Technical Report

CMU/SEI-88-TR-009
ESD-TR-88-010

Software Process Modeling

Marc I. Kellner
Gregory A. Hansen

May 1988

Technical Report

CMU/SEI-88-TR-009
ESD/TR-88-010
May 1988

Software Process Modeling

Marc |. Kellner
Gregory A. Hansen

Post Deployment Software Support
Information Management Project

Unlimited distribution subject to the copyright.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

This report was prepared for the

SEI Joint Program Office

HQ ESC/AXS

5 Eglin Street

Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

Thiswork is sponsored by the U.S. Department of Defense.

Copyright © 1988 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “ No Warranty” statements areincluded with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS-I1S" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIESOF ANY KIND, EITHER EXPRESSED OR IMPLIED, ASTOANY MATTERINCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federa Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, afederally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit othersto do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

Thisdocument is available through SAIC/ASSET: 1350 Earl L. Core Road; PO Box 3305; Morgantown, West
Virginia 26505 / Phone: (304) 284-9000 / FAX: (304) 284-9001 / World Wide Web: http://www.as-
set.com/sei.html / e-mail: webmaster@www.asset.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

Thisdocument isalso avail able through the Defense Technical Information Center (DTIC). DTIC provides access
to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential contrac-
tors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact DTIC
directly: Defense Technical Information Center / Attn: BRR / 8725 John J. Kingman Road / Suite 0944 / Ft. Bel-
vair, VA 22060-6218. Phone: (703) 767-8274 or toll-freein the U.S. — 1-800 225-3842).

Use of any trademarksin thisreport is not intended in any way to infringe on the rights of the trademark holder. B

Table of Contents

7.

. Introduction

. Overview of Software Process Modeling

2.1. Major Objectives of Software Process Modeling
2.2. Primary Capabilities Required for Software Process Modeling

. PDSS Project Overview

3.1. Project Purpose
3.2. Synopsis of the TO Modification Process

. Modeling Approaches

4.1. Initial Approaches and Alternatives

4.2. Software Process Modeling with STATEMATE
4.2.1. Orientation
4.2.2. Behavioral Viewpoint — Statecharts
4.2.3. Functional Viewpoint — Activity Charts
4.2.4. Structural Viewpoint — Module Charts
4.2.5. Analysis and Simulation Capabilities

. Results of Modeling

5.1. Enhanced Understanding of the Process
5.2. Recommendations for Changes to Methods and Procedures
5.3. Targets for Application of Technology

. Lessons Learned from Modeling

6.1. General Lessons
6.2. Requirements for a Modeling Approach

Conclusion and Future Directions

Appendix A. Figures

References

© O U0 A~ WW PP

CMU/SEI-88-TR-9

CMU/SEI-88-TR-9

List of Figures

Figure A-1:
Figure A-2:
Figure A-3:
Figure A-4:
Figure A-5:
Figure A-6:
Figure A-7:
Figure A-8:
Figure A-9:
Figure A-10:
Figure A-11:
Figure A-12:
Figure A-13:
Figure A-14:
Figure A-15:
Figure A-16:
Figure A-17:
Figure A-18:
Figure A-19:
Figure A-20:

Example of Structured Narrative Description
Data Flow Diagram of TO Modification Process
Relationships Between STATEMATE Views
Example of Event Definition
Statechart - Top-Level Process
Statechart - Detail-Level Process
Statechart - Detail of DRAFT_MODS State
Statechart - Detail of PREPARING State
Example of State Definition of DO_CHG_PGS
Activity Chart - Full Process - No Flows
Activity Chart - Full Process - With Flows
Activity Chart - Detail of DRAFT_MODS Activity
Activity Chart - Detail of REVIEW Activity
Example of State Definition of INITIAL_REVIEW
Module Chart - Top-Level Process
Module Chart - Detail of MME Module
Example Organization Chart
Outline Form of Module Hierarchy
Example of Activities Implemented by Modules

Example of Relationships Between Flows in Activity and
Module Charts

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

CMU/SEI-88-TR-9

Software Process Modeling
Abstract:

The Software Engineering Institute (SEI), located in Pittsburgh, Pennsylvania, is a
federally funded research and development center operated by Carnegie Mellon
University under contract to the Department of Defense. An SEI objective is to
provide leadership in software engineering and in the transition of new software
engineering technology into practice. This paper discusses a software process
modeling case study conducted at the SEI.

1. Introduction

This paper discusses the topic of software process modeling, a means of reasoning about
the processes used to develop and maintain software. Although this term is beginning to
come into common use, its meaning varies widely. For the purposes of this paper, software
process modeling is defined as a methodology that encompasses a representation ap-
proach, comprehensive analysis capabilities, and the capability to make predictions regard-
ing the effects of changes to a process.

Process modeling of this type was explored at the Software Engineering Institute (SEI) dur-
ing the execution of the Post Deployment Software Support (PDSS) Information Manage-
ment Project, which focused on improving the process used by the Air Force to modify
Technical Orders (TOs) to correspond to software changes to a weapon system. Early in
the project, it became clear that this process was complicated as it involved a number of
organizational subunits. It also became clear that there was a considerable shortage of
personnel who understood the full process or who could see how their portion fit into an
overall context. Believing that one needs to understand a process before attempting to im-
prove it, project members concluded that an important aspect of the project effort would be
to describe and analyze the organizational process employed.

This paper reports the approach we have taken to software process modeling and sum-
marizes our experiences on the PDSS Project. The paper is structured as follows:

e Chapter 1 - Introduction.

« Chapter 2 - Overview of the objectives and capabilities of software process
modeling.

« Chapter 3 - Overview of the PDSS Information Management Project, describing
the context for our modeling experience.

« Chapter 4 - Details and examples of the modeling approach used on the PDSS
Project.

» Chapter 5 - Outcomes and results of those modeling efforts.

» Chapter 6 - Lessons learned from this effort, and a list of the capabilities re-
quired for successful software process modeling.

» Chapter 7 - Conclusions and directions for future work.

CMU/SEI-88-TR-9 1

CMU/SEI-88-TR-9

2. Overview of Software Process Modeling

2.1. Major Objectives of Software Process Modeling

The PDSS Information Management Project is part of the Software Process Program at the
SEI. A basic premise guiding work in this program is that the quality of a software product is
largely determined by the quality of the process used to develop and maintain it. Thus,
product improvements can be effectively achieved by improving the software life cycle proc-
esses; consequently, a primary goal of software process work is to facilitate and enhance
the deliberate and planned evolution of a process toward greater effectiveness, efficiency
and reliability. This process evolution leads directly to lasting improvements to the cor-
responding software products. It is more important today than ever before to model and
analyze the software process because the advent of hew technologies is forcing managers
and developers to decide how to best utilize these technologies. Historically, those deci-
sions have been made intuitively, with little empirical data to substantiate promises of gains
in productivity and product quality. However, software process modeling supports the goal
of planned process improvement by providing a mechanism for:

« Recording and understanding the baseline process.
e Evaluating, communicating, and promulgating process improvements.

At a more detailed level, we have identified four primary objectives for the development of
models of the software process:

1. Enable effective communications regarding the process.
2. Facilitate reuse of the process.

3. Support evolution of the process.

4. Facilitate management of the process.

The first objective focuses on effectively communicating the description of a process to
others, such as workers, managers, and customers [9]. Process models are especially use-
ful for sharing knowledge and expertise; for example, process descriptions can be used for
training purposes. It is crucial that personnel be able to view a process at different levels of
abstraction; i.e., they should be able to start understanding the process from the top down,
from the bottom up, or even from the middle working either way.

Reuse, the second objective, enables a specific software process to be instantiated and ex-
ecuted in a reliably repeatable fashion across multiple software projects. This reuse may
occur within a single organization or across organizations. Osterweil has suggested that
". .. the most important benefit of process [modeling] is that it offers the hope that software
processes themselves can be reused" [9].

CMU/SEI-88-TR-9 3

The third objective is to support the evolution of the process, through (1) serving as a
storehouse for modifications, lessons learned, and tailoring; and (2) analyzing the effective-
ness of changes in a laboratory or simulated environment before actually implementing
them. Successful tailoring decisions should be formalized and stored as part of the model,
so that they can be consistently applied in the future. In addition, deliberate evolution is
greatly enhanced by an ability to qualitatively and quantitatively examine potential process
modifications in a simulation mode before trying them in practice.

The final objective is to facilitate effective planning, control, and operational management of
software processes. This is accomplished through increased understanding of the process,
conformity to process definitions, quantitative simulation and analysis capabilities, training,
and other activities.

2.2. Primary Capabilities Required for Software Process
Modeling

In order to accomplish the above objectives, software process modeling must possess capa-
bilities in three major categories:

* representation
» comprehensive analysis
« forecasting

We anticipate that these requirements will be met most effectively through an automated
approach.

