of Diana as Primary System Structure
This section gives a short background sketch of Diana, Rational’s primary system structure, and
discusses the basic unit of Diana structures—the program unit—its role as the single represen-
tation of a program unit, the states of its representation, and utilization of the Diana structure
within program units. The section continues with a description of program libraries, the entity in
which program units are maintained, and a discussion of the uniform object manipulation
paradigm supported by the Rational Environment.  The section concludes with a discussion of the
facilities for manipulation of Diana structures by program, for dynamically binding to existing Ada
system components, and the use of Ada as command language.  These facilities give the Ra-
tional Environment some of the characteristics found in Lisp systems, which encourages ex-
perimental programming and prototyping.

Diana, a Descriptive Intermediate Attributed Notation for Ada [4], defines an abstract syntax
representation of Ada programs that is attributed with semantic information.  Its original intent was
to provide a standard intermediate Ada program representation that is passed between phases of
a compiler, and thus would permit the combination of different Ada compiler front-ends and back-
ends.
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2.1.1.1. Ada Objects
Rational has chosen Diana as the primary program representation for its Rational Environment.
Ada program units are maintained as Ada objects.  Ada objects are implemented as Diana struc-
tures, i.e., structures representing the syntactic structure and carrying semantic information and
executable code.  The textual representation of a program unit is derived from the Diana structure
and is updated whenever the Diana structure changes.  Users can also edit the text represen-
tation directly.  Those changes are then parsed into the Diana structure and a formatted text
representation derived from it. As such, Ada objects combine the notions of source code and
object code into one entity.  This differs from the traditional view that source code, object code,
and executable images are stored in different files, resulting in replication of information and more
objects to be managed directly by the user.

Ada objects are modified with an Ada object editor.  The user can do so by modifying the text
representation with text editing facilities, or by applying structure-editing operations to the Diana
structure. The user can move the cursor textually or structurally.  During structural cursor move-
ment, the appropriate syntactic Ada construct represented by the Diana structure is highlighted.
The user does not have to know Diana to use the structure-editing capabilities; knowledge of
syntactic Ada constructs is sufficient.

2.1.1.2. Changing Ada Objects
Ada objects exist in one of four states: archived, source, installed, and coded. These states can
be viewed as states of the ‘‘compiledness’’ of an Ada object.  The state of an Ada object is
changed by the user’s promoting or demoting it.  Promotion moves the object to a higher state,
while demotion moves the object to a lower state.

In archived state, program units are stored in compacted form, i.e., pure text, which will have to
be reparsed and recompiled before use.

In source state, the Ada object can be freely edited as if it were a text file; the user can move the
cursor on a character and line basis as well by syntactic structure.  The modified text is incremen-
tally parsed and Ada construct completion is provided.

An Ada object in its installed state is semantically correct and becomes available in the program
library, i.e., other program units can be semantically analyzed against it.  When modifications are
restricted to additions of declarations and statements and modification or deletion of declarations
and statements (if there are no dependencies on them), demotion to source state and reprocess-
ing can be avoided.

Promotion of the object to coded state will result in the generation of code.  In coded state, editor
operations are restricted to addition, modification, and deletion of comments, as well as addition
of declarations to package specifications.  Use of these restricted operations does not require
recompilation.

If the state of the Ada object is too restrictive for modification, the user can demote its state.  A
program unit can be demoted to installed or source state. A program fragment within a program
unit can be demoted to a source state while the program unit is in an installed state.  Depending
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on the chosen demote command, demotion will report obsolescent program units and abort the
demotion, or automatically cause the demotion of any dependent program units to the same
state. By demoting a selected part of program representation to a particular state, the user
indicates to the editor the scope of a planned change and the type of change.  Taking advantage
of the semantic information in the Diana representation, the editor can be smart about the con-
sequences of the change and minimize reprocessing.  For further discussion of smart processing
see Section 2.1.2.

2.1.1.3. Browsing Syntactic and Semantic Information
The availability of semantic information is also beneficial to the user directly.  The user can find
the declaration of any selected identifier, can query and browse all usage sites of a declaration
(not related to the Ada USE clause), and can ask for parameter templates when entering proce-
dure calls.  These capabilities are available for programming as well as debugging.  They can be
a powerful tool when Ada software has to be maintained.  The maintainer can use the Rational
Environment to get an impression of the ‘‘gestalt’’ (structure and dependencies) of unknown sys-
tems quickly and to better understand the effect of future maintenance changes.

2.1.1.4. Uniformity Through Objects
An Ada object is created in a program library and is stored under the same name as the program
unit. Libraries can contain libraries and are manipulated through a library editor.  Entries in a
library are treated as objects to which operations can be applied.  The basic editing commands
are the same as those of the Ada object editor.

As a matter of fact, all Rational Environment components can be treated as objects. Text files
are objects and are manipulated with a text object editor, whose functionality corresponds to the
text editing capabilities of the Ada object editor.  Other objects, such as activities and workorders,
also have object editors with functionality similar to that of the library object editor. All object
editors have functionality that is common to all object types and functionality that is type-specific.
Consequently, the user interface has a large degree of uniformity.

2.1.1.5. Uniform Use of Ada
The Rational Environment is implemented in Ada.  Ada packages exist for the different object
types of the Rational Environment, as well as their operations.  This includes the Ada object
types, i.e., the Diana representation of programs.  These Ada packages are visible to and can be
invoked by the user of the Rational Environment in two ways:  interactive invocation of system
functions through the command processor, and extension of the Rational Environment through a
layer of command procedures.  The availability of Diana in program form permits programs to be
written that manipulate Diana structures and take advantage of the parser available in the en-
vironment.

The Rational Environment uses Ada as its command language.  The "commands" are the set of
procedures available through a collection of Ada packages.  For example, directory commands
are the procedures available through the package(s) representing the two types of library objects.
A user interacts with the command processor through the Ada object editor; all capabilities of this
editor, such as call completion, are available.  The command processor supports full Ada and
executes commands by compiling the program unit in the command window.  The "commands" of



CMU/SEI-88-TR-15 13

the different system packages are available through a search list and are made visible, i.e., can
be invoked without qualifying the package name, through a use clause in the command window
program unit. The object-oriented user interface behavior is achieved by the command
processor’s supporting special default values for parameters, such as cursor or selected object.
If such a procedure is invoked without a selection beforehand, the user will have to supply the
parameter explicitly.  Since the command language is Ada, command procedures simply become
a matter of writing Ada procedures.  In particular, this permits the user to extend the Rational
Environment by adding a layer of functionality to the base environment, e.g., to implement certain
development policies.

As a result of the availability of Ada interfaces to the Rational Environment, application
developers have a large set of building blocks available. This permits certain classes of applica-
tions (i.e., interactive program code support tools) to be built quickly.  However, because the
application is now embedded in the Rational Environment, the application becomes dependent on
the environment’s being resident at runtime (similar to interpretive systems such as CommonLisp
or Smalltalk80).  If Ada code is to be developed for targets other than the R1000, reuse of the
software available in the Rational Environment must be limited to those parts that are supported
by the target runtime system as well (or can be taken out of the Rational Environment and added
to the target runtime system).

2.1.2. Smart Processing
Smart processing refers to limiting the amount of processing or reprocessing necessary to reflect
changes to a program. Smart processing holds that programs can be processed in small pieces
more effectively than as a whole, especially if processing is done between user modifications
and/or in background. This was the incentive for introducing separate compilation for many
languages. Module interface descriptions and strong type checking (as can be found in Ada),
however, can necessitate substantial (i.e., involving a large number of program units) reprocess-
ing because of a change. Smart processing and reprocessing applies to the whole
edit/compile/link/load cycle, i.e., to the use of incremental techniques in the link and load process
as well as compilation.  Furthermore, smart processing also includes the ability to handle incom-
plete programs.

The term smart recompilation has been coined by Tichy [8] to mean a technique for limiting the
scope of propagation due to certain program changes.  In this technique, a tool compares a
representation (in Tichy’s case parse trees) of a modified program with the original to determine
the extent of changes made by the user.  From the attained information, what has to be recom-
piled (if anything) is determined.

The Rational Environment supports smart processing.  As a result of using incremental process-
ing techniques throughout and handling incomplete programs, the Rational Environment is able to
exhibit the behavior of an interpretive system allowing exploratory programming.  In contrast to
Tichy’s approach, the Rational Environment approach to smart reprocessing requires cooperation
from the user in that the user indicates the scope of the intended change by demoting the ap-
propriate structure in the Diana representation.
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2.1.2.1. Basis for Effective Smart Processing
The Rational Environment is able to provide smart processing because it maintains Ada
programs as logical units, storing them in the Diana representation.  This permits the Rational
Environment to track user modifications to the program at the granularity of program units and
smaller units (i.e., individual declarations and statements).  The Diana representation not only
reflects the abstract syntax of Ada programs (from which textual representations can be
regenerated), but also contains semantic information.  Semantic information includes type infor-
mation and dependency information. Dependency information not only reflects export/import
dependencies due to Ada with clauses, but actual usage sites (e.g., all procedure call sites).
These actual usage sites are maintained within program units as well as across program units at
the level of individual declarations.

On one hand, the Rational Environment makes this semantic information available to the user
through queries.  On the other hand, the Rational Environment takes advantage of this infor-
mation to perform "smart reprocessing," i.e., keeping the reprocessing due to a change at a
minimum. It maintains semantic information in the Diana representation consistently by demoting
dependent program units when a declaring unit is demoted to allow modification.  Note that
demotion to source state results in removing the demoted unit from semantic information in the
Diana representation, i.e., units in source state will not be found when queries are run on seman-
tic information such as finding usage sites.

Conventional Ada environments require reprocessing of dependent program units any time any
change is made to a program unit specification.  The Rational Environment takes advantage of
the Diana structure to permit certain modifications without invalidating dependent program units.
These include modification of comments, addition of declaration to package specifications, etc.
(see Section 2.1.1.2).  As a result, fewer recompilations are required than in conventional Ada
environments.

Over the life of a program, dependencies—such as "with" clause dependencies—will deteriorate
in the sense that new dependencies are introduced and dependencies are rarely removed.  This
results in unnecessary recompilation after changes with side effects unless support is provided to
remove unused imports.  In the Rational Environment unused "with" clauses in a program unit
can be queried and displayed through underlining.  The underlined "with" clauses can then be
removed with an edit command. Similarly, the Rational Environment provides a function to
remove any unused imports of subsystems, a system partitioning facility similar to packages (see
Section 2.1.2.4).  Many conventional Ada environments do not provide such support.

2.1.2.2. Processing in Small Pieces
The Rational Environment supports the philosophy of processing in small pieces, both for consis-
tently maintaining the Diana representation and for providing the user timely feedback about an
operation. One form of it is "incremental" parsing, i.e., parsing of program text at any syntactic
unit level.  This means that users can edit Ada programs textually and ask for syntactic comple-
tion at any time.  The system will complete the entered (partial) program fragment as far as
possible, leaving placeholders for holes in the syntactic structure.  For example, in case of proce-
dure invocations the user will be provided with a template for the parameters to be supplied,
displaying the formal parameter names and their default values.
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Semantic analysis and code generation are performed at the granularity of program units by
promoting them to installed and coded state. In each of the states certain modifications can be
made without requiring demotion or propagation, e.g., insertion of comments or new declarations
in coded state.  When a program unit is demoted, dependent program units (based on actual
dependencies) are demoted to the respective state automatically.

2.1.2.3. Minimizing Reprocessing:  A Cooperative Effort
Users can limit semantic analysis and code generation to a unit smaller than a program unit.
They can do so by demoting a substructure of a program unit specification into source state while
the remainder of the program unit specification remains in coded state. For program unit im-
plementations the program unit has to be brought to installed state before a substructure can be
demoted to source state.  Only those program units dependent on the demoted substructure,
e.g., a single declaration, are demoted to the same state.  The Rational Environment knows that
the user only modifies the indicated program fragment and can minimize the necessary
reprocessing. For example, if the change is to a comment no recompilation is necessary.
Similarly, for program unit implementations only the substructure is semantically analyzed when
promoted, and code is regenerated for the whole program unit when it gets promoted to coded
state.

The user can further reduce the amount of reprocessing due to a modification by first querying all
use sites of a declaration and demoting the respective statements.  As a result, the dependencies
are temporarily removed and not affected by the demotion and modification of the declaration.
Once the declaration is promoted, the usage sites can be promoted after possible correction at
the cost of only reprocessing the temporarily demoted statements.  This latter technique,
however, can be quite labor intensive for the user.

Notice, that the Rational Environment views smart reprocessing as a cooperative effort between
the user and the environment.  The user cooperates by indicating to the Rational Environment the
scope of the intended changes by selecting and demoting the appropriate substructure in the
Diana representation, e.g., only the comment of a procedure.  If the user demotes a whole
program unit, but does not make any change or only a small change such as a change to a
comment, the Rational Environment will reprocess the whole program unit on promotion. It does
not attempt to analyze the representation in source state to determine a scope of change smaller
than the demoted Diana structure.

2.1.2.4. Subsystems for Partitioning Large Systems
The Rational Environment introduces the concept of subsystem as a facility for partitioning large
Ada systems into manageable collections of Ada program units at a granularity larger than Ada
packages. Subsystems act as name scope boundaries, propagation boundaries, and
composition boundaries. The next three paragraphs elaborate in each of these scoping con-
cepts.

Subsystems basically are program libraries with additional properties.  Program units declared in
a subsystem are not visible outside a subsystem unless they are exported, i.e., listed in the
subsystem specification (spec view). By importing a subsystem specification, the facilities ex-
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ported by that subsystem are made available in the importing subsystem.  The Rational Environ-
ment checks against imported subsystem specifications during semantic analysis, i.e., during
promotion to installed state.  The facilities listed in a subsystem specification must be satisfied by
its implementation (load view), i.e., the collection of program units contained in it.  However, this
condition is not checked until run time, or through explicit invocation of a checking function. As a
result, subsystems can be developed independently, i.e., a subsystem specification can be
provided for outside use while the subsystem implementation is still in progress.  Figure 2-1
illustrates the scope of compile-time checking and run-time checking.  The scope of compile-time
checking for the implementation (load view) of subsystem B is shown with a bold line.  The
implementations of subsystems A and C have similar compile-time checking scopes, which are
determined by their import dependencies.  Subsystem B has two out of three program units
exported, while the other two subsystems have all program units exported.  All subsystems are
shown with only one spec view and one load view each.
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Figure 2-1: Rational Subsystems

Subsystems limit the propagation of changes, i.e., the invalidation of program units affected by
the change, to the program units contained in a subsystem.  This is accomplished by treating the
subsystem specification and subsystem implementation as two separate program libraries.  A
developer making a change to a package specification only pays for the cost of recompiling the
affected program units in the subsystem being worked on, rather than all program units of a
system—an expensive proposition in large systems. If the changed specification is exported from
the subsystem, the propagation beyond the subsystem boundary is not done at the cost of the
original developer.  Instead, the developer provides a new version of the subsystem specification,
and owners of other subsystems are responsible for the recompilation cost of upgrading their
subsystem import list to the newer version.  The propagation is controlled as the owners of the
affected subsystems can decide when to upgrade at a time appropriate for them.
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In the Rational Environment Ada systems are composed of a collection of subsystems.  This
system composition is defined in an activity file, which is a table listing all subsystems comprising
the system as well as the version of each subsystem specification and implementation.  The
compatibility of the subsystems specified in the activity file is checked dynamically.  The Rational
Environment checks that the facilities indicated in the selected version of each subsystem
specification are being provided by the program units in the selected version of the subsystem
implementation. It also checks that the version of the imported subsystem specifications that
each subsystem implementation has been compiled against is the version of the subsystem
specification as indicated in the activity file.  When the user invokes the program for execution,
subsystems listed in the activity file are dynamically linked and loaded.  Incompatibilities are
recognized at runtime and an exception is raised.  Users can request the checking to occur
before either by invoking a checking command or by prelinking and preloading.  The interpreta-
tion of activity files allows users to produce different system configurations by building several
activity files.  The cost of building a new configuration is the construction of the activity file and the
cost of interface checking at load or preload time (unless there are mismatches in the subsystems
which require correction in the subsystem itself).  The benefits are especially apparent at system
integration and test time, when multiple system configurations are put together.

By comparison, the use of program libraries without subsystems in the Rational Environment or
the use of program libraries in conventional Ada environments can require extensive recom-
pilation. The user is allowed to split Ada systems into multiple program libraries.  They represent
separate name scopes. Search lists or links are used to make program units in libraries visible to
command windows.  Changes in program libraries that are depended upon are generally
propagated to the using program libraries.  A change in the composition of program libraries
requires recompilation of the dependent program libraries.  Thus, in conventional Ada environ-
ments, the cost of parallel development and processing side effects of changes is comparatively
high, especially for large Ada systems.

2.1.2.5. Support for Incomplete Programs
The Rational Environment supports the execution of incomplete programs.  The Rational Environ-
ment facilitates stub generation for program unit specifications.  It also permits gaps to be left in a
program unit at the statement level, i.e., placeholders for statements to be filled in or statements
temporarily demoted to source state, while the whole program unit is in coded state, and ex-
ecutable. Similarly, separate subunits are not required to be in coded state for their parent unit to
be executable.  At runtime the Rational Environment raises an exception when execution reaches
an incomplete program fragment.  This is a convenient feature when exploratory programming or
prototyping is exercised.

