
Technical Report

CMU/SEI-88-TR-11
ESD-TR-88-012

Managing Development of Very Large Systems:
Implications for Integrated Environment Architecture

Peter H. Feiler
Roger Smeaton

May 1988

Technical Report
CMU/SEI-88-TR-11

ESD-TR-88-012
May 1988

Managing Development of Very Large Systems
Implications for Integrated
Environment Architecture

AB
Peter H. Feiler

Evaluation of Environments Project

Roger Smeaton
Resident Affiliate,

Naval Ocean Systems Center

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl H. Shingler SIGNATURE ON FILE
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright Carnegie Mellon University, 1988
This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Services. For information on ordering,
please contact NTIS directly: National Technical Information Services, U.S. Department of Commerce, Springfield, VA 22161.

APPLE is a trademark of Apple Computer, Inc. APOLLO is a registered trademark of Apollo Computer, Inc. DSEE is a trademark
of Apollo Computer, Inc. DEC, MicroVAX, VAX, and VMS are trademarks of Digital Equipment Corporation. MACINTOSH is a
trademark of Macintosh Laboratories, Inc. and is licensed to Apple Computer, Inc. Rational is a registered trademark of
Rational. UNIX is a registered trademark of Bell Laboratories. Use of any other trademarks in this handbook is not intended in
any way to infringe on the rights of the trademark holder.

Managing Development of Very Large Systems:
Implications for Integrated Environment Architectures

Abstract: Version and configuration control are mechanisms for managing
source code and system builds. In the development of very large systems, built
by large teams, development management is the dominant factor. In this paper
we examine management support for development through integrated environ-
ments and investigate the implications for environment architectures. We do so
by defining a project scenario that is to be performed with integrated project sup-
port environments. The scenario has been carefully designed to not only deter-
mine the scope of management functionality provided by a particular environment,
but also to probe implications for the architecture of environments. The implica-
tions discussed in this paper are: focus on user activities; the integration of project
management and development support concepts; the ability to reinforce and avoid
conflict with particular organizational models; the ability to support evolution and
change of the product, environment, and organization; and the capability for adap-
tation and insertion into a work environment. The scenario is part of a method-
ology for evaluation of environments currently used at the Software Engineering
Institute.

1. Introduction

The management and control of the development of very large software systems is a key to
their success. As software systems and the projects developing and maintaining them be-
come larger, project management plays a more dominant role. Management comprises
management of the product (as accomplished through version and configuration control as
well as system modeling), management of the process (e.g., task management and change
request procedures), management of resources (project planning and control), and manage-
ment of the environment (such as introduction of new versions of tools and migration to new
hardware).

Version and configuration control, together with system modeling, concentrates its efforts on
managing source code and automating system builds. Mechanisms are provided for keep-
ing a history of source code modules, for creating stable configurations of the software in the
form of baselines and releases, and for controlling and coordinating the update of source
code by multiple developers. These mechanisms work well for small teams of developers.
For very large systems, however, the development takes on characteristics to which version
and configuration control mechanisms and tools do not easily adapt. Very large systems
tend to have multiple major threads of development; releases of software components
(check-ins) tend to require several levels of visibility; large development teams require differ-
ent organizational structures and more personnel-related activities such as training, replace-
ment, and communication; task organization, review, and tracking dominate the project acti-
vities. These issues have traditionally been addressed through project management tech-
niques. It is for this reason that we examine environment support for very large system
development from a management perspective with emphasis on project management.

CMU/SEI-88-TR-11 1

In many environments in the past, tools supporting managers in project planning and control
were relatively isolated from tools for developers. Tasks were delegated and progress re-
ported back in a manual fashion, and developers lacked facilities for managing their tasks.
In the last few years, the concept of an integrated project support environment (IPSE) has
received attention. An IPSE provides support for both development and management of
projects integrated into one environment; it also allows integration of development tools from
external sources. Prototypes of such environments are becoming available [6].

In this paper, we examine management support for development through integrated environ-
ments and investigate the implications for environment architectures. We do so by defining
a project scenario that is executed on integrated project support environments. This
scenario is part of an experiment in the methodology for evaluation of environments cur-
rently under way at the Software Engineering Institute [16, 17, 18]. The methodology has
been applied to a variety of environments, and the scenario has been carefully designed to
not only determine the scope of management functionality provided by a particular environ-
ment, but also probe implications for the architecture of environments. Implications in five
areas are discussed in this paper: focus on user activities; the integration of project manage-
ment and development support concepts; the ability to reinforce and avoid conflict with par-
ticular organizational models; the ability to support evolution and change of the product, en-
vironment, and organization; and the capability for adaptation and insertion into a work envi-
ronment. These implications can be viewed as requirements for integrated project support
environments.

