
--ft VOW

Wu 1T

ATI

Technical Report

ESD-TR-87-109
may 1987

C An Software Engineering Education
AInterim Report from the Software

Engineering Institute

AcapSSIOU 71!--- Gary Ford
kNTIS GR& f-cman Gibbs
DTIC TAB
Unamuouflced Jamnes Tomayko
Justific&tioa

Distributi~ft/

Availability Codes

iAvail azid/or

Dist Special

Approved for public release.
DlstrWuton unlimnfted.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
Hanscom AFB, MA 01731

the ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl H. Shingler
SEI Joint Program Office

4 ,.

This document is available through the Defense Technical Information con O..TIC provides access to end transfer of
scentific and technical information for DoD personnel, DoO contractors and iqential contraclors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTI directly: Defense Technical Information Center.
Attn: FORA, Cameron Station. Alexandria. VA 22304-6145.

Copies of this document are also available through the National Technical Information Services. For information on ordering,
please contact NTIS directly: National Technical Information Services, U.S. Department of Commerce, Springfield, VA 22161.

SoftwareEngineering Education

An Interim Report from the Software Engineering Institute1

Gary Ford, Norman Gibbs, James Tomayko

Abet: The goals and activities of the Software Engineering Institute's Education Program we described. Two

curriculun recommendations = presented, one for a professional Master of Software Engineering degree program, ad
the oder for an undergraduate project course in software engineering. Also presented is am organizational stucture for

T softwar eniern curcuu contenL

The SEI Education Program proximately fourteen technical staff by 1990, with a cor-
responding growth of the scope of our activities. An earlier

The Software Engineering Institute is a federally funded report [GibbsS6b] detailed the challenges of software en-
research and development center operated by Carnegie- gineering education and presented our strategy for meeting
Mellon University. Its principal responsibility is to ac- them. This report contains our first specific recommen-
celerate the reduction to practice of modem software en- dations, but they should be considered preliminary, with
gineering techniques and methods di§S (DOD5, more refined and more detailed recommendations appearing
!rabi85D Included in this responsibility are the iden- later. Toward that end, we solicit comments on this report

tification, assessment, development, dissemination, and in- from the software engineering and education communities.
sertion of promising methods, techniques, and tools to sup-port software engineering. •The reprt is organized into five major parts. The first

describes the scope and goals of the SEI Graduate Cur-

Recognizing that education is the foundation for substantial riculum ProjecL Next is a description of an organizational
improvements in developing and using technology, the SEI itructure for the content of a software cngineering cur-
charter also includes the sentence, "[The SEIT shall also in- riculum. The third and fourth parts are the curriculum
fluence software engineering curricula development recommendations for a Master of Software Engineering de-
throughout the education community." Our experiences to gree and for a one semester undergraduate project course.
date indicate that the education community is very inter- The final part contains some thoughts on the future of
ested in software engineering education, and that the SEI software engineering education.
can play an important role in focusing activities in the
development of courses and curricula, in catalyzing the
production of textbooks, educational software, and other
course support materials, and in providing for widespread The Graduate Curriculum Project
distribution of information and mateals. The SEI Education Program encompasses several projects

The SEI Education Program is one of the original programs and activities. Currently, our major effort is the Graduate
at the Institute. It has broad responsibilities, based on the Curriculum Project, which is identifying and documenting
sentence quoted above. Those include identifying the the body of knowledge appropriate for master's level
educational needs of the software engineering community, programs in software engineering. The project is also
providing leadership to meet those needs, and working developing a wide range of educational materials that will
directly with all interested parties in disseminating infor- support edicators and students in such programs. The in-
mation and materials that address those needs. dividual aspects of the project are discussed below.

The Education Program began its efforts in the summer of We are not the first to attempt to define a curriculum for
1985 with two staff members. We plan to grow to ap- software engineering. Several others have made reconimen-

dations, and reading them in chronological order provides
_ _ _an interesting history of the growth of the discipline

-Thisw ws by U.S. DqmatmetDef,. [Ardis85, ComerBS, FaIrley78, Fairley7la, Fairly79b,

'sr

I

Software Engineering Education 2

FairleySO. Freoman76, Freeman78, Hoffman78a. We intend for a module to be a resource for an instructor
Hoffman78b, Jensen78. Jensen7g, Lehman86a, McGII84, who is designing or revising a course. With this goal in
Mills86, Mulder75, Nance8O, Stucdd78, Warner82, mind, we have structured modules to contain most of the
Wasserman76]. However, our goal is not just to propose information that an instructor would gather in the prelimi-
another curriculum, but to create and support a dynamic nary stages of course design, including a bibliography and a
curriculum for a dynamic discipline. We rely on the in- topic outline. By providing this information, we hope that
novators in software engineering to point the direction (see instructors find it possible to develop better courses in much
[BrooksM, GoldbergS6, Lehman86b]), and on a large num- shorter time.
ber of persons outside the SEI, including software engineers
and educators, to develop the curriculum and support A module is embodied in a document of approximately 20
materials and to revise them to reflect the state of the art of pages that begins with a capsule description of the material
software engineering. (similar to a college catalog description), and brief discus-

sions of the philosophy of the module, the prerequisites, and
We also understand that there is anything but concensus on the educational objectives. The module content is then
what software engineering education should encompass. described in two forms, a brief topic outline (similar to a
We find ourselves in the same situation as the developers of course syllabus), and a detailed, annotated outline, with
computer science curricula in the 1960s. In his 1986 ACM references to the appropriate literature. Teaching considera-
Turing Award Lecture, John Hopcroft remembered his ar- tions are described, including such things as suggestions for
rival at Princeton University in the fall of 1964 (Hopcroft87]: exercises, projects, or exams, the amount of time to spend