A powerful representation formalism is required to cope with the complexities of actual or-
ganizational processes. We believe that it is important to be able to represent descriptions
of the current ("as-is") process, prescriptions of a desired future ("to-be") process, and
restrictions imposed by regulations and standards.

Comprehensive analysis capabilities must include a wide variety of tests in the areas of con-
sistency, completeness, and correctness. These are critical in determining the validity of the
model itself, and of the real world process which the model represents.

Forecasting capabilities include both qualitative and quantitative aspects. Qualitative ex-
aminations look at the behavior of the process in response to various events and cir-
cumstances. Quantitative examinations extend these to predict numerical outcomes along
dimensions such as time-to-completion, manpower requirements, or quality measures. We
see these capabilities being provided through simulation that is tightly integrated with the
model representation and analysis features. This vehicle is ideal for answering "what if"
questions about such activities as procedural changes and technology insertion.

4 CMU/SEI-88-TR-9

3. PDSS Project Overview

3.1. Project Purpose

Post deployment software support (PDSS) has been defined as

"... the sum of all actiities required to ensure that, during the
production/deployment phase of a mission-critical computer system’s life, the im-
plemented and fielded software/system continues to support its original missions,
and subsequent mission modifications and product improvements" [7].

PDSS, therefore, includes not only software "maintenance,” but also the activities required
for overall system support.

In exploring PDSS activities and concerns across the Services, SEI personnel discovered
that many support organizations experienced difficulties modifying and delivering user-
oriented technical documentation corresponding to new releases of software systems.
Since the management of the documentation modification process presents a significant
challenge and directly relates to the availability of mission-critical systems, the SEI initiated
the PDSS Information Management Project.

The purpose of this project was to demonstrate the feasibility of dramatically reducing the
delay between completion of software changes and distribution of the corresponding
modifications to "user" documentation. This time lag has repeatedly resulted in delays of
several months in fielding a complete software change package.

Our strategy on this project was to focus on a specific representative case, in particular, the
Operational Flight Program (OFP) for the F-16 A/B aircraft. The OFP is the avionics soft-
ware that helps fly the plane and manage its defensive systems. PDSS activities for this
airplane are managed by the Ogden Air Logistics Center (OO-ALC) at Hill Air Force Base in
Ogden, Utah. In the Air Force, the user documents are called Technical Orders (TOs); for
the F-16, TOs are primarily directed at pilots and maintenance personnel.

Our strategy included:

» Examining the TO modification process and recommending improvements to
that process.

» Conducting a pilot study applying advanced document production technology to
a sample TO for the current OFP block change.

« Assessing the impact of this technology at Ogden and providing empirical data
regarding productivity enhancements and conversion costs.

It is useful to have a perspective on the scope and magnitude of the effort to produce TO
modifications, which has been a major bottleneck in the overall process of developing and
fielding software upgrades for many weapon systems, including the F-16. The USAF has
approximately 126,000 active TOs, spanning about 11,000,000 pages. Approximately one

CMU/SEI-88-TR-9 5

million change pages were processed in the 1984 fiscal year. Of course, only a portion of
these were due to software changes. Turning to the F-16, there are about 141,000 pages of
aircraft TOs unique to the F-16 A/B. General Dynamics, the prime contractor for the F-16,
reported that a "typical F-16 A/B Operational Flight Program (OFP) block change" affected:

« 80 aircraft TOs (total of 3,817 pages changed)
« 24 commodity TOs (total of 83 pages changed)
24 time compliance TOs (total of 51 pages created)

Many of the affected TOs are modified in relatively minor ways. For example, many mainte-
nance and job guide TOs involve changes in part numbers to correspond to the software
change; and many maintenance and operational TOs, as well as job guides and checklists,
must be modified because the OFP software identification number changes. (This number
appears in numerous diagrams depicting the expected display on the "Power-On Panel"
when the system is first turned on.) Although these changes are relatively easy to make
once identified, their identification from 141,000 pages of manuals can be quite challenging.
On the other hand, a relatively small number of TOs undergo far more substantial modifica-
tions. These include several operational manuals, since many software changes affect the
"user interface”. Our pilot study worked with one of these highly volatile operational
manuals as the most difficult case.

3.2. Synopsis of the TO Modification Process

The PDSS Project’s activities involved understanding, documenting, describing, and analyz-
ing the process currently used at OO-ALC to produce and distribute TO modifications that
corresponded to the F-16 A/B OFP avionics software block changes. We are convinced that
such an exercise is a necessary precursor to successful process improvement efforts. This
process description provided a base from which project members formulated recommen-
dations about possible improvements and technological enhancements to streamline the
process. Furthermore, we expected this description to be helpful to those involved in any
phase of the process because it clarifies the entire process and enhances their appreciation
for the part their role plays in its successful execution.

Information was gathered primarily through interviews with the personnel directly involved in
executing the process steps. These interviews were supplemented with information ob-
tained from those involved in managing the process, and with information gleaned from reg-
ulations bearing on the process steps. Our intent was to model the process that actually
occurred for the most recent OFP block change—called "15S1."

To help us organize and synthesize the information, we first developed a structured narra-
tive description of the major process steps. An example of one of these structured narrative
descriptions appears in Figure A-1. To clarify the narrative descriptions of the process flow,
we developed the diagram which is presented as Figure A-2.

6 CMU/SEI-88-TR-9

The structure of Figure A-2 loosely follows that of a data flow diagram, a technique widely
used in systems analysis work. The fundamental focus of this approach is to trace the flow
of data or information through the system. The lines with arrowheads in the figure represent
the data flows between activities and data stores. Data stores, repositories where data are
stored for future reference, are represented in the diagram by short, wide rectangles, open
on the right side. There are four stores shown in the figure, numbered S1, S2, S3, and S4.
One of these, S2 (TO Libraries), is shown twice for convenience in drawing the data flows.
The seven rectangles with rounded corners represent the basic activities carried out in the
system. In this case, these activities occur in a basically sequential fashion. Finally, a
square is used to depict external activities, personnel, etc. This symbol is used in Figure
A-2 to represent Technical Order Distribution Offices (TODOS), the recipients of the modi-
fied TOs.

Because a basic understanding of the process will be useful in appreciating the examples of
modeling approaches and specific model components to be discussed later, a synopsis of
the process will now be presented. Additional details of the process are documented in
[1, 2].

The first major activity in the TO modification process is labeled in Figure A-2 as "1.0 Identify
and Draft Modifications to Affected TOs." This activity is performed primarily by software
engineers (working in an organizational unit designated MMEC) who have been involved in
the design and testing of the OFP changes. Accomplished in a purely manual fashion, the
activity involves thumbing through thousands of pages of TOs looking for text and diagrams
that need to be modified. The draft changes are then marked in red pen (red-lined). When
all draft changes have been made, the entire package of all red-lined TOs is then passed to
another organizational unit (designated MMAR) for review and ultimate approval—"2.0 Re-
view and Draft Modifications to Affected TOs" in the figure. TOs may be returned to MMEC
if they need to be reworked before approval. After approval, an AFLC Form 252, which
details the changes to be made, is prepared and signed for each affected TO. These forms
are held until the software changes have been validated and verified; then they are for-
warded to another organizational unit as a single package.

The package of approved TO changes authorizes the MMEDT office to compose and
typeset reproducible copy of the formal documents that detail the changes and are issued to
the field. This activity is depicted in Figure A-2 as "3.0 Prepare TO Modifications for
Printing." The actual production work of composing, drafting graphics, typesetting, and
merging text and graphics may be performed by OO-ALC personnel or by a local overflow
contractor. Normally, one of two types of TO modifications are prepared, depending on
whether the affected TO is physically maintained at OO-ALC or General Dynamics. In the
latter case, which applies to most affected TOs, an operational supplement (op sup) is nor-
mally developed by MMEDT as the document form distributed to the field. In the former
case, change pages are generally produced. As the changes for each TO are completed, a
reproducible copy of each TO modification document is forwarded to another organizational
unit (DARA) for printing, along with instructions on how many copies to print and an indica-
tion of the turnaround time allowed for printing.

CMU/SEI-88-TR-9 7

The fourth activity shown in Figure A-2 is labeled "4.0 Printing." The purpose of this activity
is to print the required number of copies of each op sup or group of TO change pages within
the allowed turnaround time. The printed documents are then forwarded to the TO
warehouse for distribution.

The distribution activity, "5.0 Distribution," is managed by the TO Distribution Control Office
(TODCO), a MMEDT function. The TO documents are packaged, addressed, metered, and
mailed. This is the end of the process for those TOs for which change pages were pro-
duced.

Additional steps are applied for the majority of the TOs—those for which op sups were pro-
duced. Copies of the op sups are held on file at MMEDT and the next activity begins—"6.0
Prepare TO Change Order to Contractor." Its purpose is to eventually incorporate TO
changes published as op sups into actual TO change pages. Since General Dynamics is
contracted to maintain these TOs, they must actually prepare the change pages. Normally,
MMEDT personnel wait until the next time a change processed through OO-ALC/MMEDT is
to occur. At that point, they will direct General Dynamics to incorporate the new change, as
well as those previously issued in the op sup, into formal change pages. In general, this
new change is entirely unrelated to the previous software-related changes. It should also be
noted that this activity proceeds independently for each affected TO, so some op sups are
incorporated into change pages before others are. The directive to General Dynamics is
issued as a TO Change Order.

