
Technical Report

CMU/SEI-87-TR-027
ESD-TR-87-190

Ada Performance Benchmarks on
the MicroVAX II:
Summary and Results
Version 1.0

Patrick Donohoe
December 1987

Ada Performance Benchmarks on the
MicroVAX II:

Summary and Results
Version 1.0

��

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Technical Report
CMU/SEI-87-TR-27

ESD-TR-87-190
December 1987

Patrick Donohoe
Ada Embedded Systems Testbed Project

This report was prepared for the SEI Joint Program Office HQ ESC/AXS

5 Eglin Street

Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is
published in the interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright 1987 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document
for internal use is granted, provided the copyright and \‘No Warranty\’ statements are in-
cluded with all reproductions and derivative works. Requests for permission to reproduce
this document or to prepare derivative works of this document for external and commercial
use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN \‘AS-IS\’ BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PUR-
POSE OR acMERCHANTIBILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE
OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WAR-
RANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,
OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number
F19628-95-C-0003 with Carnegie Mellon University for the operation of the Software En-
gineering Institute, a federally funded research and development center. The Government of
the United States has a royalty-free government-purpose license to use, duplicate, or dis-
close the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA

CMU/SEI-87-TR-27 1

15212. Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a World Wide
Web home page. The URL is http://www.rai.com

Copies of this document are available through the National Technical Information Service
(NTIS). For information on ordering, please contact NTIS directly: National Technical Infor-
mation Service, U.S. Department of Commerce, Springfield, VA 22161. Phone: (703)
487-4600.

This document is also available through the Defense Technical Information Center (DTIC).
DTIC provides acess to and transfer of scientific and technical information for DoD person-
nel, DoD contractors and potential con tractors, and other U.S. Government agency person-
nel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical
Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145. Phone:
(703) 274-7633.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the
trademark holder.

CMU/SEI-87-TR-27 1

Ada Performance Benchmarks on the
MicroVAX II: Summary and Results
Version 1.0

Abstract: This report documents the results obtained from running the University
of Michigan and the ACM SIGAda Performance Issues Working Group (PIWG)
Ada performance benchmarks on a DEC VAXELN MicroVAX II using the DEC
VAXELN Ada compiler. A brief description of the benchmarks and the test en-
vironment is followed by a discussion of some problems encountered and lessons
learned. The output of each benchmark program is also included.

1. Summary

The primary purpose of the Ada Embedded Systems Testbed (AEST) Project at the
Software Engineering Institute (SEI) is to develop a solid in-house support base of
hardware, software, and personnel to permit the investigation of a wide variety of issues
related to software development for real-time embedded systems. Two of the most crucial
issues to be investigated are the extent and quality of the facilities provided by Ada runtime
support environments. The SEI support base will make assessments possible of the readi-
ness of the Ada language and Ada tools to develop embedded systems.

The benchmarking/instrumentation subgroup was formed to:

• Collect and run available Ada benchmark programs from a variety of sources
on a variety of targets.

• Identify gaps in the coverage and fill them with new test programs.

• Review the measurement techniques used and provide new ones if necessary.

• Verify software timings by inspection and with specialized test instruments.

This report documents the results obtained from running Ada performance benchmarks on a
DEC VAXELN MicroVAX II using the DEC VAXELN Ada compiler. The benchmarks were
the University of Michigan Ada benchmarks and the ACM SIGAda Performance Issues
Working Group (PIWG) Ada benchmarks (excluding the compilation tests). A description of
these suites and the reasons for choosing them are given in [9]. The benchmarks focus
largely on the execution time of specific features of the Ada language; they do not, for ex-
ample, measure the efficiency or the size of the generated object code. A brief description
of the benchmarks and the test environment is followed by a discussion of some problems
encountered and lessons learned. The results obtained from running the entire Michigan
and PIWG benchmark suites are contained in the appendices to this report. Note that the

2 CMU/SEI-87-TR-27

caveats discussed in the body of the report must be borne in mind when examining these
results.

2. Discussion

2.1. The University of Michigan Ada Benchmarks
The University of Michigan benchmarks concentrate on techniques for measuring the perfor-
mance of individual features of the Ada programming language. The development of the
real-time performance measurement techniques and the interpretation of the benchmark
results are based on the Ada notion of time. An article by the Michigan team [4] begins by
reviewing the Ada concept of time and the measurement techniques used in the
benchmarks. The specific features measured are then discussed, followed by a summary of
the results obtained and an appraisal of these results. A follow-up letter about the Michigan
benchmarks appears in [3].

2.2. The Performance Issues Working Group (PIWG) Ada Benchmarks
The PIWG benchmarks comprise many different Ada performance tests that were either col-
lected or developed by PIWG under the auspices of the ACM Special Interest Group on Ada
(SIGAda). In addition to language feature tests similar to the Michigan benchmarks, the
PIWG suite contains composite synthetic benchmarks such as Whetstone [5], [10];
Dhrystone [11]; and a number of tests to measure speed of compilation. PIWG distributes
tapes of the benchmarks to interested parties and collects and publishes the results in a
newsletter. Workshops and meetings are held during the year to discuss new benchmarks
and suggestions for improvements to existing benchmarks.1

2.3. Testbed Hardware and Software
The hardware used for benchmarking was a DEC MicroVAX II host, running MicroVMS 4.4,
linked to a MicroVAX II target. The target had five megabytes of RAM, a dual floppy disk
drive, and was linked to the host via DECnet. Programs on the target machine ran under
control of the VAXELN kernel, an executive providing job and process scheduling on a
prioritized pre-emptive basis [6], [7]. The hardware and software can be summarized as fol-
lows:

Host: DEC MicroVAX II, running MicroVMS 4.4

Compiler: DEC VAXELN Ada, release 1.1 (DEC VAX Ada 1.3), ACVC 1.7

Target: DEC MicroVAX II with VAXELN 2.3, 5Mb RAM

1The benchmarks came from the PIWG distribution tape known as TAPE_8_31_86. The name, address, and
telephone number of the current chairperson of the PIWG can be found in Ada Letters, a bimonthly publication of
SIGAda, the ACM Special Interest Group on Ada.

