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Evolving Persistent Objects in a Distributed

Environment

John R. Nestor

Software Engineering Institute, Carnegie Mellon University
November 29, 1987

Abstract

In distributed systems, it is useful to classify persistent objects as either immutable
or mutable. The contents of an immutable object cannot be changed while the contents
of a mutable object can. In a distributed system, multiple copies of an immutable
object can exist at different places and can be used freely without the need for any
special synchronization. Mutable objects, however, require synchronization. When
an object is about to be changed, all current users need to be notified. When two users
both try to change the same object, only one should be permitted to succeed. This kind
of synchronization requires that for each mutable object there be a single point in the
network that controls use of that object. If a network becomes temporarily partitioned
into two isolated subnetworks, only one will have control over each mutable object.

This paper considers a class of objects called incrementally mutable objects that
are intermediate between mutable and immutable objects. Intuitively the only per-
mited modifications to an incrementally mutable object are those that add new infor-
mation to the object while preserving existing information. Changes to incrementally
mutable objects do not require central synchronization. When a network becomes
partitioned, the same incrementally mutable object can be safely modified in each
subnetwork. A mutable object can be modeled by a set of immutable objects that
represent each value of the object over time and an incrementally mutable object that
relates each immutable object to its successor. Multiple successors are permitted to
represent parallel changes. ,, .. .

This wok was sponso by the Depermnat of Defense. Th views and conclusions cntained in

this paper we those of the ithor and should not be interpretd a ,epasenting official policies, either

expressed or iunpied. of the Sotware Enginring Intaitut , Camegie Mellon University., the Depnment
of Defense, or the US. Goverment.
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1 Introduction
The demand for software is steadily increasing both in the number of systems being
built and in the complexity of these systems. Unfortunately, demand for software
has been consistently growing faster than our ability to produce it. Software is often
delivered late, costs much more than originally predicted, and fails to satisfactorily
do the job for which it was built. The combination of these problems has been
characterized as the software crisis and has led to increasing emphasis on the field
of software engineering whose goals are directed at solving these problems.

Programming environments have become a focal point for much of the work
directed toward improving the practice of software engineering. Environments are
increasingly being based on multiple distributed machines connected with both local
and wide area networks. The management of persistent data is a central issue for en-
vironments. Environments are being called on to be the repository of all information,
both technical and managerial, created throughout the lifecycle of a software system
from requirements though deployment and continued enhancement. Most current
programming environments support persistent data by using a file system with one or
more ad hoc databases. Many future environments will be based on object-oriented
databases that combine methods used in traditional databases with the programming
language concepts of objects and abstraction [1]. These new environments will differ
in several important ways from traditional database systems [2,3].

This paper focuses on one important aspect of future programming environments:
how to manage evolution of data in a distributed system. First, evolution, existing
methods for providing it, and the weaknesses of these methods are considered. Sec-
ond, some motivations for a new approach are discussed. Third, a new approach,
incremental mutability, that eliminates these weaknesses is introduced. Finally, two
examples of incremental mutability are presented.

2 Evolution

The information in a software environment evolves over time. Not only are new
objects added, but existing objects must also evolve.

The simplest mechanism for evolution is to permit all objects to be changed.
However, changing an object presents special problems when multiple users are
involved, particularly when the environment is on a distributed system. When two
users are changing the same object then the changes of one may overwrite the changes
of the other or worse the resulting object may contain some combination of the partial
changes of each user. Many environments provide a locking mechanism so that only
one user can change an object at any time. This approach has two problems. First,
while one user is changing an object, all others who need to change that object are
locked out and must wait until the object is unlocked before they can proceed with
their work. Since objects can be locked for long times, a loss of productivity may
occur. Second, the locking mechanism requires that control of an object reside at a
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single point within a distributed network. This can be seen by considering two users
at different points in the network both trying to change the same object. Suppose
that the network is partitioned by breaking all paths between the two users. Now, at
most one user will be able to change the object, because control of the object resides
in the part of the network where changes to the object can be made. The place where
control of an object resides will be called the control point for that object. A control
point for an object resides at some single point within a distributed system and limits
access to operations of the object. Although control points on a single centralized
machine have proved useful and effective, they create problems in distributed systems
that are discussed in the next section.