Upon receipt of this order, General Dynamics performs the final activity shown in Figure A-2,
"7.0 Prepare, Print, and Distribute TO Change Pages." The print shop usually mails the
documents directly.

8 CMU/SEI-88-TR-9

4. Modeling Approaches

4.1. Initial Approaches and Alternatives

When we first developed process documentation in the form of structured narrative descrip-
tions of the various process steps, the results were rather unwieldy. Two of the most ob-
vious shortcomings of this approach are the lack of a big picture of the overall process, and
the voluminous explosion of detail that results as one resolves a major activity into its de-
tailed components.

We then supplemented the narrative descriptions with the data flow diagram (DFD) il-
lustrated in Figure A-2. Using this technique we can convey in one diagram an overall idea
of the workings of the TO modification process. We have employed the diagram effectively
in our reports and presentations, and the technique is widely used in systems analysis and
design work. However, data flow diagrams provide only limited information. They convey
only a functional view of a process; i.e., they describe only what is being done and what
data is flowing. The diagrams provide no information about the timing of the process steps.
Certainly, one can make precedence inferences from a DFD, but it is not clear where paral-
lelism occurs (versus sequential processing), what actually triggers the commencement or
termination of a step, etc. For example, the diagram does not make it clear that the major
input into Activity 3.0 is a monolithic package of all TO changes, whereas the output is a
reproducible copy for each TO, each of which is transferred as it is completed individually.
Nor is it clear that document preparation (Activity 3.0) occurs in parallel with printing (Activity
4.0) because the modifications for some TOs are being printed while others are still in prep-
aration. Hence, it is also unclear that printing commences when the modifications for the
first TO are ready. In addition, DFDs say nothing about how the functionality is actually
implemented in the organization: what organizational unit performs the work; how informa-
tion flows (e.g., by e-mail, verbally, US mail). Finally, our DFD was a simple drawing; it had
no processing power behind it and could not be automatically analyzed.

As a result of these shortcomings, we searched for a more powerful approach to software
process modeling. We decided to select a methodology that had existing automated tools to
support its application, since the lack of such tools would severely restrict application to
simple processes only. We formulated a preliminary set of requirements and examined a
number of potential modeling approaches. These included:

« Project management toolkits that included PERT and/or CPM techniques for
critical path analysis.

» Simulation languages, such as SIMSCRIPT or SIMULA, which use a software pro-
gram to model the behavior of the process being examined.

* Expert systems packages, some of which also had simulation capabilities
(these had frequently been employed in modeling factory work flow
alternatives).

e Systems analysis and design toolkits for traditional commercial MIS

CMU/SEI-88-TR-9 9

applications—typically employing the Yourdon structured design approach or
similar methodology.

« Approaches used by commercial organizations with large consulting practices
in the area of systems analysis and design, including some firms that often deal
with automating existing organizational processes.

« Toolkits for specification and analysis of real-time automated systems.

This review revealed several automated systems that provided many of the capabilities we
sought. We acquired one of these systems, called STATEMATE (offered by i-Logix, Inc. of
Burlington, MA), and have been using it on a trial basis to develop software process descrip-
tions, and to analyze and simulate their behavior. This system supports a unique method-
ology which was originally developed to aid in the design of real-time reactive systems (e.g.,
avionics software). However, it appears to be quite promising as an approach for software
process modeling.

4.2. Software Process Modeling with STATEMATE

This section provides an introduction to the STATEMATE approach to software process
modeling, including a number of examples from our actual model of the TO modification
process. No attempt is made to exhaustively cover the capabilities of STATEMATE for model-
ing; these are documented fully in [5, 6]. Nor will we exhaustively describe the meaning of
the model details. Rather, our aim is to illustrate the "flavor" of the modeling approach we
are using.

4.2.1. Orientation

STATEMATE offers model builders a set of three distinct but interrelated viewpoints with which
to model a real-world process. Taken as a whole, they cover the traditional "who, what,
where, when, and how" of a process. The three viewpoints are:

» Functional — what is done; represented by activity charts.
« Behavioral — when and how it is done; represented by statecharts.
« Structural — who does it and where is it done; represented by module charts.

These three viewpoints are just three ways of looking at the same process. They are differ-
ent because they look at the process from different vantage points or perspectives. Never-
theless, they interrelate because they all describe the same process.

In addition, there are explicit interconnections between the views: specifically, between the
functional view and the other two. The relationships among the viewpoints is illustrated in
Figure A-3.

With STATEMATE, a process is described through graphics and through textual forms. The
graphics are used to describe the three viewpoints as activity charts, statecharts, and mod-
ule charts. The textual forms are used to describe connections between the views, formal
definitions, and informal narrative descriptions.

10 CMU/SEI-88-TR-9

The graphical languages utilized for the three viewpoints are quite similar. They use two
major components: named boxes and directed lines. The named boxes represent activities,
states, and modules, respectively, in the three types of charts. Hierarchical decomposition
is represented by nesting within the same diagram. This is in contrast to most other toolkits,
which use separate diagrams or windows to depict different levels of detail. Directed lines
represent information flows in activity charts and module charts; they represent state transi-
tions in statecharts. Grouping notions apply these to hierarchy.

STATEMATE runs on Digital Equipment Corporation (DEC) VAX computers under the VMS
operating system. Our installation is running on a VaxStation GPX, which has a MicroVAx Il
CPU and a 19-inch color monitor with mouse. Both VMS and STATEMATE run in a multiple
window environment on the GPX monitor.

STATEMATE provides considerable flexibility. One can start with any of the views, readily
switch between the different charts, and even work on the different charts in parallel in differ-
ent windows. In addition, one can readily follow a top-down approach to decomposition, a
bottom-up approach, or even a middle-out approach. In the examples presented below, we
will present the model by examining the statechart first, followed by the activity chart and the
module chart. We will follow a top-down approach for clarity of exposition; one can actually
develop and examine the model components in a highly flexible fashion.

4.2.2. Behavioral Viewpoint — Statecharts

Statecharts provide the behavioral description of the models, i.e., the when and how.
Statecharts are an improved variety of state transition diagrams [3, 4]. They extend tradi-
tional state transition diagrams by allowing one to (1) decompose states in an and/or fash-
ion, including hierarchy, (2) direct state entrances by the system’s history, and (3) specify
timing constraints. The major components of a statechart are simply states and transitions
between states.

Transitions are labeled with a trigger and/or a set of actions. When the trigger occurs, the
state transition is taken and the actions are performed. Example actions include: generate
an event; set a condition; and perform a calculation. Triggers can be quite general, includ-
ing an event expression and a condition expression. (A transition occurs when the event
expression occurs while the condition expression is true). An example trigger, taken from
our model, is

(I NI T_REV_DONE or RE_REV_DONE) [REWORK_NEEDED]

INIT_REV_DONE is an atomic event that occurs the instant the initial review of red-line
changes is completed. Similarly, RE_REV_DONE is an atomic event that occurs the instant
a re-review (of reworked changes) is completed. If either of these events occurs, the event
portion of the trigger is satisfied. REWORK_NEEDED is a condition, meaning that it is a
Boolean variable with the possible values true or false. This variable indicates the outcome
of the review. If it has the value true at an instant when one of the events occurs, then the
entire trigger is satisfied and the corresponding state transition will be taken. To simplify the

CMU/SEI-88-TR-9 11

diagrams, one can assign convenient names to complex triggers; in our model, this example
is the actual definition of the defined event NEED_REVS. Figure A-4 shows the STATEMATE
dictionary listing for this event, including an explanatory narrative description.

It is worth noting that the STATEMATE approach distinguishes between the instantaneous and
the continuous. Instantaneous concepts take zero time; these include events, state transi-
tions, and actions. On the other hand, continuous concepts persist for a positive time inter-
val; these include conditions, states, activities, and data values.

Figure A-5 presents the top-level view of our statechart representing the behavior of the TO
modification process. The line starting in the upper left corner and leading to the box
marked IDLE is called a default transition and indicates where the system starts off. Thus,
we defined the process to begin in an idle state. When the GO_AHEAD event occurs, the
process moves from the idle state into the DRAFT_MODS state (drafting modifications).
When the DRAFTS_DONE event occurs, the process transitions to the REVIEW_MODS
state (performing the review). The process may iterate between these two states. This will
happen if the NEED_REVS trigger is met (its definition was discussed above). Eventually,
all TO modifications have been approved, which is signaled by the ALL_APPROVED trigger.
The process then continues into the ISSUE_INTERIMS state. This process component was
discovered by our team after the initial data flow diagram had been developed; therefore, it
is included in our STATEMATE model but not in our earlier model or discussion.