CMU/SEI-87-TR-27 3

The complete VAXELN tool kit is a software product for the development of real-time sys-
tems for VAX processors. It provides most of the standard VAX/VMS development tools,
such as the VAX Ada Compilation System (ACS), and includes a VAXELN Ada runtime
library and a VAXELN remote debugger. The remote debugger can be used to download
and activate programs on the target, whether or not they have been compiled with the
debugger option. The VAXELN Ada compiler [8] is substantially identical to the VAX Ada
compiler, with the exception of some pragmas (e.g., VAXELN Ada does not support the
TIME_SLICE pragma) and VAXELN Ada’s lack of relative and indexed file support. The
host-based development tools are used to create an application program and build a
VAXELN executable target system that can be booted on the target machine from a floppy
disk or tape, or downloaded to the target via DECnet.

2.4. Running the Benchmarks
Both the Michigan and PIWG benchmark suites contained command files for compiling and
running the tests under VAX/VMS. The Michigan benchmarks had a command file for each
category of tests (e.g., one for rendezvous tests, one for exception handling tests), whereas
the PIWG suite had a single command file that could be adapted to run any test. The
Michigan command files were run through a "pre-processor" command file that produced an
expanded command file capable of building and downloading a VAXELN executable sys-
tem. The benchmark output, which normally would have appeared on the target machine’s
console, was re-routed to a file on the host. It was also possible to create a bootable floppy
disk; as a test, several executable VAXELN images were created as both a bootable floppy
disk and a file to be downloaded from the host. Virtually no variation in the results produced
by either method was observed, so the downloadable file became the preferred method
since it could be fully controlled from the host.

All benchmarks were compiled with VAXELN Ada’s default optimizations turned on.2 The
benchmarks contained code to prevent the language feature of interest from being op-
timized away. Runtime checks were not suppressed, and, apart from the Michigan
exception-handling problem noted below, the benchmarks’ source code was not modified in
any way. Benchmark results are listed in the appendices.

2.5. Problems Encountered and Lessons Learned
A number of minor problems were encountered during the running of the benchmarks; these
are noted below in the appropriate results section. The one major problem that arose only
appeared after most of the Michigan tests had been run: negative time values were
produced for some of the tests (Dynamic Storage Allocation and Subprogram Overhead
tests). An investigation revealed that the VAXELN paging mechanism lengthened the ex-

2The compiler performs a number of standard optimizations, including: elimination of common sub-
expressions; removal of invariant computations from loops; in-line code expansion; global assignment of vari-
ables to registers; peephole optimization of instruction sequences; and elimination of dead code. If these
optimizations are not desired, the user must explicitly disable them by invoking an option with the compile
command.

4 CMU/SEI-87-TR-27

ecution times of loops that spanned a page boundary. (Physical memory on the VAXELN
target is divided into 512-byte pages; however, no swapping to disk took place since disk
support was not included. The benchmarks were entirely resident in memory.) Thus the
control loop of some benchmarks would actually take longer to run than the test loop, and
the execution time of the language feature being measured (expressed as the difference of
the test and control times) would sometimes be negative. A more detailed discussion of the
so-called "dual loop problem" can be found in [1]. A complete report on the problems en-
countered during the AEST benchmarking effort, and a discussion of other possible
benchmarking pitfalls, is contained in [2].

Another interesting issue is the accuracy of times reported by the PIWG benchmarks. One
of the PIWG benchmark support packages, A000032.ADA, contains the body of the ITERA-
TION package. This package is called by a benchmark program to calculate, among other
things, the minimum duration for the test loop of a benchmark run. The minimum duration is
computed to be the larger of 1 second, 100 times System.Tick, and 100 times
Standard.Duration’Small. The idea appears to be (a) to run the benchmark for enough
iterations to overcome the problem of the relatively coarse resolution of the Calendar.Clock
function, and (b) to provide a relative accuracy of one percent or better. The times reported
by the benchmark programs are printed with an accuracy of one tenth of a microsecond;
however, merely running the test for a specific minimum duration does not guarantee this
degree of accuracy. If the clock resolution is 10 milliseconds, for example, and the desired
accuracy is to within 1 microsecond, then the test should be run for 10,000 iterations. For
Ada language features that execute in tens of microseconds, running for a specific duration
may ensure enough iterations for accuracy to within one microsecond; this is not so for lan-
guage features that take longer.

In general, the accuracy of the PIWG and Michigan benchmarks is to within one tick of
Calendar.Clock divided by the number of iterations of the benchmark (see the Basic
Measurement Accuracy section of the University of Michigan report). The University of
Michigan benchmarks typically run for 10,000 iterations, and so are accurate to within 1
microsecond for VAXELN Ada (10 millisecond Calendar.Clock resolution). The task crea-
tion tests and some of the dynamic storage allocation tests run for fewer iterations, probably
because of the amount of storage they use up; the reduced accuracy is noted in the ap-
propriate sections. Also, the source of the exception-handling tests had to be modified to
reduce the number of iterations so that the test would actually run. For the PIWG tests, a
table of iteration counts and resultant accuracy is provided in the PIWG results appendix.

Comparison of the results from the most closely equivalent PIWG and Michigan benchmarks
has been hindered by the accuracy problem and the dual loop problem. Even when the
correction factors are applied to take care of the former, the precise effects of the dual loop
problem on each benchmark program are not known. It is clear that more work needs to be
done to resolve such problems.

The VAXELN benchmarking effort was essentially a learning experience. The major les-
sons learned were:

CMU/SEI-87-TR-27 5

• It is very important to check the underlying assumptions incorporated in the
benchmark design before attempting to use the benchmark. A simple example
of such a check is a "calibration" routine to check whether or not a dual loop
test with textually identical loops will zero out.

• Even when few or no problems are encountered during the running of the
benchmarks, the results should be checked for reasonableness, especially if
the times reported are different from heuristically calculated figures.

• Inspection of generated assembly code (however distasteful this might be to an
Ada aficionado) can turn up clues to puzzling results. Once problems start oc-
curring, knowledge of the machine’s instruction set architecture and underlying
hardware can prove very useful.

The major result of the VAXELN MicroVAX benchmarking effort, therefore, is not a list of
numbers to be taken at face value; rather, it is an appreciation of the problems and pitfalls
facing the would-be benchmarker. Analysis of the results from the VAXELN and other
cross-compilers and target systems, as well as analysis of the benchmarks themselves, will
be one of the main items of business in the AEST Project’s second year.

6 CMU/SEI-87-TR-27

CMU/SEI-87-TR-27 7

References

[1] Altman, N. A., and Weiderman, N. H.
Timing Variation in Dual Loop Benchmarks.
Technical Report SEI-87-TR-21, Software Engineering Institute, September, 1987.

