Technical Report

CMU/SEI/88-TR-006
ESD-TR-88-007

The Serpent Runtime
Architecture and Dialogue Model

Len Bass
Erik Hardy
Kurt Hoyt
Reed Little
Robert Seacord

May 1988



Technical Report

CMU/SEI-88-TR-006
ESD-TR-88-007
May 1988

The Serpent Runtime Architecture
and Dialogue Model

Len Bass

Erik Hardy

Kurt Hoyt

Reed Little
Robert Seacord

User Interface Prototyping Project

Unlimited distribution subject to the copyright

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213



This report was prepared for the

SEI Joint Program Office

HQ ESC/AXS

5 Eglin Street

Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

Thiswork is sponsored by the U.S. Department of Defense.

Copyright © 1988 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “ No Warranty” statements areincluded with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS-I1S" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIESOF ANY KIND, EITHER EXPRESSED OR IMPLIED, ASTOANY MATTERINCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federa Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, afederally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit othersto do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

Thisdocument is available through SAIC/ASSET: 1350 Earl L. Core Road; PO Box 3305; Morgantown, West
Virginia 26505 / Phone: (304) 284-9000 / FAX: (304) 284-9001 / World Wide Web: http://www.as-
set.com/sei.html / e-mail: webmaster@www.asset.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

Thisdocument isalso avail able through the Defense Technical Information Center (DTIC). DTIC provides access
to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential contrac-
tors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact DTIC
directly: Defense Technical Information Center / Attn: BRR / 8725 John J. Kingman Road / Suite 0944 / Ft. Bel-
vair, VA 22060-6218. Phone: (703) 767-8274 or toll-freein the U.S. — 1-800 225-3842).

Use of any trademarksin thisreport is not intended in any way to infringe on the rights of the trademark holder. B



Table of Contents

1. Introduction

2. Serpent Architecture
2.1. Presentation Layer
2.2. Lexical Dialogue Manager
2.2.1. X Toolkit
2.2.2. Serpent Customization of the X Toolkit

2.3. Syntactic Dialogue Manager
3. Data Flow

4. Example
4.1. End User Functionality
4.2. Application Functionality

5. Serpent Shared Data

6. Model Used in the Syntactic Dialogue Manager
6.1. View Controllers
6.1.1. View Controllers as Used in the Example
6.1.1.1. Creation Condition
6.1.1.2. Actions on Creation
6.1.1.3. Objects
6.1.1.4. Actions at Destruction
6.1.2. Nesting of View Controllers
6.2. Threads of Control Within Dialogues
6.3. Multiple Views of Data Within Serpent
6.4. User Model of the Data
6.5. Timing of Dialogue Actions

7. Summary

References

© o, bW R

s
N R

[EY
ol

NNNDNNMNMNNRPRPRPRPERERBRE
WkFRPRPPOOOOOOWN-N

NN
~N O

CMU/SEI-88-TR-6



CMU/SEI-88-TR-6



List of Figures

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 3-1:
Figure 4-1:

Serpent Decomposition
Command Button Widget
Specification Transformations
Serpent Data Flow
Application Example

© N 01w

11

CMU/SEI-88-TR-6



Serpent Runtime Architecture and Dialogue Model

Abstract: The separation of the user interface portion of a software system from
the functional portion is intended to enable the production of tools to deal with the
user interface, and to raise the quality and modularity of resulting software sys-
tems. One class of such separation tools that have been developed is the User
Interface Management System (UIMS). This paper describes the runtime ar-
chitecture and dialogue model of a particular UIMS named Serpent.

Serpent uses existing software systems to create a UIMS based on a structured
production model to specify the dialogue, and uses a database approach for com-
munication between its internal layers. The model for the dialogue in Serpent
supports simultaneity of subdialogues and presents the dialogue specifier with a
model that views data as mapping from the application to the presentation.

The database approach for communication between the layers provides a model
that application programmers understand well and find easy to use. The ap-
proach also provides the power necessary to decouple the application structures
from the structures implicit in the user interface.

1. Introduction

Highlighting the user interface of programs as a separate area of functionality needing spe-
cial tools and special concepts has resulted in a new software architecture known as the
User Interface Management Systems (UIMS). This architecture calls for dividing an appli-
cation into layers: the functional core of the application, the dialogue control layer, and the
presentation layer. The exact functionality resident in each layer is subject to dispute but, in
general, the presentation layer is responsible for layout and device issues, the dialogue con-
trol defines the structure of the dialogue between the user and the application, and the appli-
cation layer provides the functionality for the whole system.