When the event CHG_AUTH_DONE occurs (change authorizations done), the process
moves to a more complex state, labeled by the tab PREPARE_PRINT. This state with the
dashed line in it is called an "and-state". It has two (in this case) orthogonal components:
DOC_PREP (document preparation) and PRINT (printing). The meaning of these or-
thogonal components is that they can occur in parallel. In other words, some TO modifica-
tions are in the state of being printed, while others are still in the document preparation
stage. Previous top-level states occurred in a purely sequential fashion. The coordination
details between orthogonal states are described at lower levels of detail, as will be seen in a
moment.

As the work progresses, the process moves to a DISTRIBUTE state, then to another and-
state labeled CONTRACTOR_CHG (for contractor changes to the TOs). Finally, when
ALL_CHG_PGS_DONE triggers, the process moves to a circle containing a "T," which is a
termination symbol meaning the process is complete.

Figure A-6 shows the statechart with the next level of detail revealed. Additional detail is
represented by nesting. For example, INITIAL_REVIEW and REWORK_REVIEW are two
substates of REVIEW_MODS from the top-level diagram. Different portions of the process
can be resolved into varying levels of detail, as required. For example, DISTRIBUTE is an
atomic-level, basic state with no substates. On the other hand, DRAFT_MODS has two
additional levels of detail, as shown in Figure A-6 and, in finer resolution, in Figure A-7.

12 CMU/SEI-88-TR-9

Returning to the issue of and-states, consider PREPARE_PRINT in Figure A-6. Its compo-
nent DOC_PREP contains another and-state, PREPARING, which has as many as four si-
multaneous activities. The details of the PREPARING state are exploded in Figure A-8.

Synchronization between orthogonal components of an and-state is specified at lower levels
of detail. As an example, consider CONTRACTOR_CHG in Figure A-6. When this and-
state is first entered, both orthogonal components start in their respective IDLE substates,
as indicated by the default arrows. When the external event NEXT_CHG occurs, meaning
another change is needed, the process advances to the DEVELP_CHG_ORDER state,
where a change order will be developed. Meanwhile, CONTRACTOR_WORK remains in
IDLE. When the CHG_ORD_SENT event occurs (the change order is sent to the
contractor), PREPARE_CHG_ORDR returns to its IDLE substate, and simultaneously the
CONTRACTOR_WORK status moves from IDLE to DO_CHG_PGS. When the
NO_WORK_WAITING event occurs, CONTRACTOR_WORK returns to IDLE. This ar-
rangement allows the possibility of a queue of work at the contractor’s shop. The details of
tracking this queue are managed within the DO_CHG_PGS state. The textual form details
of this state are reproduced in Figure A-9. States are allowed to have "reactions." These
are defined in the same way as transition labels, with a trigger portion and an action portion;
but when they are triggered, only the actions are executed, with no state transition being
taken. Thus, we defined a variable NUM_IN CONT_Q to track the number of TO jobs in the
contractor's queue. It is incremented when the state is entered and whenever the event
CHG_ORD_SENT occurs while the process is in the DO_CHG_PGS state. Each time a TO
change is finished, the event A_TO_CHG_BY_CONT is generated, which decrements the
count in the queue. When the count reaches zero, the event NO_WORK_WAITING occurs,
because this event is defined as

tr (NUM_I N_CONT_Q=0)
This means that the event occurs at the instant the condition in parentheses turns true.

These examples convey the "flavor" of the manner in which STATEMATE represents the be-
havior of a process; however, many additional capabilities are also available.

4.2.3. Functional Viewpoint — Activity Charts

Activity charts provide the functional description of the models; i.e., they show the tasks that
are performed. Basically, activity charts are enhanced data flow diagrams. The major com-
ponents of an activity chart are activities, possible information flow lines, and data stores.
An activity chart without the information flow lines is shown in Figure A-10; the flow lines
have been suppressed in the diagram to improve its readability. There are three types of
activities: normal, external, and control. Normal activities are the main ones being modeled;
they depict a specific (sub)function within the process, such as DRAFT_MODS or
PRINT_DOCS in Figure A-10, and they can be resolved into additional detail. External acti-
vities are shown in the figure as boxes with dashed outlines, such as TODOS and
XTRNL_PRNTRS. Since these are outside the scope of the process being modeled, they
are not included in any detail except to recognize their existence and information flows. The

CMU/SEI-88-TR-9 13

two examples noted correspond to the recipients of TO modifications (Technical Order Dis-
tribution Offices) and external print shops, respectively. Control activities correspond to
statecharts. They are depicted by rectangles with rounded corners, as shown in the lower
left corner of the activity chart. The name TO_CTRL 1 provides the linkage to the
statechart illustrated previously. The control activity controls the normal activities which are
its siblings: DRAFT_MODS, REVIEW, etc. It can start or stop a normal activity, suspend or
resume it, and so forth. Finally, a data store is illustrated in the upper center of the figure,
labeled TO_LIBS; this is a repository for information. Visual distinctions between these con-
structs are much more obvious on the screen, where color is used to distinguish among
types of boxes.

There are two types of information flow lines, those for processing information and those for
control information. Figure A-11 adds the information flow lines to the activity chart. Solid
lines are used to depict the flow of information to be processed, such as variables, records,
and lists. In the lower right corner of the diagram we see an information flow labeled
TO_CHG_PGS, from the CONT_CHG activity to the TODOS external activity. Of course,
this represents the delivery of completed formal change pages to a TO. An example flow of
information used for control purposes appears at the bottom of the diagram; it is labeled
A TO _CHG_BY_CONT and flows from the CONT_CHG activity to the control activity
(corresponding to the statechart). This item, which is an event, was briefly discussed at the
conclusion of Section 4.2.

As is the case for all STATEMATE diagrams, additional levels of detail are provided by nesting
more decomposition into a box. For example, the details of the DRAFT_MODS and RE-
VIEW activities, respectively, are illustrated in Figures A-12 and A-13.

Connections between states and activities may be specified explicitly on the statechart or
implicitly through the textual forms. Actions are allowed within statecharts to start, stop,
suspend, and resume any activities by name. One can also use the forms to indicate a
connection between a state and an activity. The "throughout" relationship is used to auto-
matically indicate that an activity is to be started whenever a specific state is entered and is
to be automatically stopped when the state is exited. An example is provided in Figure A-9,
where the CONT_CHG activity (on the activity chart) is seen to be performed throughout the
DO_CHG_PGS state (in the statechart). Another example, in Figure A-14, shows that this
type of correspondence can also occur at lower levels of detail. The INIT_REVIEW activity
(a subactivity of REVIEW—see Figure A-13) is performed throughout state
INITIAL_REVIEW (a substate of REVIEW_MODS—see Figure A-6).

4.2.4. Structural Viewpoint — Module Charts

Module charts provide the structural description of the models; i.e., they describe who per-
forms tasks and where they are performed. We use these charts to describe the physical
aspects of the process, reflecting how it is implemented. Module charts have two major
types of components: modules, and possible information flow lines. Modules represent the
organizational units or individuals who perform the activities depicted in the activity chart.

14 CMU/SEI-88-TR-9

There are three types of modules corresponding to three activity chart components. Execu-
tion modules show the implementation of normal activities. Environment modules cor-
respond directly to external activities. Storage modules show the implementation location of
data stores. Only the execution modules can be decomposed.

Our module chart is presented in Figure A-15. Environment modules, which are shown on
the top and right-hand sides in this figure, correspond directly to external activities on the
activity chart. The central portion of the diagram contains the execution modules. They are
organized in a strictly hierarchical fashion that has been selected to depict the relevant por-
tions of the organization structure at OO-ALC. For example, the MM box stands for the
Directorate of Materiel Management, whose office symbol is MM. One of the suborganiza-
tions within MM is MME, the Engineering Division. Two of its subunits are MMEC (Aircraft
Computer Resources Branch) and MMEDT (Operations and Support Branch, TO Section).
The details of organization inside MME are shown in Figure A-16, where MMEDT is
resolved into three of its subunits and a storage module labeled TO_LIBRARY. The storage
module implements the data store TO_LIBS on the activity chart, as described through the
textual forms facility. If one wishes to obtain more traditional views of organizational struc-
ture in the form of organization charts or printed tree-structure outlines, these are available
from the system and illustrated in Figures A-17 and A-18.

Possible information flow lines are represented by solid lines in the diagram. Again, these
stand out more clearly on the screen because they are designated by different colors from
those of the boxes. To reduce some of the clutter in Figure A-15, information flow lines
leading to and from some of the environment modules have been omitted. These sup-
pressed lines are rather tangential to the process components that most interested us. The
flow line labels on the module chart are selected to indicate the physical mechanism by
which the flow is implemented. Thus, we have labels such as VERBAL, E_MAIL, US_MAIL,
and HAND_CARRIED.