The paper proceeds as follows. In Section 2, we discuss the scope of project and devel-
opment management by defining the covered management areas and by describing both
the context for an experiment scenario and the scenario itself. Section 3 contains a discus-
sion of the implications of management support for very large projects on an environment
architecture if the environment were to support the activities in the scenario in an integrated
manner. The paper concludes with some remarks about the ability of today’s IPSEs to pro-
vide integrated project support, along with a summary of additional requirements on inte-
grated environments.

2 CMU/SEI-88-TR-11

2. Project and Development Management Support

This section describes the scope of project and development management support and the
scenario that we use for investigating the requirements. First, we describe the four areas of
management support. Then, we give the context for the scenario and conclude by discuss-
ing the scenario.

2.1. Scope of Project and Development Management

We have identified four areas of management support:

• management of the product

• management of the process

• management of the resources

• management of the environment

Management of the product is comprised of version control, configuration control, product
release control, and traceability of product components. Version control refers to the main-
tenance of successive, parallel, and derived versions of components, explicit and automatic
version selection and retrieval, and coordination of modifications to versions of a compo-
nent. Configuration control refers to system modeling, i.e., description of the composition of
a system; system construction, i.e., build and rebuild of systems as well as the building of
hybrid systems with a mix of versions; and derivation management, i.e., cost-effective main-
tenance of objects derived from other objects through application of tools. Product release
control represents facilities for baselining and packaging product deliverables (e.g., ex-
ecutables together with online help and user manuals), for maintaining product release and
customer information, and for rolling back to older releases. Traceability of product compo-
nents refers to the ability to show the relationships between documents describing product
components, to trace their relationship through the development, and to browse and query
the relationships. Examples of such relationships are those between requirements and
specification for components and their code, and between user documentation and the sys-
tem it documents.

Management of the process represents standards, procedures, and protocols to accomplish
orderly and consistent development of a software system. It includes change management,
quality control, and task management. Change management deals with changes to a
released system version and relates error reports, change requests, and assignments to
versions of product components. Quality control specifies various criteria—in the form of
standards, validation and verification procedures, and acceptance tests—that must be satis-
fied at certain times of the development process. Task management refers to facilities for
managing task assignments, tracking user activities as part of the tasks, recording and re-
porting completion of activities, and activating dependent tasks.

CMU/SEI-88-TR-11 3

Management of resources refers to the activities of project planning and control. On the
project manager’s side, these activities include: planning activities such as development of
work breakdown structures, cost estimation, resource assignment, and scheduling; monitor-
ing activities such as analysis of schedule and resource consumption of actuals against es-
timates; and plan revision activities to reflect changes such as personnel changes, organiza-
tional changes, and changes to the product structure. On the development support side,
management of resources refers to facilities for instantiating project plans, that is, the ability
to reflect product, team, and task structures, for automatic reporting of progress, and for
reflecting revisions in the plans.

Management of the environment is concerned with changes to the project support environ-
ment as well as the use of and changes to the computing environment. During the lifetime
of a project, especially large projects, it is likely that the environment will be changed. New
versions of tools will be installed; new tools will be introduced; and tools knowledgeable of
organizational procedures will be adapted to reflect adjustments of the procedures. Just as
the environment controls the release of new product versions, it is responsible for introduc-
ing new versions of tools while maintaining the consistency of the development database.
The use of networked computer workstations requires the environment to support distributed
operation, but it also requires support for maintaining the environment. This includes distri-
bution, installation, and tracking of the environment configurations on a large number of
workstations, and use of server machines to offload processing from each individual work-
station.

2.2. Context for the Scenario

The following scenario simulates a project for maintaining a released software system. The
product consists of several subsystems, one of which is the user interface (UI) subsystem
illustrated in Figure 2-1. The organization responsible for maintaining and enhancing the
product is split into two groups: a maintenance group and an enhancement group. The
maintenance group fixes problems with the current release, while the enhancement group
extends the functionality of the product. The organization, which is fictitious but represen-
tative, is illustrated in Figure 2-2. For the purpose of this paper, the scenario concentrates
on the activities of the maintenance part of the organization.

The "project" starts with a set of error reports from customers who are using the current
release of the system. The error reports are analyzed, and a new release correcting many
of the reported problems is planned. Project plans are drawn up by the project manager in
cooperation with team leaders. The plans are approved, and the project is carried out by
several teams, a documentation group, and a quality assurance (QA) group. During the life
of the project, its progress is monitored by the project manager and the team leaders.
Various changes (e.g., in personnel) are necessary to accommodate the execution of the
project. Finally, the new release is made available for distribution to the affected customers.