2.2. A Specialized System

A specialized environment architecture such as the Rational Environment has certain costs as-
sociated. In this section we examine the Rational Environment as a specialized system by first
discussing the specialized hardware and its consequences, and then elaborating on the issue of
specialized software.
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2.2.1. Consequences of Specialized Hardware
The Rational Environment executes on special hardware, referred to as the R1000 processor.
This hardware directly supports a virtual machine that can execute a high-level instruction set
tailored to the Ada language.  This is similar to hardware directly executing p-code for Pascal
programs, Xerox’s machines providing a Mesa/Cedar instruction set, or stack machines such as
Burroughs’ to better support block structured languages—in particular Algol.

2.2.1.1. Benefits of an Ada Machine
The instruction set reflects the Diana representation quite closely.  Thus, the translation from
Diana to object code is almost a one-to-one mapping.  As a result source code debugging can be
provided without excessive effort by the debugger to understand and compensate for compiler
optimizations. At the same time the executable code is more compact because the instruction set
is higher-level than that of conventional hardware architectures.

Rational’s decision to support an Ada virtual machine through special hardware permits them to
provide an efficiently executing Ada runtime system.  The subsystem concept is supported by
providing runtime support for dynamic linking/loading.  Generics are implemented as shared
code. Ada types, such as float, access, vector, matrix, array, and record, are directly supported.
User-defined types are represented through hardware-interpreted type descriptors.  Data objects
are stored efficiently through the use of hardware supported bitpacking techniques.  Constraint
checks are performed by hardware instructions.  Task context switching is implemented in
hardware. (Hardware refers to physical hardware and microcode, i.e., firmware).

The R1000 hardware implements a virtual memory system, i.e., the memory system responds to
virtual addresses and there is no software address translation.  Both system software and ap-
plication software executes in virtual memory.  Virtual memory consists of a segmented virtual
address space.  This virtual address space manages all disk space.  Physical memory can be
viewed as a cache providing fast access to objects.  Objects allocated from the virtual memory
system can be persistent, i.e., they may outlive the creating task.  There is no separate file
system on the disk. Files are represented as persistent objects.  In short, the R1000 hardware
provides a persistent object management system.

2.2.1.2. Space Utilization
It is difficult to compare the space efficiency of the Rational Environment and conventional ar-
chitectures due to the differences in data management in those architectures.  The Rational
Environment uses a variety of space reduction techniques in order to address the potentially
space intensive approach of using Diana as primary representation.  Space reduction techniques
range from more compact executable code due to a high-level instruction set, efficient storage of
Diana representation through hardware support, and delta techniques on program unit versions,
to user controllable techniques such as bringing program units into compact form (archived state),
generating compact executable views of subsystems (code views), maintaining descriptions that
permit regeneration of full Diana representations for subsystem views from the delta storage of
program units, and sharing subsystem versions across system variants as specified in multiple
activity files.  The different techniques and their effect on space are discussed in more detail in
Section 3.4.
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Overall, the Rational Environment’s space requirements are similar to those of other Ada environ-
ments and generally more space intensive than what users are accustomed to from other lan-
guages. Notice, however, that the Rational Environment has an advantage in that the composi-
tion and dynamic linking capabilities of subsystem program libraries can result in space savings
over conventional Ada environments, especially for large Ada systems, if used appropriately.

2.2.1.3. Integration into a Computing Environment
The Rational Environment is intended to be used as an interactive environment rather than a
batch compilation server.  Its compilation facility has not been optimized for batch-processing of
Ada programs.  Therefore, some of the effectiveness of the system is lost if it is configured in a
workstation network as a pure compilation engine, while users edit Ada code on their personal
workstation. Despite this fact, the compilation speed compares to or exceeds those of various
Ada compiler systems on DEC/MicroVAX II, and Sun 3/140 workstations.

Notice, that the Rational Environment, due to its smart reprocessing techniques, will reduce (in
some cases drastically) the number of lines of code to be recompiled after a change compared to
conventional Ada environments.  Thus, the time spent in compilation can be smaller even though
a conventional Ada compiler may be compiling more lines per minute.  However, smart
reprocessing is most effective if users develop code on the Rational Environment rather than
using it as a batch compilation engine.

One R1000 hardware system is intended to support a number of simultaneous interactive users.
In general, the Rational Environment can support approximately ten persons developing new
code interactively. However, one or two large-volume compilations or large- system integrations
results in sluggishness of the Rational Environment—a property more annoying to the user in a
highly interactive environment than in a batch compilation setting.

The Rational Environment does not support network transparent access to files, program
libraries, etc.  This means that copies of the same must be maintained by explicitly copying them
between machines using the file transfer capability, which operates over an Ethernet connection.
The result is replication of data—increasing as project size and number of installed R1000 sys-
tems increase.  The Rational Environment requires subsystem specification views to be copied in
full size while load views can be copied in their compact representation.  The Rational Environ-
ment does not require all subsystem versions to exist as copies on all machines.  Some primitives
are provided in an attempt to aid the management of primary and secondary copies of program
libraries (i.e., subsystem specifications and subsystem implementations). They are expected to
be used following certain conventions (see Section 2.3.1.1).

The Rational Environment has been tailored to be an Ada code development and maintenance
environment. Usually, other computing services such as document preparation, electronic mail,
etc. already exist in a work environment.  It is desirable to continue to use them rather than
attempting to port them onto the Rational Environment or use the separately packaged products
of the Rational Environment.  This, however, requires an integration of the Rational Environment
into the computing environment.  Currently, such support consists of user-initiated file transfer,
support for remote procedure call (RPC), and remote access through terminal emulation based
on IP/TCP.
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Since the R1000 supports remote access based on IP/TCP, the need for both a regular terminal
or workstation screen and a special R1000 terminal can be eliminated.  The R1000 uses special
terminals with 60 lines and a keyboard with a large number of special function keys.  Some of the
function keys are augmented by pushing combinations of three other keys at the same time. The
user interface of the Rational Environment has been tailored to such a terminal.  The screen is
divided into multiple windows. To compensate for the lack of a pointing device, the capabilities of
the keyboard are used extensively.  Some commands are bound to the special keypad, while
others are invoked through the assignable function keys augmented by the meta, control, and
shift keys, and some commands are invoked through modifiers on keys of the regular keyboard.
Remote access is provided through an emulation package that supports VT100 type terminals
and keyboards.  Since VT100 is a industry standard for terminals, it is simple to set up terminals,
PCs, and workstations to provide remote access.  Such emulators require adjustments to the
user interface by adapting the binding of commands to the keyboard, as the layout and availability
of keys may differ from that of the Rational keyboard.

2.2.2. Consequences of Specialized Software
The Rational Environment software has a variety of special properties.  Instead of being layered
on top of an existing operating system, the Rational Environment itself implements many of the
operating system functions.  As a result, these components are going through a maturity process
and have the potential of differing in provided functionality from that of conventional environments
and operating systems.  All information is stored in objects based on the Diana representation.
An object management system manages all storage.  Text files are a particular type of object.
Objects can be named through a directory system.  The characters chosen for directory and file
extension separation are different from those of other file systems.  A Rational-specific family of
editors has a great commonality between its members, but differs from popular editors on other
systems. The window system is proprietary and not compatible with other screen-oriented user
interface packages (terminal-independent packages such as UNIX curses or window systems
such as X windows).  The Rational Environment provides its own job management system.  It
uses Diana as the primary program representation, introduces the concept of subsystem for par-
titioning large Ada systems, and applies smart processing techniques (see Section 2.1).

This specialized software raises a set of issues, which are discussed in the following sections.
Some of the issues deal with the differences visible to the user of a Rational Environment, while
others address the differences in the functional model available through the programmatic inter-
face.

2.2.2.1. Learnability
The user interface of the Rational Environment is reasonably consistent through the use of an
editor family for all interactions and Ada as the universal interaction language.  The interaction
style may be different from that to which users are accustomed—multiple window system,
keyboard with many function keys, no pointing device, object-oriented user interface, availability
of structural and semantic information for browsing.  Once acquainted with the model, even infre-
quent users can use the Rational Environment without repeated learning.  Since the Rational
Environment will most commonly be accessed remotely from a developer’s workstation or
developers will use other systems to do work other than Ada programming, users will have to
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face dealing with two window systems, two editors, two command languages, etc. For further
discussion of the user interface the reader is referred to Section 3.3.

2.2.2.2. Maturity
All software components of the Rational Environment were developed new and, as all software
does, this environment must go through a maturing process.  We found that the Rational Environ-
ment and the R1000 hardware have been quite reliable.  We have had no system crash.  Tools
could be used throughout the experiments without major failures.  Some bugs were encountered,
but we were able to complete the experiments through work-arounds after consultation with Ra-
tional. We have encountered some areas in which additional functionality is desirable (including
operating system functionality such as incremental garbage collection of objects and network
transparent object/file access).

In general, the Rational Environment is quite consistent in the provided functionality, but the
consistency breaks down in some cases.  This is an artifact of the Rational Environment architec-
ture. In a conventional environment the command interpreter provides a mapping from a com-
mand language to the functions implementing a facility.  This mapping encourages the command
language designer to hide implementation concerns and concentrate on providing end-user
functionality. In the Rational Environment, Ada is the command language and the Ada
procedures implementing the facility are directly callable.  In some of the more recently intro-
duced facilities, the functionality and names of procedures reflect the particulars of the implemen-
tation. Examples are the choice of the name Initial for creation of a subsystem in contrast to
other objects being created with Make_<object>, and the provision of several operations through
parameterization of one implementation procedure. However, a new layer of procedures can be
added by the user to provide a set of operations that disguise implementation details.  This can
be done easily due to the extensibility of the environment (see Section 2.1).

2.2.2.3. Porting of Software
Issues of porting of software fall into two categories:  acquisition of existing Ada software into the
Rational Environment and adapting the software in order to compile, link, and execute in the new
environment.

The Rational Environment supports acquisition of existing Ada software in the following way.
Source code can be transferred in the form of text files from other hosts via a file transfer facility.
The text files can be moved into Ada program units residing in program libraries through a pars-
ing facility.  Notice that on the Rational Environment each program unit is listed under its name,
while on conventional environments file names can be given independent of the program unit
names, and files can be used to group multiple program units.  In order to preserve this grouping
information program units in different files can be placed into different directories within the same
program library, or they can be placed into different subsystems.  Placement into different sub-
systems requires additional work as export/import structures will have to be defined—information
that is beneficial for partitioning large Ada systems.  When Ada source code is moved to other
hosts, this information would be lost as other Ada environments do not currently support the
subsystem concept.
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Getting Ada software into an executable state on the Rational Environment can create more
problems; however, these problems are not unique to the Rational Environment.  Applications
often use functionality that is not defined as part of the Ada language standard in the Ada LRM.
Examples are file system access, operating system access including job control and network
communication, and screen-oriented display. Thus, porting involves adapting the application to
its new execution environment (which is more than the Ada runtime system).  This is an Ada
porting problem between any two systems.  The Rational Environment supports the development
of code that is independent of the Rational Environment by making several subsets of the en-
vironment functionality available (through the Rational concept of model—see Section
3.1.5.2)—one of them being the subset specified as part of the Ada standard (i.e., calendar,
text_io, sequential_io, etc.).

The Rational Environment adds to the problem by having made a choice that is in conflict with the
general choice.  One example is object/file naming.  Most systems use "." as a file name and
extension separator, while in the Rational Environment it is the directory name separator.  Thus,
an application opening a file named "test.dat" will run well on many systems, while on the Ra-
tional Environment it expects test to exist as a directory.

For two-dimensional screen display some systems provide a device-independent package, such
as curses, which is available on UNIX systems as well as on DEC’s VMS.  Ada applications that
make use of such display handling and window packages require some effort to be ported to the
Rational Environment.  Several choices are available:

• Change the application to use a different display and window package.

• Port or reimplement the missing packages; some display and window packages are
implemented in languages other than Ada and provided with an Ada call interface.

• Use the cross development facility of the Rational Environment executing on the
target only (see Host/Target support), when Ada programs have been originally
developed on a host other than the Rational Environment.

• Leave the non-portable components of a system on the target and provide remote
access with the remote procedure call (RPC) facility.

On the Rational Environment the package window_io allows applications to interface to its win-
dowing facility.  Porting software using this package to other systems requires adaptation to other
window systems as the package has not been ported.

2.2.2.4. Integration of Tools
The Rational Environment currently concentrates its user support on Ada programming.  Tools
providing additional services must be built or ported and integrated.  Some of the porting issues
have already been mentioned.  Once ported, a tool may have to be assimilated into the Rational
Environment if uniformity with that environment is desired.  This means adaptation of the user
interaction model as well as the information storage and processing philosophy.

The Rational Environment user interface relies heavily on the use of function keys and on the use
of Ada as command language—an approach not commonly found in tools.  The Rational Environ-
ment stores information in structured form using the Diana representation and makes this struc-
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ture available to the user for browsing and querying, while conventional tools tend to use a text
representation, or devise their own structural representation (especially in the case of graphical
tools). Users of the Rational Environment interact with objects that represent both source code
and executable representation, while many other tools require the user to manage source
representation and tool-processed representations through different files. The Rational Environ-
ment does processing (semantic analysis and code generation) in small pieces and is therefore
able to provide feedback on semantic inconsistencies for user modifications while the user is still
in context, while many tools provide the analysis capability in a form that processes the complete
source entity rather than the modified portion.  Thus, integration of tools to fit the Rational En-
vironment philosophy is a non-trivial effort.

2.2.2.5. Environment Extensibility
The Rational Environment provides extensibility in two forms. The Rational Environment is exten-
sible, because in certain functionality areas (e.g., workorder management) the user is given the
ability to tailor the functionality through parameters. The Rational Environment is also extensible,
because part of the system is made available through Ada interface specifications. New Ada
code can be added quickly to provide additional operations, using the available functionality as
building blocks.

The user of a Rational Environment is in fact expected to write such an envelope of procedures, if
the provided functionality is insufficient.  Such envelope procedures can reflect policies that the
environment should enforce.  For example, the Rational Environment provides a basic checkout
mechanism, whose purpose is coordination of updates.  While the basic mechanism guarantees
that only one person can have a program unit checked out, it does not enforce that only one
person has access rights to the checked-out unit.  Such access control can be accomplished by
manually setting access rights on the appropriate objects or by encoding the setting of those
rights in an envelope procedure that users will call instead of the built-in procedures.

2.2.2.6. Host/Target Support
The Rational Environment provides host/target support for several machine architectures, where
the Rational Environment on the R1000 hardware acts as a universal host development environ-
ment. That means code is developed and possibly tested on the Rational Environment before
being cross-compiled and tested on a target system, still using the Rational Environment as the
primary development and debugging vehicle.  Such a development strategy has to be carefully
planned by the user.  One reason is the potential incompatibility of the execution environment
(see Porting of Software).  A second reason is the use of software components that are available
to the application developer through the Rational Environment, i.e., applications can be em-
bedded in the Rational Environment (see Section 2.1).  Some of the components are specific to
the Rational Environment and may not be available on the target system.  The Rational Environ-
ment supports limiting the user to facilities defined in the Ada standard. A third reason is the
nature of the Rational cross-compilation support.  Rational provides a Cross-Development Facility
for the 68020, MIL-STD-1750a and VAX/VMS, and a Target Build Facility for other architectures.
The former provides a cross-compiler on the R1000, down-loading compiled code, and debug-
ging through the debugger in the Rational Environment on the R1000.  The latter provides a
facility for downloading Ada source code and compilation on the target machine.
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2.3. Multiple User Support

The Rational Environment supports the development of large Ada systems and to support the
coordination of development by multiple teams.  Its support consists of a configuration manage-
ment and version control facility (CMVC) that uses the subsystem concept and a facility for
managing user activities, i.e., the workorder concept.  This section discusses each of these
multiple-user support facilities in turn.

2.3.1. Version and Configuration Control
The CMVC facility of the Rational Environment supports composition of large systems, versioning
and tracking of versions and configurations, coordination of multiple developers and parallel
development activities, and integration of configuration and version control with the programming
environment, especially Ada program libraries.  The available support is an improvement over the
commonly found approach of combining a conventional Ada compiler and program library system
with a separate source code version control tool.  CMVC has a two-level scheme for composing
configurations of Ada systems, which is based on the concept of subsystems and was introduced
in Section 2.1.2.  To remind the reader, Ada systems are composed of subsystems, and subsys-
tems are composed of Ada program units.  Subsystems are beneficial for building large systems,
because they provide a partitioning mechanism for systems as well as a grouping mechanism for
entities larger than Ada packages, while still supporting full interface checking.

2.3.1.1. CMVC Model
Subsystems exhibit the following properties:

• Subsystems can be developed independently.

• Subsystems can be maintained in versions.

• Subsystem versions can be composed into systems.

• A subsystem version can be developed by a team in a coordinated manner.

• Subsystem versions can be developed independently and merged.