Connections are made between the activity chart and the module chart by use of the textual
forms. Each activity can be linked to the execution module that implements it. For example,
three subactivities of the DRAFT_MODS activity are linked to their corresponding modules
in Figure A-19. Furthermore, each information flow on the module chart (depicting a com-
munication channel as it is implemented) can be linked to the information flow(s) (from the
activity chart) that it carries. An example is provided in Figure A-20.

4.2.5. Analysis and Simulation Capabilities

In addition to providing mechanisms for representing software process models, STATEMATE
provides a number of powerful capabilities in the areas of analysis and simulation. Since we
found these to be important components of a modeling approach, our experiences with them
will be summarized in this section.

A few examples of the analysis capabilities will be presented here; full details on all avail-
able tests are provided in [6]. Some analysis is performed automatically while the model
builder enters the specifications. For example, the system ensures that events, conditions,

CMU/SEI-88-TR-9 15

data items, etc., have been defined before they can be referenced. In addition, syntax anal-
ysis is performed on event expressions, condition expressions, data expressions, and so
forth, before STATEMATE accepts them as part of the model.

A wide variety of explicit tests are provided to check the model for completeness and consis-
tency. These tests include checking for missing sources or targets of information flows and
state transitions, states without incoming transitions, and activities without corresponding im-
plementation modules. It is notable that many other design and analysis toolkits need to
provide analysis facilities to ensure the consistency between different levels of abstraction;
for instance, checking that the data flows leading into and out of a specific activity box on a
DFD match with those shown in the decomposition of that activity, which is usually
represented in a different diagram. The STATEMATE approach of using nesting within one
diagram to represent decomposition, rather than using separate diagrams, eliminates the
possibility of inconsistencies in levels of abstraction.

Several capabilities for deeper analysis are also provided. Some of these can be performed
statically, such as checking for loops in definitions and checking the statechart for unreach-
able states. Other analyses are performed dynamically, meaning that STATEMATE automat-
ically runs background dynamic simulations in order to accomplish the analysis. These in-
clude checking the statechart for reachability using the full transition labels and checking for
deadlocks or nondeterminism conditions. The combination of all these analysis capabilities
provides a powerful suite for ensuring the consistency, completeness, and correctness of a
model; we have found these capabilities to be extremely useful.

STATEMATE also provides dynamic simulation capabilities, which are directly integrated with
the model representation. The simulation works with the behavioral and functional descrip-
tions of the model. One can begin a simulation from any valid state of the process model.
Through a simulation control window and menu, one can specify changes to conditions and
data values, generate events, and so forth, to emulate external influences or internal
changes. After specifying these, one instructs the system to execute another simulation
step, which allows the simulated process to progress according to the behavioral specifi-
cation in the model. Upon the completion of that simulation step, one can examine the ef-
fects of that step, again specify changes, and continue the simulation.

When running in interactive simulation mode, STATEMATE provides a highly visual sense of
the simulation progress by animating the statechart and activity chart. The state transition
last taken and the current state of the system are highlighted by color on the statechart;
similarly, any currently active activities are highlighted in color on the activity chart. One can
also suppress the animation, or run simulations in batch mode under preprogrammed con-
trol. In all cases, a full trace of the simulation session is recorded, and any deadlock or
nondeterminism situations are detected and reported.

We have extensively used the simulation capabilities in debugging our model and in vali-
dating that the formal model behaves as we understand the real process to behave. Full
computational capabilities are provided for tracking quantities of interest, such as number of

16 CMU/SEI-88-TR-9

TOs completing each activity at any point in the simulation; and these can be displayed
interactively or written to an output file. In addition, STATEMATE now provides facilities to
perform full-fledged discrete event simulations, including (1) the ability to simulate time,
(2) the ability to schedule events and actions at user-specified future simulated times, and
(3) the ability of the simulation to move itself forward in simulated time, carry out the next
scheduled actions and events, and react to them. Unfortunately, we were not able to use
this last set of features because the STATEMATE release containing them arrived too near the
end of our project to allow us to work with it. Nevertheless, the many simulation capabilities
we did use proved to be valuable in validating the model.

Finally, STATEMATE also provides a wide variety of reporting and inquiry capabilities. The
reporting capabilities allow one to generate a wide variety of plots and reports on dictionary
elements, model structure, summaries of component interactions, etc. The query capabil-
ities are extensive, and allow one to interactively examine aspects of model structure such
as decomposition paths and connections between the three perspectives. As examples, it is
a simple matter to determine all the activities for which a given organizational subunit is
responsible, or the communication channel used to actually implement a given information
flow on the activity chart. (Again, full details on these facilities are available in [6].)

CMU/SEI-88-TR-9 17

18

CMU/SEI-88-TR-9

5. Results of Modeling

5.1. Enhanced Understanding of the Process

Our efforts at modeling the TO modification process led to a number of important results.
First, those involved in executing and managing the process gained a substantial increase in
understanding. As has been seen, several different organizational subunits are involved in
various stages of the TO modification process. Not surprisingly, the view of most of these
subunits was rather parochial, focusing on a specific subtask with little appreciation for over-
all implications. Such situations frequently lead to suboptimization with respect to overall
organizational goals.

In the course of our interviews, we gained an increased appreciation of the overall goals of
the process, as well as a recognition of the effect of regulations and standards on the proc-
ess. As this information was communicated to the relevant personnel, we found that at-
titudinal changes occurred. A common understanding of the overall process and the role
each group plays in its successful completion leads to increased goal congruence among
those involved. It also opens the possibility of cooperating to establish process improve-
ments, whether these are technological or manual changes.

We also found that graphical representations of the process were far more effective vehicles
for communication than narrative presentations. Rapidly building a common base of under-
standing seems crucial in arriving at a point where fruitful discussions can occur regarding
issues such as the impact of new technology, process streamlining, and effects of regula-
tions. In short, the value of enhanced understanding of the process cannot be overstated.

5.2. Recommendations for Changes to Methods and
Procedures

As our model developed, we were able to undertake an analysis of the process it
represented. This analysis is reported in detail in [1]. Some of the most pervasive issues
were broad in nature, regarding the relationship between the process we were examining
and the broader context in which it operated. Others were more local, relating specifically to
the process being examined. We directly addressed the latter category of changes in a
series of recommendations. Nevertheless, we also believed that some progress could be
made against the broader issues by procedural and technological changes to the TO modifi-
cation process.

CMU/SEI-88-TR-9 19

Our analysis led to a series of recommendations for changes to methods and procedures
currently employed in the TO modification process. These recommendations could be im-
plemented without adding any new technology; and these changes alone could have a sub-
stantial positive impact on streamlining the process and improving its timeliness. Further-
more, many of these changes would still be quite useful in conjunction with technological
enhancements. These recommendations were oriented toward three major objectives:

 Eliminate delays in task initiation.
* Introduce parallelism into the process flow.
« Enhance coordination and communication in order to reduce surprises.

The detailed series of recommendations are documented in [1].

5.3. Targets for Application of Technology

Our analysis also led to the identification of specific activities as targets for the application of
technology. The target list formed the basis of a pilot study applying advanced document
production technology to the TO modification process. In addition, the process model pro-
vided a framework for analyzing the benefits and costs of this technology. We focused our
technology efforts on the process steps preceding printing of the change documents. The
application of advanced technology to the processes of identifying potential changes, re-
viewing them, and producing a master copy for printing appears to be highly beneficial.

The details of the technology employed in our pilot study are discussed in [2], so only a brief
overview will be presented here. We utilized a state-of-the-art document production system,
which included features such as:

* Full WYSIWYG (what you see is what you get) capabilities.

» Use of powerful search and replace capabilities.

» Automated referencing of figures, tables, sections, etc.

» Annotation capabilities to provide an audit trail, explain rationale for changes,
and indicate approval or feedback.

e Version control including non-destructive editing and parallel development of
versions.

* Use of a common element library, via inclusion by reference, to drastically
reduce repetition of work.

The incorporation of this technology into the TO modification process results in a number of
changes to the process description. For example, the step of preparing and issuing interim
operational supplements can be completely eliminated because of the tremendous reduction
in time needed to prepare a master copy of TO changes. With the new technology, formal
printed op sups can be prepared fast enough to obviate the need for the interims.

The powerful non-destructive editing and version control features allow the work to be per-
formed with greater parallelism than the manual approach allowed. Many changes can be

20 CMU/SEI-88-TR-9

made and approved prior to flight testing, such as changes to part numbers and OFP iden-
tifiers. Thus, the low-level details of how individuals actually execute tasks will change with
this new technology. In addition, the monolithic transfer of all TOs between the first few
process steps can be broken down into individual TOs or even smaller units.

We have also demonstrated that the users can participate electronically in the review proc-
ess. We have asked test pilots to review the proposed changes to the operational TOs, a
valuable addition to the review step.