[2] Altman, N. A.
Factors Causing Unexpected Variations in Ada Benchmarks.
Technical Report SEI-87-TR-22, Software Engineering Institute, September, 1987.

[3] Broido, Michael D.
Response to Clapp et al: Toward Real-Time Performance Benchmarks for Ada.
Communications of the ACM 30(2):169-171, February, 1987.

[4] Clapp, Russell M., et al.
Toward Real-Time Performance Benchmarks for Ada.
Communications of the ACM 29(8):760-778, August, 1986.

[5] Curnow, H. J., and Wichmann, B. A.
A Synthetic Benchmark.
The Computer Journal 19(1):43-49, February, 1976.

[6] VAXELN User’s Guide.
Digital Equipment Corp., 1985.

[7] VAXELN Release Notes.
Digital Equipment Corp., 1986.

[8] VAXELN Ada User’s Manual.
Digital Equipment Corp., 1986.

[9] Donohoe, P.
A Survey of Real-Time Performance Benchmarks for the Ada Programming

Language.
Technical Report SEI-87-TR-28, Software Engineering Institute, December, 1987.

[10] Harbaugh, S., and Forakis, J.
Timing Studies Using a Synthetic Whetstone Benchmark.
Ada Letters 4(2):23-34, 1984.

[11] Weicker, Reinhold P.
Dhrystone: A Synthetic Systems Programming Benchmark.
Communications of the ACM 27(10):1013-1030, October, 1984.

8 CMU/SEI-87-TR-27

CMU/SEI-87-TR-27 9

Appendix A: Results: University of Michigan
Benchmarks

In the results presented below, certain lines of output have been omitted for the sake of
brevity. Many of the Michigan tests print out lines of "raw data," and the command files
sometimes run a particular test many times; these are the lines that have been omitted.
Also, some of the headings have been split over two lines to make them fit this document.

A.a. Clock Calibration and Overhead

One of the Michigan "tests" merely prints the values of System.Tick and
Standard.Duration’Small. For VAXELN Ada these are:

System Tick= 0.009948730468750 seconds
Duration Small= 0.000061035156250 seconds

Thus System.Tick is approximately 10 milliseconds, and Duration’Small is approximately
61 microseconds. The clock calibration test determines the resolution of the
Calendar.Clock function. As can be seen from the data below, the resolution is 10 mil-
liseconds, the value of System.Tick.

Output of second differencing is as follows:
Number zeros previous: 94
Time difference (in seconds): 0.009948730468750
Number zeros previous: 0
Time difference (in seconds): -0.009948730468750
Number zeros previous: 112
Time difference (in seconds): 0.009948730468750

. .

. .

. .

Number zeros previous: 112
Time difference (in seconds): 0.009948730468750
Number zeros previous: 0
Time difference (in seconds): -0.009948730468750
Number of iterations = 10000

It should be noted that the negative times above are a legitimate result of the test and have
nothing to do with the dual loop problem discussed earlier.

The test to measure the overhead associated with calling Calendar.Clock produced consis-
tently repeatable results, so only one line of output is shown:

Clock function calling overhead : 84.00 microseconds

10 CMU/SEI-87-TR-27

A.b. Task Rendezvous

For this test, a procedure calls the single entry point of a task; no parameters are passed,
and the called task executes a simple accept statement. According to the Michigan report,
it is assumed that such a rendezvous will involve at least two context switches.

Rendezvous time : No parameters passed
Number of iterations = 10000

Task rendezvous time : 1585.0 microseconds

A.c. Task Creation

These tests measure the composite time taken to elaborate a task’s specification, activate
the task, and terminate the task. The coarse resolution of the clocks available at the time
the tests were developed did not allow for measurement of the individual components of the
test. Also, because these tests are run for 100 iterations, the reported times are accurate to
100 microseconds, or 0.1 milliseconds.

To obtain the third test result below, the VAXELN pool size (which determines the number of
VAXELN objects that can be in simultaneous use) had to be increased from the default of
384 blocks to 1024 blocks (a block is 512 bytes).

Task elaborate, activate, and terminate time:
Declared object, no type
Number of iterations = 100

Task elaborate, activate, terminate time: 9.7 milliseconds

Task elaborate, activate, and terminate time:
Declared object, task type
Number of Iterations = 100

Task elaborate, activate, terminate time: 9.5 milliseconds

Task elaborate, activate, and terminate time:
NEW object, task type
Number of iterations = 100

Task elaborate, activate, terminate time: 8.9 milliseconds

CMU/SEI-87-TR-27 11

A.d. Exception Handling

The exception-handling benchmark kept crashing with a STORAGE_ERROR exception
despite many attempts to tailor the storage parameters of the VAXELN system build
process. Eventually it was made to run by reducing the number of iterations of the test from
1000 to 100. This was the only case where benchmark code had to be modified. A possible
reason for the problem (see the Memory Management section) is the lack of storage
reclamation (garbage collection) procedures; space used during exception-handling prob-
ably remains allocated after the exception-raising procedure exits. The reduced number of
iterations means that the times shown below are accurate only to within 100 microseconds.

Number of iterations = 100

Exception Handler Tests
=======================

Exception raised and handled in a block

0.0 uSEC. User defined, not raised
799.6 uSEC. User defined
999.8 uSEC. Constraint error, implicitly raised
999.8 uSEC. Constraint error, explicitly raised
499.9 uSEC. Numeric error, implicitly raised
999.8 uSEC. Numeric error, explicitly raised
999.8 uSEC. Tasking error, explicitly raised

Exception raised in a procedure and handled in the
calling unit

0.0 uSEC. User defined, not raised
900.3 uSEC. User defined

1000.4 uSEC. Constraint error, implicitly raised
1000.4 uSEC. Constraint error, explicitly raised
800.2 uSEC. Numeric error, implicitly raised

1000.4 uSEC. Numeric error, explicitly raised
1000.4 uSEC. Tasking error, explicitly raised

12 CMU/SEI-87-TR-27

A.e. Time and Duration Math

In the results below, the lines flagged with an asterisk are from tests that had to be run
individually to get them to work. When included in a command file that ran all of the tests
sequentially, these two tests would always cause VAXELN Ada to generate a runtime error
message saying that the "computed year is not in the range of subtype YEAR_NUMBER."