• Subsystems are the base unit for distributed development.

Each of these properties and the resulting CMVC facilities are discussed in the next paragraphs.

Different teams of programmers can work on different subsystems independently.  The Rational
Environment supports independent development of subsystems through to the separation of sub-
system specification and implementation into spec views and load views respectively.  Subsys-
tem implementations are compiled against the imported spec views of other subsystems.  The
consistency between the specification and implementation of a subsystem is not checked until
link/load time.  This means that recompilation due to changes does not propagate beyond the
boundary of a subsystem, i.e., the subsystem concept acts as a system-partitioning mechanism
(see also Section 2.1.2 and Figure 2-1).  In conventional Ada environments multiple program
libraries can be used to permit independent development to occur.  They either contain a com-
plete copy of an Ada system or are structured into a program library hierarchy.  In the first case,
coordination has to happen at the source code level and compilation of the complete system is
required. In the second case, concurrent development can occur safely only at the leaf nodes of
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the program library hierarchy.  The Rational Environment permits the use of libraries and links
instead of subsystems; this corresponds to the use of multiple program libraries for independent
development in conventional Ada environments.

Subsystems can exist in versions, i.e., as subsystem views.  A subsystem view represents the
collection of program units that make up a particular subsystem configuration.  Subsystem views
can be released, i.e., frozen, or can be working views. Working views are the work areas in
which changes can be made to subsystems, i.e., work areas that are under the control of the
Rational Environment.  The implementors of one subsystem can develop, i.e., compile against a
stable specification of other subsystems, while their implementation is progressing.  The subsys-
tem implementation can be tested against a released (i.e., stable) implementation of the imported
subsystem if it is compatible with the specification view (determined dynamically at run-time).  In
conventional Ada environments multiple copies of program libraries can be made use of to main-
tain Ada program versions in compiled form.  Usually, naming conventions are used to record
version related information.  Copying and moving program libraries can require recompilation on
conventional Ada environments, while this is not the case on the Rational Environment when
duplicating subsystem views on the same machine.

A system is composed by selecting versions of subsystem specifications and subsystem im-
plementations. A system configuration is represented by an activity file, i.e., a list of particular
versions of subsystems. An instance of the executable image of a system is constructed dynami-
cally, or at user request through an explicit prelink/preload operation. System composition
through activity files is illustrated in Figure 2-2.  The figure shows how several system composi-
tions can share subsystem versions.  No special support is provided for the management of
activity files, i.e., system configurations.  They are managed in a manner that is similar to that
used for text files.  Activity files can be placed anywhere in the file system.  Access control can be
used to limit access to activity files.  Multiple versions of system configurations are maintained
using appropriate discipline and naming conventions on activity files.  Even though subsystems
are tailored to support grouping and versioning of Ada program units, activity files as well as text
files can be placed into them.  In this case, the versioning facility of subsystems is used.  In
conventional Ada environments system composition through program libraries requires some of
them to be recompiled to establish the correct compilation context.  System configurations are
maintained through appropriate naming conventions.

A collection of sequentially released subsystem versions is referred to as a path. Within one path
multiple people can work on producing the next released version.  This is done through a collec-
tion of working views, also called subpaths. This is illustrated in Figure 2-3.  Individual program-
mers do work in working views.  In order to modify a program unit, programmers have to check
the program unit out.  This results in a new generation of the program unit to be created and
made available for modification in the working view.  While a program unit is checked out, it is not
available to other developers for modification.  Other working views refer to a previous generation
of the checked-out program unit, thus, are not affected by the changes to it.  Upon checkin, the
new program unit generation becomes immutable and available for other team members working
on the particular subsystem path.  They can inquire whether their working view is up-to-date and
can upgrade it to new generations with an explicit operation.  Checkout of a program unit will
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Figure 2-2: Multiple System Configurations

always result in the latest generation’s being checked out regardless of what generation is
referred to in the working view.  One working view is used as the integrating view and its content
becomes the new release of the subsystem path.

A subsystem can have multiple paths, each representing an independent progression of develop-
ment for the given subsystem.  This means that two teams of programmers can checkout and
modify the same program units concurrently in two different paths.  A subsystem starts out with
one path.  Additional paths are created with respect to a version in an existing path.  A merge
operation allows two paths to be merged, i.e., one path to be upgraded with changes made to a
second path.  This can be done selectively on individual program units.  It is the user’s respon-
sibility to determine which subsets of modified program units are a consistent update.  Both paths
can continue to evolve after a merge operation.  This is illustrated in Figure 2-4. A variety of
development scenarios can be supported.  One such scenario is that one path represents a field
release and bug fixes to it, while a second path represents further development.  Bugs fixes can
be made to the field release without affecting development.  At an appropriate time during
development, these bug fixes can be merged into the development path.  The Rational Environ-
ment supports this merge through an operation that takes the field release with bug fixes and the
development release, determines the set of changed program units and performs the merge as
much as it can automatically.
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While different paths of one subsystem support independent development, subpaths are intended
for sequential development of releases in a path.  A program unit can only be checked out into
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one working view at a time.  However, the path/subpath model has been augmented to allow
independent development within one path at the program unit level.  Individual program units in
subpaths can be marked for independent development (severed), and program units in inde-
pendent paths can be marked for coordinated updates (joined), i.e., sequential updates.  Further-
more, program units in a subsystem view can be marked as uncontrolled, i.e., they are not sub-
ject to any version control operations.  Conventions will have to be carefully adhered to in order to
maintain consistent development.

Distributed development is supported at the subsystem level.  Since the Rational Environment
does not provide network transparent file and program library access, copies of a subsystem
have to exist on several machines.  Conventions and mechanisms for making copies primary and
secondary help manage the problem of a coordinated update of a multiple copy subsystem.

To reduce space consumption due to replication and to eliminate recompilation after copying,
developers can distribute copies of code views (i.e., a more compact representation with a
stripped down Diana structure) to other machines. Debugging capabilities are limited for code
views due to the stripped Diana representation.  Similarly, conventions can be established for
only copying new subsystem releases when the receiving site is ready to deal with them, i.e.,
potentially some subsystem releases may not get copied.

Conventional Ada environments are available on computer systems with network file support.
However, some of the file locking mechanisms may have different semantics for accessing a
remote file than that for accessing a local file. Thus, tools that coordinate multiple users may not
work correctly in a distributed setting.

2.3.1.2. CMVC Implementation
Even though the CMVC support of the Rational Environment is quite successful in integrating
version and configuration control with Ada program libraries and in providing large scale develop-
ment and team support, the implementation of CMVC as found in the delta0 release has some
maturity problems.  The concept of subsystem, its separation into specification and implemen-
tation view, and the selection of subsystem views to compose a system through activity files has
already existed in the gamma release of the Rational Environment, and has been proven a suc-
cessful concept both in-house and to Rational customers.  The concepts of path, subpath, coor-
dination of developers, configuration object, etc.  are new and the implementation reflects that
fact. The maturity problems fall into several categories:

• addition of complexity to the CMVC model

• potential damage through visibility of implementation layers

• provision of end-user functionality

• clarity of documentation

The following paragraphs address each of these problems.

In addition to providing parallel paths and separate subsystems for independent team develop-
ment and subpaths for cooperative team development, the CMVC facility of the Rational Environ-
ment allows the user to fine-tune the environment’s control over concurrent development.
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Developers can sever and join individual program units.  Severing means that even within one
development path (which supports coordinated cooperative development) severed program units
can be worked on independently, i.e., can be checked out by more than one working view.  Join-
ing means that a joined program unit cannot be worked on independently even though parallel
paths (which support independent development) may exist.

It may be desirable to have program units joined across paths.  If software is developed for two
targets, and target-specific and target-independent program units cannot be separated into dif-
ferent subsystems, joining target-independent program units results in coordination of their
modification across the two paths, while severed target-specific program units can evolve in-
dependently as variants.

In addition, developers can selectively mark program units to be excluded from or included in
CMVC by making them uncontrolled and controlled respectively. Being uncontrolled means that
the program unit is not under the control of CMVC and users can change them freely without
coordination of the changes or a record of the change history.  One major use of the ability to
uncontrol program units is to allow program units to be moved.  Notice that uncontrolled program
units may be lost when a view is rebuilt from its configuration object.  The Rational Environment
does not provide an easy way for users to be aware of which program units are uncontrolled and
which program units are severed within a path or joined across paths.  This added complexity for
consistent management of configurations has to be weighed against the additional flexibility.

CMVC is implemented using lower-level mechanisms of the Rational Environment.  Those
mechanisms as well as intermediate functions of CMVC are available to the end user.  However,
they are expected not to be used or used only according to certain conventions.  For example,
the link mechanism is used by CMVC to implement import of subsystems.  Users are not ex-
pected to, but also not prevented from, performing link operations in subsystems, with the danger
of subverting the consistency of subsystem structures.  Some of the functionality described in the
previous paragraph (e.g., the ability to individually control and uncontrol program units) could be
interpreted as being intermediate functions that should not be available to end users.

The set of functions provided by CMVC reflects its implementation in that some functions (such
as copy) are primitives used to implement other functions.  They generally do not have to be
invoked by the user who wants to use the standard CMVC facilities.  It is difficult for the end user
to determine the relevant subset of functions and to use them because they seem to be incon-
sistent with the CMVC model as well as incomplete.  For example, the function Make_Subpath is
provided for the creation of subpaths (i.e., all program units are joined to enforce coordinated
checkout). Execution of the function Make_Path using its default parameters also results in the
creation of a view with all program units joined.

The reference manual for CMVC was provided to us in draft form two months after installation of
the delta0 release.  Other documentation on CMVC consisted of copies of tutorial slides on
advanced topics. The documentation can be improved in several ways.  The conceptual descrip-
tion of the supported CMVC models can be improved.  The documented functions can be better
sorted according to the usage of the end user and policy implementor.  The description of func-
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tions can be improved by giving a more precise description of the semantics of the function and
its side effects on the environment.  As conceptual descriptions have evolved in the existing
documentation, terminology has changed from terms used in the implementation of the system.
As a result, terminology is not always consistent and several terms describe the same concept.
These comments apply only to the documentation of CMVC and workorder management (see
next section).  For general comments on documentation, see Section 3.2.

2.3.2. Workorder Management
CMVC supports the management of software products; in the case of the Rational Environment it
is tailored to the management of Ada code.  In support of the development process, the Rational
Environment provides a facility of management of user activities.  Users of the Rational Environ-
ment are provided with ventures, workorders, and workorder lists.  These have some similarities
with task templates, task description, and task list in Apollo/DSEE [6].

A venture is a template for the creation of workorders.  It specifies the fields that exist in a
workorder. It also enforces a predefined set of conventions (policies). These determine whether
logging of commands and supply of comments to commands by users are enforced.  The ade-
quacy of these policies will have to be determined through practical use on a real project.

Workorders are always created with respect to a venture.  Users create workorders manually by
invoking the workorder editor and filling in the appropriate fields.  Workorders fulfill several tasks.
They serve as a description of a task that can be assigned to programmers.  They can carry
project management information.  They maintain a log of commands being executed.  Workor-
ders are typically assigned by attaching them to workorder lists.

Workorders consist of three components: a state, user defined fields, and a log.  Workorders
have three states: pending (being created), in progress (active), and closed.  User-defined fields
are defined through a venture and are not interpreted by the Rational Environment.  Logging of
commands is determined by the policy set by the venture.  Currently, execution of most modifying
CMVC commands can get logged (commands that have workorder as a parameter).  If enabled
by policy a comment supplied by the user to the command is logged as well. Commands are
logged in the current workorder.  Similar to Apollo/DSEE, the Rational Environment does not
check for any relationship between the task described in the workorder and the actions performed
by the logged commands.  This means that users have to switch the current workorder manually
through discipline in order to get logs that reflect actions related to the task.  Sessions can have a
default workorder which is set to be the current workorder upon login.

Workorder lists are lists to which workorders can be attached.  A workorder can be attached to
more than one list.  A workorder list and the attached workorders can represent tasks assigned to
a person or a team.  Workorder lists are created relative to a venture.  Only workorders of that
venture can be attached to a list.  This restriction implies that a user may have several workorder
lists, one for each type of workorder rather than one workorder list or workorder lists organized
according to priorities instead of venture type.

Unlike Apollo/DSEE, the workorder management facility of the Rational Environment does not
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provide a mechanism for monitoring changes to the development database and automatically
triggering activities, e.g., the creation of new task descriptions and appending them to task lists.
Furthermore, there is no mechanism for informing users of newly arrived workorders.  The
workorder management facility provides a simple set of capabilities.  The appropriateness of the
provided functionality will have to be demonstrated through practical use.  As is the case with
CMVC, this facility is provided for the first time in release delta0.  It is intended to be a set of
mechanisms. Development policies are expected to be embedded in a layer of Ada functions
written by a systems manager.  The documentation for workorder management is sparse.
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3. Capabilities of the Rational Environment

This chapter represents an analysis of the functionality of the Rational Environment as described
in Section 1.2.  The functionality is determined from the commands available in the Rational
Environment and from experimentation.  Along with the functionality, it is necessary to examine
the documentation, the user interface, and performance details.  A section is devoted to each of
these evaluation criteria, giving an analysis of that area.  Some experimental results, based upon
using the SEI evaluation method, have transcripts of the actual command sequences
documented in a separate report [2].

Overall, Rational provides most of the necessary coding features for Ada program development
and maintenance.  It has many facilities that are in advance of those provided in a conventional
Ada environment.  The Rational Environment is impressive in many areas but has some
deficiencies that we believe are due to its short lifetime to date as a product.

3.1. Functionality

This section discusses in detail the following areas: fundamental concepts; editing; browsing;
Ada coding support pertaining to code development, compilation, error handling, execution,
library management, debugging, and testing; configuration management; and operating system
and system administration facilities.

The purpose of this section is to give the reader a thorough idea of the spectrum of the Rational
Environment’s functionality.  This functionality basically includes what the user can do given the
commands and the way in which the Rational Environment enforces policies or supports the user.
The results are presented as lists summarizing the functionality along with accompanying text to
explain features in more detail when necessary.  The functionality lists only serve as a quick
reference for summarizing the nature of the functionality rather than as a list of all the commands
available in the Rational Environment (the Rational reference manuals provide the latter).  For
example, the operating system list indicates that file comparison functionality is available.  It does
not show that there are three commands (compare, difference, and equal) for performing com-
parisons since they only differ in the presentation of result.  Only when there are extraordinary
differences between commands, thereby providing additional capabilities, are such highlighted.

In general, the Rational Environment provides very good capabilities for code development, com-
pilation, error handling, library management, debugging, and configuration management.

3.1.1. Objects and Common Operations
A user of the Rational Environment needs to become familiar with the notion of objects, how to
select and name them, and their related operations in order to make best use of all the facilities.
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3.1.1.1. Objects and Naming
In Rational terminology, objects are any code created via the Rational Environment’s tools, such
as an Ada unit or a selected item on the screen, such as a directory in a directory listing.  Given
an object, the user can perform textual or structural operations on it.  Ada objects represent Ada
program units.  There are four states that an Ada object can attain, as described below.  The
state notion is easily comprehended since it relates to the state of ‘‘compiledness’’ which provides
the capabilities available for that object (such as browsing or debugging).  The user merely needs
to press a key (<promot>) in order to move the object to a higher state (known as promoting) or to
a lower state (known as demoting the object).  The states for an Ada object are:

1. archived state: The object is not necessarily syntactically or semantically correct
(since it was demoted from a source state); it is not known to other units in the
system; it does not have any browsing capability since no Diana tree exists.  This
state minimizes storage requirements for an object, since it is stored in textual form
rather than as a Diana tree.  As in the other states, it can be viewed at any time
without changing state; it has no dependent units; and it can be edited (it will
automatically be promoted to source state at edit time).

2. source state: The object is not necessarily syntactically or semantically correct; it
cannot be known to other units in the system.  It can be changed independently of
other units in the system except for its signature and its kind of unit specifics.  It can
be copied, deleted, removed, or renamed.  Although not documented by Rational,
there appear to be two substates of which the user should be aware:

a. pure text—Only textual editing can be performed.

b. formatted text—After the initial formatting of the text (by pressing the
<format> key) the editor understands the structure, so structural as well as
textual editing can take place.

3. installed state: The object is syntactically and semantically correct.  It can be
semantically referenced by other units, and it can be copied, deleted, moved,
renamed or demoted if no semantic dependencies are affected.  It can be changed
using incremental addition and change operations.

4. coded state: The same as installed state plus the object has code generated for it.

A user can identify an object by selecting it or by naming it.  An object is selected by moving the
cursor to it and highlighting it via a combination of keys.  To name objects which may be needed
for parameter values, shortcut naming conventions are available.  Aliases, wildcards, and sub-
stitution characters provide for conventional expression and pattern matching facilities.  Special
characters can be used to indicate relative context, such as "search up the hierarchy from this
location" or absolute context such as "search throughout the search list and find all occurrences"
or "search only through with clause" for resolving names.  Object names can include attributes.
Attributes are syntactically similar to Ada attributes and specify restrictions on the evaluation of
names. These include class, version, and nicknames for overloaded names.  Nicknames are
very helpful to the user since they aid in disambiguating the reference by providing distinct names
for each overloaded name.