The above examples are representative of the changes to the process suggested by ex-
amination of our model of the current process and incorporation of the experience gained
through our pilot study. All of these changes can be effectively communicated by presenting
a process model of the proposed future "to-be" process. Using the STATEMATE approach,
these examples result in changes to the model such as these:

» The activity and state corresponding to interim TO production and distribution
are eliminated, along with the data flows and interim recipients on the activity
chart and module chart.

« The increased parallelism in the early steps is depicted on the statechart.

« The involvement of pilots in the review process is depicted by adding them to
the module chart and to the connection between the module and activity charts.

When the new process descriptions are then compared side-by-side with the as-is model,
differences are readily apparent.

In summary, our software process modeling efforts have proven to be an important aspect
of the PDSS Information Management Project. They led to increased understanding of the
process by participants and managers; and they formed the basis for an analysis of the
process, which led to a series of recommendations for procedural and technological
changes to enhance the process.

CMU/SEI-88-TR-9 21

22

CMU/SEI-88-TR-9

6. Lessons Learned from Modeling

6.1. General Lessons

The first general lesson is that real-world organizational processes can be surprisingly com-
plex; this was certainly the case for the TO modification process. As a result, it requires
considerable effort to weave together the various components of the process into a cohesive
whole. The information-gathering activity that is fundamental to software process modeling
is an iterative process requiring multiple rounds of interviews with numerous individuals in-
volved in the actual process steps. These rounds of interviews are necessary because of
the following:

« The need to move down to additional levels of detail and/or up to higher levels
of abstraction.

* The need to validate that the information gained on the last round of interviews
has been faithfully represented in the model.

* The need to reconcile conflicting information obtained from different sources.

« The fact that the interviewees’ understanding of the process will probably be
enhanced as these meetings unfold, enabling them to better elucidate desired
information in subsequent meetings.

We also discovered that interviewees sometimes left out aspects of the process in their
descriptions. There are probably a number of reasons for this, some positively motivated
and some not. Nevertheless, it appears to be important to cover the same ground with
several individuals whenever possible to help ensure accuracy.

Furthermore, we observed that our particular modeling task was complicated by the fact that
the process we were examining had not been executed repeatedly. It would appear to be
substantially easier to model a process that has reached a degree of stability by having
been repeated a number of times. Of course, many processes needing improvement are
those which lack a history of successful application.

Finally, we have a substantial appreciation for the importance of gaining an understanding of
the purposes, goals, and objectives of the overall process, as well as the major subactivities
within the process being modeled. It is important that a consensus understanding be
reached by the process participants. This promotes goal congruence and also makes it
possible to see how some process components may be counterproductive to overall goals.
In addition, it enables one to realistically consider modifications to the process to make it
more effective and efficient.

As an example, suppose that we had not understood why interim TOs are issued in the
process we studied. Lacking an appreciation of the reason, we probably would have as-
sumed that this step was necessary to the actual purpose of the overall process. Then, we
would not have recommended eliminating it when using advanced document production
technology. However, because we had learned that this step was present only because it

CMU/SEI-88-TR-9 23

previously took so long to prepare and print the formal change documents, we knew that its
elimination would be a welcome enhancement, as long as formal documents could be
quickly prepared. Thus, knowledge of the purpose of the process and the rationale for the
various steps are enormously important for successful process improvement efforts.

6.2. Requirements for a Modeling Approach

We have formulated a set of requirements for an ideal approach to software process model-
ing. Actually, these requirements can be more appropriately viewed as highly desirable
characteristics of a suitable modeling methodology, since the availability of even a portion of
these characteristics is expected to yield substantial benefits. The composition of this list is
based on a combination of factors, including our experiences with those capabilities we had
an opportunity to use, our identification of capabilities that we felt were notably absent, and
a view toward the future to which software process modeling could lead. These desirable
characteristics are described below.

1. Use a highly visual approach to information representation, such as diagrams.
Well-chosen graphical representations can readily convey considerable
amounts of information. We found such depictions to be very useful in facili-
tating communication.

2. Enable compendious descriptions. The most useful descriptions are compre-
hensive in scope yet concise in presentation, so that complex aspects may be
represented relatively easily.

3. Support multiple, complementary views of the process. We have identified
four viewpoints, or perspectives, which are quite useful:

« functional

* behavioral

» implementation

» conceptual data modeling

The idea of perspectives is analogous to the perspectives presented in an en-
gineering drawing; for example, a top view, a front view, and a side view.
These viewpoints are distinct, yet they are interrelated because they describe
the same reality from a different point of view. In software process modeling,
the reality being described is that of the real-world process, and the perspec-
tives focus on different, but closely related, aspects of that process.

The functional viewpoint describes what activities are being performed. The
data flow diagram presented earlier is an example of a functional description;
it focuses on what the main activities are and what data flows between them.

The behavioral viewpoint describes when and how these activities are accom-
plished. The formalism for this perspective must be capable of representing
feedback loops, iteration, complex decision-making conditions, entry criteria
(trigger conditions), exit criteria, precedence relationships, etc. In addition, it
should readily represent and convey two levels of parallelism. At the lower
level are individual software objects; for example, both unit testing/debugging

24 CMU/SEI-88-TR-9

and documentation revision may occur simultaneously for a single module.
The higher level of parallelism occurs across objects; for instance, some mod-
ules may be in test while others are still in coding. It must also be possible to
handle synchronization with other (groups of) objects as, for example, when all
components must have passed unit testing before integration testing can
begin.

Next, the implementation viewpoint describes who and where the activities are
implemented. It connects the activities with the organizational subunits per-
forming the work and may also be used to describe communication channels
(e.g., e-mail, verbal communication, or written document).

Fourth, the conceptual data modeling perspective represents an abstract,
global view of relevant data on the software objects being produced as well as
on the process itself. This viewpoint is the avenue through which one con-
nects process and product metrics to the process representation; it also sup-
ports other quantitative efforts, such as simulation.

Finally, the approach should allow flexibility in the order in which these view-
points are developed.

. Support multiple levels of abstraction (e.g., hierarchical decomposition) for
each viewpoint. This gives a perspective on how a subprocess fits in context
and also allows one to delve into its details. In other words, it allows one to
get a big picture of the process, as well as its low level details and the levels in
between. It must also be possible to stop the refinement at any point and still
have a meaningful model. As Lehman points out, this is likely to occur at cre-
ative points in the process, such as "devise alternatives," which humans will
have to carry out[8]. Finally, various approaches to abstraction should be
supported, e.g., top-down, bottom-up, and middle-out.

It must also be possible to drive different portions of the model to varying
levels of detail. For example, an activity of little interest may not be decom-
posed further, while a crucial one may undergo several levels of resolution into
detail.

. Offer a formally defined syntax and semantics, so that the constructs are com-
putable. This allows a process description to be parsed and semantically
analyzed. It also means that diagnostic information can be automatically de-
rived and reported to the originator of the description [9]. In addition, this
opens the possibility of automatically simulating or executing the description.

. Provide comprehensive analysis capabilities. These would involve tests in
categories such as the following:

« Consistency: test for balance of information flows between levels of ab-
straction, consistency between multiple viewpoints, conflicting trigger
conditions, etc.

» Completeness: check for errors such as missing sources or targets for
information flows, state transitions, etc., data stores without output
flows, states without incoming transitions.

» Correctness: check for problems such as syntax errors, unreachable
paths, loops in definitions, deadlocks or nondeterminism in the be-
havioral specification.

CMU/SEI-88-TR-9

25

These sorts of analysis capabilities are extremely useful during model build-
ing. Anomalies detected by analysis routines may have a number of causes:

» The anomaly may be a simple error in the formal description of the
model, that is, in the translation of the model builder's correct under-
standing to the formalism of the model.

« It may indicate that the model builder does not have an accurate under-
standing of some aspect(s) of the real-world process, meaning that ad-
ditional information gathering and clarification is required.

* It may indicate that there are anomalies in the real-world process, such
as nondeterminism. These anomalies are probably unknown to the
process participants, and the existence of such anomalies is valuable
feedback to them.

7. Facilitate the simulation of process behavior directly from the description. We
favor the provision of interactive simulation capabilities that animate the model
description for clarity. In addition, for more involved studies we recommend
batch simulation capabilities that save a detailed trace. A qualitative simula-
tion capability which illustrates the behavior and reactions of the model to
changing conditions and events, is invaluable in checking the validity of formal
descriptions and their robustness to changing conditions. This is an important
complement to the analysis capabilities when debugging a model. Simula-
tions should also support the quantitative analysis of attributes of interest, e.qg.,
time-to-completion, manpower requirements, and quality measures. These
capabilities would be a powerful mechanism for thoroughly examining con-
templated process modifications and alternatives before using them in prac-
tice.