In the last several years, a large number of UIMS have been built [1, 14, 15, 9, 10, 5] and
the issues involved in the architecture have become clearer. Serpent (Software Engineering
Rapid Prototyping EnvironmenT) is a UIMS under development. It takes a particular view of
some of these issues. This paper discusses the runtime architecture of Serpent and the
model used within Serpent to control the dialogue. In particular, Serpent:

» Uses the X Toolkit and window system for presentation and feedback. This
results in a four-level model such as that suggested at the 1986 SIGGRAPH
workshop [3].

CMU/SEI-88-TR-6 1



» Takes advantage of a structured production model for dialogue specification
that supports multithread dialogues and multiple views of the same data. The
structuring imposed on the productions provides the interface designer with a
model that views the interface as a mapping from the application data to the
presentation objects. This is in contrast to models that view the application and
the presentation as symmetric with respect to the dialogue. The model also
groups presentation objects based on visibility conditions allowing collections of
presentation objects to be treated uniformly by the logic of the dialogue.

« Uses a database approach to the interface between the layers. The database
approach has the advantages of:
+ Ease of use for application programmers who use Serpent

+ Power to allow the decoupling of user interface structure from application
structure

CMU/SEI-88-TR-6



2. Serpent Architecture

The decomposition of Serpent reveals four layers: the application, the syntactic dialogue
manager, the lexical dialogue manager, and the presentation layer. Figure 2-1 illustrates
this decomposition.

Figure 2-1: Serpent Decomposition

Serpent itself consists of the latter three layers, since the application is outside Serpent’s
domain. The terms "syntactic" and "lexical," when applied to the dialogue manager, are
intended to suggest a matching with the Foley and Van Dam model [6] and are also in-
tended to describe the power of the underlying language used to specify the actions of these
layers. The three layers of Serpent use existing software systems heavily. The syntactic
dialogue manager has OPS83 [8] at its core, the lexical dialogue manager has the X Toolkit
[12] at its core, and the presentation layer is exclusively the X window system [17]. What is
new about Serpent is the collection of these components into a coherent UIMS, the model
presented to the dialogue specifier, and the use of database concepts for the communi-
cation among the layers.

The sections that follow describe briefly each of the three Serpent layers.

CMU/SEI-88-TR-6 3



2.1. Presentation Layer

The X window system manages the resources associated with a bit-mapped workstation.
This includes the windows, fonts, mouse cursors, and both mouse and keyboard input de-
vices. X is structured as a server with various clients. The system assumes a rectangular
overlapping model of window management and reports to its clients about low level events
such as mouse movement and keyboard and button presses. The use of X for the window
manager corresponds directly to the presentation layer in the Seeheim architecture [16] or
the workstation agent of the Seattle conference [11].

2.2. Lexical Dialogue Manager

The Serpent lexical dialogue manager consists of the X Toolkit, as well as Serpent cus-
tomizations to the toolkit. The customization provides the mapping between the syntactic
and lexical dialogue managers, and some additions to the functionality furnished in the initial
release of the X Toolkit. The general model followed in the use of X within the Serpent
system is that the lexical actions are specified by the syntactic dialogue manager and per-
formed by the lexical dialogue manager. The method of specification of the lexical actions is
described below.

2.2.1. X Toolkit

The X Toolkit consists of a collection of "widgets" that handle policy matters and serve as
the "interactors" of Serpent. The widgets in the X toolkit include command buttons, forms,
dialogue boxes, etc. Widgets are implemented as X windows, which means that widgets
are constrained to be rectangular. The widgets are parameterized so that the program that
uses the widget can specify size, internal text or icon, and location. The term "application”
program is applied to this program in the X Toolkit documentation. The term "widget driver"
refers to the code that directly controls the widgets.

More important, from the perspective of Serpent, is that the widgets handle low-level feed-
back and the feedback actions are also parameterized. Widgets also generate events that
are reported to the widget driver. Figure 2-2 shows how a command button responds to
various actions of a mouse. The widget understands the basic events of "mouse entered,
button down, button up" and has an action of "set". The X toolkit allows the actions taken in
response to the basic events to be specified by the widget driver. A portion of the customi-
zation of the toolkit uses this ability for limited control of both low-level feedback and of the
events reported to the syntactic dialogue manager.

The X Toolkit has base widgets (command button, text, Boolean button and scroll bar, for
example) and composite widgets (button box, menu, and form, for example). Composite
widgets are collections of base widgets bound together by a particular geometry manager.