Anonymous objects are those that represent substructures of an Ada unit.  These anonymous
objects are visible when a library is examined. For instance, doing incremental updates causes
the Rational Environment to generate an insertion point in the code for, say, an Ada statement.
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The Rational Environment creates a temporary object for this statement (which is made per-
manent when the change is committed).  The user can select, but not name them, for editing and
promotion.

3.1.1.2. Common Operations
Figure 3-1 presents the common operations available for objects.  A common operation is that
which can be applied to any kind of object in the Rational Environment.  The semantics of the
operation is based upon the object’s type.  The user merely selects an object and applies a
common operation.  An Ada program unit can be selected in one of two ways for application of a
common operation.  A program unit is selected by placing the cursor in the actual program text, or
by highlighting the program unit name in the enclosing program library.  Most of the common
operations are bound to a key.  Not all common operations apply to all kinds of objects.  When an
operation does not apply to an object, the Environment sometimes simply ignores the command
and sometimes indicates it is not applicable.

Edit
Commit or discard changes
Create a command
Find defining occurrence or enclosing object
Find next or previous object
Complete, semanticize, or format object
Promote to a higher state or demote to a lower state
Explain in more detail
Copy or move
Insert or delete an object
Replay command history

Figure 3-1: Common Object Functionality

The common operations that are bound to the keyboard generally change the state of only one
unit at a time due to the default parameter settings.  The user cannot alter the default parameter
settings for the common commands but can invoke appropriate procedures interactively (such as
those in the compilation package) for such purposes.

3.1.2. Editing
Rational provides a comprehensive set of editing facilities.  These can be divided into the follow-
ing areas:  general editor support, textual editing, and structural editing.  They are presented in
the following sections.

Unlike conventional environments, the user is always interacting with an editor.  Editing functions
are available at all times whether the context is editing a directory or preparing data for
input/output to a program or creating a command or executing a program.  The editing facilities
are made even more useful with the assistance of the browsing capabilities.
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In general, all editing commands apply to any object, but the actual effects of the commands are
not always identical.  One <edit> key initiates editing, although there are actually several type-
specific editors.  The type-specific editors know of the following object types:  activity, Ada, com-
mand, debugger, help, job, library, link, list, search list, switch, text, venture, window, worklist,
work order and cross reference list.

The Ada object editor supports both text and structure editing with a transparent transition be-
tween the two forms of editing.  Other object editors support one or the other.  (Rational does not
document the differences.)

Structure editing takes the form of direct editing for Ada objects while indirect editing is used by
the other type-specific editors supporting structure editing.  The direct mode is where the cursor is
positioned over a character and an operation is applied directly (such as delete the character).
The indirect mode requires that the user set parameter values for a command.  An example of
indirect editing is editing an activity where the "insert" command needs to be invoked for changing
a subsystem entry in the activity file.  The differences between the modes can be annoying to the
user. There is also an inconsistency in the timing of changes.  Most editing involves editing the
contents of a buffer (that is, the contents of a window). Changes are made by committing them
via the <enter> or <promote> key as for activity files and Ada source respectively.  But for links
and directories, changes are immediate rather than buffered.

3.1.2.1. General Editor Support
Figure 3-2 summarizes general editor support, which consists of those operations that do not
directly perform editing, but are auxiliary functions enhancing the editor’s capabilities.  These
include operations for saving and recovering deleted text (kill-buffer management), managing
macros, marking of portions of code, screen management, and window management.

Switches are provided to tailor some editor actions.  Changing switches affects default actions
such as overwriting characters or filling lines or defining delimiters for words.  These switches are
set external to the editor and affect the editor only after restarting it.  The editor can also be
tailored by binding any operations to the keyboard.

All keystrokes can be saved by the editor via logging them into a file.  This allows the replaying of
commands from the file.  Note that even the timing of the commands will be replayed—this is
helpful for presenting program demonstrations.  This also allows stream editing for non-interactive
programs.

To permanently change a source Ada object, changes must be "committed" via the <enter> key
or the <promot> key, which implicitly saves and promotes the object.  The editor makes sure that
changes are not lost when the user logs out of the Rational Environment.

Marks can be set so that the editor records a certain position in the text or structure, such as a
particular column and row location of a character.  Unfortunately, these marks are not dynami-
cally adjusted as text is changed.  (A stack records all the marks.)

Screen management is a facility not commonly found in conventional environments.  It allows
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Retention of previous versions (programmer chooses number)
Tailoring of default editor actions via switches
Repetition of parameter for commands
Logging of keystrokes
Committing changes and prohibiting accidental logout with
uncommitted changes
Kill-Buffer manipulation:

Recovery of deletions
Stack of saves: copy, delete, next, previous, push, pop, rotation, swap

Macro management:
Recording keystrokes
Replaying macro
Editing macro
Binding macro to key

Marking:
Record absolute line and character position
Stack of marks: push, top, previous, next, copy, delete, rotate

Screen management:
Record window organization on screen
Screen stack: push, pop, next, previous, copy, delete, swap, rotate
Dumping screen contents to file (includes graphics/font information)
Repainting, clearing screen

Window management:
Listing all windows and their attributes
Finding window by name
Forcing window to not be replaced
Replacing window as soon as possible (limit of one request)
Controlling number of windows on screen (programmer)
Changing size and shape of windows
Copying, joining, deleting, transposing windows

Image Management:
Scrolling window up, down, left, right, beginning, end
Moving to next or previous window

Figure 3-2: General Editor Functionality

users to save screens with their various windowpanes onto a stack, in effect taking a snapshot of
the screen.  This allows the user to set up different sets of windows for different tasks, and switch
between them quickly; however, there is no consistent dependent window updating.
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3.1.2.2. Text Editing
Figure 3-3 summarizes the text editing functionality. The functionality is very similar to that of
conventional editors.

Cursor movement (up, down, left and right)
Character manipulation:

Case change, delete, quote, tab, transpose
Automatic insert or overwrite of characters
Automatic fill of line
Tab settings (modify, delete, set width of tab)

Line manipulation:
Beginning, end of line
Next, previous line
Case change for line
Deletion and recovery of lines
Copying lines
Position: center, indent
Add, join line

Word management:
Movement to beginning or end of a word
Programmer-defined delimiter for word break
Changing case
Deletion
Transposition

Region (portion of text) management:
Beginning, end of region
Case change (only on first letter of word)
Fill, justify text
Create, move, copy or delete region
Select, deselect region

Search facilities:
Regular expression pattern matching
Editing search string
Finding next or previous occurrence
Replacing next or previous occurrence of a string

Figure 3-3: Textual Editing Functionality

The user can add text in one of two modes, either by having newly typed characters inserted or
by having newly typed characters overwrite existing text.  A switch setting at editor startup time
determines the mode.
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A minor problem between text editing and text produced by Ada programs through Text_IO exists
regarding end-of-line markers, those produced by the editor and those resulting from output of a
program. This difference is documented in the Rational manuals.

3.1.2.3. Structure Editing
Figure 3-4 summarizes the structure editing functionality for Ada objects.  Such editing deals with
the manipulation of structures, about which the editor has some syntactic and semantic
knowledge. It is the structure editing facilities, combined with the semantics-based browsing
facilities and integrated with Ada code creation and smart compilation, that significantly aid the
user in the Rational Environment.  These are generally not present or are present in limited form
in conventional environments.

Movement based on syntactic structure:  child, parent, next, previous
Editing operations on Ada structures (delete, copy, move)
Ada language-sensitive search for Ada identifier or delimiter
Placement or removal of Ada comment delimiters around portion of structure
Semantics-based cursor movement (see browsing functionality)
"Smart" identifier replacement

Figure 3-4: Structural Editing Functionality

The editor provides construct completion such as "begin"..."end."  This aids the user by filling in
missing keywords of partially completed constructs.  Unfortunately, the cursor is seldom placed at
the next location of the completed construct to be filled in.  The structure editor is also not able to
tell the user which constructs are legal at a particular point in the program; i.e., users are ex-
pected to have knowledge of the Ada language.

A convenient and novel feature concerns source code generation.  The editor provides a template
of Ada code, such as matching specification/body parts or procedure signatures.  Also, when
requested, the editor makes default parameter settings for procedure calls, whether editing Ada
source code or commands.  The user can override some default template settings such as two
parameters per procedure signature.  These features add to the interactiveness of the Rational
Environment.

The structure editor provides adequate default placement of comments.  The user can, in a
limited manner, override the editor’s placement if necessary.

A very useful facility that integrates browsing and editing is that which globally replaces a name or
expands a name.  This ‘‘smart’’ identifier replacement results in the replacement of a name within
the selected code.  The replacement is not made in comments, nor are keywords replaced, as
happens with a typical text editor’s string replacement.  Neither elision nor expansion of code for
Ada editing exists.  Such facilities could aid the user in viewing large program units by displaying
them at different levels of detail in order to fit them into a window.
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3.1.3. Browsing
Figure 3-5 summarizes the browsing facilities available.  Browsing involves the Rational
Environment’s locating and displaying information pertaining to objects based on semantic infor-
mation available in the Diana representation.  This includes information such as the definition
location and the usage location of objects.  Browsing is extremely valuable, particularly in large
systems since the user does not need to manually search and navigate through many structures.
This applies to browsing through the static program structure during code creation as well as to
navigation through error messages from semantic analysis and to browsing in the context of
debugging. Also, it is invaluable for understanding foreign Ada code that is ported to the Rational
Environment where a user may not be aware of the structure and relationships of objects.  The
browsing facilities add to the interactiveness of the Rational Environment.  Since browsing is a
frequent activity, all browsing functions are bound to function keys for single keystroke execution.

Find the definition of an object
Find enclosing object
Find next and previous object
Find the corresponding Ada "other" part
Find the home library
Show usages of name (given a certain scope)
Show any unused declarations (optionally including dependent units)

Figure 3-5: Browsing Functionality

Browsing is accomplished by finding an object and displaying it in the current window or a
separate window. Finding the definition of an object results in the display of its content.  In case
of directories or program libraries it means traversing down their hierarchy, and in case of Ada
objects it means the definition site (specification).  Finding the enclosing object results in moving
up the object hierarchy, e.g., moving from a program unit to its enclosing program library.  The
"find Ada other part" function provides a quick way to locate the complementary part of an Ada
program unit, i.e., the specification if the body is selected and vice versa.

Two functions are provided for locating sets of objects.  The "show usages" function shows all
locations that use a selected object by displaying all usage sites in a window.  The user can then
browse through this information. The "show usages" function has parameters to specify the
scope of the usage sites and the amount of semantic information to be displayed.  The "show
unused declarations" function highlights unused identifier definitions that can then be removed by
the user if desired.
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3.1.4. Ada Code Development
This section discusses facilities for producing, compiling, correcting errors, managing Ada
libraries, executing Ada code, debugging, and testing.  All these facilities make use of the
semantics-based browsing facilities and the Ada object editor, which supports both text and struc-
ture editing.  In addition, effective support is provided for source code generation, for incremental
and minimal recompilation, for interactive error handling, for limiting change propagation, for
dynamic linking, for execution of incomplete programs, and for debugging support for the full
scope of the Ada language. The Ada code development support has reached a level of maturity
such that Rational maintains all of the Rational Environment software, which amounts to over one
million lines of Ada.

3.1.4.1. Code Creation
Figure 3-6 summarizes facilities for creating Ada code.  These facilities are available for inter-
active use.  They can be quite productive as they provide incremental syntax and semantic
analysis, and aid the user in source code generation.

Unlike conventional Ada environments, the Rational Environment allows the user to create code
directly in a program library.  There is no need for the user to explicitly add a program unit to or
remove it a program library.  Program libraries are browsed in the same manner as are direc-
tories and Ada objects.  The browser makes use of semantic information available in the program
library.

Create program library
Compile and install incomplete Ada unit into library
Withdraw incomplete Ada unit from library
Create body from spec (insert template and "with" clauses)
Establish visibility to other libraries
Make a separate unit in-line (with appropriate syntactic changes)

or vice versa
Automatic Ada "other part" source generator:

Create spec from body
Create private part (recursive for enclosed packages)

Delete or destroy units and dependents
Parse text files and create Ada objects from them
Keys:

<format> for pretty printing, syntactic completion, and
syntactic checking

<complt> for semantic completion
<semanticize> for checking static semantics of code
<definition> for displaying the definition of an object

Figure 3-6: Code Creation Functionality
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Several functions (as shown in Figure 3-6) significantly aid productivity of the user by correctly:
completing portions of Ada code such as package bodies and "with" clauses; creating body stubs;
creating syntactically correct but incomplete code (using placeholders); adding the procedure call
template based upon the procedure’s signature; and checking the syntax and static semantics of
the code.

Functions are provided for turning subunits of a program unit into "separate" subunits and vice
versa, alleviating unnecessary editing.  Separate subunits become objects that can be explicitly
named or selected and promoted and demoted independently of their parent unit as long as their
state is not higher than that of their parents.  Their names appear in the program library scoped
within the name of the enclosing program unit.

Deletion of objects requires that bodies must be removed before specifications can be removed.
Specifications cannot be removed until all (body) units dependent on them are demoted to the
source state.

The Rational Environment will maintain consistency between Ada units.  Whenever a unit is to be
edited, the Rational Environment checks whether any dependent units need to be demoted as
well. If demotion is required, the Rational Environment maintains dependency consistency by
either not allowing the edit to occur and informing the user of obsolescence, or performing
automatic demotion of the dependent units.  The action taken by the Rational Environment
depends on the command invoked by the user.

3.1.4.2. Compilation
Figure 3-7 summarizes the functionality available for compilation.  An outstanding feature of the
Rational Environment concerns its "smart" recompilation facilities.  The Rational Environment
attempts to minimize the amount of compilation and recompilation at any time via incremental
compilation of upward compatible changes and by isolating code via subsystems.  The Rational
Environment automatically determines the compilation order.

COMPILATION
Promote or demote a unit
Show all errors and browse them
List subprogram interdependencies
Compile transitive closure of library or unit
Compile code from an ASCII text file
Pragma switches

MINIMAL AND SMART RECOMPILATION
Minimum compilation for upward compatible changes
No recompilation for comment inserts or changes
No recompilation of (generic)  bodies other than their own
No recompilation when private parts change

Figure 3-7: Compilation Functionality
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The <code all worlds> key will compile all Ada units and their transitive closure automatically.
Parameters can be set by the user to control the scope of the compilation i.e., within the library or
beyond, and the final state of the units. Only necessary compilations are made (i.e., no unit that
is already coded will be recompiled).

Upward-compatible changes can be made to units in a subsystem without causing any recom-
pilation of units importing the subsystem.  Changes to subsystem interfaces have a global impact
on the system and must be carefully managed. Changes internal to a subsystem can be made to
any degree at any time with only local effect.

Closed private parts are an example of a compilation firewall within a subsystem.  They are Ada
"private" code parts but the Rational Environment will not recompile any dependent units if the
contents of the private parts are changed since the dependents will not depend in any way on the
representation of objects of these private types.  Generally, conventional Ada language systems
would recompile dependents.  Incremental editing of private parts, along with minimal recom-
pilation of derived types of private types, is provided.  Closed private parts can speed up develop-
ment tremendously. They are an example of how Rational bypasses major recompilation needs
that seem inherent in the Ada language.  This is added functionality that a conventional system
would not have.

Incremental editing allows users to make additions, deletions, and changes to program units that
have been compiled without requiring the whole unit to be demoted to source state.  Only the
demoted fragment has to be reprocessed when promoted.  Such incremental editing saves a
considerable amount of processing time that conventional systems would spend compiling. In
order to optimally use these features, though, the user must cooperate with the Rational Environ-
ment by indicating the appropriate substructure of a program unit to be demoted for editing.  The
Rational Environment does not analyze demoted program units to determine whether reprocess-
ing can be limited to substructures or avoided.  Since this an important aspect of the Rational
Environment that distinguishes it from conventional environments, the incremental editing
capabilities should be presented in the Rational documentation and training courses in a sys-
tematic manner.

Comments can be inserted, deleted, and edited in coded Ada objects without any recompilation
being required.  Bodies, including bodies of generics, can be edited with no recompilation re-
quired other than their own.  Generic specifications cannot be incrementally changed.  When a
body is brought to the installed state, all changes that do not affect existing dependencies can be
made. This includes inserting context clauses, declarations, and statements and editing and
deleting statements.  Changes that affect existing dependencies, such as editing declarations or
context clauses, require that the body be brought to the source state.

The following itemized list attempts to summarize the different incremental editing capabilities
available when program units are either in installed or coded state.  If program units are in coded
state and the user wants to perform an incremental edit operation listed under installed units, the
user is required to first explicitly demote the unit to the installed state.
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• Editing installed units allows inserting incrementally:

• New declarations that are upwardly compatible; existing declarations without
dependents can be deleted or demoted and reinstalled.

• New statements; existing statements can be deleted, demoted, edited, and
reinstalled.

• New context clause items that are upwardly compatible; existing context
clauses without dependents can be deleted, demoted, edited, reinstalled and
recoded.