If historical information is to be preserved, evolution cannot be done by simply
changing the existing object. Instead, a version scheme is needed that records a
sequence of objects, each of which represents the state of some changeable object
at a different point in time. Instead of changing an object, a new version of the
object is created in which all changes have been made. Once created, a version
cannot be changed. This ensures that historical information is preserved. Versions
need not be totally ordered. When alternatives occur, such as when a bug is fixed
in an old release while work continues on the next release, the sequence can fork.
When alternatives come together, separate sequences can join. Abstractly, a directed
acyclic version graph is formed. Not all points in the version graph are equally
important; in practice, users impose additional structure at one or more levels of
granularity and do not preserve versions below some minimum level of granularity.
The finest granularity corresponds to every edit. A coarse granularity corresponds
to major release points. Intermediate granularities are frequently defined to aid the
management of a development project. Two common methods for supporting versions
are discussed below: naming schemes and version control programs.

Source versions are often handled by conventions for naming directories and
files. One primitive approach divides the world into three groups of directories:
old, current, and new. Most users will use objects in current. Versions under
development and experimental versions reside in new. When a new object is stable,
the current version of that object is moved to old and the new version is moved
to current. This approach has two disadvantages. First, only three versions of an
object are kept. In practice, many more than three are needed. Second, the current
state of the system is constantly changing. The behavior of any uses of current
objects can change in unexpected ways without any notification. The user is never
sure that what worked yesterday will work the same today.

A more general approach is to use names Vl, V2, V3, and so forth. Although this
approach can be extended to repirent version graphs with forks and joins, naming
can get complex. Name qualification can occur either at the directory or the file level.
For example, if "/" separates directory names and "." can appear as a character
within file nmes, two versions of the object, foo. x, could be represented either by
directory names such as
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/foopro jecit/n:o:rce:h/foo.
/foo_project/source2/foo.x

~or by file names such as

/ foo_project/3ource/foo, x. 1
/ foo Jproject/3cource/foo. x. 2

When directory names are used and one object in that directory is changed, then an
ocher objects in the old directory must be copied unchanged into the new directory
resulting in multiple identical files that represent a single logical object. I When file
names are used, the consistency relationships between versions of different objects
are no longer explicit and must be separately maintained. Another disadvantage of
naming schemes is that command scripts need to be aware of the version naming
conventions. For example, a command script that references a vi object will have
to be edited before it can be used for a V2 object. 2

Several programs have been developed for version control including the Unix
SCCS tool, a similar but improved Unix tool RCS [4], and most recently the Apollo
DSEE system [5]. These tools support version histories of individual objects including
those whose version graphs have both forks and joins. All versions of an object are
stored in a single physical file using delta encoding to save space. In SCCS and RCS,
before any particular version of an object can be used, a copy of it must be explicitly
extracted from the physical file. After the copy is changed it must be explicitly
copied back as a new version into the physical file. This approach not only requires
the user to do these extra explicit operations, but also places the burden on the user of
maintaining the logical relationship between extracted copies and the master version.
In DSEE, the user specifies a configuration that lists specific versions of each object
that the user wants to see. At this point transparent access to those specific versions
is provided. Since logically no copy occurs, consistency is automatically maintained. -

When a single version has multiple successors, all these tools designate some
single version as the primary successor. Starting with the first version of the object
and following the path via primary successors will end at a version that is designated
as the current version. Users can request either a specific named version or alter-
natively can request the current version. Requesting the current version, however,
has exactly the same problem of unexpected changes as the old-current-new naming
scheme. Since there is only one primary successor, only one user can create it. 3

Control over which user can create the primary successor therefore must rest with a
control point with all the resulting disadvantages discussed below.