4 CMU/SEI-88-TR-6



Figure 2-2: Command Button Widget

2.2.2. Serpent Customization of the X Toolkit

The customization done to the X toolkit provides two distinct functions. First, it acts as the
interface to the toolkit, specifying that events are of interest and the parameters of the
widgets. Second, a collection of graphic primitives has been implemented on top of X to
allow interactions with objects that are not rectangles, such as lines and arcs. This
bypasses the difficulty involved in the restrictions caused by rectangular widgets in the X
toolkit for both line specification and movement.

The interface between lexical and the syntactic dialogue managers consists of two portions.
The first portion is the description of the presentation and the second portion is the descrip-
tion of the interactions. The presentation is described in terms of widgets (both X toolkit
widgets and enhancements). Each widget is described with a collection of specific values
as presentation attributes. The presentation attributes are not only size, location, and con-
tents but may include items associated with feedback, such as cursor shape or border size
when the cursor is within a widget. The individual widgets do not refer to any other existing
widgets except when they are components of a composite widget. In this case there is a
reference to the parent of a particular widget.

The second portion of the interface consists of a definition of syntactic events in terms of the
lexical events that the X toolkit understands. For example, suppose that in a drawing pro-
gram there is a palette of shapes, a target window, and a single-button mouse. One inter-
action technique might be to place the cursor over a shape, press down on the button, and
drag the shape to a desired place on the screen. Feedback might be a boundary box to
show location. From a high-level perspective this is a "copy.” The same set of interactions,
when applied to a shape in the target window, might be a "move." The lexical events in this

CMU/SEI-88-TR-6 5



example are button down, drag, display boundary box feedback, and button up. The syntac-
tic events are move or copy. The syntactic dialogue manager passes a regular expression
to the lexical dialogue manager. This expression defines a syntactic event in terms of lex-
ical events. A regular expression is downloaded from the syntactic dialogue manager when-
ever the controlling dialogue wishes to define a new syntactic event.

Whenever a definition for a new event is downloaded to the lexical dialogue manager, it is
checked for consistency with the other defined syntactic events. A certain sequence can
have only one meaning at any point in time. If an inconsistent definition is added, an error
condition is returned to the syntactic dialogue manager and no new event is defined.

Only the events returned by the X toolkit and certain feedback actions are specified by a
regular expression. There is no attempt to specify geometry or presentation attributes
through a regular expression. These matters are left for the syntactic dialogue manager to

specify.

2.3. Syntactic Dialogue Manager

The syntactic dialogue manager controls the execution of the logic of the dialogue. It con-
sists of OPS83 plus associated data management and communication functions. The dia-
logue is specified using the model described in this subsection. The dialogue is translated
into OPS83 production rules that are executed by the syntactic dialogue manager. The
functionality of the syntactic dialogue manager is described in much more detail in Section
6.

OPS83 acts as the runtime kernel of the Serpent syntactic dialogue managers. The rules
for OPS83 are derived from the specification of the dialogue. Figure 2-3 shows how the
specification is transformed into OPS83 rules. The dialogue specifier interacts with an editor
to create a dialogue. This interaction is partially graphical and partially textual. The output
of the interactive editing is a totally textual representation of the dialogue that, in turn, is
compiled into OPS83 rules. These rules are compiled by the OPS83 compiler into an ex-
ecutable dialogue manager.

The resulting dialogue manager has the dialogue linked into it and is not an interpreter for
the dialogue. Thus, rather than having one dialogue manager to interpret many different
dialogues, there is one executable dialogue manager per dialogue.

6 CMU/SEI-88-TR-6



Figure 2-3: Specification Transformations

CMU/SEI-88-TR-6



CMU/SEI-88-TR-6



3. Data Flow

Figure 3-1 illustrates data flow within a system using Serpent.

Figure 3-1: Serpent Data Flow

The application views Serpent as a system that manages the database of entities visible to
the end user. The entities are viewed as relations, and the application requests Serpent to
create a new tuple in a relation, modify an existing tuple, or delete an existing tuple. The
database that Serpent manages for the application is called application shared data. The
other side of this exchange is that the application is informed of end-user originated changes
to the application shared data. The application shared data is active in that it informs clients
of modifications to itself [7, 13].

The application shared data is managed by the syntactic dialogue manager. It manipulates
the data according to the instructions in the dialogue and converts the data into presentation
information placed in the X shared data. X shared data is another database managed by
the syntactic dialogue manager; this database holds information about the X toolkit entities
(widgets). The lexical dialogue manager modifies and is informed about modifications to the
X shared data area in the same fashion as the application and the application shared data.