8. Readily support the creation and management of variants, versions, and reus-
able components of process descriptions. It should be easy to reuse portions
of descriptions and easy to identify differences between descriptions. We en-
vision building libraries of reusable process components which can be readily
selected and inserted during model building. As an example, technical re-
views occur repeatedly in any well-managed software development process; a
common review component could be defined and used repeatedly as required
throughout a model. It should be easy to manage variants of a model, as
might occur when modeling different but very similar processes. Versions of
models should also be managed conveniently; these would occur, for ex-
ample, when developing an as-is model and then a proposed future to-be ver-
sion of the process. Facilities should be provided to highlight differences, thus
assisting comparison of model descriptions. Finally, it should be possible to
record deliberate tailoring decisions into the model directly. (This illustrates
that these decisions are an important part of the process and helps ensure
that they will be reliably repeated in the future, when the model is used as a
guideline for process execution.)

9. Support the representation and analysis of constraints on the process, such as
regulations, standards, and so on. In the defense community, there are a
number of rules specifying required documents and formats, review points,
etc. It would be useful to reflect these constraints somehow within the model-
ing formalism. It would then be highly desirable to be able to automatically

CMU/SEI-88-TR-9

10.

11.

12.

13.

analyze a process model to determine the extent to which it complies with the
constraints.

Allow the representation of purposes, goals, and rationales for process com-
ponents and the overall process. As discussed above, such knowledge is cru-
cial to successful process improvement efforts. It would be convenient if this
knowledge could be incorporated into the model, even if it is in the form of
unprocessed harrative commentary.

Integrate easily with other approaches which may be deemed useful: for ex-
ample, PERT or CPM for critical path analysis, or entity-relationship modeling
as a conceptual data model.

Take an active role in process execution. Such capabilities might include au-
tomatically recording the steps taken during actual execution of the subject
process, along with data about the process and the objects manipulated. The
model might also play an assistant role by providing guidance in executing the
process based upon the descriptions. Clearly, these capabilities are oriented
more toward the future, rather than the near term.

Offer automated tools supporting the approach. Certainly, the availability of
automated support tools dramatically enhances the practical applicability of a
modeling approach. Nevertheless, we do not include typical tool evaluation
criteria (e.g., vendor support and user interface characteristics) in this list,
since the focus here is on functionality and methodology.

CMU/SEI-88-TR-9

27

28

CMU/SEI-88-TR-9

7. Conclusion and Future Directions

This report has presented a description of our views on software process modeling. We
have attempted to stress the importance of this emerging discipline both in general and
specifically through a description of our experiences with modeling on a recent project. We
have presented and discussed examples of models in the context of the approach to model-
ing that we have taken utilizing STATEMATE. Finally, we covered a series of lessons learned
from our modeling experience and presented a list of major characteristics which we believe
are important in an approach suitable for software process modeling.

In our view, there are several additional efforts that would be highly beneficial to the near-
term development of software process modeling. One is to investigate the set of existing
methodologies and toolkits that may be applied to software process modeling. The above
requirements list would be a major starting point in such an investigation. Promising ap-
proaches should be tried on a comprehensive trial modeling problem to determine suitability.
Another valuable contribution would be to examine the quantitative simulation capabilities of
approaches like STATEMATE and to demonstrate these capabilities in a realistic model.
Finally, we recommend gaining additional experience by modeling more aspects of the soft-
ware life cycle process. It would also be instructive to model a few variants of a process and
then synthesize a general, comprehensive model from these separate models.

In conclusion, we have gained valuable experience with the emerging discipline of software
process modeling. It is the authors’ judgment that modeling approaches such as the
STATEMATE system can be effectively used for modeling software processes. We look for-
ward to carrying out some of the future work indicated above and contributing to the matura-
tion of software process modeling as a technique for aiding in the evolution of software proc-
esses.

CMU/SEI-88-TR-9 29

30

CMU/SEI-88-TR-9

Appendix A: Figures

ID Number: 4.0
Activity Name: Print Documents
Activity Description:

The purpose of this activity is to print the required number of copies of each op sup or group of
TO change pages. Three options are available for hte actual printing of each job:

e printing by shop on the base
e printing by local contractor (19 printers currently on direct deal contracts through GPO)
» work through GPO requional office in Denver

The last option is used only when the job cannot be accomoplished by the other means.
Choosing which of the first two approaches to use involves considering the workload in the
base printing facility and the rules of the Joint Committee on Printing (JCP — a Congressional
committee). JCP rules specify situations when printing must be accomplished through GPO,
based on numbers of copies produced, total pages to be printed, and the type of printing
equipment on base.

The time limit for printing is generally 15 days. This requirement is met in most cases; if there
is a delay, it's usually just a couple of days.

Office Accomplishing Work: OO-ALC/DARA
Timing:

« Commencement—This activity begins for each TO as the reproducible copy is received
from MMEDT.

« Termination—It ends when the printed documents have been received and sent to the TO
warehouse for distribution.

Inputs:

« Reproducible copy of each affected TO
Outputs:

* Printed copies of each affected TO

Figure A-1: Example of Structured Narrative Description

CMU/SEI-88-TR-9 31

sabig,

FO0Q0L

slumyy ol

safieg o
sbuels oL '

e

siuawagddng
[BuaRladg

EEUEWNIG0
pEulig

abiury
alquiEa
‘g Caue

0L

uapngIsg

e W

1
hm_ saleg oL zs]

1817 uopnaiaisia | ¢ 5|

9

Adosy
LARTELTTE fala T ¥
paluld ﬂ_..“_.___._“:.._",n_unn anpaidey| s

~

Eppge GuidiEn

Hﬂmw 314v)

Bunuig sop | *TEYSUD [euopmapom

LORRE | BO N .mm.:n:__”_n_.___ 0l asosddy

ol esedeid [* PUR maphay
. 0z

SPON
WRIg yawqpaay

BOL pajdapy

SR QLIZS

] BLOIES[IBa
HEIQ PUR Appu=py
'L

SuAwndod paEuld

s || siemiies
pRISapY
[EMuUER] nu_:_u__:.u._—m_ AllENU#E 1o uliag

2 3En ¥ udjlujeg

SS300Hd NOILVII4IdON Ol

Data Flow Disgram of TO Modification Process

Flgure A-2:

CMU/SEI-88-TR-9

32

M3IA 1VHOIAVHId M3IA TVIN1LONYLS

S1dVHO 3ITNAOIN S1dVvHO 3IT1NAOIN

S1dVHOD ALIAILOV

M3IA T¥YNOILONNA

SM3IA 334HL dHL ONOINYV SdIHSNOILV 13d

Figure A-3: Relationships Bettween STATEMATE Views

33

CMU/SEI-88-TR-9

EVENT DI CTI ONARY
Detail ed TO Process Mdde

NEED REVS : (I NI T_REV_DONE or RE_REV_DONE) [REWORK NEEDED]

description: Revisions need to be made to TO nodifications

Figure A-4: Example of Event Definition

34

CMU/SEI-88-TR-9

-~
i
FFUTTE FEFL] T.l.'.)
a-1510 E(:./_j...l

T

—
- L
R — SN LML 2fiaisa e ——— e Lokt Aok | TR LT T
. el e S U LIETY 43R0
- utullu._.ull._.ln.u— L _ _.:nﬂ.luﬂ_na_.uu!a_
™ H A b P
1
b L [._
L s EnEa Tl
—
—
PR
- .
RUEARLHE® BRN] 4 maEnx | FROHT L aed
Y
RIS
ai I.])J..

B0 H0TEHE" 110 1)

Flgura A-8: Statechart - Top-Level Procass

35

CMU/SEI-88-TR-9

[e Rgm BB dx]

Inalylsio

LHIAET0E0™ IHD

AYOMTHOLIWELHOD

e e e e]

—
—

Q3LMl

“Te

OHILNTHG

BHIANTNd ™ 1lHULS
LNIYd

TN LN 4" LT6H

nmunnkz_kﬁ

L3049~ IHI " 473030 e 3701 5 -mwuwumm_“_u m

¥ ,n-muwn.wdﬁur_umx do84d-378

= 3701 s

HITLXIN - AWIL103-H33
dd- 500 [i].|_|.. &

% e L LT p I i | SNINY4IY J
. u:u-un..u.uu__.znu__ M [in1dd NEEE_
i
FHOQ"HLNE™TIHI |...1|l|1|.1.\
LM aHa” HﬂMMMMu E FHOG™ S 3d
prgaTini-anss e n3ln3ufanondy [
L 03n0Yady =TI I EEL
\...\
/ MATAIA-PHILING —
= 1\.\\ 1.I,J|.|.J|I.J||..I
o a INDQTFL fHHT
S 143 LETETISE 3 SO0H"HIIN3S L SO0H" L 4040
.
O IHE =08
37401 S
\..J.u_ ;.
4

N0 5047 THI 1Y T /P

Statechart - Detail-Level Process

Figure A-6

CMU/SEI-88-TR-9

36

_. HF0M3IETEIRL0
AHOQ™ W OmId™HLD _

CEHI"§INI03

CHIMI"aIH LD 32v]

oMy

I S . e 4

TR T E R HHOWIET IS

CEDHITIINTHE

CEDHITIIHTRE e8]