• New comments on lines by themselves; standalone comments can be deleted
or demoted, edited and reinstalled.

• Editing coded units includes:

• in a library unit specification, new declarations that are upwardly compatible
can be inserted; existing declarations with no dependents can deleted, or
edited and reinserted; due to Ada semantics for elaborations, the correspond-
ing body is demoted to installed

• new context clauses can be inserted if upwardly compatible and if the units
named in the context clause are coded; existing context clauses with no
dependents can be deleted or edited and reinserted; there is automatic demo-
tion of any dependent main programs

• can insert, delete, edit comments

The documentation does not state whether the compiler optimizes code and whether the op-
timizations can be enabled or disabled.

The compiler seems to be well tested, in that no bugs were found.  The Rational compiler has, in
fact, found several bugs with the Ada Compiler Evaluation Capability (ACEC) test suite.  Only two
compiler limitations were found when running all of the original Institute for Defense Analysis
(IDA) ACEC suite:  15 static nestings and 256 records in a field.

A helpful option available to the user is to request the Rational Environment to indicate the
amount of effort required to compile a system rather than actually doing it.  Although what the
cost value returned really means is not clear, useful cross-referencing information, such as miss-
ing units in the transitive closure, is provided.

3.1.4.3. Error Handling
Figure 3-8 summarizes the error-handling functionality available.  Error handling involves error
reporting, diagnostic display, and interactive support for correcting the errors.  The browsing
facilities assist by guiding the user through the erroneous points.  Turnaround time for fixing
errors is considerably shorter than that in conventional environments, since it is very easy to
recompile after fixing errors.

Errors are indicated by underlined source code.  With a keystroke, the user can request infor-
mation about an error.  By default, brief error diagnostics are initially displayed.  The diagnostic
levels are generally two levels of explanation deep.  These levels are useful for the experienced
user who may not need detailed explanation of an error versus the novice user who does.
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Error Reporting:
Interactive error highlighting
Levels of detail on error messages
Tailoring display of kinds of errors

Error Correction:
Show next or previous error
Common operations and editing and browsing

Figure 3-8: Error Handling Functionality

Browsing is very valuable during error repair when errors need to be fixed.  A typical scenario
follows. The user can use the <next item> key to locate the next error location.  Using the
browser, the user can examine the relevant part of the program to determine the location for an
error correction.  The Rational Environment encourages the user to fix an error and check syntax
by pressing the <format> key.  Note that the <next underline> key only locates errors and the
<next prompt> key locates placeholders while the <next item> key locates both.

The user can tailor the error display for interactive or logged display.  The user can request that
certain errors be flagged in a particular way that is different from the default display in the error
log. Also, the user can request program continuation despite certain kinds of errors, such as
warnings or non-fatal errors.

Users requiring hard-copy compilation listings and error reports will get a fairly primitive listing
that shows only the line number in which the error occurred, together with the error message.

3.1.4.4. Execution
Figure 3-9 summarizes the execution functionality.

Suspend/resume/terminate execution
Background and foreground job execution
Program completion status indication
Execution of incomplete programs (stubs or missing bodies)
Dynamic/runtime linking (prelinking can be forced)

Figure 3-9: Execution Functionality

Programs can be suspended and resumed.  They can also be terminated.  Changes made to the
program while the program is suspended are not reflected in the execution until execution is
terminated and restarted.  Post-mortem analysis (such as those done through memory dumps) is
not available.  The user is expected to obtain all information via interactive debugging or logging
of results.
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Unlike conventional Ada environments, the Rational Environment allows incomplete programs to
be executed.  Programs can be incomplete in the sense that body units are just stubs or that
body units contain insertion points at the statement level.  Code can be executed without all the
Ada units being in the coded state.  During execution, the program will execute until it encounters
a program unit without code or an insertion point (i.e., a placeholder). Programs with missing
bodies will get an error indication when attempting to run them.  Programs containing stubs will
execute up to the time that a call is made to an incomplete construct, at which time the system
raises a Program_Error exception.  Note that the Rational Environment does indicate which
bodies do not exist until the program commences execution.

When a main program runs, the object code is linked at runtime.  Prelinking can be forced by
using the pragma Main in the main procedure, although prelinking will cause problems when
subsystems are used, such as making releases of subsystems (this is not documented by Ra-
tional but is a problem known to Rational).

3.1.4.5. Library Management
Figure 3-10 summarizes the functionality of Ada program libraries in the Rational Environment.

LIBRARY MANAGEMENT
Tailor library contents display through switches
Create library
Delete library
Display objects in library
Display dependencies (see browsing functionality)
Copy or rename object
Freeze and unfreeze object
Remove object or clear program library
Compile all units in library/libraries
Compact library
Move to another library
Find pathname

LINKS
Create links
Delete and expunge links
Copy or change links
Display links

Figure 3-10: Library Management Functionality

The Rational Environment implements Ada library semantics.  The browser allows users to
navigate through program libraries in the same way as directories.  The program units contained
in a program library can be displayed with several levels of detail.
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In Rational’s terminology, an Ada library is a world. It contains Ada program units, i.e., Ada
objects. Libraries can be shared via links.  Ada units that are named in a "with" clause of another
Ada unit either must be in the enclosing local context or must be visible via a link to another
program library in the enclosing world.  Different worlds can reside on different disk volumes.
Worlds can be moved to a different disk volume.  Moving worlds requires compilation of the
closure of the units in the world.

Session switches are used to tailor the display of library information. The switches indicate which
attributes of the objects are to be shown such as size.  Changes to the switch settings only takes
effect after the user reattaches to a session.

There are functions for freezing and unfreezing objects.  When frozen program units are
prevented from being modified. The user must have owner access to the world in which the
objects are located.  The main purpose of these functions is to provide primitives for the im-
plementation of versioned subsystems (see Section 3.1.5.3).

Rational has integrated the Ada program library with version and configuration management
facilities through subsystems.  The implementation of subsystems makes use of some library
management functions such as link operations. Users who make use of the version and con-
figuration control facility are expected not to use links directly.

3.1.4.6. Debugging
Figure 3-11 summarizes the debugging functionality.  Overall, the Rational Environment provides
a debugger that supports the full scope of the Ada language, including tasks, exceptions, and
generics. The debugger is integrated with the semantics-based browsing capabilities and the
support for Ada code development.  Users can transparently and quickly move between brows-
ing, code development, and debugging.

The debugger is fairly easy to learn due to the available documentation, the nature of the inter-
face, and on-line help facilities.  The user is aided by the binding of commonly-used functions to
the keyboard which minimizes keystrokes during debugging.  The command language is that of
Ada. Most debugger commands involve two keystrokes:  one keystroke to select an object and
another to execute a command.

Programs can be debugged without special preparation (such as compilation with a debug
switch). Instead of pressing the <promote> key for normal execution of the program, the user
presses <meta> <promote>.  The debugger can also be called directly from the program.  Fur-
thermore, debugger command scripts can be prepared in files and read by the debugger.

The debugger runs in a separate process from the application program process.  The first invoca-
tion of the debugger has a certain startup cost for this process.  Unless requested by the user, the
debugger process remains intact while the user is logged on.  The same debugger process can
be used to debug different programs.  While the debugger process is intact, it maintains a record
of all breakpoints and tracepoints set by the user.  The user can re-enable them when the execu-
tion of the application program is restarted.
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SET/RESET BREAKPOINTS/TRACEPOINTS ON
Program unit entry/exit
Exception
Statement
Breakpoint (only) on nth iteration of a loop
Declarations
Overloaded functions
Rendezvous
Breakpoint retention across debug sessions

CONTROL EXECUTION PATH
Jump a number  statements
Enter a specified subprogram
Exit the current subprogram
Control over tasking execution
Control over the scope of tracing
Control over exception propagation

QUERY PROGRAM STATE
Display source code
Display breakpoints and tracepoints
Display runtime stack
Display history of commands
Display task status
Display standard and non-standard data types
Display of source code at breakpoints and during stepwise execution

MODIFY PROGRAM STATE
Modify variable values
Change name resolution context

NUMERIC CONVERSION

Figure 3-11: Debugging Functionality

Breakpoints are points in the code where execution is stopped so that the user can examine
specific details.  Tracepoints are similar to breakpoints except that execution is not halted—the
debugger merely displays that a point in the code has been passed. Breakpoints and tracepoints
can be set or reset at any time.  They can be set upon various events, such as entry or exit of a
program unit, an exception, or any statement.  The user has many features for controlling the
execution of tasks, exceptions, and rendezvous. Execution of groups of tasks can be controlled,
such as halting various tasks while allowing other tasks to proceed.  The user can specify the
granularity for enabling tracepoints and breakpoints down to an Ada scope level and select tasks
in which they should be applied.  Similarly, the granularity of single-stepping can be specified by
the user.
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The debugger automatically displays source code.  It can display information about breakpoints,
tracepoints, tasks, and runtime stacks and can keep a log representing the history of all state-
ments executed.  Program variables can be modified and debugging continued with the new
value. The debugger in interaction with the browser can guide the user through executing and
subsequently editing code. The browser can highlight the definition and usage points of objects
and effectively guide the user through all the points in the source code requiring editing.  Hence,
the debugger/browser combination can considerably shorten the time needed for the
debug/edit/compile/link/debug cycle.  Browsing features available include show: definition and
usage point of objects; enclosing object; Ada ‘‘other part’’; and errors.  Changes made to the
program through editing are not reflected in the executable image that is currently being
debugged. The user must restart the execution of the program.

The debugger aids the user in displaying values.  For standard Ada types, the debugger displays
the appropriate scalar or structure or pointer information.  The user can include special display
routines in the program for non-standard types whose names can be registered with the debug-
ger. As a result, the debugger will use those display routines for the specified types.  These
routines are recognized on a per program basis as they are part of the program.

There are comprehensive naming conventions allowing the debugger to interpret names within
various contexts ranging from current working context, root of library system, immediately enclos-
ing object or library or world, a specific task, or a component.  Ada naming conventions are
recognized by the debugger.  Naming rules are extended to allow the user to disambiguate
overloaded names and reference specific declarations and statements via debugger-generated
numbers.

Some commands frequently used during debugging can be invoked without qualification from any
window, whereas others require the cursor to be in the debugger window to execute without
qualification. Some confusion, as to which case applies, could arise.  This is due to the fact that
functions provided by the debugger package of the Rational Environment are recognized without
qualification only in a debugger window, while browsing and Ada editing commands are recog-
nized in windows displaying program units as well. Also, browsing can cause the debugger
window to disappear from the screen.  However, it can be locked on the screen, can be located
by selecting it from the window directory, or can be redisplayed in a window configuration using
the screen management facility.

There are some restrictions in using the debugger:

• A user can only have one debug session active at any time.

• Post-mortem analysis is not supported in the sense that the debugger can examine a
program whose execution has failed, but was not executed with the debugger active.
Programs must be started from the debugger to have debugging available.

• No conditional breakpoints/tracepoints are supported.  There are some limitations as
to where breakpoints can be set for objects—none can be set on variables of access
or task types, constants, in parameters, discriminants of variant records, and loop
iteration variables.

• Tracepoints will not display the values of variables.  Rather, messages indicate that a
trace event has happened.
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• Line numbering of the source is not automatically displayed; yet debugging display
information is given referencing line numbers in many cases.

• Debugging capabilities are limited for code views due to minimal semantic infor-
mation in this compact, executable representation of subsystems.

3.1.4.7. Testing
There are no specific tools for testing such as for performing unit and regression testing, or for
performing analysis, such as identifying unreachable statements, control flow, stress testing
based on program structure, test data coverage, and statistics gathering.  However, the Diana
representation is accessible from programs and such auxiliary tools can even be written by the
Rational customer.

It is quite easy for the user to do interactive unit testing since any Ada subprogram can be run
directly from the command window as a function.  Hence, no test driver is needed.  For regres-
sion testing and large-volume unit testing, the user can easily write a test driver as an Ada
command procedure.  The user must use the file utilities, such as comparison, for performing any
test analysis tools. There are no specific tools for setting up a test harness that records expected
output data and compares that with tests results, as with regression testing, or provides the ability
to run tests in a particular order.

The facilities for executing incomplete code (as described in Section 3.1.4.4) make for quick
interactive testing of program fragments.

3.1.5. Configuration Management
This section analyzes the configuration management facilities that the Rational Environment
provides. The basic model is described in Section 2.3.  The facilities can be divided into several
areas: partitioning of systems, cooperative team code development with version tracking and
releasing, coordination of changes across separate development paths, system-level composi-
tion, and database maintenance.  These areas are discussed in the subsections below.  We
found problems in dealing with the configuration management facilities, mainly because of the
newness of the implementation, the lack of environment-enforced policies, and because of the
complexity of the issues.

In general, Rational’s configuration management facilities represent an advancement in conven-
tional version control and large-scale programming-in-the-large support. These facilities, though,
are hampered by the lack of a production-quality user interface model that makes transparent the
underlying primitives used to implement the configuration management facilities.  We also found
that a small portion of the facilities (such as Build and Destroy commands) did not work as
documented, which indicates bugs in the implementation.

Note that there is considerable terminology with which the user must become familiar to use
Rational’s configuration management.  This is not an easy task since related documentation is
scattered throughout the manuals, and some of the most important explanations are only
documented in the Rational Training Notes. In some circumstances we have tried to use com-
monly used terms rather than Rational-specific terms in order to reduce the confusion of the
reader.
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3.1.5.1. Partitioning Concepts
For large-scale software development it is necessary to partition the software into manageable
portions for development by teams of users and for testing.  In order to understand the facilities
that the Rational Environment provides, it is necessary to understand several concepts.  These
concepts are basically an extension of the Ada package specification and implementation notion
for supporting partitioning and interface checking.  The notions themselves are not very complex,
but the user interface of their implementation tends to frustrate the user due to the visibility of
implementation layers in the user interface.

Rational allows the partitioning (or grouping) of objects into subsystems.  (The subsystem notion
is described in Section 2.1.2.4.) The following section discusses the contents of a subsystem in
more detail.  A subsystem is actually composed of a collection of views.  A view is both a con-
figuration of objects in that it represents a set of a particular generation of each object in the
subsystem and an Ada program library in that Ada semantic consistency among the specified
generations is enforced. Basically, the view represents the integration of the Ada library notion
along with configuration management notions.  The different variants of views can be sum-
marized as follows.

There are several kinds of views:

• Spec View: A spec view is similar to an Ada package specification. It defines the set
of implementation units that are potentially available, or visible, to units in other sub-
systems. Spec views have import/export lists representing the interface to other
subsystems. Hence, any changes to spec views will require recompilation of cor-
responding load views, as well as views that import the spec view.

• Load View: A load view defines a single instance of a subsystem.  It contains a full
implementation of the program component that is encapsulated in the subsystem
and includes all the spec view interface code.  The load view basically corresponds
to an Ada unit’s body.  There can be multiple load views per spec view which allows
recombinant testing of code—this is how the Rational Environment provides for mul-
tiple Ada bodies per Ada specification.  Units in a load view can be changed without
requiring recompilation of any other views, provided that the view remains com-
patible with the spec view that defines its exports.  Compatibility allows a load view to
differ in certain ways from the spec view that represents it, such as with private parts.

• Combined View: A combined view is similar in contents to a load view but is a
special case view. Unlike other views, it allows non-hierarchical importing, such as
circular imports (and is also useful if the subsystem contains non-R1000 targets that
require exporting of generics). A combined view has limitations that other views do
not have, such as lack of compilation firewalls. Combined views can only contain
combined views.  It is recommended that use of combined views be restricted.  (In-
formation about combined views is not documented by Rational except in the
Training Notes.)

• Code View: A code view is the same as a load view but is a special case view in that
it minimizes the space used by the views since it does not include the Diana tree.
Only state and history information, along with executable code, are incorporated. As
a result, there are limitations such as neither browsing nor editing and only limited
debugging are available for a code view.
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These views can exist in one of two forms:

• Release view: A released view is "frozen," thereby representing a "baseline" release
of the software.  It is logically immutable in that it cannot be modified (although the
Rational Environment does provide for such).  Release views can be stored in two
different ways that can affect the resultant functionality available:

1. Full-view release: All information such as Diana representation, state, his-
tory, and generation indications are stored.

2. Configuration-only release: Only the configuration information representing
state, history, and generation indications are stored.  This is the minimum
information required in order to recreate the the source code (upon special
request). Displaying of code, browsing, editing, or debugging cannot be per-
formed.

• Working view: A working view, in contrast to a released view, is used for ongoing
development work.  There are no limitations on editing, browsing, or debugging.

3.1.5.2. Partitioning Management
Figure 3-12 summarizes the functionality available for managing views.  The Rational Environ-
ment aids the user in:  creating subsystems and views that can be based upon copying from
other views and adjusting import and target information, deleting views or subsystems, managing
the interface among the views, and displaying pertinent information about the views.

Create a subsystem or view (based upon a certain model)
Destroy a subsystem or view
Import/export a view into/from another view
Add or change imports
Remove unused imports from a view
Replace a model
Display of subsystem/view hierarchy

Figure 3-12: Partitioning Management Functionality

The Rational Environment uses a "template" known as the model upon which it creates a subsys-
tem. This model has default information such as switch settings, initial links to commands and
tools, access control lists, a target machine and parameters that indicate how the Rational En-
vironment should generate names and version numbers for views.  At any time the user can
change the model, and the Rational Environment will use that model for subsequent operations
on the view.