4 CMU/SEI-88-TR-11

Subsystem: User Interface
(UI)

Parts:

Packages:

Screen Manager
(SM)

Command Language
Interpreter

(CLI)

Virtual Terminal
(VT)

Viewport Manager (VM)

Command Interpreter (CI)

CI Support (CIS)

String Utilities (SU)

AIM Support (AIMS)

Window Manager (WM)

Image Manager (IM)

Page Terminal (PT)

VT Support (VTS)

Figure 2-1: Software System Structure

System
Analyst (SA)

Q/A team
(QA)

Documentation
team (DOC)

Team 1 (T1): Team 2 (T2):
leader
(T1L)

Team 3 (T3)

Manager
Product Maintenance

(MPM)

Manager
Product Enhancement

(MPE)

CU2CU1

Customers (CU)Product UI

programmer #2
(T12)

programmer #1
(T11)

prog #2
(T22)

prog #1
(T21)

(T12suc)

Figure 2-2: Organizational Structure

CMU/SEI-88-TR-11 5

We are investigating the ability of the environment to support different organizational struc-
tures and management styles. Therefore, the maintenance group is organized as follows. It
consists of a manager, a system analyst, and five teams: three maintenance teams (one for
each part of the software system), a documentation group, and an integration and quality
assurance group. The manager is responsible for the overall planning and management of
the maintenance activities. Although some of the manager’s activities may be those of an
administrative assistant, we refrained from introducing another role in order to keep the ex-
periment at a manageable size. The system analyst is responsible for determining neces-
sary maintenance changes. The maintenance teams make the actual changes and perform
unit testing. Team 1 is structured as a team leader and two team members, with the team
leader responsible for the team’s plans and for integrating and releasing their deliverable.
The team members are restricted in their interactions with other teams in that certain activi-
ties require approval of the team leader. Team 2 is structured as a pair of cooperating but
independent members. From the outside they are viewed as one entity, and tasks are as-
signed to the team, not individual members. Team 3 consists of a single member—we are
testing the environment’s ability to minimize management overhead. The documentation
group is responsible for maintaining the user documentation, which is part of the product
release. The QA group has the responsibility of working out a QA plan, performing accep-
tance tests, integrating team deliverables, and packaging the new release.

2.3. The Experiment Scenario

The scenario of the development management experiment is illustrated in Figure 2-3. The
label in the upper left of a task box indicates who is responsible for the task (using the ab-
breviations from Figure 2-2). The task is described in the task box. The arrows connecting
task boxes are marked with deliverables. The design and code change task for Team 1 is
expanded into more detail, illustrated through a bubble in Figure 2-3. An expansion of detail
for the tasks of Teams 2 and 3 and the QA team is not essential for the purpose of this
paper.

6 CMU/SEI-88-TR-11

T3

fix source & unit test

T2
fix source & unit test
each fix separately

T1
change design & code;
integrate changes, test

4 weeks

5 weeks

8 weeks

report #2

report #6,7

report #3,4

2 weeks

update user manual

design
document
revision

QA

subsystem integration &
acceptance testing

customer deliverable
packaging

5 weeks

#6 fix

#7 fix

#2 fix

#3,4 fix

MPM

approve
release

customer

deliverable

task

tasks

tasks

DOC

to customer

user
manual
revision

CU1CU1

CU2

MPMMPM

SA

submit
error

reports

submit
error

reports

initiate
activities
for new
release

QA

3 days

refine
Q/A

plans

5 days

error
report

analysis

error
reports

request for
Q/A plans

release note format
revised Q/A plans

change
recommendations

initial global
plan

enhancement
request

response to
customer

MPM
initial
global

planning
5 days

release
1.0

delivery

1 day

QA

QA

4 days

DOC

2 days

confirm
plan

T1L
refine
plan

T2

T3

2 days

T3 plan

T2 plan

T1
detailed plan

DOC
plan

QA plan
refinements

issued tasks4 days

approved
plan and

MPM

1 day

merge plan
and approve

confirm
plan

refine
plan

confirm
plan

2 days

notice to customer
about release date

Figure 2-3: Scenario

CMU/SEI-88-TR-11 7

CU1T1L

T11
design
change

3 weeks

report #4
task

report #3
task

design
doc draft T11

2 weeks

code &
unit test

design
doc

Documentation
team

T1L

2 weeks

T1L

integrate
and test

#3, 4 fix

#4 fix

#3 fix

T1

1 week

design
review

T12
code

3 weeks

T12suc

1 week

learn code & test

total 6 weeks planned
2 weeks

report #3,4
task issue

tasks

T1
change design & code;
integrate changes, test
8 weeks

Figure 2-4: Scenario Detail

Two customers have filed a number of error reports. We have chosen the collection of error
reports and their implications in a way that permits the experimenter to examine how well an
environment supports the management of such reports. The set of error reports will ex-
ercise tracking of error reports, mapping of error reports to fixes and releases containing the
fixes, relating error reports to each other, and relating responses to error reports.

The manager initiates maintenance activities which will culminate in a new release. He re-
quests that the quality assurance group refine a quality assurance plan for the next release,
and he sends the error reports to the systems analyst. The system analyst classifies the
error reports, examines the development history and the design, specification, and require-
ments documents to locate the cause of each error. The analyst then determines the scope
of corrective changes by querying dependency information and specifies the necessary ac-
tions. QA develops a quality assurance plan along with standard forms and checklists. In
this part of the scenario, the manager should be able to issue these planning tasks with little
overhead.