CMU/SEI-88-TR-6 9



The flow of the data from an end user to the application is as follows:

1. End user moves mouse over command button. No data is transferred outside
the X toolkit.

2. End user selects command button. X toolkit layer places identification of com-
mand button selected into interface.

3. Interface notifies dialogue manager of modifications to shared data.

4. Dialogue manager retrieves selection notification, transforms selection into ap-
plication action, and places application action notification into application
shared data.

5. Interface notifies application of modification to application shared data. Appli-
cation retrieves modified data and acts upon it.

The syntactic dialogue manager maintains local data to control the logic of the dialogue and
as staging between the various shared data areas.

10 CMU/SEI-88-TR-6



4. Example

The example that follows illustrates Serpent details.

4.1. End User Functionality

The display in Figure 4-1 is drawn from a command and control application. This is the dis-
play that the end user of the example sees.

Figure 4-1: Application Example

The rectangular boxes on the right and left sides (e.g., GS1, GS2) represent sensor sites
that detect information. The circles in the middle represent correlation centers where the
information from all of the sensors is collected. Each sensor site sends its information to
both correlation centers, which accounts for the repetition of the sensor site boxes on both
the right and left sides of the display. The lines represent the communication path between
a particular sensor site and a correlation center.

CMU/SEI-88-TR-6 11



When a sensor site is determined to be non-operational, an estimated time to return to
operation (ETRO) is displayed in association with the site. The ETRO is displayed in asso-
ciation with both occurrences of the sensor site. A particular communication line may not be
operational, in which case the ETRO for that line is displayed over the line and next to the
sensor site.

The end user may select one of the sensor sites and a detail window will appear giving more
status information about the site. This detail window may be edited to modify the ETRO, the
status, or the reason for failure (RFO). Figure 4-1 shows the result of selecting the WRB
sensor.

Notice that the ETRO for a particular sensor site is always displayed twice. If the detall
window for the sensor site has been selected, the ETRO is displayed three times. This
notion that the same piece of information is displayed multiple times is called multiple views
of data.

4.2. Application Functionality

An application treats Serpent as a database manager for the application shared data. When
this concept is applied to the example, the functionality of the application consists of con-
verting the information in the local database of the application into (and from) the application
shared data area. Application shared data can be modified either by the application (in
which case the modifications are of interest to Serpent) or by Serpent (in which case the
application is explicitly informed of the modifications).

The example application maintains a database of sensor sites, communication lines, and
correlation centers. Each component of the database has associated status information, for
example, ETRO. It communicates this information to Serpent by writing the information to
the application shared data.

The example application has two sources of information. Either the end user inputs infor-
mation or information arrives through direct communications from another computer. A
high-level outline of the application program’s sequence is:

« Initialize connection with Serpent.

« Retrieve data from local database and put into shared data.
« Notify Serpent that data is available.

« Do until exit.

+ Wait for either input from Serpent or message from another computer.
* If input from Serpent then:

» Get updated information from shared data.
* Verify information.
 Place updated information into local database.

12 CMU/SEI-88-TR-6



+ If message from another site then:

* Place new information into local database.
* Place new information into shared data.
* Notify Serpent that new information is available.

Notice how the application treats Serpent as an active database manager. It places appli-
cation information (about sensor sites and communication lines) into shared data and is sub-
sequently informed of changes to this information. The application is ignorant of the details
of the display. The application is also ignorant about the user asking for more detailed infor-
mation about a particular sensor. This is the essence of separating the user interface de-
tails from the application program. Notice also that the application is not informed of end
user actions until the actions have been transformed into the form necessary for shared
data, that is, until the data is ready for application action.

An issue in user interface design is whether a modification requested by an end user is
immediately reflected on the display or whether the display reflects the modification only
when the application acknowledges the modification. Serpent does not prejudge this issue.
During the design process decisions are made as to when a modification is to be reflected
on the display, and the application and the dialogue are written accordingly.

CMU/SEI-88-TR-6 13



14

CMU/SEI-88-TR-6



5. Serpent Shared Data

From an application perspective, data is sent to a database that Serpent maintains.
Changes to this database are also reported back to the application. The database model of
how applications interact with the database manager is well understood by application pro-
grammers. The application either creates, modifies or deletes data in the database. It com-
municates the specifics of its requests through a schema that defines what data is in the
database.