Creating a view involves copying information from another view.  This enables the Rational En-
vironment to "re-use" information in a sense, and provides a starting point for the user.

When a view (or subsystem) is created, predefined directories are generated.  The user must
become familiar with these and understand how the Rational Environment uses such.  Command
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descriptions in the manuals do not discuss these—only the Key Concepts section does.  A view’s
four predefined directories are:

1. Exports in which users can create export restrictions files

2. Imports in which users can create import restrictions files

3. State which contains status information is kept

4. Units in which the Ada program units are created and edited

It is suggested by Rational that none of the directories will require frequent changing.  The
documentation does not make clear what changes can be made and how they are made.

Destroying a view destroys all related substructures.  The user can request the Rational Environ-
ment to demote automatically importers of the view and have their imports automatically adjusted,
such as removing imports.  It is the user’s responsibility to then promote those affected subsys-
tems.

Destroying subsystems requires having all views first destroyed, whereas a view destruction
automatically gets rid of subdirectory structure and units. The user can request that the con-
figuration object be saved. Leaving the configuration object is a way of saving space (compared
to leaving the Diana representation) without losing information.  Otherwise, no reconstruction is
possible.

Importing a view can result in adding new imports or changing existing imports (depending on a
parameter setting).  The latter has the effect of updating the imports of a view to reflect those of
another view.  The user can also request that the closure of views be imported. Through ad-
ditional parameters, the user requests any necessary demotion and compilation to be done
automatically. The Rational Environment does consistency checking to ensure that no view can
directly or indirectly import more than one view from the same subsystem.  The Rational Environ-
ment prohibits circular imports, unless combined views are involved.

The automatic copying and adjusting of information, such as that pertaining to links when views
are created from other views, is extremely convenient for the user as it eliminates some of the
"chores" related to copying code.  Also, the automatic generation of unique names is convenient.
For user-generated names, though, the Rational documentation cautions the user to be aware of
possible confusion for the Rational Environment with using underscores in prefixes for these
names (in case the Rational Environment needs to subsequently generate new versions of
views). The user can specify the number of levels for automatic name generation for release and
spec views.  There are conventions that the Rational Environment uses for generating name
suffixes. The user can indicate a name prefix at creation time.

For the special-case code view, since there is no Diana representation for the view, a special
command for browsing is available (Display_code_view) that displays a mapping of the code
segments and exceptions from the code view to the original view.
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3.1.5.3. Controlled Configurations
Functionality for controlling versions of program units and their version development, and for
views as configurations of program units is summarized in Figure 3-13.

Designate program units as controlled
Designate program units as uncontrolled
Create configuration object
Reconstruct view given its configuration object
Create a released view thereby freezing all program units
Query version history information
Append note to objects in database

Figure 3-13: Controlled Configurations Functionality

Program units that are part of a subsystem can be placed under version control.  This is done by
making program units controlled. In that case, a version history (generations in Rational terminol-
ogy) of program units are kept.  These program units are kept in archived state, and a delta
technique is applied to store only differences.  For controlled objects the Rational Environment
coordinates modification by requiring them to be checked out (see Section 3.1.5.4).  Unfor-
tunately, newly created program units are not controlled—users have to do so explicitly.  At any
time the user can choose to make individual program units uncontrolled again, thereby suspend-
ing the recording of version history and coordination of modifications.  This operation should be
used carefully because it has side effects and program units in uncontrolled state are not easily
detectable.

Subsystem views are program libraries that contain configurations of versioned program units.
The configuration information is described in configuration objects. This is illustrated in Figure
3-14. A configuration object contains a list of program unit names and the selected version, as
well as all the relevant state information (such as switch values, import/export lists and model
name) necessary to (re)construct a subsystem view.  If disk space is a concern, views can be
destroyed and reconstructed when needed from the less space-consuming configuration object.
Notice, however, that only controlled objects are recorded in a configuration object.  Thus, only
controlled program units are placed into the reconstructed view, even though the original view
may have contained uncontrolled program units.

Subsystem views can be turned into release views, i.e., all program units in a view become
frozen. Once frozen, no changes can be made to the view. The release function can compile
program units if specified in a parameter. Note that views are frozen even if compilation fails.  As
a result, the units can be frozen in an "installed" state and cannot be promoted to ‘‘coded.’’ In this
case the view will need to be unfrozen and fixed (only the owner can do so).  Unfreezing should
be used cautiously since it makes immutable code modifiable.
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Figure 3-14: Versioning and Configuration in a Subsystem
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The Rational Environment automatically constructs the names of released views and configura-
tion objects, whereas code view names are entirely user-defined.  A released view name has two
components: a pathname prefix such as "rev1" and a set of release level numbers such as
‘‘_0_1.’’ The prefix is taken from the basename of the working view, although it can be distin-
guished from the working view by a parameter in the Release command.  The minor release level
number is automatically updated by the Rational Environment unless the user requests that a
different level be incremented (via a parameter in the Release command). The number of
release levels that can be incremented is determined by the user-created file Levels in the
subsystem’s model.

There are commands for displaying typical database information, such as change history.  There
are no specific browsing facilities for navigating development history relationships of views, such
as the view a particular view originated from.

3.1.5.4. Cooperative Code Development
Figure 3-15 summarizes the version tracking and product release capabilities for supporting se-
quential releases of subsystems by a team of developers.

Set up a cooperative development scenario (subpath)
Check-out objects (creating a new generation) or abandon check-out
Check-in objects
Update working view with changes by others
Revert objects to a specified "generation"
Query database status about objects

Figure 3-15: Cooperative Code Development Functionality

A team of users work cooperatively in a collection of working views, also referred to as "sub-
paths," each of them using a separate one.  A set of cooperating working views is created via a
series of Make_Subpath commands. The user specifies a name extension that the Rational
Environment uses for constructing the names of the views.  Naming conventions (related to paths
and subpaths) can be bypassed using the basic command for creating a view (CMVC.Copy)
rather than any path-related command.

Tracking and controlling versions of objects is similar to conventional check-in/check-out facilities.
The Rational Environment will record the change history as long as the user designates an object
as a controlled object.  Once controlled, a reservation token is associated with the object. The
user can supply a reservation token name or the Rational Environment will generate one, al-
though why the name is needed is not evident in the documentation.

A user must check out a program unit into a working view in order for it to be modifiable.  After
editing and compiling the unit, the user checks it back in, thus making it available to other working
views in a path. These working views can be updated with the just-released program unit by
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explicitly invoking a command (Accept_Changes).  The just-released unit will be copied to the
view, but no recompilation will be needed, only recoding.

Note that the program unit is checked out to a view and not a particular user, which means
anyone with access control to the view can proceed with editing.  The default setting for access
control is read and write access by everyone.  Multiple program units can be checked out with a
single command by using wildcards when naming the object.  However, if one of the objects is
already checked out, the command will abort.  An "expected check-in time" can be indicated by
the user at check-out time.  Issuing the check-out command will result in the latest version of a
program unit to be placed into the view.  If the existing program unit version is out-of-date,
dependent program units are demoted to source state unless the user requests automatic promo-
tion to a particular state in a "goal" parameter.

Controlled objects can be browsed and compiled while checked-in.  The documentation cautions
the user from checking in an object in certain forms, such as one that contains insertion
points—these points must be removed before check-in time; otherwise, compilation will sub-
sequently not work.  An Ada unit kind such as a procedure cannot be changed to another kind of
unit while it is controlled.  An Ada unit should only be controlled after its Ada name appears in the
directory, not while it has its temporary name.  In case these conventions are not followed, the
user can recover by making the objects uncontrolled.

To delete and move a controlled object, first make it uncontrolled and then controlled after the
move. The history information up to the move remains under the original object name.  The
object in its new location is made controlled, and its generation number starts from the beginning.
In effect, the Rational Environment does not record the move in the history information.

With the revert function a user can make a particular program unit version the latest version.  The
user can also temporarily select an earlier version of a program unit—however, unless the revert
function is used, check-out will overwrite the selected version by the latest version.  A convenient
parameter feature is the use of a negative number to indicate how many versions back to go.
Thus, the user does not have to remember version numbers.

3.1.5.5. Independent Code Development
Figure 3-16 summarizes the functionality for coordination of changes between independent
development paths with teams of developers.  These facilities can be used in conjunction with the
cooperative development ones.

Make a separate development path
Join (controlled) objects for cooperative development
Sever objects for independent development
Merge changes of controlled, joined objects

Figure 3-16: Parallel Code Development Functionality
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A user creates an independent development path within a subsystem with the Make_Path func-
tion. Different paths of a subsystem use the same reservation tokens, i.e., program units cannot
be checked out in different paths independently unless the units are severed.  In effect, creation
of a new path results in a development branch.

Coordination of modification to program units can be controlled individually.  Program units can
be joined across several views, which means that only one view can have the program unit
checked out (i.e., the reservation token is shared).  Program units can also be severed with
respect to sets of views, which means that the program unit can be checked out to different sets
of views independently.  In effect, a development branch is created at the program unit level, i.e.,
program units can be updated independently in different paths, while views in the same path have
all program units joined, i.e., update to program units is coordinated and serialized.  Generally,
views in different paths have all program units severed.  If necessary, however, users can sever
individual program units within a subpath to allow independent development, and they can join
program units across paths to sequentialize their modifications even across otherwise independ-
ent development activities.

The merge facility (command Merge_Changes) takes two instances of a program unit and
merges them into one, noting all the differences.  These differences are noted in a report as well
as highlighting them in the resultant (merged) object.  The user may need to edit the resultant
object to resolve any conflicts, or the user can strip away the conflict highlighters with one com-
mand. The comparison is merely a textual one, so any character difference is recognized, such
as comment changes.

3.1.5.6. System Composition
Figure 3-17 summarizes the functionality for system-level composition of subsystems and their
execution. This composition basically permits the user to compose a system from subsystems
containing compatible sets of views.  This information is recorded in a table structure.  It is a very
convenient device for allowing the user to test compositions of different subsystem versions.

Activity files represent system configuration as sets of views
Create, add, change, copy, delete  an activity or its entries
Inherits changes from other activity files
Check compatibility between spec and load views
Check compatibility between views in activities
Write an activity into a file
Set the current default activity for a job
Browse activity items

Figure 3-17: System-Level Composition Functionality

An activity file is an object type and has a type-specific editor.  An activity file records a set of
subsystems making up a system composition, and indicates for each subsystem specification and
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implementation which version is to be used.  Each job has a current activity file. This activity file
is used for dynamic linking and loading when the user invokes a program for execution.  The user
can check for compatibility between spec and load view pairs, and for consistent use of spec view
versions across entries in the activity table.

An activity cannot contain a reference to another activity.  A program cannot be executed by
pointing to an activity file and applying the execute command. (Instead, users select the main
program unit in the appropriate version of a subsystem.)  An activity file can be created as a copy
of another activity file, or relative to another activity file.  In the second case, changes in the
entries of the original activity file are visible to the other activity file.  This can be used to maintain
system compositions that are variants of a baseline system composition; upgrades to the
baseline are immediately visible to the variants.

There is no version control for activity files.  The user must explicitly arrange for such.

3.1.5.7. Database Maintenance
Figure 3-18 summarizes the functionality for maintaining configuration management databases.
This involves supporting subsystems and development paths across multiple Rational machines
and managing the consistency of the database information.  These facilities seem rather complex
and are not easy to understand, given the documentation.

Make secondary subsystem into a primary one or vice versa
Update a secondary database
Display subsystem’s database
Check consistency of views between  database and library system
Destroy or expunge database
Repair a database

Figure 3-18: Database Maintenance Functionality

Database maintenance is complex and requires an expert because this involves knowing the
intricacies of configuration management objects.  We expect only an expert to use such facilities.
There is no network file system across multiple Rational machines, so file transfer is used for
moving subsystems to other Rational machines.  When development occurs on multiple R1000s,
a copy of each subsystem needs to reside on each machine so that the entire application can be
executed. Two types of subsystems, primary and secondary, exist for different purposes.  The
primary subsystem represents the main development version, whereas the secondary ones are
frozen and can only be used for local execution and testing.  Each secondary subsystem is
associated with exactly one primary subsystem via a unique identification number.  A secondary
subsystem has its own database that can be updated.  Making a subsystem into a primary one
effectively severs it from any other subsystem.  A subsystem is automatically made primary if its
database is deleted.
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Moving the property of being the primary subsystem requires that conventions must be followed
to avoid inconsistencies.  It is not entirely clear from the documentation how these operations
should be used and what their ramifications are.

Since both the database and library system record information about views, inconsistencies can
occur. The Rational Environment provides functions that can check consistency of information
between the two and make attempts to repair obvious discrepancies.  Comparisons are textual
so, for instance, different switch settings will be reported as a conflict due to textual comparison.
Any missing imported views are reported.  References to deleted models are removed. Infor-
mation can become inconsistent due to the user’s deleting information without following proper
conventions. Repairs involve the creation of objects found missing.  The documentation dis-
cusses the repairs that the Rational Environment attempts.  We were unable to test out the
database maintenance facilities since we only had one Rational machine.

Before destroying (or repairing) a database, the user can request the Rational Environment to
display the "effort only" required (i.e., which units will become demoted as a side effect).  When
the database is destroyed, all compiled units in the subsystem are demoted to source state and
all code views are deleted.  Rational documents the situations in which it is useful for destroying
the database.  For repairing a database, the user can indicate the extent of repair, that is,
whether to delete and rebuild the entire database or just deal with missing entries.

3.1.6. Operating System and System Administration Features
The Rational Environment provides some functionality that could be classified as similar to that of
conventional operating systems and pertaining to system administration.  This includes:  tailoring
of display and log information and terminal aspects; file handling and logging facilities; job control
and program management; and administration relating to account management and archive
facilities. These are discussed in the following sections.

3.1.6.1. Tailoring of Display and Logs
Figure 3-19 summarizes the tailoring facilities available for display and log information.

The Rational Environment provides the notion of a switch that a user can set which alters the
Rational Environment’s default treatment or display of information. Switches characterize the
behavioral aspects of the Rational Environment, such as the nature of the display or system
logging information. These switches are placed in a central location, that is, a switch file, rather
than scattering the switches in different places.  The switch file can be associated with structures
such as a directory, subsystem, or session. Changes to some switches can take effect im-
mediately (e.g., some library ones) while others take effect only after logging in again.

Library switches are associated with a library.  A library switch file is associated with each library.
This set affects how compilation is done, how links are managed, or how pretty-printing is done in
that library.  Library switches affect such facilities as whether Unchecked_Deallocation for access
types should be enabled, or whether certain pragmas should be ignored, or the case of identifiers
and keywords, or file transfer capabilities, or the amount of indentation.
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SWITCHES
Kinds of switches:

Library
Session affecting:

Editing images
Ada units
Debugging
Text I/O
Networking
Library display
Log and profile operations
Printing

Compiler (only cross-compiler)
Error reporting and display

No user-defined switches, only environment-defined
Operations:

Create a switch file
Type-specific (indirect) editing on switch files
Changes switches from within programs
Display switch file

PROFILE (filters)
Log generation filter
Error reaction filter

Figure 3-19: Display and Log Tailoring Functionality

A session refers to a particular environment profile that the user wants to set up through a collec-
tion of switches (called session switches). The user can define multiple sessions and name
them. When logging in, the user selects a session, which has the effect of selecting a particular
environment setup.

A profile provides a filter specification for error reaction and log generation. The error reaction
filter specifies how to handle non-fatal errors.  Choices include: ignore, abort, and propagate
exception. Log generation can be tailored by specifying the types of system messages to be
logged, their format, and files to be used for different logs.  Profiles can also be used for remote
sessions to aid networking operations.

3.1.6.2. File Handling and Logging
Figure 3-20 summarizes the file handling and logging functionality.

The file utilities provide a set of subprograms that allow any object that can be opened for text
input/output to be compared, merged, and searched.  Such objects include text files, directories
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FILES
Append files or merge variant files
Strip merge conflict information from file
Compare files
Find patterns in files or count number of pattern matches

LOG
Create, redirect, copy, or append to log
Write operation success-status to log
Write user-defined messages to log
Use profiles for tailoring error response and activities used

Figure 3-20: File Handling and Logging Functionality

and program libraries, and Ada objects.  Regular expressions can be used for pattern matching
on names.  The user can indicate whether subunits are to be included and can request case-
sensitivity checks.

The Rational Environment allows the direct printing of text files, Ada units, and library listings.  All
other objects must be saved in a text file before they can be printed.  The copy of the object
committed to disk is printed—uncommitted changes through the editor are not reflected.

Logs are a mechanism for recording system messages as well as user-defined messages.  The
contents of logs can be tailored by specifying whether or not certain types of messages should be
displayed (see also profiles in the previous section).