Number of Iterations = 10000

Time and Duration Math
======================

uSEC. Operation

90.00 Time := Var_time + var_duration
94.00 Time := Var_time + const_duration
89.00 Time := Var_duration + var_time
94.00 Time := Const_duration + var_time

* 93.00 Time := Var_time - var_duration
* 94.00 Time := Var_time - const_duration
103.00 Duration := Var_time - var_time
3.00 Duration := Var_duration + var_duration
3.00 Duration := Var_duration + const_duration
3.00 Duration := Const_duration + var_duration
4.00 Duration := Const_duration + const_duration
3.00 Duration := Var_duration - var_duration
4.00 Duration := Var_duration - const_duration
3.00 Duration := Const_duration - var_duration
3.00 Duration := Const_duration - const_duration

CMU/SEI-87-TR-27 13

A.f. Delay Statement Tests

For VAXELN Ada, System.Tick is 10 milliseconds and Standard.Duration’Small is 61
microseconds. In the results below, the desired delay times start at Duration’Small and
increment by Duration’Small. The actual delay time of 0.01996 seconds is twice
System.Tick; 0.02997 is three times System.Tick; and 0.03998 is four times System.Tick.
Thus the smallest delay that can be achieved by a delay statement in the VAXELN im-
plementation is approximately 20 milliseconds.

Number of iterations = 1

For case number 1
Desired delay time: 0.00006 seconds
Actual delay time: 0.01996 seconds

For case number 2
Desired delay time: 0.00012 seconds
Actual delay time: 0.01996 seconds

. .

. .

. .

For case number 164
Desired delay time: 0.01001 seconds
Actual delay time: 0.01996 seconds

For case number 165
Desired delay time: 0.01007 seconds
Actual delay time: 0.02997 seconds

. .

. .

. .

For case number 328
Desired delay time: 0.02002 seconds
Actual delay time: 0.02997 seconds

For case number 329
Desired delay time: 0.02008 seconds
Actual delay time: 0.03998 seconds

. .

. .

. .

For case number 350
Desired delay time: 0.02136 seconds
Actual delay time: 0.03998 seconds

14 CMU/SEI-87-TR-27

A.g. Dynamic Storage Allocation

There are three categories of allocation measured by these tests:

1. Fixed Storage Allocation: The objects are declared locally in a subprogram or
declare block; the storage required is known at compile time but is allocated
at run time.

2. Variable Storage Allocation: Same as for fixed allocation, but the storage re-
quired (e.g., in the case of an array with variable bounds) is not known at com-
pile time.

3. Explicit Dynamic Allocation: Storage is allocated via the new allocator.

These tests were the first to exhibit symptoms of the "dual loop" problem (negative times)
referred to earlier in this report.

Number of iterations = 10000

Dynamic Allocation in a Declarative Region
__

Time | # Declared | Type | Size of
(microsec.)| | Declared | Object
__

-5.0 | 1 |Integer |
-1.0 | 10 |Integer |
-16.0 | 100 |Integer |
-3.0 | 1 |String | 1
-3.0 | 1 |String | 10
-3.0 | 1 |String | 100
-1.0 | 1 |Enumeration |
-2.0 | 10 |Enumeration |
-26.0 | 100 |Enumeration |
-4.0 | 1 |Integer array | 1
-4.0 | 1 |Integer array | 10
-1.0 | 1 |Integer array | 100
-2.0 | 1 |Integer array | 1000
13.0 | 1 |1-D Dynamically bounded array | 1
22.0 | 1 |1-D Dynamically bounded array | 10
19.0 | 1 |2-D Dynamically bounded array | 1
25.0 | 1 |2-D Dynamically bounded array | 100
42.0 | 1 |3-D Dynamically bounded array | 1
41.0 | 1 |3-D Dynamically bounded array | 1000
-5.0 | 1 |Record of integer | 1
-4.0 | 1 |Record of integer | 10
-1.0 | 1 |Record of integer | 100

CMU/SEI-87-TR-27 15

Because these tests only iterate 1000 times, the reported times are accurate to within 10
microseconds, rather than 1 microsecond.

Number of iterations = 1000

Dynamic Allocation with NEW allocator

Time | # Declared | Type | Size of |
(microsec.)| | Declared | Object |

280.0 | 1 |Integer | 1 |
280.0 | 1 |Enumeration | 1 |
280.0 | 1 |Record of integer | 1 |
290.0 | 1 |Record of integer | 10 |
280.0 | 1 |Record of integer | 100 |
280.0 | 1 |Record of integer | 20 |
290.0 | 1 |Record of integer | 5 |
290.0 | 1 |Record of integer | 50 |
290.0 | 1 |Integer array | 1 |
290.0 | 1 |Integer array | 10 |

290.0 | 1 |Integer array | 100 |
290.0 | 1 |Integer array | 1000 |
290.0 | 1 |String | 1 |
290.0 | 1 |String | 10 |
300.0 | 1 |String | 100 |
310.0 | 1 |1-D Dynamically bounded array | 1 |
310.0 | 1 |1-D Dynamically bounded array | 10 |
340.0 | 1 |2-D Dynamically bounded array | 1 |
340.0 | 1 |2-D Dynamically bounded array | 100 |
390.0 | 1 |3-D Dynamically bounded array | 1 |
390.0 | 1 |3-D Dynamically bounded array | 1000 |

16 CMU/SEI-87-TR-27

A.h. Subprogram Overhead

Several kinds of subprogram overhead benchmarks are provided. They measure the over-
head involved in entering and exiting a subprogram with no parameters, with various num-
bers of scalar parameters, and with various numbers of composite objects (arrays and
records) as parameters. Tests are also provided to measure the overhead associated with
passing constraint information to subprograms whose formal parameters are of an uncon-
strained composite type. All of the tests include passing parameters in all three modes: in,
out, and in out.

All of the tests also measure the difference in overhead between calling subprograms in
different packages and calling subprograms in the same package. For intra-package calls,
there are also versions of the tests to measure the overhead of using the INLINE pragma, if
the pragma is supported.3 Finally, all the tests for inter- and intra-package calls are
repeated with the subprograms appearing as part of a generic. These tests determine the
overhead associated with executing generic instantiations of the code.

The subprogram overhead tests were the second major source of negative time values.
The negative numbers for these tests were generally a lot smaller than those produced by
the dynamic storage allocation tests.