The example application is described above as placing data into shared data. Application
shared data is conceived as a database of information managed by Serpent and available to
the end user. The database is relational (tabular) in structure. In terms more familiar to
programmers, shared data is a collection of records. Each record is composed of scalar
data types. Inthe example, one possible structure for some of the data is:

* Sensor site data table

* site abbreviation
* site status

+ site full name

* last message

* rfo

* etro

« Communication line data table

+ from sensor site

+ to correlation center
« status

* etro

The terminology here depends on whether a programming or a database perspective is
used. The elements in shared data are records (tables, relations). Each table in shared
data is a collection of rows (tuples, instances of records) or a collection of columns (fields,
attributes). When a new row is created (either by the application or by Serpent) it is given a
unique identification (shared data element id). That is, the identification of a row is inde-
pendent of the data stored in a row. Serpent assigns the primary keys for the database that
Serpent manages, and the application manages any association between the primary key
and particular data values.

This database view of shared data occurs not only between the application and Serpent but
also within components of Serpent. The syntactic dialogue manager and the lexical dia-
logue manager share data through X shared data. This data consists of widgets or graph-
ical objects and their attributes, which fits exactly into the database model. There is a data
table for each widget type and its fields are the attributes of the widgets. For example, there
is a command-button data table and its columns are attributes of the command button (size,

CMU/SEI-88-TR-6 15



color, location). Each row in that table represents a different occurrence of a command
button. An additional attribute exists in the command button table that gives the owner
within the dialogue of an individual command button. Thus, independent menus composed
of command buttons are easily managed. When the end user selects a command button its
owner within the dialogue is notified if the selection. This owner knows that menu it is man-

aging.

16 CMU/SEI-88-TR-6



6. Model Used in the Syntactic Dialogue Manager

When two or more dialogues are running concurrently, the resulting dialogue is termed mul-
tithreaded. The support of multithreaded dialogues has become an important requirement
for UIMS dialogue models. These two dialogues may be independent, such as when a
user’s focus of attention changes in the middle of a dialogue, or they may be intertwined,
such as when a user uses two input devices simultaneously.

Production systems have been used as a means of dealing with the simultaneity involved in
multithreaded dialogues [10, 5]. Serpent also uses a production system model to describe
the dialogue, although, in the case of Serpent, the productions with that a dialogue is speci-
fied (view controllers) are more structured and at a higher level than the productions that are
actually executed. View controllers are also nested, which gives the dialogue specifier the
view that they map from application data to technology objects [2].

6.1. View Controllers

In Serpent, the actual dialogue between the end user and the application is executed in
terms of view controllers. A view controller performs two main functions:

» Map specific data in the application shared data into objects on the display with
which the end user can interact.

e Control, at a high level, the interactions that the end user has with those ob-
jects.

A dialogue is specified in terms of view controller templates. A template maintains a watch
on application shared data for certain specific data conditions. A view controller is created
when data that satisfies a watching view controller template is placed into application shared
data.

The actual view controller has the following functions:

 Tie a particular tuple in shared data space to the view controller.

* Map that data into display objects visible to the end user.

» Perform actions when the end user interacts with the display objects.
¢ Maintain local information.

In general, a view controller template consists of four components:

1. Creation condition for new view controller
2. Actions on creation of new view controller

3. List of display objects, each object consisting of a collection of attributes for
presentation and methods to respond to end user actions

4. Actions on destruction of created view controller

CMU/SEI-88-TR-6 17



The subsections that follow describe these components in general and in terms of the previ-
ous view controller example.

6.1.1. View Controllers as Used in the Example

In the example display in Figure 4-1, there are two rectangles associated with every sensor
site (one on the right of the screen and one on the left). For each sensor site, there is a
specific tuple in the sensor site data table that has the information for the sensor site, and
also a view controller that maps that tuple into the two rectangles. A separate view con-
troller causes the detail window for a sensor site to be displayed when the end user selects
the sensor site. The view controller that controls the selected sensor site rectangle is in-
formed when the sensor site has been selected and causes the creation of the detail win-
dow view controller.

Even though there is a separate view controller for each sensor site, there is a single view
controller template from that the view controllers are created. This view controller template
specifies the condition under which a new view controller occurs. The created view con-
troller then maps the particular tuple representing a sensor site into the rectangles on the
display, interprets any selection of one of these rectangles as the signal to create the detalil
window view controller, and maintains some local information.