3.1.6.3. Job and Program Control
Figure 3-21 summarizes the job control and program management functionality.  Typical
functionality can be found.  For running jobs, the activities and session switches are inherited
from the initiating job.  Jobs and scripts can be run after waiting a certain period of time.  The user
cannot designate a specific start time; however, a function is provided to determine the duration
based on current and start times.  The user can indicate which input, output, and error files the
job is to use.  From the documentation it is not clear whether the Rational Environment supports a
job hierarchy based on job creation, or whether all jobs have to be managed individually, inde-
pendent of their creation history.

3.1.6.4. System Administration
Figure 3-22 summarizes the user account management and archiving functionality. Since it is
expected that Rational personnel provide all environment maintenance, there are few commands
available to a user for altering system features.  There seem to be adequate facilities for a user to
determine system status by examining queues.  Archiving operations can be performed on
program libraries, directories, views, and subsystems.
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JOBS
Connect, disconnect, stop, start, or kill a job
Place job into background mode
Query job status for all jobs
Program-callable procedure for forcing job into background mode
Privileged operator mode

PROGRAM
Compile and execute programs from other programs
Change access control identity of calling job to that specified
Run scripts or job
Wait for a specific job to complete

Figure 3-21: Job and Program Control Functionality

OPERATOR
Create user and manage groups for access control
Enable terminals for login or disable sessions
Change password
Query disk usage
Make, display, and cancel print requests
Display information about system status

ARCHIVING
Copy, save, restore single or multiple objects

Figure 3-22: System Administration Functionality

3.1.6.5. Access Control
The Rational Environment provides access control through access control lists.  Access control
lists can be attached to worlds, to program units, and to files.  Access control lists specify the
access rights different groups have for an object. Two predefined groups are public and
network_public. Other groups can be defined by users with operator capability.  Possible rights to
files and program units are read, and write, while those for worlds are create, delete, owner, and
read.

• Write rights allow modification or deletion of an object.

• Create rights allow creation of objects in a world.

• Delete rights permit deletion of the world.

• Owner rights permit changes to the access control list of an object in the world, to
perform link operations on the world, to modify compiler switches defined in the
world, and to freeze and unfreeze worlds.
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• Read rights allow the display of the world content and the looking up of object names
in the world.

The identity of each job is matched against entries in the access control list of an object to
determine whether the job is granted access to the object.  The default identity of a job is the
user’s login name, but it can be changed at runtime by privileged users, or with an appropriate
password.

The access control facility has been designed as a general access control facility.  It is im-
plemented for the first time in release delta0.  Primitives have been provided for creation of and
modification to user-defined groups, for association of access control lists with objects and their
change, and for setting job identity and checking its rights to an object.  The adequacy of the
access control model and the provided primitives will have to be determined after they have been
used to provide user-level access control through an envelope of Ada functions that encode
access control policies.

At the present time, the access control facility is not integrated into the other facilities of the
Rational Environment.  An example of the current level of integration and provided end-user
functionality is the interaction between the CMVC facility and the access control facility.  CMVC
makes available a set of otherwise internal structures for the purpose of allowing access control
lists to be attached by the user or system manager.  These structures are only minimally
documented in the user manuals.  However, the semantics of these structures must be under-
stood for the desired control effect to be achieved, e.g., where in those structures should an
access control list be attached to get the effect of controlling the users who can change the
exports of a subsystem. We expect that eventually an envelope of functions will be provided on
top of the current primitives and that envelope will supply more suitable functionality for the sys-
tem manager and end-user.

Currently, the default operation of the Rational Environment is to give everyone full rights to all
objects. Users are expected to be cooperative rather than malicious.  The documentation and
provided training gives little guidance on the use of the access control facility.

3.2. Documentation

In general, the type of documentation facilities are similar to those of conventional environments.
There is hardcopy documentation in the form of manuals and there are on-line information is
procedural, whereas the manuals provide information that ranges from conceptual to procedure-
level descriptions. Different documentation exists for different classes of users, such as novices
versus experienced Rational users.

The documentation alone is not enough to train users about the intricacies of using the Rational
Environment—experienced users recommend the training courses.  Rational provides very good
technical consultation via their representatives.  They also have an 800 number hotline that is
staffed during regular working hours and is quite responsive.  Unfortunately, Rational does not
make available to the customers a document listing known bugs of the Rational Environment.
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3.2.1. Printed Documentation
Figure 3-23 summarizes the printed documentation that Rational makes available to users of the
Rational Environment (see [7]).

1. Basic Operations Manual

2. User’s Guide

3. Training Manuals (fundamental and advanced topics)

4. 11 Reference Volumes:

a. Reference Summary

b. Editing Images and Editing Specific Types

c. Debugging

d. Sessions and Job Management

e. Library Management

f. Text Input/Output

g. Data and Device Input/Output

h. String Tools

i. Programming Tools

j. System Management Utilities

k. Project Management

5. Ada Language Reference Manual

Figure 3-23: Rational’s Printed Documentation

The Basic Operations Manual is an concise, easy-to-use guide for novice users of the Rational
Environment. It presents the commands and keys for the basic scenarios such as executing
commands, editing, and traversing the libraries.  It also includes a quick reference to the
predefined key bindings.

The User’s Guide is similar to the Basic Operations Manual although it discusses the features in
more detail.

The training manuals are essentially copies of the slides that Rational uses in it training courses.
These can serve as a reminder to users who went through the courses.  For configuration
management, we gleaned more information from these training manuals than was available at the
time in the reference books.

The 11 reference manuals describe all the facilities of the Rational Environment.  These are
designed for users with a basic understanding of how to use the Rational Environment.  Each of
the eleven manuals are approximately 300 pages in length.  They are consistently structured,
making both perusal and searching for specific information easy.  Organization of the documen-
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tation reflects the Rational Environment’s implementation.  That is, chapters are organized by
Ada package name such as Compilation or Activity.  Although logically related procedures are
grouped under a relevant package name, the user has difficulty locating a description if he or she
does not know the package name.  Then the index or online help facilities can assist the user in
finding the package name.

Volume 1, the Reference Summary, contains the full Ada specification for each unit in the stan-
dard Rational Environment.  These are organized by the pathname to the command.  Cross-
referencing information details the location in the other volumes of the pertinent documentation.
The Keymap section presents the standard key bindings, organized by topic and by command
name. The Master Index combines all the index information from each of the manuals. Volume 1
is intended to be used as a quick reference to the resources provided by the Rational Environ-
ment.

Volumes 2-11 typically contain the following sections:  Table of Contents; Key Concepts, and Unit
descriptions. The Key Concepts section is generally very comprehensive in covering the
spectrum of functionality available and important concepts.  It is an excellent starting point for
novice users or users who do not have regular contact with the Rational Environment.  The Unit
section provides details about each command in the form of an Ada specification along with
descriptive information and a discussion of the parameters. The sections are alphabetically or-
ganized within a package.  The volumes have sections separated by tab pages making sections
easily accessible.

Each volume contains a "how to use this book" as the first section.  There is generally a one to
two page overview of the sections within the manual, followed by several pages reiterating the
basic structure of the eleven volumes and suggestions on how to locate information.  Each
volume ends with an index section pertaining to that volume.  Although available in some chap-
ters, generally there were no examples of using commands.  Side effects of commands, i.e.,
objects accessed by commands but not passed by parameter, are usually not documented ex-
plicitly. Known errors are not documented.  The documentation indicates in some cases when
cautionary use is necessary.

There is repetition of conceptual information across manuals.  This exists for reminding the user
of basic concepts.  In certain areas, such as workorder management or access control, documen-
tation seems minimal and there was little distinction between the key concept description and unit
descriptions.

3.2.2. Online Help
All the documentation is accessed by one of the four help keys.  Users will see the same sort of
information as that presented in the eleven reference volumes. Descriptions associated with the
Ada procedure specifications are more explanatory in the on-line version.  No on-line configura-
tion management documentation was available at the time of our evaluation.

The user can ask for help on a key binding, a command, or a pathname to a command.  If the
user requests information based upon a partial name, the Rational Environment will raise a menu
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showing a list of all possible names matching that query.  The user must know at least a keyword
from a command name in order to get assistance on a command from the Rational Environment.

In some cases not all the capabilities of commands are documented.  For instance, the "run"
command in the debugger allows single-stepping at about eight levels of granularity but the ex-
ample in the printed documentation only shows the default value, i.e., statement level.

3.3. User Interface

At first sight, the user interface of the Rational Environment appears to be somewhat complex
and overwhelming, especially to users of environments with VT100-type terminals who invoke
text editors and tools through a conventional command language. The Rational terminal looks
different; the keyboard has a large number of special function keys; the window system, editor,
and command language differ from those of other environments; and the interaction model is
highly interactive and responsive. However, the Rational Environment user interface has several
characteristics that make it quite easy to use, even for the infrequent user.  The user interface is
uniform throughout the environment. Users interact with one editor as the user interface, one set
of editing operations, one language for programming and command invocation. They view the
information as objects and can navigate through it in an object-oriented manner, based on avail-
able structural and semantic information.  The uniformity as a result of Diana as the primary
representation has been discussed in Section 2.1.1.  The effects of such a specialized system on
the ease with which users learn to use the environment has been discussed in Section 2.2.2.1.  In
this section, we complement these discussions with some detailed information on the user inter-
face functionality.
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A user does not necessarily have to know Ada in order to interact with the command processor.
Keys are available for helping the user form commands and code with the correct syntax and
semantics. The most common commands are bound to function keys.  A plastic template
describing the functions assigned to the keys is provided to overlay the keyboard.  In fact, the
ability to interact with the Rational Environment by pressing a key (as opposed to typing out full
command names) is very convenient.  The binding of common operations to keys such as
<promot> is very useful—the user presses <promot> to do many things, such as promote an
object to a higher state, execute a program or a command, or force a window to remain on the
screen.
There are a handful of keys that most users will constantly use.  They are:

• <definition>—traverses structures and displaying the contents of objects.

• <enclosing object>—is the inverse of the Definition key (i.e., the parent item).

• <next item>—navigates through parameter lists or errors.

• <explain>—details messages or error indications.

• <complt>—performs command completion and so performs pretty-printing and syn-
tactic checking.

• <format>—pretty prints an Ada unit, makes the structures available for object selec-
tion, and does syntax checking and completion.

• <semanticize>—checks the static semantics of Ada code.

• <promot>—serves many functions and is probably the most frequently used key.  It
can be used to: execute commands; promote an Ada object to a higher state; force a
window not to be removed from the screen; and to run a program.

• <edit>—demotes the selected program unit or its substructure to source state.

Commands are bound to two types of key combinations:

• Item-operation combinations that involve an item key such as <region> or <word>
(seven keys in all) and an operation such <d> for deleting the item.

• Modified key combinations that involve one or more of the modifier keys <shift>,
<control>, and <meta> along with another key.  Rational use particular combinations
to represent certain functions, such as <control><shift> for screen cursor movement.

These combinations are considered "basic" ones by Rational.  For the experienced user, "ac-
celerated" bindings are available that enable the user to type as a touch-typist.  Many commands
also can have a numeric value prefixeded to them as an iteration count.

Parameters for commands can be found via "command completion." If the Environment cannot
disambiguate in order to complete the command or statement, it raises a menu noting possible
completions. For system names and some programmer-defined names, the Environment can
perform name completion.  Many procedures have long parameter lists, but default values are
provided. The user can navigate through a parameter list and set parameter values.  Parameters
that have to be most frequently set or their default changed are listed first.  Unfortunately, the
default size of command windows is two lines and command parameters are listed in separate
lines. Scrolling through the parameter list using such a small window can be annoying.



CMU/SEI-88-TR-15 69

A type-ahead facility is available while a command or program is executing.  There is no case
sensitivity for commands.  Audio feedback is given for incorrect key combinations.  Commands
can be re-executed with or without editing, providing a convenient history mechanism via com-
mands that ‘‘undo.’’  A history command list is maintained for each command window.

Some aggravating interface properties are:

• Cursor movement is allowed over blank space where there are no objects.

• In some cases changes to a displayed object, in particular program libraries, are not
reflected in the corresponding window content. Examples are modification time of
objects and display of a newly created spec view using the Make_Spec_View com-
mand. This can be very frustrating.  Removing the window from the screen and
redisplaying it does not update its content from the object content. The user has to
destroy the window in order to get a correct display.  Pressing the <format> key will
update the displayed object in most cases.  See also Common.Revert for additional
information. Common.Revert will update in all cases.

• It is generally not clear as to when an object needs to be selected or when it is
appropriate to just place the cursor at an object an invoke the command.  It appears
that objects must be selected for destructive or major operations such as demote,
delete, or edit, whereas for check-out or Make_Uncontrolled, only cursor positioning
is needed.  Of course, the user can examine the command and look at the default
parameter value of <cursor> or <selection> in order to determine such.

• A novice user will take a while to realize where the cursor is placed after the execu-
tion of a command.  For instance, a <definition> command most helpfully places the
cursor on the last visited object within that substructure when it opens the new win-
dow, whereas configuration management commands such as check-in or compila-
tion command code unit leave the cursor in the same place as before command
execution.

• A separate command window is attached to each window displaying an object (such
as directory or Ada object). The user cannot reuse commands across command
windows except by copying text across the windows.

• One system window is shared between all command windows.  Any error message
is displayed in the three-line system window which is located at the top of the screen.
It can become confusing when the error message window is not cleared upon re-
execution of the same command or another command since it is not immediately
obvious that error message does not apply to that last command.

• Due to the algorithm Rational uses for replacing windows, the windows can get
shuffled around.  The user may force a particular window to stay in one position.
However, the screen can comfortably accommodate only three object display win-
dows and the result of locking one window is very frequent exchange of window
content in the other windows.

3.4. Performance

Rational presents an environment in which performance measurements may not be comparable
to those of conventional environments.  This is due to the fact that the Rational Environment uses
a different architecture and user interaction model.  Therefore, quantitative numbers such as
number of lines compiled per minute may not encapsulate its full power.  On conventional Ada
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environments, performance measurements, such as number of lines compiled per minute and
size of source code and object code files, are normally taken.  These numbers reflect the usage
model of those environments.  A comparison based on such numbers leads one to believe that
the price of a Rational Environment is not easy to justify.  Such numbers, however, do not take
into account a variety of factors that better capture the new technology available in the Rational
Environment and its effects on productivity.

Some factors are interleaving of syntax and semantic analysis with editing such that "compilation"
is reduced to code generation, use of smart processing techniques and subsystems limit the
scope of change propagation resulting in a (in some cases drastic) reduction of the number of
lines of code to be recompiled, the provision of a version and configuration control model directly
supporting the needs of cooperative and independent development, and the integration of these
facilities with Ada program libraries.  The effects of some of these factors only become apparent
by examining large-scale Ada systems, measuring development activity at a granularity larger
than execution of individual commands.  Unfortunately, in the context of this evaluation we were
not able to acquire measurements on productivity gain that would confirm or dispute the conjec-
ture that the Rational Environment provides productivity gain over conventional Ada environ-
ments.

3.4.1. Timing Issues
Benchmark tests indicate that the Rational Environment compiles at a rate similar to that of Ada
compilers on a DEC’s MicroVAX II or a Sun 3/140. For execution, the R1000 seems to be 50%
better than a Dec/MicroVAX II, which should be expected due to its specialized hardware.
Notice, however, that the Rational Environment has not been optimized for bulk compilation of
Ada code from text files, which is what the benchmark measurement reflects.

In general, the Rational Environment can be called highly responsive with many commands
taking less than two seconds.  For certain commands, such as semantic analysis or code genera-
tion of a complete program unit, creation or copying of a program library, invocation of a debug-
ger on a program, users expect slower response in any Ada environment.  The Rational Environ-
ment even shows good responsive behavior for these commands, i.e., faster than users are
accustomed to from other environments. Execution of some of these commands naturally is
dependent on the size of the objects being processed.

We have noticed that program libraries encounter a noticeable slowdown when they encounter a
large number of entries.  Lookup of entries in directories with 100 entries and more shows notice-
able delay.  Similarly, program libraries containing several hundred program units (e.g., placing all
ACEC tests into one program library) affects the responsiveness.

The Rational Environment R1000 processor is intended to be used by several developers.  For a
Model 200-20 Rational recommends approximately ten simultaneous users.  Such a number can
be supported during code development.  However, during system integration and testing of large
systems, as well as bulk processing of Ada code (as is done when importing Ada code or compil-
ing the ACEC suite) one or two such jobs result in an annoying sluggishness of the Rational
Environment for the other users.  Such sluggishness is more apparent to users of highly respon-
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sive environments such as the Rational Environment, because such environments perform more
processing interleaved with the user’s editing activities (e.g., frequent semantic analysis of
program unit fragments).  In conventional environments, the user interactions separate more into
pure editing activities and processing of program units.  Thus, processing for keystroke inter-
actions is limited to character manipulation.

An Effort_Only parameter on some of the commands aids the user in understanding the cost of
performing the command.  Unfortunately, the cost figure given is not documented so what it
represents is not clear.

3.4.2. Space Issues
Overall, the disk space consumption of the Rational Environment is similar to that of conventional
Ada environments.  Due to the availability of semantic information and the maintenance of
program units as separate objects, the Rational Environment is able to perform better than some
other Ada environments.