Subprogram Overhead (non-generic)

Number of iterations = 10000 * 10

Time |Direction|# Passed| Type | Size of |
(microsec.)| Passed |in Call | Passed |Passed Var|

0.8		0		
0.2	I	1	INTEGER	
0.0	O	1	INTEGER	
0.7	I_O	1	INTEGER	
-0.1	I	10	INTEGER	
0.1	O	10	INTEGER	
13.2	I_O	10	INTEGER	
134.6	I	100	INTEGER	
197.4	O	100	INTEGER	
303.6	I_O	100	INTEGER	

continued ...

3VAXELN Ada supports the INLINE pragma.

CMU/SEI-87-TR-27 17

-0.2	I	1	ENUMERATION	
0.0	O	1	ENUMERATION	
0.6	I_O	1	ENUMERATION	
0.4	I	10	ENUMERATION	
-1.4	O	10	ENUMERATION	
2.0	I_O	10	ENUMERATION	
135.3	I	100	ENUMERATION	
188.8	O	100	ENUMERATION	
294.5	I_O	100	ENUMERATION	
1.7	I	1	ARRAY of INTEGER	1
-1.8	O	1	ARRAY of INTEGER	1
-0.1	I_O	1	ARRAY of INTEGER	1
0.1	I	1	ARRAY of INTEGER	10
0.0	O	1	ARRAY of INTEGER	10
0.8	I_O	1	ARRAY of INTEGER	10
-1.2	I	1	ARRAY of INTEGER	100
0.0	O	1	ARRAY of INTEGER	100
0.4	I_O	1	ARRAY of INTEGER	100
0.2	I	1	RECORD of INTEGER	1
0.1	O	1	RECORD of INTEGER	1
0.2	I_O	1	RECORD of INTEGER	1
-0.4	I	1	RECORD of INTEGER	100
0.5	O	1	RECORD of INTEGER	100
2.8	I_O	1	RECORD of INTEGER	100
-0.2	I	1	UNCONSTRAINED ARRAY	1
-0.2	O	1	UNCONSTRAINED ARRAY	1
1.5	I_O	1	UNCONSTRAINED ARRAY	1
-0.3	I	1	UNCONSTRAINED ARRAY	100
-0.3	O	1	UNCONSTRAINED ARRAY	100
0.1	I_O	1	UNCONSTRAINED ARRAY	100
-1.2	I	1	UNCONSTRAINED RECORD	1
0.2	O	1	UNCONSTRAINED RECORD	1
0.1	I_O	1	UNCONSTRAINED RECORD	1
0.1	I	1	UNCONSTRAINED RECORD	100
-0.4	O	1	UNCONSTRAINED RECORD	100
0.1	I_O	1	UNCONSTRAINED RECORD	100

18 CMU/SEI-87-TR-27

Subprogram Overhead (inline)

Number of iterations = 10000 * 10

Time |Direction|# Passed| Type | Size of |
(microsec.)| Passed |in Call | Passed |Passed Var|

0.9		0		
0.3	I	1	INTEGER	
-0.1	O	1	INTEGER	
0.7	I_O	1	INTEGER	
0.1	I	10	INTEGER	
-0.2	O	10	INTEGER	
13.2	I_O	10	INTEGER	
134.5	I	100	INTEGER	
197.5	O	100	INTEGER	
303.9	I_O	100	INTEGER	
-0.2	I	1	ENUMERATION	
-0.1	O	1	ENUMERATION	
0.7	I_O	1	ENUMERATION	
0.2	I	10	ENUMERATION	
-1.5	O	10	ENUMERATION	
2.1	I_O	10	ENUMERATION	
135.2	I	100	ENUMERATION	
188.6	O	100	ENUMERATION	
294.2	I_O	100	ENUMERATION	
1.7	I	1	ARRAY of INTEGER	1
-1.9	O	1	ARRAY of INTEGER	1
-0.1	I_O	1	ARRAY of INTEGER	1
0.0	I	1	ARRAY of INTEGER	10
-0.4	O	1	ARRAY of INTEGER	10
0.9	I_O	1	ARRAY of INTEGER	10
-1.4	I	1	ARRAY of INTEGER	100
-0.2	O	1	ARRAY of INTEGER	100
0.4	I_O	1	ARRAY of INTEGER	100
0.0	I	1	RECORD of INTEGER	1
0.1	O	1	RECORD of INTEGER	1
0.1	I_O	1	RECORD of INTEGER	1
-0.6	I	1	RECORD of INTEGER	100
0.6	O	1	RECORD of INTEGER	100
2.9	I_O	1	RECORD of INTEGER	100

...continued

CMU/SEI-87-TR-27 19

0.1	I	1	UNCONSTRAINED ARRAY	1
-0.2	O	1	UNCONSTRAINED ARRAY	1
1.5	I_O	1	UNCONSTRAINED ARRAY	1
-0.5	I	1	UNCONSTRAINED ARRAY	100
-0.4	O	1	UNCONSTRAINED ARRAY	100
0.0	I_O	1	UNCONSTRAINED ARRAY	100
-1.4	I	1	UNCONSTRAINED RECORD	1
0.3	O	1	UNCONSTRAINED RECORD	1
0.0	I_O	1	UNCONSTRAINED RECORD	1
-0.2	I	1	UNCONSTRAINED RECORD	100
-0.6	O	1	UNCONSTRAINED RECORD	100
-0.1	I_O	1	UNCONSTRAINED RECORD	100

20 CMU/SEI-87-TR-27

Subprogram Overhead (non-generic, cross package)

Number of iterations = 10000 * 10

Time |Direction|# Passed| Type | Size of |
(microsec.)| Passed |in Call | Passed |Passed Var|

39.4		0		
42.8	I	1	INTEGER	
45.8	O	1	INTEGER	
41.1	I_O	1	INTEGER	
43.4	I	10	INTEGER	
73.2	O	10	INTEGER	
108.7	I_O	10	INTEGER	
285.1	I	100	INTEGER	
472.0	O	100	INTEGER	
866.4	I_O	100	INTEGER	
42.2	I	1	ENUMERATION	
45.7	O	1	ENUMERATION	
41.1	I_O	1	ENUMERATION	
43.9	I	10	ENUMERATION	
72.0	O	10	ENUMERATION	
107.7	I_O	10	ENUMERATION	
271.4	I	100	ENUMERATION	
463.1	O	100	ENUMERATION	
847.9	I_O	100	ENUMERATION	
42.8	I	1	ARRAY of INTEGER	1
42.7	O	1	ARRAY of INTEGER	1
39.1	I_O	1	ARRAY of INTEGER	1
44.1	I	1	ARRAY of INTEGER	10
42.4	O	1	ARRAY of INTEGER	10
37.9	I_O	1	ARRAY of INTEGER	10
55.7	I	1	ARRAY of INTEGER	100
56.7	O	1	ARRAY of INTEGER	100
51.2	I_O	1	ARRAY of INTEGER	100
43.6	I	1	RECORD of INTEGER	1
42.9	O	1	RECORD of INTEGER	1
38.8	I_O	1	RECORD of INTEGER	1
56.2	I	1	RECORD of INTEGER	100
55.6	O	1	RECORD of INTEGER	100
52.1	I_O	1	RECORD of INTEGER	100