IMusy systems provide ib ht wcan be used to avoid this copying, but only at sne cost im auctu"alcmlezity. '"

2r edit ca in some systems be avoided by passing the venion as a suing parameter that is then

wed into the right place in the fle nune.
3I SCCS. it is even worse since only one usa cut be changing ay version of a object at the same

times. Tha, canpesel inhabits paralel developsient.
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3 Motivation

In the next section, a new approach to evolution called incremental mutability is pro-
posed. Incremental mutability is particularly well suited to distributed environments.
Three aspects of distribution motivate this approach: the problems of centralized
control points, the advantages of immutable objects, and the ways that groups of
people manually synchronize their work.

As discussed above, a control point for an object is some single location in the
network that centralizes control of the operations that can be done simultaneously on
that object. Two examples of control points were discussed in the previous section: ,
the lock that prevents multiple users from simultaneously changing the same object
and the control that determines which user can create the primary successor of some
single version. The use of control points in distributed systems has several problems:

" Increased network traffic. When the user of an object and the control point
for the object are at different points in a network, messages must be sent V?
between the user and the control point for each user operation. Consider as an
example a conventional tree structured file system, such as the Sun Network
File System [61, supported across a distributed system. Any user file creation
or deletion requires interaction with the control point for the directory in which
that file resides. Such operations can occur at a very high rate [7].

" Increased user delays. The round trip time for messages communicating with
the control point can result in annoyingly slow response to user commands.
This is particularly a problem when low speed links are involved such as
modems over telephone lines or when the network is so large and complex
that the path between the user and control point involves many intermediate %
machines.

" Lock out When none of the network paths between the user of an object and
the control point for that object are working, the user is completely locked out
until some path again becomes available.

In one way or another all the previously discussed evolution schemes required a
control point. A goal of the approach proposed below is to eliminate the need for
control points.

A second motivation is the advantages of immutable objects in a distributed sys-
tern. An immutable object is simply one whose value cannot be changed. Immutable
objects are the obvious way to capture history. Most version management schemes
treat previous versions as immutable. In a distributed system, identical copies of
each immutable object can exist at different places within the system. This approach
can ideally be regarded as an implementation strategy where there is a single abstract
object with a replicated implementation. Any of the copies of the object can be used
by itself without reference to the other copies or a centralized control point. Network
traffic can be reduced by placing copies of immutable objects where they are likely
to be frequenly accessed. By having a copy close at hand, no network delays will

4
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occur during use. Finally, if a network should become partitioned by hardware fail-
ure, then users in each part can use the same immutable object providing each has a
copy. As long as all objects are immutable, no control points are needed. However,
if work is to progress, at least some change must take place. One approach would
be to structure a system as a mix of both mutable and immutable objects. Although
such an approach is a significant improvement over a system in which all objects can
be changed, control points are still needed. A second goal of the approach proposed
below is to gain the advantages of immutability while still permitting change so that
work can progress.

To understand how to minimize the need for control points, it is instructive to
consider how multiple users working on the same system interact when using a
programming environment that provides no synchronization for object modification.
Here, the users are forced to invent manual methods for synchronization. Other than
failures that occur when someone forgets the state of a manually set lock, such meth-
ods work well. An important distinguishing characteristic of these manual methods is
the frequency of the synchronization operations. While automated approaches often
operate with a frequency of many synchronization operations per second, manual
methods may have a frequency of only a few operations per day. While automated
systems often do some kind of synchronization at every change, manual synchroniza-
tion occurs only at relatively rare events such as when a software system is released.
By implementing analogues of these manual methods, control point interactions can

be decreased. A third goal of the approach discussed below is to support automated
methods that synchronize only at major events much like informal manual methods.

4 Incremental Mutability

Incremental muability is a new approach to evolution that eliminates control points,
offers many of the advantages of immutability, and more closely models informal
user interactions. In this approach, a class of objects intermediate between mutable
and immutable objects is introduced. For a mutable object any change is permitted,
while for an immutable object no changes are allowed. For an incrementally mutable
object, IMO, the only permitted modifications are those that add new information to
the object while preserving existing information.

Formally, we assume each IMO has a type and that each type defines a fixed
set of permitted operations. There are three kinds of operations: creoe operations
initially create an IMO, use operations return information from an object, change
operations change the value of the object. For specification purposes, use and change
operations take the IMO as their initial parameter. Create and change operations
return the IMO as a result. For change operations the initial parameter is the value
of the IMO before the change and the result is the value of that same IMO after the
change. Each of these kinds of operations can optionally have additional parameters.