— stD:uk_

Lawsa= L L InE

SO0HT L dEdd

Figure A-7: Statechart - Detail of DRAFT_MODS State

37

CMU/SEI-88-TR-9

h

-~
f FEPF TV
———e
TR ER R T S] SRHATLINI B TL N Ty
. I
L I -
dAdd~ EMid4"AEHLS J.
0wl TEICNT I3
— QARTTONILESD OHI L THH™ITOD ON _r
f|\\\\|_¥ S
TEOTT LTI M
b L] Lok Dl e L]
WOTIN00ES ;
i
(]
ama -
. [k B DHR] M
r—]
BHLLIDITHIFL
o
P e oHiLEal vvr..._
o B ~

B ELIELEE L]

£

Figure A-8: Statechart - Detall of PREPARING State

CMU/SEI-88-TR-9

38

STATE DICTIONARY

Detailed TO Process Model
Do CHG PGS

type: BASIC

activities threughout: CONT_CHG

reactions:

on: do:
h_TO CHG_BY CONT WM _FIMAL CHGS:=NUM FINAL CHGS+1
A TO CHG BY CONT HUH_Tﬁ_EONT_Q:*NUM_IN_¢0N$_Q—1
CHG ORD_SEHT NU‘.M_.T.N_CDHT_Q I l'il'~7l'l.F1‘!I_Ifl.“¢‘ C‘OHT__Q-F 1
ENTER HUM_IN CONT_Q:=NUM_IN CONT QO+l

description: Contractor develops, prints, and distributes change pgs for TOs.

Figure A-9: Example of State Definition of DO_CHG_PGS

CMU/SEI-88-TR-9

39

SHILKGA

| P A s

unl hznu....u.-..luh.l._

i]

S43397000 §

o e sy

............. -
[LI IHITHLA

CHOTDHI 4384

HETLNB1HLEID

SIFITLHlHA

LT RETEER)

SHLEFLINITESL

1780370

——— - -

A 417701 | SO06 ™ L Sdad
—_ '

e | [T

“7 WS HIHLD | | L3RRI TS

| S ——— - | ST R

Figure A-10: Activity Chart - Full Process - No Flows

CMU/SEI-88-TR-9

40

THITLHOD

HAQEETIHITOL

AHGF AT BRI "W

s Ty D 1TELITaL
LHISTOB0 DN .=

sap=amyoL ams .
L AT
g - ! :
- ey 2 # COE
IS e OV ; A 41
i e L : won o
L FUTE PR TR =" _ ;
- - 13
s 5 G B
Jl.ﬂl K._ oy 1374304 i i
- o’ i [}
b — SAC0"ANIHd | . ol i ! X
X 17 b s i ;
A R T = ' H '
ﬂ 3 T DOMEL™ N3 EM/ i urmiesl '
vt oot _ 1 _
A T T . ! .
i]
[r———— i e Arawarnaw 3
i AHOT " dEHa T . e H :
L o -
e BU I WILNITES T o
r 20 W T y _
b s S TR BLTHENILNE FIHIT0FN0H 4 . 1637 4 awan;
— natnaa ’
| E.u_mu-_.z_gulll..l.ﬁ:
L e 3
— -t
i sar17aL Til[[l.lq_n....h....,.lr...|
i Sl -
F Tl e |___ TR EICELR
e Rl oE WIS EVEET I
S x oE3HETon t - DL LA SRR EREEhd i)
E EERT SHITIKIN T i - i] [|
FET R ..__.m_. M5 ~HIH LD | ; LUTEHI RS
e AR A IG5 ! N IO e 1

Activity Chart - Full Process - With Flows

Figure A-11:

41

CMU/SEI-88-TR-9

SANITHEOMNIE

Q0K L 4ad

... E L e F]

L

HHOMIET AN _

A0RI

EL L I kE] _

FET LS]

SN [FE S Bl 54

Figure A-12: Activity Chart - Detail of DRAFT_MODS Activity

CMU/SEI-88-TR-9

42

[

ANGD TAIET I
[

HA T3~ Wn 3

g aIaTLial £

HALGIETLIH]

ERCEIVEEE]

Figure A-13: Activity Chart - Detail of REVIEW Activity

43

CMU/SEI-88-TR-9

STATE DI CTI ONARY
Detail ed TO Process Mbdel

I NI TI AL_REVI EW

type: BASI C

activities throughout: | N T_REVI EW

description: Performreview of initial draft TO nods.

44 CMU/SEI-88-TR-9

SALNA4 T ING LK [=Tl
-
ZTN1EHTEN
LEE- L] ¥q
AMDIT 4344”04
3
=7 18K 331 §40
-1 }u™ 5 320
a0l
"M 18HTEN \] 3
7 1T
9 TIWuEN LO3MM AWK
R
suooi FTTHdS0 *
=1 t:-w*
nnnwhxtIUInLII
HADTHID b VR (TR i TITTY
= ENIn
TZA2
FHUH HUM
lg—o -
[B
5143387 ANl
Wil
T

SLMUAT I LaMaT0L

)
P3N

Ummnu:u|iha

HHEHTG3H L0

JAHHTEIHLD

Module Chart - Top-Level Process

Figure A-15

45

CMU/SEI-88-TR-9

1103H

103K

—

L] 1
i [

103w

Ll

BELT

I3M

EEH

STO3 Wy

3T 0NNH

SR LR L]

b Lk T

Maodule Chart - Detail of MME Module

Fiaure A-16

CMU/SEI-88-TR-9

46

HMODULE STRUCTURE
betailed TO Frocess Model

LEVEL - |

Figure A-17: Example Organization Chart

CMU/SEI-88-TR-9

MODULE TREE
Detailed TO Process Model

TREE FOR TO PARTICIPANTS

e R S e

TO_PARTICIFANTS

1. 00_ALC
l. DA
1. DARA
2. MM
1. MME
i MMEC
2. MMEDT
B e TO LIBRARY
2. MMEDTA
3. MMEDTT
4. MMEDTI
2. MMA

Figure A-18: Outline Form of Module Hierarchy

48

CMU/SEI-88-TR-9

ACTIVITY DICTIONARY
petailed TO Process HModel
INIT_DRAFT

implemented by: HHEC

description: Perform first draft of TO modifications.

5W_REL REWORK
implemented by: HMEC

dezepription: Rework drafts of TO mods especially related to SW details.

OTHEFR,_REWQRE
implemented by: MHAR

description: Rework drafts of TO mods not especially related to SW details.

Figure A-19: Example of Activities Implemented by Modules

CMU/SEI-88-TR-9

49

INFORMATION-FLOW DICTIONARY
Detailed TO Process Model

US_MAIL 3

contains: PRINTED_TO_HDDS

US_MAIL 5

contains: TO_CHG_PGS

Figure A-20: Example of Relationships Between Flows

in Activity and Module Charts

50

CMU/SEI-88-TR-9

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Hansen, Greg, Kellner, Marc, Over, James and Przybylinski, Stanley.

The Analysis of the Technical Order Production Process at Ogden Air Logistics Cen-
ter and Recommendations for the Improvement of the Process.

Technical Report CMU/SEI-87-TR-12, Software Engineering Institute; Carnegie Mel-
lon University, January, 1988.

Hansen, Greg, Kellner, Marc Kellner, and Over, James.

Technology Application to Documentation Maintenance.

Technical Report, Software Engineering Institute,
Carnegie Mellon University, 1988.

forthcoming.

Harel, David.
Statecharts: A Visual Formalism for Complex Systems.
Science of Computer Programming 8(3): 231-274, June 1987.

Harel, David, et al.

On the Formal Semantics of Statecharts.

In Proceedings of the 2nd IEEE Symposium on Logic in Computer Science, pages
54-64. |EEE, 1987.

The Languages of STATEMATE
i-Logix, Inc., 22 Third Avenue, Burlington, MA 01803, March 1987.

STATEMATE User’s Manual; Kernel and Analyzer; VAXstation Version 1.2
i-Logix, Inc., 22 Third Avenue, Burlington, MA 01803, February 1988.

Joint Logistics Commanders.

Final Report of the Joint Logistics Commanders Workshop on PDSS for Mission-
Critical Computer Software,

June 1984.

Lehman, M. M.

Process Models, Process Programs, Programming Support.

In Proceedings of the 9th International Conference on Software Engineering, pages
14-16. IEEE, 1987.

Osterweil, Leon.

Software Processes Are Software Too.

In Proceedings of the 9th International Conference on Software Engineering, pages
2-12. IEEE, 1987.

CMU/SEI-88-TR-9 51

52

CMU/SEI-88-TR-9

	Table of Contents
	List of Figures
	1. Introduction
	2. Overview of Software Process Modeling
	3. PDSS Project Overview
	4. Modeling Approaches
	5. Results of Modeling
	6. Lessons Learned from Modeling
	7. Conclusion and Future Directions
	Appendix A: Figures
	References