...continued

CMU/SEI-87-TR-27 21

54.3	I	1	UNCONSTRAINED ARRAY	1
58.9	O	1	UNCONSTRAINED ARRAY	1
49.8	I_O	1	UNCONSTRAINED ARRAY	1
67.5	I	1	UNCONSTRAINED ARRAY	100
71.8	O	1	UNCONSTRAINED ARRAY	100
62.5	I_O	1	UNCONSTRAINED ARRAY	100
42.6	I	1	UNCONSTRAINED RECORD	1
43.9	O	1	UNCONSTRAINED RECORD	1
38.8	I_O	1	UNCONSTRAINED RECORD	1
55.3	I	1	UNCONSTRAINED RECORD	100
56.1	O	1	UNCONSTRAINED RECORD	100
52.1	I_O	1	UNCONSTRAINED RECORD	100

22 CMU/SEI-87-TR-27

Subprogram Overhead (generic)

Number of iterations = 10000 * 10

Time |Direction|# Passed| Type | Size of |
(microsec.)| Passed |in Call | Passed |Passed Var|

-0.3		0		
-5.3	I	1	INTEGER	
0.6	O	1	INTEGER	
0.5	I_O	1	INTEGER	
0.0	I	10	INTEGER	
0.1	O	10	INTEGER	
17.8	I_O	10	INTEGER	
112.9	I	100	INTEGER	
199.1	O	100	INTEGER	
304.4	I_O	100	INTEGER	
-4.9	I	1	ENUMERATION	
1.8	O	1	ENUMERATION	
-0.4	I_O	1	ENUMERATION	
-0.4	I	10	ENUMERATION	
-0.1	O	10	ENUMERATION	
10.1	I_O	10	ENUMERATION	
103.8	I	100	ENUMERATION	
191.7	O	100	ENUMERATION	
295.2	I_O	100	ENUMERATION	
-4.5	I	1	ARRAY of INTEGER	1
0.0	O	1	ARRAY of INTEGER	1
0.1	I_O	1	ARRAY of INTEGER	1
-2.9	I	1	ARRAY of INTEGER	10
0.1	O	1	ARRAY of INTEGER	10
0.8	I_O	1	ARRAY of INTEGER	10
-4.1	I	1	ARRAY of INTEGER	100
0.1	O	1	ARRAY of INTEGER	100
0.0	I_O	1	ARRAY of INTEGER	100
-4.4	I	1	RECORD of INTEGER	1
0.0	O	1	RECORD of INTEGER	1
0.0	I_O	1	RECORD of INTEGER	1
-3.9	I	1	RECORD of INTEGER	100
0.0	O	1	RECORD of INTEGER	100
0.0	I_O	1	RECORD of INTEGER	100

CMU/SEI-87-TR-27 23

Subprogram Overhead (generic, cross package)

Number of iterations = 10000 * 10

Time |Direction|# Passed| Type | Size of |
(microsec.)| Passed |in Call | Passed |Passed Var|

14.3		0		
15.1	I	1	INTEGER	
19.8	O	1	INTEGER	
24.6	I_O	1	INTEGER	
23.7	I	10	INTEGER	
51.6	O	10	INTEGER	
89.5	I_O	10	INTEGER	
277.4	I	100	INTEGER	
442.2	O	100	INTEGER	
831.5	I_O	100	INTEGER	
14.4	I	1	ENUMERATION	
19.1	O	1	ENUMERATION	
24.7	I_O	1	ENUMERATION	
25.8	I	10	ENUMERATION	
52.2	O	10	ENUMERATION	
89.3	I_O	10	ENUMERATION	
281.6	I	100	ENUMERATION	
422.5	O	100	ENUMERATION	
814.2	I_O	100	ENUMERATION	
14.4	I	1	ARRAY of INTEGER	1
15.5	O	1	ARRAY of INTEGER	1
19.4	I_O	1	ARRAY of INTEGER	1
20.7	I	1	ARRAY of INTEGER	10
25.3	O	1	ARRAY of INTEGER	10
22.4	I_O	1	ARRAY of INTEGER	10
21.9	I	1	ARRAY of INTEGER	100
25.0	O	1	ARRAY of INTEGER	100
23.8	I_O	1	ARRAY of INTEGER	100
16.1	I	1	RECORD of INTEGER	1
19.7	O	1	RECORD of INTEGER	1
19.6	I_O	1	RECORD of INTEGER	1
21.9	I	1	RECORD of INTEGER	100
24.1	O	1	RECORD of INTEGER	100
23.8	I_O	1	RECORD of INTEGER	100

24 CMU/SEI-87-TR-27

A.i. Memory Management

There are no timing results produced by these tests; they are used to determine whether or
not garbage collection takes place. They attempt to allocate up to ten million integers by
successively allocating 1000-integer arrays using the new allocator. Only the last test ex-
plicitly attempted to free any allocated storage (using UNCHECKED_DEALLOCATION).
The tests were designed either to report how much storage they allocated before the ex-
pected STORAGE_ERROR exception occurred, or a message saying they had succeeded.
Running the tests confirmed that garbage collection did not occur; reclamation of storage is
only done when explicitly requested. This may be the reason why the exception-handling
tests would not run until the number of iterations was reduced (see the Exception Handling
section).

An additional test included with the memory management tests uses a first differencing
scheme to determine the scheduling discipline of the target operating system. This test was
not run because it was already known that VAXELN is a pre-emptive priority-based system.

CMU/SEI-87-TR-27 25

Appendix B: Results: PIWG Benchmarks

All of the PIWG tests, with the exception of the Hennessy benchmark (see below), ran with-
out problems and without the need to tailor the VAXELN system-build process. The G tests
(Text_IO tests) and the Z tests (compilation tests) were not run. None of the PIWG tests
produced negative numbers.