Formally, IMO's have two defining properties:

* Monotoulcity. Invocations of a use operation are classified as either stable or

5I
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unstable. For specification purposes, a predicate stable can be applied to any
use operation invocation and return true if the result of that invocation will e
never change. Monotonicity requires that all uses of an object that are stable
remain stable and produce the same result after the object is changed. An
object is monotonic if:

For any value X, use operation U, and change operatio. C of the object.
and lists of values vI and v2

if stable(U(X, vl))
then stable(U(C(X, v2), vI)) A (U(X, vI) = U(C(X, v2), vl))

Commutativity. Invocations of a change operation are classified as either legal
or illegal. For specification purposes, a predicate legal can be applied to any
change operation invocation. When a change operation invocation is illegal
then an error condition occurs and the object is not changed. A sequence of
changes is legal if all changes in the sequence are legal. Commutativity re-
quires that for any two arbitrary legal sequences of changes that could be made
to an object, then applying all of the first followed by all of the second will be
legal and produce the same result as applying all of the second followed by all
of the first. An object is commutative if:

For any value of the object X and change operations C... C,,
where each C, can be any of the change operations of the object
and lists of values v, ... v,

LetQ 1 beAX.C 1(X,VI)

Let Q, be AX.C,(X, v,) ,

Let Sl be Q, o Q2 o ... o Q,,
Let S2 be Q., o Q,,+2 o ... o Q. /

Let S12 be SI o S2

Let S21 be S2oSI

if legal(Sl (X)) A legal(S2(X)) then
legal(SI2(X)) A legal(S2 1(X)) A

S12(X) = S21(X)

IMO's can be used to support re-creation in programming environments. Re-
creation is the ability to go back to an old version of a software product and repeat
all the steps that were involved in manufacturing it [8]. Manufacturing takes primi-
tives such as source modules and produces products such as executable programs by
performing a set of manufacturing steps. All inputs to each manufacturing step, in-
cluding the program used to perform the step, either must be a primitive or the result
of some previous step. The partially ordered set of manufacturing steps is captured
by a derivation graph. Re-creation of a product is possible if all primitive objects
and the object that holds the derivation graph are either immutable or incrementally

6
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mutable and if all operations on those objects used during manufacturing are stable.
IMO's have an attractive implementation in a distributed network. First, like

immutable objects, multiple copies of an IMO can be placed at different points within
the network. When an IMO is changed, the local copy of that object is changed
immediately and messages requesting the change are sent to all remote copies. The
local user need not wait for those messages to arrive before proceeding to further
use and modify the IMO. This implementation allows progress to be made even in
the presence of long network delays and failures of network links. If a network
becomes partitioned then any user who has access to any copy of a given IMO can
use and change it. Any messages being sent to a place to which all network links
are currently down are queued until some connection is again available. If an IMO
is not changed again until all messages are received and processed, all copies of an
IMO will converge to the same value.

The operations that change an IMO can be considered to be events. On a network
basis, events are only partially ordered. At any gi,-e place within the network, events
will be seen as totally ordered in a way that is compatible with the partial order. The
total order seen at different places will, in general, be different. Another way of
viewing the partial order of events is to consider time to be relativistic [9]. In
relativistic time, there is no system-wide absolute clock. Each machine within the
network is assumed to have its own clock that progresses at its own rate. Control
points can be thought of as a way of establishing a system wide total ordering of
events. IMO's permit events to occur in different orders on different nodes, thus
eliminating the need for control points.

5 Example 1: Set
In this section a simple example of an IMO type is presented, the set type. Set objects
can be used in a programming environment for several purposes:

" Bug Report Set. Here each element is a string that describes some bug found
in a particular source module.

" Distribution List. Here the set elements represent people who have been sent
a copy of some document.

" Property Set. Here the elements are references to other objects. A property
set object contains references to immutable objects that all satisfy some specific
property. 4

IMO sets are formally described below by specifying a type for internal state
and a set of operations. For each operation, algebraic rules give the semantics of
the operation. Rules are also included to specify when use operations are siable and
when change operations are legal.