8 CMU/SEI-88-TR-11

The manager makes an initial global plan, which is passed to team leaders for refinement.
This plan includes task descriptions to implement bug fixes, based on the change recom-
mendations from the systems analyst. The team leaders report back their refinements,
which the manager merges into one plan. The plans are then approved by the manager and
instantiated. This planning activity examines the environment’s ability to support coordina-
tion of multiple persons working on a plan. It also investigates the restrictions imposed by
planning tools on management styles. For example, a tool that requires assigning a task to
individuals rather than to a group of people (or logical entity) does not permit the members
of Team 2 to choose among assignments.

Team 1 has changes that require an update to documentation, so a design review is
scheduled for all members. This investigates the ability of the planning tool to express a
whole team as a resource as well as the ease of assigning one person to another task in the
middle of a longer task. After the design review, the documentation group starts working on
an update to the user manual. This tests for the ability of the environment to automatically
activate a dependent task. One programmer (T12) leaves in the middle of his task and is
replaced by a successor. Because the new programmer will take a week to become familiar
with the task and the task is on the critical path, the schedule will slip. An investigation of
plan alternatives results in the conclusion that no slippage is necessary if the new program-
mer does not participate in the design review. This tests the visibility of the slippages in the
critical path and investigates how well the project planning copes with plan changes and
conflicts.

Team 2 is assigned several tasks. Its members select a task themselves from the assigned
tasks; this represents a more cooperative setting. During one member’s task, the correc-
tions in the code potentially require a change in another part of the subsystem. This tests
the ability of the environment to control change.

QA accepts deliverables from three teams and merges the new versions into an integrated
subsystem. Figure 2-5 illustrates the resulting version history of subsystem UI. The version
graph for UI shows the relationship between the different versions and the teams involved in
creating them. Figure 2-6 shows the version thread through component versions for each
version of UI. The components shown are themselves composed of smaller components
(as shown in Figure 2-1) with their own version history. This exercises evolution of versions
of a system that has a multi-level configuration structure.

CMU/SEI-88-TR-11 9

V1.4

release 1.1

V1.2

merged fix #6&7
by Q/A Team

V1.2.1

fix #6
by Team 2

V1.2.2

fix #7
by Team 2

V 1.1

fix #3&4
by Team 1

V1.3

fix #2
by Team 3

V1.0

release 1.0

Figure 2-5: Version History of UI Subsystem

CLI SM VTUI:

Release 1.0:

Release 1.1:

V1.1

V1.1

V1.0

V1.3

V1.2

V1.4

V1.2

V1.5

V1.2.1:

V1.1:

V1.2.2:

V1.3:

V1.2:

Figure 2-6: Configuration Threads of UI Subsystem

10 CMU/SEI-88-TR-11

QA receives documentation and completes a release document. The manager signs off on
the new release, and it is distributed to appropriate customers. The experiment closes with
the manager informing all project members of a celebration of project completion, investi-
gating informal communication support in the environment.

CMU/SEI-88-TR-11 11

12 CMU/SEI-88-TR-11

3. Implications for Environment Architectures

We have designed this scenario in such a way that it can be used as an experiment to
evaluate the functionality provided by an environment. At the same time, the scenario
probes issues related to environment architectures when management support is integrated
into an environment. In this section, we discuss five issues that we view as crucial ones for
IPSEs to address in order to become accepted. These are:

• Raising the level of abstraction of environment operations to more closely
reflect actual user activities.

• Integrating project management and development support in a manner that
benefits both the manager and the developer and does not unduly increase the
complexity of the environment.

• Understanding and supporting various processes, procedures, and protocols
without imposing its own; and automating steps where appropriate, thus reduc-
ing the responsibilities of the user and the complexity of the environment.

• Supporting evolution and change, not only of the product but also of the devel-
opment process and its management, along with change to the environment
itself.

• Adapting the environment to the needs of the organization to be supported.

3.1. Focus on User Activities

The scenario described in Section 2 is defined in terms of user activities, which have been
specified in a manner that is independent of a particular environment or collection of tools
representing an environment. By specifying the user activities abstractly in terms of con-
cepts familiar to the user rather than concepts and operations that exist in some environ-
ments today, we are able to determine the complexity and amount of interaction required to
accomplish a task in a particular environment. To illustrate, consider the difference between
the user activity of replacing one person on a team with another person and the operations
that must happen at a lower level to carry out this change—for example, changing the
ownership of files and directories, or moving messages containing task descriptions from
one mailbox to another through file copy operations. In other words, we are able to deter-
mine how closely the environment models and supports concepts and operations of the
user’s domain. Systems such as the Apple Macintosh have demonstrated that learnability
and ease of use improve considerably when concepts from the user domain are directly
supported.