The output of each PIWG benchmark program contains a terse description of the feature
being measured. For any further details, the user will have to inspect the benchmark code.
The reported "Wall Time" is based on calls to the Calendar.Clock function. The reported
"CPU-Time" is based on calls to the PIWG function CPU_TIME_CLOCK. This function is
intended to provide an interface to host-dependent CPU-time measurement functions on
multi-user systems where calls to Calendar.Clock might return misleading results. For the
VAXELN MicroVAX tests, the basic version of CPU_TIME_CLOCK, which simply calls
Calendar.Clock, was used.

Because of the issue of the accuracy of PIWG results (see Problems Encountered and Les-
sons Learned section), the table below is provided. Note that the actual iterations of the
benchmarks are 100 times greater than the reported iteration counts. The reported counts
are only for the main loop enclosing the control and test loops; these latter loops alway
iterate 100 times. The accuracy delta is computed by dividing the resolution of the
Calendar.Clock function (10 milliseconds) by the actual number of iterations.

Reported Actual Accuracy
Iteration Iterations Delta

Count in Microseconds
1 100 100.0
2 200 50.0
4 400 25.0
8 800 12.5

16 1600 6.25
32 3200 3.125
64 6400 1.5625

128 12800 0.781250
256 25600 0.390625

26 CMU/SEI-87-TR-27

B.a. Composite Benchmarks

B.0.0.1. The Dhrystone Benchmark
This is a version of the benchmark described in [11].

1.1710 is time in milliseconds for one Dhrystone

B.0.0.2. The Whetstone Benchmark
Two versions of the Whetstone benchmark [5] are provided. One uses the math library sup-
plied by the vendor (with FLOAT_MATH_LIB for the VAXELN Ada compiler); the other has
the math functions coded within the benchmark program so that the test can be run even
when a math library is not supplied. "KWIPS" means Kilo Whetstones Per Second.

ADA Whetstone benchmark
A000092 using manufacturer’s math routines

Average time per cycle : 808.32 milliseconds
Average Whetstone rating : 1237 KWIPS

ADA Whetstone benchmark
A000093 using standard internal math routines

Average time per cycle : 1046.63 milliseconds
Average Whetstone rating : 955 KWIPS

B.0.0.3. The Hennessy Benchmark
This is a collection of benchmarks that are relatively short in terms of program size and
execution time. Named after the person who gathered the tests, it includes such well-known
programming problems as the Eight Queens problem, the Tower of Hanoi, Quicksort, Bub-
ble Sort, Fast Fourier Transform, and Ackermann’s Function. The Hennessy benchmark,
known as PIWG A000094, was the only PIWG benchmark that failed to execute; it crashed
with a STORAGE_ERROR exception. Initial attempts to resolve the problem were unsuc-
cessful. It is believed, however, that the solution lies in simply finding the right settings for
the storage parameters of the VAXELN build process.

CMU/SEI-87-TR-27 27

B.b. Task Creation

Test name: C000001 Class name: Tasking
CPU time: 9400.0 microseconds
Wall time: 9400.0 microseconds Iteration count: 2
Test description:
Task create and terminate measurement
with one task, no entries, when task is in a procedure
using a task type in a package, no select statement, no loop

Test name: C000002 Class name: Tasking
CPU time: 9549.9 microseconds
Wall time: 9549.9 microseconds Iteration count: 2
Test description:
Task create and terminate time measurement
with one task, no entries, when task is in a procedure
task defined and used in procedure, no select statement, no loop

Test name: C000003 Class name: Tasking
CPU time: 9599.9 microseconds
Wall time: 9599.9 microseconds Iteration count: 2
Test description:
Task create and terminate time measurement
task is in declare block of main procedure
one task, no entries, task is in the loop

28 CMU/SEI-87-TR-27

B.c. Dynamic Storage Allocation

Test name: D000001 Class name: Allocation
CPU time: 38.3 microseconds
Wall time: 38.3 microseconds Iteration count: 128
Test description:
Dynamic array allocation, use and deallocation time measurement
dynamic array elaboration, 1000 integers in a procedure
get space and free it in the procedure on each call

Test name: D000002 Class name: Allocation
CPU time: 4225.0 microseconds
Wall time: 4225.0 microseconds Iteration count: 4
Test description:
Dynamic array elaboration and initialization time measurement
allocation, initialization, use and deallocation
1000 integers initialized by others=>1

Test name: D000003 Class name: Allocation
CPU time: 23.4 microseconds
Wall time: 23.4 microseconds Iteration count: 128
Test description:
Dynamic record allocation and deallocation time measurement
elaborating, allocating and deallocating
record containing a dynamic array of 1000 integers

Test name: D000004 Class name: Allocation
CPU time: 5350.3 microseconds
Wall time: 5350.3 microseconds Iteration count: 2
Test description:
Dynamic record allocation and deallocation time measurement
elaborating, initializing by (DYNAMIC_SIZE,(others=>1))
record containing a dynamic array of 1000 Integers

CMU/SEI-87-TR-27 29

B.d. Exception Handling

There is no E000003 test in the PIWG 8/31/86 suite.

Test name: E000001 Class name: Exception
CPU time: 825.0 microseconds
Wall time: 825.0 microseconds Iteration count: 16
Test description:
Time to raise and handle an exception
exception defined locally and handled locally

Test name: E000002 Class name: Exception
CPU time: 1093.8 microseconds
Wall time: 1093.8 microseconds Iteration count: 16
Test description:
Exception raise and handle timing measurement
when exception is in a procedure in a package

Test name: E000004 Class name: Procedure
CPU time: 881.2 microseconds
Wall time: 881.2 microseconds Iteration count: 16
Test description:
Exception raise and handle timing measurement
when exception is in a package four deep

30 CMU/SEI-87-TR-27

B.e. Coding Style

Test name: F000001 Class name: Style
CPU time: 3.9 microseconds
Wall time: 4.3 microseconds Iteration count: 256
Test description:
Time to set a boolean flag using a logical equation
a local and a global integer are compared
compare this test with F000002

Test name: F000002 Class name: Style
CPU time: 2.7 microseconds
Wall time: 2.7 microseconds Iteration count: 256
Test description:
Time to set a boolean flag using an "if" test
a local and a global integer are compared
compare this test with F000001

B.f. Loop Overhead

Test name: L000001 Class name: Iteration
CPU time: 2.0 microseconds
Wall time: 2.0 microseconds Iteration count: 2
Test description:
Simple "for" loop time
for I in 1 .. 100 loop
time reported is for once through loop

Test name: L000002 Class name: Iteration
CPU time: 2.5 microseconds
Wall time: 2.5 microseconds Iteration count: 2
Test description:
Simple "while" loop time
while I <= 100 loop
time reported is for once through loop

Test name: L000003 Class name: Iteration
CPU time: 2.0 microseconds
Wall time: 2.0 microseconds Iteration count: 2
Test description:
Simple "exit" loop time
loop I:=I+1; exit when I>100; end loop;
time reported is for once through loop

CMU/SEI-87-TR-27 31

B.g. Procedure Calls

There is no P000008 or P000009 test in the PIWG 8/31/86 suite.