4The nAmidwlory sas discussed in i1O cmld be implentWd using prirty sets.

7
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• Type.

IMO sets can have elements of any type T.

set of T

9 Create Operation: create set of T.
The create operation creates an empty set.
Form:

createset ofTO =s set of T

Rules:

create-setoTO = 0

e Use Operation:is member.
This operation tests for set membership. Since members cannot be removed,
ismember is stable when its result is true. Since members can later be added,
is-member is unstable when its result is false.
Form:

ismember(s:set of Te:T) = boolean

Rules:

ismember(s,e) = e E s
stable(is member(s,e)) = ismember(s,e)

Change Operations: insert.
This operation adds a new member to the set if it was not already present.
Form:

insert(s:set of T,e:T) = set of T

Rules:

insert(s,e) = s U { e }
legal(insert(se)) - true

6 Example 2: Version Graphs

Mutable objects can be modeled by a set of immutable objects that represent each
value of the object over time and an IMO relation object that relates each immutable
object to its successor. This IMO relation is, in effect, an encoding of a version graph.
Multiple successors can be used to represent parallel changes. Multiple predecessors
can be used to represent merged development paths.

The type and operations for version IMO's are given below.

* Type. Version graphs are encoded by specifying the initial version and the links
between versions. Specific versions are represented by separate immutable ob-
jects. Each of these objects will have a unique identifier, UID, that distinguishs

8 J



it from all other objects. The UID's are then used in version graph objects to f

serve as object references. %

vgraph=record(initial:UID,next:set of record{old:UIDnew:UID) }

Create Operation: create vgraph.
This operation creates a vgraph object initialized to have only a single initial
version.
Form:

create_vgraph(init:)ID) * vgraph

Rules:
createygraph(init).initial = init %
create_vgraph(init).next =*

* Use Operation: initial.
This operation returns the initial version.
Form: &

initial(d:vgraph) = UID

Rules:
initial(d) = d.inifial
stable(initial(d)) = true

* Use Operation: invgraph. C.
This operation returns true if some specified version is in a vgraph. Like the
set is-member operation, it is stable when its result is true.
Form:

invgraph(d:vgraph,x:UID) =* boolean

Rules:

invgraph(dx)) = (x = d.initial) v (3 y, <y,x> E d.next)
stable(irvgraph(d,x)) = invgraph(d,x)

* Use Operation: predecessors.
This operation returns all the predecessors of a given version. The add oper- $,

ation defined below guarantees that all predecessors of a version are specified
at the time the version is entered into the vgraph and that no predecessors can
later be added. ,.
Form:

prdecessors(d:vgraphx:UID) =* set of UID

Rules:

predecessors(dx) = (y I <y.x> E d.next)
stable(predecessors(d~x)) = in.vgraph(dx)

9 J
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"Use Operation: successors
This operation returns all the successors of a given version. Since successors
cant always be later added, this operation is unstable.
Form:

successors(d:vgraphx:UID) =P set of UID

Rules:
successors(d~x) - (y I <x~y> E d.next) -

stable(successors(d.x)) - false

" Change Operation: add.
This operation adds a new version to a vgraph. All predecessors are specified
and must already be in the vgraph. A value for the new version is passed to p

the add operation which returns the UID of a new object with that value. The
add operation must have two results, the new vgraph and the UID of the new P

object. This is achieved by returning a record with two components, one for
each result.
Form:

add(d:vgrzph,old:set of UIDv:value) --s 1ecord~d-.vgraphnew:UlD)

Rules:
add(d,old,v) = <<d.initial.d.next u {conew> I o E old )>.new>

where new is the UID of a new object created by add
whose value is v

Iegal(add(d,oldyv)) = (V o r= old, in~vgraph(do)) A old 910

7 Conclusions

Current methods for providing evolution of data in a programming environment were
shown to have disadvantages when the environment runs on a distributed system.
A new approach, incremental mutability, provides evolution but has none of these
disadvantages.
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