The view controller template for the sensor site is:

Sensor Site View Controller

* Creation condition: sensor site abbreviation is new
* Objects:

+ Left sensor site button (creates new tuple in X shared data command but-
ton data table)

« attributes:

* color
* size
* location
* text in rectangle
* method
* select: Create view controller that brings up detail box.

* Right sensor site button (creates new tuple in X shared data in command
button data table)

« attributes:

« color
. size
* location

18 CMU/SEI-88-TR-6



* text in rectangle
* method

+ select: Create view controller that brings up detail box.

6.1.1.1. Creation Condition

A view controller template waits until a specific condition is satisfied. In the example, the
condition is the existence of a new sensor site in application shared data. Once that con-
dition is satisfied, a view controller is created and performs its actions. The creation con-
dition satisfies two purposes. First, it determines when a new view controller is created from
a view controller template, and second, it associates a tuple from the shared data with the
newly-created view controller. In the example, when a new sensor site abbreviation is
placed into shared data, a view controller is constructed from the template and is associated
with the tuple that contains the new sensor site abbreviation. If the view controller exists
and the tuple with its particular sensor site abbreviation is deleted, then the view controller
ceases to exist.

In general, a view controller creation condition may be any condition on the attributes in a
single shared data table modified by any local information maintained within the dialogue.
When the condition is satisfied by certain fields of a particular tuple in a table, then the value
of all the fields in the tuple are bound to the view controller. These other values are typically
used for construction of the attributes of objects.

6.1.1.2. Actions on Creation

When a view controller is created, then its actions on creation are executed. These actions
can be any of the legal ways in that the dialogue can manipulate shared data, manipulate
local information, or send information to the application.

Possible actions on creation for the previous example might be to increment a count of sen-
sor sites or to initialize the flag used to control the display of the detail window.

6.1.1.3. Objects

Each view controller template describes a collection of objects that are created when a view
controller is created from the template. These objects correspond to the shapes on the
display and are bound to the newly created view controller. The objects have attributes that
control how they are presented to the end user, and methods that determine the high-level
interactions that the end user can have with the object. All of the objects within a particular
view controller are created when the view controller is created and, thus, the view controller
acts as a mechanism for grouping display objects based on visibility conditions.

In the previous sensor-site example, each view controller creates two objects, the right and
left sensor rectangles. The attributes of these objects determine the size, location, color and
internal text of the objects. The values of the attributes may depend upon the values of the
fields in the sensor-site data table tuple that caused the view controller to be created.

CMU/SEI-88-TR-6 19



In general, the values taken on by the attributes may depend upon values of the fields in a
shared data table or from local information maintained by the dialogue. Several different
values can enter into the calculation of a single attribute. In particular, the values can be
drawn from the tuple with which the view controller is associated, from values local to the
dialogue, or from attributes of other objects. The ability to reference attributes of other ob-
jects allows the line objects in Figure 4-1 to be specified such that they are connected to the
sensor site objects. Thus, inter-object geometric relationships (excluding parent-child) are
enforced by the dialogue (through the syntactic dialogue manager) and not at the lexical
level. Parent-child geometric relationships (one widget is a component of another widget
and the position of the child widget is specified relative to the position of the parent) are
enforced at the lexical level.

The objects also have methods that determine their reaction to end-user actions. In the
previous sensor-site example, selecting one of the sensor-site rectangles is the only action
an end user can perform on the rectangles. The mechanism for the selection is managed
by the X toolkit as specified previously in this paper. When a sensor site rectangle is se-
lected, the lexical dialogue manager notifies the syntactic dialogue manager that a selection
has occurred for a particular object. This object belongs to a particular view controller and,
consequently, the particular tuple associated with that view controller is known. When a
selection occurs the sensor site view controller arranges for a detail window view controller
to be created. It could do this by setting a local flag that the detail window view controller
template uses as its creation condition.

6.1.1.4. Actions at Destruction

When the creation condition of a view controller becomes false, the view controller is de-
leted from the system and its objects are removed from the display. It is also possible to
specify other actions to be performed upon destruction. Possible actions for the previous
sensor-site example might be to decrement a counter of sensor sites or to inform the appli-
cation of certain information.

6.1.2. Nesting of View Controllers

One view controller template can be specified to be nested within another view controller
template. This nesting carries through to the actual view controllers created from the
templates. A nested view controller inherits the tuple that caused the creation of its
predecessor. In the previous sensor-site example, the detail window view controller is
nested within the sensor site view controller. Hence, when the detail window view controller
is created, it inherits the tuple that caused the sensor site view controller to be created. This
means that the detail window view controller presents certain information about a sensor
site and the nesting insures that the information is associated with the correct sensor site.