The size of a program unit in installed or coded state is approximately eight to ten times that of its
size in ASCII representation. The size of program units in archived state is approximately double
the size of the program in a text file due to its representation as a token stream. Such numbers
are similar to those of program units stored in program libraries of conventional Ada environ-
ments. Notice, that the Rational Environment only allocates space for program libraries that are
actually used, and that the program unit in a program library the source code, the semantic
information, and object code.

When under version control, the Rational Environment applies a delta technique to storing ver-
sions of program units in archived form.  The delta technique is similar to those in UNIX/SCCS or
DEC/CMS. Currently, the minimal cost for storing a delta is one Kbytes—thus, costlier than
conventional version history mechanisms.

The load view of a subsystem can be converted into a code view, in which the subsystem
representation consists of object code and limited symbol table information, resulting in space
savings of a 9:1 ratio.

As a result of the dynamic linking capability, the Rational Environment does not require a linked
execution image to be created and explicitly stored.  Thus, space savings are made which should
be noticeable, especially when large systems and several variants of systems are built.
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4. Conclusions

This chapter summarizes the results of our analysis of the Rational Environment.  The Rational
Environment as evaluated is a language-centered environment for code development and main-
tenance of large-scale Ada systems using its own specialized hardware and software.

The Rational Environment as evaluated is described in detail in Section 1.2; this base environ-
ment does not include four separately packaged products which were not available to us at the
time of our evaluation.  These are:  two products providing code cross-development support to
targets other than the Rational R1000 processor; one product providing design support through
Ada as a PDL with structured comments, generation of DoD-STD-2167 documentation from the
design, and document formatting; and a product supporting electronic mail.

Our conclusions are organized into two parts.  The first part summarizes the technological ad-
vances that the Rational Environment contributes to the environment and Ada technology, and
distinguishes it from other Ada environments.  These are a semantics-based interaction model
and integrated support for large-scale Ada code development and maintenance.  The second part
discusses the Rational Environment from the product perspective.  It examines the functionality
provided by the Rational Environment, the learnability and maturity of this specialized system, its
effectiveness relative to other Ada environments, and its integration into a full-scale software
project organization.

4.1. Technological Advances in the Rational Environment

This section concentrates on technological advances that the Rational Environment makes in two
areas. One area is that of support for semantics-based interaction and its effectiveness for code
development and maintenance.  The second area is that of support for large-scale Ada code
development. The Rational Environment provides the concept of subsystem for cost-effective
system composition, supports a version and configuration control model that caters to the needs
of different development and maintenance teams, and integrates the team support well with the
support for individual programmers.

4.1.1. Semantics-Based Interaction
As a language-centered environment, the Rational Environment provides a powerful and effective
semantics-based interaction model that allows the user to browse Ada systems according to their
syntactic structure and semantic dependencies, and to query semantic information (e.g., to deter-
mine the scope of changes).  It allows the user to interact with the environment uniformly by using
Ada as a command language and through a common editing paradigm applied throughout the
environment, which supports transparent transition between textual and structural editing.  The
user interacts with logical units such as Ada packages.  Instead of applying tools such as syntax
checker and compiler to source code files and having to be concerned with the resulting output
files, users of the Rational Environment promote Ada program units through different stages of
compiledness. As a language-centered environment, the Rational Environment does limit its
support for code development and maintenance to the Ada programming language.
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In addition to the semantics-based browsing and editing facilities, the Rational Environment
provides a highly responsive system by deploying smart compilation and dynamic linking tech-
niques and through cooperative input from the user (by the user’s selecting the part of a program
unit to be changed) to reduce reprocessing after changes based on semantic information.  As a
result, potentially fewer lines of code have to be reprocessed as a result of changes.  The debug-
ging facility incorporates these code development facilities, and provides tracing and debugging
support for the full Ada language.

This integration of code development and debugging capabilities is facilitated through the use of
Diana as primary program representation.  Though Diana is an inherent part of the Rational
Environment architecture, the user’s required knowledge of the Diana representation is limited to
understanding that structural editing is done based on Ada constructs, and that semantic infor-
mation such as display of definition or use of a name can be requested almost any time.

Such a semantics-based interaction model in combination with the use of smart processing tech-
niques gives several benefits to the developer and maintainer. Syntax and semantic errors can
be eliminated incrementally during editing by invoking the parser and semantic analyzer fre-
quently on the edited portion of a program unit.  Side effects of changes can be fixed quickly, by
displaying all the sites affected by the change and navigating to them.  These and other browsing
capabilities (such as displaying definition sites of names and parameter templates for procedure
calls) can be used effectively by developers familiar with the structure and interconnectivity of
Ada code, together with the use of smart processing techniques, to minimize the amount of
processing on changes, and can make the Rational Environment a powerful code maintenance
tool. At the same time, the Environment’s ability to generate code stubs, generate code for
incomplete program units, and link systems dynamically support early testing during development
and allow for rapid prototyping.

4.1.2. Large-Scale Code Development Support
The support for individual developers is integrated with facilities for large-scale development of
Ada through multiple teams.  In particular, the Rational Environment overcomes shortcomings in
the Ada language for large-scale development through the introduction of the subsystem concept
and integrates Ada development support with an advanced configuration and version control
facility. However, since the Rational Environment concentrates its support to code development
and maintenance, users will want to integrate it into their existing computing environments.  This
latter point is addressed in the second part of our conclusions.

The contributions of the Rational Environment to improving Ada’s ability to effectively support
large-scale development are in addressing the high cost of recompilation in large Ada systems,
especially for changes to central components, and providing versioning and configuration support
in an integral manner.  This is done through the introduction of the subsystem concept. Subsys-
tems permit large Ada systems to be partitioned into units larger than Ada packages, which
contain manageable collections of Ada program units.
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Following the philosophy of Ada packages, subsystems separate specification from implemen-
tation and require explicit import of facilities provided by others.  Differing from Ada packages,
subsystems do not require information that is essentially for code generation purposes to be
provided as private part of a specification.  The mechanisms of the subsystem eliminate some of
recompilation that is otherwise necessary due to changes in the private part.
Subsystems represent independent program libraries.  Subsystem implementations are compiled
against subsystem specifications of imported subsystems, i.e., the interfaces are checked for
semantic correctness, while the implementation of those other subsystems is not checked until
runtime when dynamic linking is performed.  As a result, subsystems act as propagation boun-
daries, i.e., program changes cause invalidation and recompilation only for units within a subsys-
tem. In contrast, other Ada environments may provide the ability to partition the program units of
an Ada system into multiple program libraries, but require the separate compilation property to be
maintained across program library boundaries (i.e., changes in one program library invalidate
program units in dependent program libraries).

Subsystem specifications and implementations can exist in multiple versions.  An Ada system
composition is described by enumerating the subsystems comprising the system and selecting
the specification and implementation version for each.  Based on such a composition description,
the Rational Environment puts together the system at run-time and checks for compatibility of
interfaces between the independently compiled contents of program libraries of subsystems.  The
benefits of such subsystem support are that it permits independent development to occur for each
subsystem, and that system composition is a flexible operation permitting systems to be recon-
figured at low cost.  This can effectively reduce the processing cost at test and system integra-
tion, where a number of system configurations are created and executed.  If the target is different
from the Rational R1000 processor, independent development of subsystems is still possible, but
composition cost may be higher due to potential lack of dynamic linking and interface checking
capabilities in the target run-time system.

In addition to independent development of subsystems by different teams, the Rational Environ-
ment supports development and maintenance by multiple teams within one subsystem.  The
concept of development path allows different teams to independently work on different develop-
ment threads, such as maintaining several field releases and further developing the product.
Facilities for one development path to integrate changes to another development path, e.g., in-
tegration of bug fixes to a field release into the development thread, are provided.  Within one
development path explicit support is provided for cooperative development by individuals of a
team working on the next version of a subsystem within one development path.  The provided
mechanism allows individual developers to work on program units in a coordinated manner by
reserving program units into work areas and creating new versions of them, and by isolating
developers from the changes of others, as well as providing an upgrade of changes released
within the team in a controlled manner.  Under normal circumstances the developer does not
have to explicitly manipulate or compose versions of individual program units, a task that can be
quite complex as the number of program units (Ada packages) reaches large proportions for
large-scale systems.
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In comparison, other Ada environments provide less integration of program libraries and version
and configuration control facilities, usually a generic version and configuration control tool working
with source code text files in a language-independent manner.  The mechanisms supported by
such tools often consist of version control of program components based on files with no distinc-
tion between visibility within one team and between teams, configuration management through
component versions stored in text files or command scripts, and system build information main-
tained in "make" descriptions, the files of both of which can be submitted to the version control
mechanism. Strict adherence to appropriate conventions is essential to maintaining
consistency—and, in the case of Ada, often resulting in frequent and unnecessary compilations.

4.2. The Rational Environment as a Product

This section concentrates on the Rational Environment as a product.  The product aspects ad-
dressed here do not represent a complete product evaluation, but concentrate on the technical
issues. The product aspects addressed are the functionality coverage of the Rational Environ-
ment, the learnability and maturity of the environment, especially in light of its being a specialized
hardware and software environment, the effectiveness of the Rational Environment as a code
development and maintenance environment, and its integration into an existing project organiza-
tion.

4.2.1. Functionality Coverage
We have classified the evaluated Rational Environment as a language-centered environment for
Ada code development and maintenance.  This is due to its emphasis in functionality on these
activities. The Rational Environment is built on specialized hardware and has implemented its
own operating system capabilities as needed for the implementation of a multi-user, time-shared,
development environment.  These operating system facilities are commented on in the context of
the Rational Environment as a development environment, but are not compared to other operat-
ing systems.

The Rational Environment provides code development and maintenance functionality similar to
that found in other Ada environments:  including editing, compilation, linking, execution, and
debugging for individual programmers, and version control and configuration management opera-
tions for the coordination of teams of developers and managing the version history of the
software. It differs in several areas in the way code development is supported and how complete
the support is. Two areas have already been highlighted in the previous section:  a semantics-
based interaction model and large-scale development support through subsystems as a system
partitioning and composition mechanism and the integration of version and configuration control
with Ada program library support.

As the semantics-based interaction model indicates, the user interacts with the Rational Environ-
ment in an object-oriented manner through its editor.  This editor exists in several variants, differ-
ing in the kinds of objects it can manipulate, how much of the structure it understands, and
whether a transparent transition between text and structure editing is supported.  Because of the
use of a common editing paradigm and the interaction with the Ada-based command processor
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through the same editor, a uniform user interface is provided that extends from program
manipulation to directory navigation and execution of operating system functions.  This results in
an highly responsive environment that is optimized to interactive use.

The general editor capabilities are similar to those commonly found in screen-oriented text editors
supporting multiple windows.  The Ada editing capabilities combine text editing with incremental
parsing and syntactic and semantic completion as well as structural modification based on syn-
tactic language constructs and semantic-based browsing.

Ada program units are created and maintained in program libraries, and semantic analysis and
code generation are accomplished by promoting program units to different states of ‘‘compiled-
ness,’’ avoiding the user’s having to maintain separate source and compiled code files. Smart
processing and dynamic linking techniques reduce the amount of processing necessary after
changes compared to conventional Ada environments, given the user cooperates by selecting the
portion of the program unit to be edited.  Error reporting is integrated with the program browsing
capabilities and provides several levels of explanation for errors.  The Rational Environment sup-
ports the generation of stubs and the compilation and execution of incomplete programs. The
debugger is also integrated with the program browsing capabilities and provides support for the
full scope of the Ada language, including debugging of tasks and exceptions, which makes it
stand out over many other Ada debuggers.  The debugger’s functionality could be improved by
providing conditional tracing and breakpointing, as well as display of variables on tracepoints.

As is pointed out in the previous section, the Rational Environment enhances the notion of a
program library through subsystems by allowing them to be processed independently and by
providing separate specification and implementation. The version and configuration control
facilities are advanced in that they are integrated with program libraries and provide support for
independent development by different teams as well as cooperative development within a team.
This is complemented by a simple workorder management facility, whose purpose is to provide
task descriptions and automatic logging of certain version and configuration operations, and
whose appropriateness will have to be shown in practical use.

The operating system facilities consist of a directory and file system whose access is limited to
the local machine (network access to files is available through file transfer programs), user ac-
counts, access control based on access lists, login session with user parameterization and job
execution management as well as various system administration functions.  The available
functionality is similar to that commonly found in operating systems.

4.2.2. Learnability and Maturity
The uniformity of user interaction through a single editing paradigm and Ada as a programming
and command language encourage learnability of the Rational Environment.  Learnability and
infrequent use is further eased by providing labelled binding frequently used functions to function
keys. The syntactic and semantic completion capabilities, together with the retrieval of name
definitions from the semantics-based editing support and the online help facility, also contribute to
ease of use of the environment.  Interaction at the command level requires little knowledge of
Ada, while program construction and modification requires familiarity with Ada constructs, though
some of the syntactic details are supplied by the editor.
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The interaction paradigm and the presentation of the available functionality, however, is more
complex than that commonly found on the Apple Macintosh.  Users will have to learn the concep-
tual model supported in a particular functionality area, such as version control from the documen-
tation and training material, before being able to use the Rational Environment.  Due to the
particular architecture of the Rational Environment, the available command set reflects the im-
plementation in some of the functionality areas.  This results in more difficult understanding of the
available operations in those circumstances.

Learnability is also affected by how much the user interface and interaction model of the user’s
normal computing environment differs from that of the Rational Environment.  Switching between
the two models frequently is something to which many users may not be accustomed since they
tend to work on one environment only.  Users can, however, tailor the Rational Environment user
interface to a certain degree.

A general problem with the user interface as far as the commands available to the user is that the
way operations are implemented is reflected in user interface especially with respect to the con-
figuration management facilities.  We expect such will change as customer feedback is given to
Rational.

The Rational Environment performs like a mature product.  We found the hardware to be ex-
tremely reliable, despite the fact that it is custom-built hardware.  Maintenance assistance for the
hardware is excellent and includes dial-up diagnostics facilities.  The facilities provided by the
Rational Environment software were quite stable, although we found some ‘‘teething problems,’’
such as errors and inconsistencies.  Many of the problems seemed minor and were repairable or
could be bypassed.  Rational’s technical representatives were always helpful whenever software
consultation was needed, and very responsive to problems or requests.  The documentation is
reasonable, but can be improved.

4.2.3. Effectiveness of a Specialized System
Due to the distinguishing characteristics of the Rational Environment’s architecture, it is difficult to
select adequate measures to compare its effectiveness to that of other Ada environments. For
example, due to its semantics-based interaction model, users of the Rational Environment would
rarely perform complete builds of systems from source text.  Therefore, quantitative numbers,
such as number of lines compiled per minute, may not encapsulate its full power.

We found that the Rational Environment is highly responsive, with many commands taking less
than two seconds.  Even semantic analysis and code generation of program units stayed at
acceptable levels.  The compilation speed was slightly better than that of Ada compilers on
DEC/MicroVAX II or Sun 3/140.  The reader is reminded, however, that due to incremental
processing techniques the number of lines to be recompiled may be considerably less than that
found in other Ada environments. Similarly, parsing and semantic analysis can be interleaved
with editing such that processing of program units as one entity may be reduced to code genera-
tion. For execution on the Rational R1000 processor, the link step is reduced to dynamic linking
of subsystems at run-time.  The disk space consumption of the Rational Environment is similar to
that of the better conventional Ada environments.
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The Rational Environment is intended to be used and priced for use as a timesharing system (10
simultaneous users for a R1000 Model 200-20).  This number of users can be supported during
code development, though during system integration, testing, and certain maintenance activities a
small number of users can at times slow down the Rational Environment considerably.  The price
per user is quite high and the system price competes with that for large timesharing systems.
However, its support for large-scale development of Ada systems by multiple teams and its
semantics-based interaction model and smart processing techniques may outperform the
capabilities of other Ada environments in various phases of code development and in code main-
tenance. This conjecture on productivity gain will have to be confirmed through controlled experi-
ments on large Ada systems, which was not possible in the context of this evaluation.

4.2.4. Integration into a Project Organization
Due to its characteristics, the Rational Environment is not intended to be used as a self-contained
computing environment for general computing needs.  The Environment, therefore, must be in-
tegrated into an organization on several levels: integration of the Rational hardware into the
computing environment, portability of Ada code between Ada systems and support for different
targets, and integration into a full life-cycle support environment.

The Rational Environment can be integrated into an existing computing environment through its
support of the Ethernet throughout IP/TCP protocols with file transfer and remote terminal access
capabilities. In addition to the Rational terminal, terminals supporting the VT100 standard can be
used.

The Rational Environment supports both the porting of Ada code from one host to others, as well
as cross-development to targets other than the R1000 processor.  Problems in porting are similar
to those commonly found when porting (Ada) software that makes use of facilities which are not
part of the language standard or software packages commonly accepted as available on a range
of machines.

A third aspect of integration is integration into a full life-cycle support environment.  This may
require integration with specification and design methods and their respective tools.  Tools may
be available on different hosts and require the construction of a heterogeneous machine environ-
ment architecture.  Tools may have to be ported to the Rational Environment or built specifically
for the Rational Environment to take advantage of its facilities.  None of these is a simple under-
taking.
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