3.2. Integration of Project Management and Development
Support

Integration of project management and development support into one environment can ben-
efit both components of the environment. On one hand, development support concepts and
operations can be made available to project management facilities. On the other hand, the

CMU/SEI-88-TR-11 13

introduction of some project management concepts into the development support facility can
also benefit the developers. Finally, the integration can reduce the number of concepts that
the user is exposed to, which in turn can reduce the complexity of the environment from the
user’s perspective. In the following paragraphs we further discuss each of these points.

Development support usually provides facilities for maintaining versions of objects (such as
design documents, source code, or user documentation) for grouping selected versions to-
gether into configurations and for coordinating access and modification of the objects by
multiple users. In an integrated environment, these facilities can be made available to proj-
ect management. Objects in this domain (such as work packages, schedules, resources,
plans, task descriptions, progress reports, change requests, and error reports) should have
the same status as objects in the development domain. As many of these objects change
over time, it is desirable to keep a history in the form of versions. Users may interact with
multiple versions of one object simultaneously, for example, when a manager does what-if
analysis with alternative plans. Capabilities for highlighting differences between versions of
objects are also desirable, e.g., when alternative plans are compared or when change re-
quests are examined for amendments. Project plans may be decomposed and worked on
by several people, requiring a well-defined interface between the plan components, along
with coordination and merging of updates to the plan components. ISTAR is an example of
an environment in which objects from both the project management and development sup-
port domains are managed in the same manner [2], i.e., objects from both domains can be
removed and passed around.

Integration of project management and development support requires that management
concepts are supported in the development facility. In addition to facilities for managing the
product, mechanisms must be available to support various team structures and the manage-
ment of tasks. From a management perspective, team structures can be recursive, i.e., a
team can consist of a set of teams reflecting a management hierarchy. This means that a
person can be viewed as a member of a team as well as a member of its enclosing teams.
A person can also be a member of more than one team, e.g., a member of the user inter-
face team and a member of the device handler team. Team structure support in the devel-
opment facility of the environment should provide access control, accounting (of computing
resource usage), and communication (e.g., sending an announcement to all members of a
particular organizational entity). Access control and accounting mechanisms provided by
the underlying operating system may not be appropriate to model the desired team struc-
tures. Information about the team structure may have to be maintained by the user in sev-
eral places, e.g., in access groups, in account structures, in e-mail distribution lists, and in
electronic bulletin boards (one per team). Task management can take several forms, some
emphasizing support for the developer, others leaning more to supporting managers. Task
management allows developers to use simple task descriptions to keep track of tasks to be
done. Completed tasks are removed from a user’s task list but may be kept as a record.
While working on a task, the user may log various actions taken, and the environment may
automatically add information to the task log. Apollo DSEE [9] provides such a facility, auto-
matically logging check-in of modified objects. The task management mechanism may au-
tomatically propagate task completion, either by notifying a person or other task or by auto-

14 CMU/SEI-88-TR-11

matically activating tasks that depend on the completion of the task (i.e., on one of its
deliverables). Alternatively, new tasks may be activated when an object such as a new
version of a source code module is checked in—as in DSEE’s monitor capability. Tasks
may be organized into hierarchies, i.e., tasks can be partitioned into subtasks. The concept
of task may be more formal if it also specifies the objects required to do the task and the
deliverables; the task may represent a working environment and protection domain. The
ISTAR contract model [3] is an example of such a task management mechanism embodying
more management control.

An integrated environment can attempt logical integration, that is, integration at the concep-
tual level. The result may be a reduction in the number of concepts the user is exposed to
and a reduction in the amount of redundant information the user must maintain or access.
For example, work packages from the work breakdown structure may become schedulable
entities. Once accepted as part of a plan, they may become task descriptions—without
redescribing the task. When progress is reported through timesheets, the environment can
automatically record all tasks the user worked on, including terminated tasks, rather than
requiring the user to report progress in terms of job codes. In contrast to an environment
that is a collection of independent tools, an integrated environment reduces cognitive de-
mands on the user.

3.3. Process Modeling and Automation

A development project is managed through well-defined processes, procedures, and
protocols. They provide a certain amount of order and consistency to the evolution of the
product. Examples of product-oriented processes are acquisition of user requirements, con-
sistent changes to source code, and consistent update of derived objects (e.g., object code).
Examples of management-oriented processes are use of certain development methods in a
particular style, document review and approval, change request control, and prescribed pat-
terns of information flow and decision making in the organization. Environments of the
toolkit variety provide little support for the process; users are expected to use the tools ac-
cording to certain conventions in order to maintain consistency and order. However, as de-
velopment support environments and IPSEs attempt to capture various processes and sup-
port them, two issues are raised: conflicts between the processes modeled by the environ-
ment and the models given in the organization; and appropriate automation of various proc-
esses to assist the users. In the remainder of this section we elaborate on each issue.