20 CMU/SEI-88-TR-6



6.2. Threads of Control Within Dialogues

A dialogue is a collection of view controller templates. Each of the view controller templates
has a creation condition. The order in which the view controllers are created depends upon
the data placed into shared data by the application and the actions of the end user. A sub-
dialogue is a collection of view controllers that perform one particular task, for example, cre-
ate display in Figure 4-1. It is possible within a dialogue to have multiple subdialogues, and
there are no a priori timing constraints on the order in which those sub-dialogues are ex-
ecuted.

Actions of the dialogue are determined by the actions of the application and of the end user;
it is possible to have multiple subdialogues active simultaneously. For example, Figure 4-1
may represent only one portion of a total display and the end user may select a sensor site,
have the detail window displayed, leave it displayed and proceed with quite a different task
in a different portion of the display. Within Serpent, view controllers are created and meth-
ods are used totally in response to end user and application actions. In particular, several
subdialogues may be carried on in parallel. This allowance of simultaneity of subdialogues
represents the power of the production model used in Serpent.

6.3. Multiple Views of Data Within Serpent

The data shared between the application and Serpent has one tuple for each collection of
application data. The fact that a particular piece of data may be displayed multiple times on
a display is reflected only in the dialogue and not in the shared data. In the previous sensor-
site example, the ETRO for a particular sensor site may be displayed as many as three
times. Since the view controllers manage the mapping from application data to presentation
objects, Serpent is aware of which view controllers depend upon which values of shared
data. Thus, when a particular piece of shared data is modified, Serpent is able to ensure
consistency with all of the presentations of that particular piece of shared data.

6.4. User Model of the Data

The basis of the UIMS architecture is that there is a distinction between the information con-
tent of application data and the form in which the data is presented. In this section, the
argument is made that it is the structure of application data that should be separated from
the structure of the presentation. The user forms a model of the application being used, on
the basis of a perceived structure of the information being presented. As long as the infor-
mation content of the data remains the same, modifications to the actual structure of appli-
cation data should be hidden from the end user. This mimics the distinction used in data-
bases of conceptual level and external level [4].

The distinction between conceptual level and external level in databases allows the end
user to have a different view of the structure of the data in the database than the structure

CMU/SEI-88-TR-6 21



that actually exists. When this idea is translated to user interfaces, it means that there
should be a distinction between the structure of the data that the end user sees and the
structure of the data that the application manages. This emphasis on structure of data is
independent of the form that the data is presented to the end user.

If Figure 4-1 is examined for information content, there are separate entities of sensor site
and communication line, regardless of how these entities are displayed. The sensor-site
example’s application shared data mirrors these two entities in two separate data tables.
Presumably the application has the same entities. Yet, if the separation between application
functionality and user interface is to be truly achieved, it should be possible to have two
entities in the user interface derived from one or three entities in the application. It should
be possible to have a database view of the structure of the application data.

Suppose that, in the sensor-site example, there were only one data table in application
shared data with the following structure:

Communication line data table

« from sensor site

* to correlation center

* sensor site abbreviation

* sensor site status

« sensor site full name

* sensor site last message
* sensor site rfo

* Sensor site etro

e communication line status
e communication line etro

This structure is not normalized, in the database sense, because information for a sensor
site is replicated within each tuple having a particular sensor site abbreviation. But this is a
possible structure that the application may maintain for the data. By defining an appropriate
dialogue it should be possible to map this structure into the display in Figure 4-1 and present
the user with a view of the data that distinguishes between communication lines and sensor
sites.

In Serpent this is possible. The sensor site view controller template creates a view con-
troller when a new sensor site abbreviation occurs in application shared data. This view
controller is bound to the tuple within which the abbreviation occurred. Whether this abbre-
viation occurs once or several times within an application shared data table is irrelevant to
the creation condition and the binding. The view controller template creates only one view
controller per abbreviation.

This use of a creation condition and the associated binding to a tuple allows Serpent to have
a subset of what is meant by view in the database sense, and allows a decoupling of the

22 CMU/SEI-88-TR-6



structure of the user interface from the structure of the application data. This is important in
maintaining true separation between the application and the user interface.

6.5. Timing of Dialogue Actions

The syntactic dialogue manager monitors the application shared data area and local dia-
logue information, and creates view controllers when a view controller template-creation
condition has been satisfied. Attributes of objects are also modified when the data that the
attribute reflects is modified. It is possible to have multiple view controllers created (or attri-
butes recomputed) in response to a single change in shared data. From the point of view of
the dialogue specifier all of these actions are simultaneous.