Test name: P000001 Class name: Procedure
CPU time: 0.4 microseconds
Wall time: 0.4 microseconds Iteration count: 256
Test description:
Procedure call and return time (may be zero if automatic inlining)
procedure is local
no parameters

Test name: P000002 Class name: Procedure
CPU time: 54.7 microseconds
Wall time: 55.5 microseconds Iteration count: 128
Test description:
Procedure call and return time
procedure is local, no parameters
when procedure is not inlinable

Test name: P000003 Class name: Procedure
CPU time: 42.2 microseconds
Wall time: 42.2 microseconds Iteration count: 128
Test description:
Procedure call and return time measurement
the procedure is in a separately compiled package
compare to P000002

Test name: P000004 Class name: Procedure
CPU time: 0.0 microseconds
Wall time: 0.0 microseconds Iteration count: 256
Test description:
Procedure call and return time measurement
procedure is in a separately compiled package
pragma INLINE used
compare to P000001

Test name: P000005 Class name: Procedure
CPU time: 44.5 microseconds
Wall time: 44.5 microseconds Iteration count: 128
Test description:
Procedure call and return time measurement
procedure is in a separately compiled package
one parameter, in INTEGER

32 CMU/SEI-87-TR-27

Test name: P000006 Class name: Procedure
CPU time: 48.4 microseconds
Wall time: 48.4 microseconds Iteration count: 128
Test description:
Procedure call and return time measurement
procedure is in a separately compiled package
one parameter, out INTEGER

Test name: P000007 Class name: Procedure
CPU time: 51.6 microseconds
Wall time: 51.6 microseconds Iteration count: 128
Test description:
Procedure call and return time measurement
procedure is in a separately compiled package
one parameter, in out INTEGER

Test name: P000010 Class name: Procedure
CPU time: 74.2 microseconds
Wall time: 74.2 microseconds Iteration count: 128
Test description:
Procedure call and return time measurement
Compare to P000005
10 parameters, in INTEGER

Test name: P000011 Class name: Procedure
CPU time: 106.2 microseconds
Wall time: 106.2 microseconds Iteration count: 64
Test description:
Procedure call and return time measurement
compare to P000005, P000010
20 parameters, in INTEGER

Test name: P000012 Class name: Procedure
CPU time: 65.6 microseconds
Wall time: 65.6 microseconds Iteration count: 128
Test description:
Procedure call and return time measurement
Compare with P000010 (discrete vs composite parameters)
10 parameters, in MY_RECORD a three component record

Test name: P000013 Class name: Procedure
CPU time: 93.8 microseconds
Wall time: 93.8 microseconds Iteration count: 64
Test description:
Procedure call and return time measurement
twenty composite "in" parameters
package body is compiled after the spec is used

CMU/SEI-87-TR-27 33

B.h. Task Rendezvous

Test name: T000001 Class name: Tasking
CPU time: 1662.5 microseconds
Wall time: 1662.5 microseconds Iteration count: 8
Test description:
Minimum rendezvous, entry call and return time
one task, one entry, task inside procedure
no select

Test name: T000002 Class name: Tasking
CPU time: 1637.5 microseconds
Wall time: 1650.0 microseconds Iteration count: 8
Test description:
Task entry call and return time measured
one task active, one entry in task, task in a package
no select statement

Test name: T000003 Class name: Tasking
CPU time: 1675.0 microseconds
Wall time: 1675.0 microseconds Iteration count: 4
Test description:
Task entry call and return time measured
two tasks active, one entry per task, tasks in a package
no select statement

Test name: T000004 Class name: Tasking
CPU time: 1837.5 microseconds
Wall time: 1837.5 microseconds Iteration count: 4
Test description:
Task entry call and return time measured
one task active, two entries, tasks in a package
using select statement

Test name: T000005 Class name: Tasking
CPU time: 1689.9 microseconds
Wall time: 1689.9 microseconds Iteration count: 1
Test description:
Task entry call and return time measured
ten tasks active, one entry per task, tasks in a package
no select statement

34 CMU/SEI-87-TR-27

Test name: T000006 Class name: Tasking
CPU time: 2429.9 microseconds
Wall time: 2419.9 microseconds Iteration count: 1
Test description:
Task entry call and return time measurement
one task with ten entries, task in a package
one select statement, compare to T000005

Test name: T000007 Class name: Tasking
CPU time: 1612.5 microseconds
Wall time: 1600.0 microseconds Iteration count: 8
Test description:
Minimum rendezvous, entry call and return time
one task one entry
no select

CMU/SEI-87-TR-27 i

Table of Contents

1. Summary 1
2. Discussion 2

2.1. The University of Michigan Ada Benchmarks 2
2.2. The Performance Issues Working Group (PIWG) Ada Benchmarks 2
2.3. Testbed Hardware and Software 2
2.4. Running the Benchmarks 3
2.5. Problems Encountered and Lessons Learned 3

References 7

Appendix A. Results: University of Michigan Benchmarks 9
A.a. Clock Calibration and Overhead 9
A.b. Task Rendezvous 10
A.c. Task Creation 10
A.d. Exception Handling 11
A.e. Time and Duration Math 12
A.f. Delay Statement Tests 13
A.g. Dynamic Storage Allocation 14
A.h. Subprogram Overhead 16
A.i. Memory Management 24

Appendix B. Results: PIWG Benchmarks 25
B.a. Composite Benchmarks 26

B.0.0.1. The Dhrystone Benchmark 26
B.0.0.2. The Whetstone Benchmark 26
B.0.0.3. The Hennessy Benchmark 26

B.b. Task Creation 27
B.c. Dynamic Storage Allocation 28
B.d. Exception Handling 29
B.e. Coding Style 30
B.f. Loop Overhead 30
B.g. Procedure Calls 31
B.h. Task Rendezvous 33