CMU/SEI-88-TR-11 15

Many management tools and facilities, whether they are for configuration management or
project management, incorporate process models. These models may inadvertently restrict
the use of the tool due to conflicts with the process intended to be supported. For example,
a task management facility supporting hierarchical tasks may be considered too restrictive
because it implies a hierarchical organization. However, the task management mechanism
is more flexible if the hierarchy reflects only the creation of tasks and the tasks can commu-
nicate (i.e., pass on deliverables) independent of the creation hierarchy. Similarly, the
resource assignment facility may be too restrictive if it requires assignment of individuals to
tasks. A cooperative team management policy, as found in Team 2 of the scenario, is diffi-
cult to support. As these examples demonstrate, it is important for an environment architec-
ture to separate management support mechanisms from policies. Furthermore, policies,
protocols, and procedures differ from organization to organization, and the capability to tailor
them is desirable.

Formal encoding of processes permits the environment to automate steps of the process.
The environment can take responsibility for certain actions. It can be responsible for consis-
tently updating derived objects to reflect their source (e.g., the UNIX make facility) and for
consistently maintaining redundant information while requiring the user to enter or modify it
only once [7]. The environment can inform the user of related documents that are affected
by change (e.g., DSEE monitors [9]) and can determine if acceptance criteria are satisfied.
It can enforce protocols (e.g., submission and approval of a change request before the ac-
tual change can occur); it can control the actions different people can take (e.g., Darwin
[11]); it can guide the user through steps of the protocol (e.g., inform the user that a partic-
ular test suite must run before a modified module can be released [13]); and it can be
responsible for certain actions that are part of the protocol (e.g., automatically notify the is-
suer of a task and activate dependent tasks upon completion of a task). This automation
can reduce the perceived complexity of the environment. However, full automation is not
desirable. For example, successful execution of a test suite on a modified program should
not automatically declare a task completed and trigger notifications and task activations.
Similarly, slippage in a low-level task on the critical path should not necessarily result in
automatic notification of all managers in the management hierarchy. Automation must be
properly applied, and the user should be able to control the automation where appropriate
[8].

3.4. Support for Evolution and Change

Software development and maintenance is a process of evolution and change. An environ-
ment can support development adequately only if it anticipates and facilitates change. The
discussion in this section first elaborates on changes during the lifetime of a project and then
describes how change is supported.

Environments typically support evolution and change by providing version control on source
code components, as does RCS [14]. A complete history of changes is recorded, changes
are coordinated, and concurrent development is supported on different version branches.

16 CMU/SEI-88-TR-11

System models and configuration descriptions, (i.e., description of a particular composition
of a system) are often maintained as text files (e.g., UNIX make [4] and DSEE system model-
ing [10]). The expressive power of the system modeling notation is concentrated on de-
scribing a system rather than describing changes to a system. Support for change is limited
to submitting the text file containing the system description to version control. The evolution
pattern of system descriptions does not necessarily follow that of source code components;
thus, existing version control mechanisms may not appropriately support these change pat-
terns.

The software product consists of more than the source code and the generated executable.
The product to be installed on a system may consist of the executable, a help database, a
library of descriptions used to tailor the system, and other programs that the system uses.
The deliverable may consist of specification and design documents, the implementation, test
suites, and user manuals. The environment must provide support to help manage change
of the complete product and to coordinate the evolution of the product through several de-
velopment branches.

Change is not limited to the product. During the lifetime of a project, tools used by the
environment and the user may change, i.e., new releases of the tools may be installed. It is
important that environments control the installation of new tools. Environments must know
when new releases of tools are installed and they must track the effects of the new release
on objects generated by earlier releases of the tool. Similarly, process models may change
during the life of the environment. New methods may be introduced together with support-
ing tools, or the procedure for validating and approving a design change may be improved.
If an environment supports a particular process, it must be able to accommodate such
changes.

Because many changes are not made in isolation but have side effects, propagation of
changes must be managed. In many cases, propagation of change takes the form of post-
ing a notice (e.g., new version of Ada compiler has been installed overnight) and performing
a complete rebuild of the system—a costly operation for large systems. Techniques such as
smart recompilation techniques [15] and notions of upward compatibility and user-specified
equivalence to temporarily permit inconsistency [10, 12] reduce the cost of rebuilding a sys-
tem. For large systems, it is sometimes desirable to have two versions of a component
coexist in a system during transition periods. In interactive environments, the cost of imme-
diate propagation may become high for large systems even when smart recompilation tech-
niques are applied. Rational, for example, has introduced the notion of subsystem, a facility
to group a set of Ada packages and act as a firewall for propagation [1]. In general, it is not
always desirable for the person causing the initial change to be responsible for all side ef-
fects. The responsibility must be determined and the appropriate agent notified. Tools that
have access to relevant dependency information can use this information not only to help
reflect a change through automatic application of derivation tools but also to help determine
an appropriate strategy for managing a set of changes through dynamic partitioning of the
system into units with independent clusters of changes.