Some of these simultaneous actions, however, may be inconsistent. Because of the power
of the model used within Serpent, it is not possible to guarantee correctness of a dialogue.
Serpent imposes an ordering on these actions so that they are repeatable and explainable,
but correctness of a dialogue is the responsibility of the dialogue specifier.

CMU/SEI-88-TR-6 23



24

CMU/SEI-88-TR-6



/. Summary

Serpent is a UIMS that uses a structured production model to specify dialogue, and that
uses a database approach to the interface between the layers of the UIMS.

The structuring of the productions allows:
« Grouping of display objects according to the logic of the dialogue. This allows
the existence of an object to be visible from examination of the dialogue.

» A view of the dialogue as mapping from application data to presentation ob-
jects. This gives the dialogue specifier a focus for structuring a dialogue.

» The ability to nest productions and allow one production to inherit data from its
parent.

The use of a database model for the interface allows:
* The actions of the productions to be grounded in particular data that can be
used to then control the presentation attributes of the objects.
* A model for a UIMS that is well understood by application programmers.

» An approach to the problem of separating the structure of the data seen by the
end user from the structure of the data managed by the application.

« The same code to manage the interface between the application and the dia-
logue manager, as between the dialogue manager and the X toolkit layer.

CMU/SEI-88-TR-6 25



26

CMU/SEI-88-TR-6



References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Buxton, W., Lamb, M.R., Sherman, D., Smith, K.C.
Toward a Comprehensive User Interface Management System.
Computer Graphics 17(3), July, 1983.

Coutaz, Joelle.

PAC, an Object Oriented Model for Dialog Design.
Human-Computer Interaction - INTERACT '87.

Elsevier Science Publishers B.V. (North-Holland), 1987.

Dance, J.R., Granor, T.E., Hill, R.D.,Hudson,S.E., Meads, J.,Myers, B.A.,
Schulert, A.

The Run-time Structure of UIMS-Supported Applications.

Computer Graphics 21(2), April, 1987.

Date, C.J.
An Introduction to Database Systems, Vol I.
Addison Wesley, 1985.

Flecchia, M.A. and Bergeron, R.D.
Specifying Complex Dialogs in Algae.
In Proceedings SIGCHI 87. 1987.

Foley, J.D. and Van Dam, A.
Fundamentals of Computer Graphics.
Addison Wesley, 1982.

Foley, J.D. and McMath, C.F.
Dynamic Process Visualization.
IEEE Computer Graphics and Applications 6(3), March, 1986.

Forgy, C.L.

The OPS83 Report.

Technical Report CMU-CS-84-113, Carnegie Mellon University, Computer Science,
1984.

Green, M.
University of Alberta User Interface Management System.
Computer Graphics 19(3), July, 1985.

Hill, R.D.
Event-Response Systems - A Technique for Specifying Multi-Threaded Dialogues.
In Proceedings SIGCHI 87. 1987.

Lantz, K.A., Tanner, P.P., Binding, C., Huang, K-T.,Dwelly, A.
Reference Models, Window Systems, and Concurrency.
Computer Graphics 21(2), April, 1987.

McCormack, J., Asente, P., Swick, Ralph R.
X Toolkit Intrinsics
Massachusetts Institute of Technology, 1987.

CMU/SEI-88-TR-6 27



[13]

[14]

[15]

[16]

[17]

Myers, B.A.

Creating Dynamic Interaction Techniques by Demonstration.

In Proceedings SIGCHI 87. 1987.

Olsen, D.R. and Dempsey, E.P.
SYNGRAPH: A Graphic User Interface Generator.
Computer Graphics 17(3), July, 1983.

Olsen, D.R., Jr.
MIKE: The Menu Interaction Kontrol Environment.
ACM Transactions on Graphics 5(4), October, 1986.

Pfaff, G. (editor).
User Interface Management Systems.
Springer-Verlag, Berlin, 1985.

Scheifler, R.W. and Gettys, J.
The X Window System.

ACM Transactions on Computer Graphics 5(2), April, 1986.

28

CMU/SEI-88-TR-6



	Table of Contents
	List of Figures
	1. Introduction
	2. Serpent Architecture
	3. Data Flow
	4. Example
	5. Serpent Shared Data
	6. Model Used in the Syntactic Dialogue Manager
	7. Summary
	References