CMU/SEI-88-TR-11 17

In IPSEs, change is not limited to the product. Personnel may leave the project, or a new
computer system may be installed and become available as resource. As environments
with integrated project management and development support are starting to manage more
project-related nonproduct information, it becomes more crucial for them to provide appro-
priate high-level operations to deal with the effects of change to project resources, organiza-
tional structures, and information flow.

3.5. Adaptation of the Environment

An environment must be adapted to an organization before it can be successfully used on a
project. One aspect of adaptation, tailoring of the processes supported by the environment,
has been discussed earlier. A second aspect of adaptation is the ability to support the inte-
gration of tools into the environment. Most organizations already have tools in active use,
and replacing them with a new environment is both risky and costly. In some cases existing
tools must be used, e.g., a corporate accounting system or cost estimation tools tuned to the
organization. Transition of a new environment into an organization can be eased if tools in
active use can be made available in this environment.

Another aspect of adaptation is the use of the environment with existing products and proj-
ects. A software system may have been produced before the environment existed or in a
different environment. Therefore, in order to avoid limiting its use to development of new
products, facilities must be provided to import software into the environment. Importing soft-
ware may consist of: bringing in source code and reconstructing executables; bringing in
both source code and executables; importing requirements, design documents, and user
documentation; and importing multiple versions and configurations of the above. Bringing a
new environment into an ongoing project would mean that project management information
must be brought into the environment as well, either by integrating the existing project man-
agement tools or by importing the information.

Finally, ease of learning an environment has to be considered as an aspect of adapting the
environment. As environments grow to support more of the software life cycle as well as
management of the software development, they increase the cost of training. Learning falls
into two components: learning a method, and learning about the particular facilities in the
environment to support the method. The latter is directly affected by the choice of user
interface technology used in an environment. Availability of pointing devices, menus, win-
dows, simplicity of concepts, and consistency of functionality affect learnability and ease of
use. User familiarity with a method being supported has a greater impact on learnability.
Users can learn the commands of a graphics editor or the syntax of a programming lan-
guage like Ada in a relatively short time. However, learning the methods embedded in such
tools takes much longer [5].

18 CMU/SEI-88-TR-11

4. Conclusions

Management and control of development is perceived to be a key to the successful comple-
tion of very large software system projects. Management consists of management of the
evolving product, management of the development process, management of the resources
involved in the development, and management of the development environment. Tools ex-
ist for many of the management aspects (e.g., error report tracking, scheduling, version
control). These tools, which were developed in isolation, are often independent of each
other. In the past, humans provided the link between them and were responsible for their
consistent application. Recently, integrated environments have appeared (some under the
name of integrated project support environments) and attempt to address some of the man-
agement issues on a more global scale. The success of these environments in assisting
with the management of very large systems will need to be proven.

In this paper, we have discussed a project scenario that addresses many of the manage-
ment issues. This scenario is part of an environment evaluation methodology that has been
developed at the Software Engineering Institute and has been applied to several environ-
ments. From this work, we have derived several implications that integration of project and
development management support has for environment architectures. The implications
highlighted in this paper are:

• Focus on user activities: Tools exist to support parts of the management of a
project. By focusing on small pieces, they tend to provide operations at a differ-
ent level of abstraction. Integration of management tools can raise the level of
abstraction to that of the user and reduce the increase of complexity when tools
based on different concepts are merged.

• Integration of project management and development support: Integration
means that development support techniques, such as version control, can be
applied to project management and that management support mechanisms,
such as task management, can be provided in the development support facil-
ities.

• Process modeling and automation: In environments that consist of a collection
of tools, users have to adhere to conventions and procedures to consistently
proceed in a project. An integrated environment has the potential of capturing
some of the processes. It can then support and automate them.

• Support for evolution and change: Version control and configuration manage-
ment facilities have been provided to support evolution of software. However,
during the lifetime of a project, change to system descriptions, to the tools in the
environment, and to the processes must be accommodated.

• Adaptation of the environment: As an environment captures more of the devel-
opment process, it seems to impose more of its own view. In order for an inte-
grated environment to be transitioned successfully, it must be able to deal with
adaptation. Adaptation ranges from integrating existing tools and adapting the
processes, to applying the environment to an existing product or project.

CMU/SEI-88-TR-11 19

In summary, integrated project support environments that cover a full spectrum of manage-
ment activities in an integrated manner will need further attention of researchers before they
become reality for practical use. Environments need to take into account management of
the product as well as management of activities, and to provide support facilities that reflect
the evolutionary nature of software development (i.e., change to software components, soft-
ware system structures, processes, plans and schedules, and the development
environment).

20 CMU/SEI-88-TR-11

References

[1] Archer, James E., Jr., and Devlin, Michael T.
Rational’s Experience Using Ada for Very Large Systems.
In First International Conference on Ada Programming Language Applications for the

NASA Space Station, pages B.2.5.1-B.2.5.11. Houston, TX, June, 1986.

[2] Dowson, M.
ISTAR - An Integrated Project Support Environment.
In 2nd ACM SIGSOFT/SIGPLAN Symposium on Practical Software Development

Environments, pages 27-33. ACM, December, 1986.

[3] Dowson, M.
ISTAR and the Contractual Approach.
In Ninth International Conference on Software Engineering, pages 287-288. IEEE

and other computer societies, IEEE Computer Society Press, March, 1987.

[4] Feldman, S. I.
Make—A Program for Maintaining Computer Programs.
Software—Practice & Experience 9(4):255-265, April, 1979.

[5] Foreman, J., and Goodenough, J.
Ada Adoption Handbook: A Program Manager’s Guide.
Technical Report CMU/SEI-87-TR-9, Software Engineering Institute, May, 1987.

[6] Hall, Anthony.
Tool Interfaces in Integrated Project Support Environments.
In Ninth International Conference on Software Engineering, pages 289-290. IEEE

and other computer societies, IEEE Computer Society Press, March, 1987.

[7] Kaiser, Gail E., and Feiler, Peter H.
Intelligent Assistance Without Artificial Intelligence.
In Thirty-Second IEEE Computer Society International Conference, pages 236-241.

San Francisco, CA, February, 1987.

[8] Kaiser, Gail E., and Feiler, Peter H.
An Architecture for Intelligent Assistance in Software Development.
In 9th International Conference on Software Engineering, pages 80-88. Monterey,

CA, March, 1987.

[9] Leblang, David B., and Chase, Robert P., Jr.
Computer-Aided Software Engineering in a Distributed Workstation Environment.
In SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software De-

velopment Environments, pages 104-112. Pittsburgh, PA, April, 1984.
Proceedings published as SIGPLAN Notices, 19(5), May, 1984.

[10] Leblang, David B., and McLean, Gordon D., Jr.
Configuration Management for Large-Scale Software Development Efforts.
In GTE Workshop on Software Engineering Environments for Programming in the

Large, pages 122-127. June, 1985.

[11] Minsky, Naftaly H.
Controlling the Evolution of Large Scale Software Systems.
In Conference on Software Maintenance-1985, pages 50-58. November, 1985.

CMU/SEI-88-TR-11 21

[12] Narayanaswamy, K., and Scacchi, W.
Maintaining Configurations of Evolving Software Systems.
IEEE Transactions on Software Engineering SE-13(3):324-334, March, 1987.

[13] Ramamoorthy, C. V., Garg, Vijay, and Prakash, Atul.
Programming in the Large.
IEEE Transactions on Software Engineering SE-12(7):769-783, July, 1986.

[14] Tichy, Walter F.
RCS—A System for Version Control.
Software—Practice and Experience 15(7):637-654, July, 1985.

[15] Tichy, Walter F.
Smart Recompilation.
ACM Transactions on Programming Languages and Systems 8(3):273-291, July,

1986.

[16] Weiderman, N. H., Habermann, A.N., Borger, Mark H., and Klein, Mark.
A Methodology and Criteria for Evaluating Ada Programming Support Environments.
SEI Annual Technical Review :17-26, 1985.

[17] Weiderman, N. H., Habermann, A. N., Borger, Mark H., and Klein, Mark.
A Methodology for Evaluating Environments.
In 2nd ACM SIGSOFT/SIGPLAN Symposium on Practical Software Development

Environments, pages 199-207. ACM, December, 1986.

[18] Weiderman, N. H., and Borger, Mark H.
Generic Evaluation Experiments for Assessing an Ada Environment’s Support of

Configuration Management Activities.
In Proceedings of the Ada Europe Conference, Stockholm, Sweden. May, 1987.

22 CMU/SEI-88-TR-11

Table of Contents

1. Introduction 1

2. Project and Development Management Support 3
2.1. Scope of Project and Development Management 3
2.2. Context for the Scenario 4
2.3. The Experiment Scenario 6

3. Implications for Environment Architectures 13
3.1. Focus on User Activities 13
3.2. Integration of Project Management and Development Support 13
3.3. Process Modeling and Automation 15
3.4. Support for Evolution and Change 16
3.5. Adaptation of the Environment 18

4. Conclusions 19

References 21

CMU/SEI-88-TR-11 i

ii CMU/SEI-88-TR-11

List of Figures

Figure 2-1: Software System Structure 5
Figure 2-2: Organizational Structure 5
Figure 2-3: Scenario 7
Figure 2-4: Scenario Detail 8
Figure 2-5: Version History of UI Subsystem 10
Figure 2-6: Configuration Threads of UI Subsystem 10

CMU/SEI-88-TR-11 iii