Princeton asked me to develop a course in automata on each topic, appropriate textbooks, and suggestions for
theory to expand the scope of the curriculum beyond the support materials. An annotated bibliography completes the
digital circuit design course then being offered. Since module, and includes both a brief synopsis of the content of
there were no courses or books on the subjectm I asked
[Edward] McCluskey to recommend some materials for each reference and an indication of how the work might be
a cowse on automata theory. He was not sure himself. used by the instructor and/or the student.
but he gave me a list of six papers and told me that the
material would probably give students a good back- The Education Program has a small permanent staff, so we
ground in automata theory. ... have relied on visiting educators and software engineers to

At the time, I thought it strange that individuals were develop the curriculum modules (see SEI Affiliate Programs
prepared to introduce courses into the curriculum with- on page 22). During 1986, ten visiting educators spent
out clearly understanding their content. In retrospect. I periods of from one week to several months at the SEI,
realize that people who believe in the future of a subject
and who sense its importance will invest in the subject mostly during the summer. They researched module topics.
long before they can delineate its boundaries, organized the material, and shared their knowledge and ex-

For many of the courses recommended in this report, we pertise with us and with each other. Five modules were
cannot now clearly delineate their boundaries. We believe completed and published [Budgen86b, Cohen86,
that teaching them now is valuable to today's students and Collofello86, Jorgensen86, Tomayko86a].
will help improve them for tomorrow's students. Curriculum modules are considered to be living documents.

Curriculum Modules Each is subject to continual review, both inside and outside
the SEI, and to revision. Especially useful are the ex-

The audience for software engineering education is large periences of educators who have taught from them, and
and diverse, including students at both undergraduate and these educators will often be invited to come to the SEI to
graduale levels, colleges and universities whose offerings prepare revisions. It is our expectation that each module
range from a pot of one course to an entire degree program will represent the best current ideas of the software c-
in software engineering, and practitioners in industry and gineering comaunity, and that the set of modules as a
government. Each audience needs a different curriculum, whole will be a state-of-the-art snapshot of the discipline.
Therefore, we made an early decision to define the content
of software engineering education in modules. Each module Curriculum Packages
presents a relatively small and highly focused topic. Different audiences need different curriculum content. The
Modules vary in sie. but most ae smaller than a typical documentation of curriculum content in modules facilitates
uivernity course. Courses and programs can then be con- creation of many different curriculum packages. We have

struced in many ways from the modules. identified two important packages for immediate develop-

.. NE

Software Engineering Education 3

ment: a one semester course in software engineering at the quality artifacts from industry. We believe that a delivered,
senior year level in a computer science degree program, and working software system of perhaps 50,000 lines of code,
a complete professional degree program at the master's along with all requirements specifications, design documen-
level. Each of these is presented in detail later in this report, tation, test plans and data, and user documentation would

make an unusually valuable object of study for software
These packages were targeted fst because they represent engineering students. It could also serve as the basis for
the two ends of the most likely spectrum of university offer- software testing or enhancement projects on a scale almost
ings in software engineering. Additional planned packages never before possible in universities.
are intermediate points on that spectrum, and include two
semester sequences (especially project oriented courses) and Educational Software Tools
concentrations of four to six courses for specialty tracks
within a master of science program in computer science. The software engineering community has long recognized
This latter package is presently being developed and tested the utility of software systems to help with the daily ac-
in cooperation with The Wichita State University, which is tivities of clerical and data processing workers. More
the SEI's rust designated graduate curriculum test site. We recently, many systems have begun to appear that help with
also expect to develop packages of individual or groups of the daily activities of software engineers. The days when a
modules for industry short courses. Some modules have text editor and a compiler made up a complete tool set are
already been tested successfully in this form. long gone.

Support Materials The Wang Institute of Graduate Studies offered a Master of
Software Engineering degree in which more than one

The quality of a course depends on the quality of the sup- hundred software tools, almost all of which are commer-
port materials available as well as the quality of the instruc- cially available, were used by its students in their course
tor. Textbooks and other reference materials are obvious work. Major software development organizations in in-
examples of support materials, but software engineering dustry often have many more, usually proprietary products
education also depends on projects and exercises, software developed for their own use. Because this is the kind of
tools and programming environments, and examples of environment in which today's students will soon find them-
large-scale software systems and the processes that produce selves, it is important that tool usage be included in the
them. The SEI has undertaken to produce or cause the curriculum.
production of a wide range of such materials. Many of the modem tools run on relatively expensive
We have an agreement with Addison-Wesley Publishing hardware systems, often beyond the resources of most
Company to produce The SEI Series on Software universities in the quantities required to accommodate large
Engineering, a series of monographs and textbooks on all numbers of students. Therefore, the SEI Education Program
aspects of software engineering. The series is under control is planning to develop, again with the help of visiting
of an editorial board of leaders in the field, the majority of educators and their students, a set of software tools that
whom are software engineers from industry rather than have two important properties. First, the tools will run on
university faculty members. The first books in the series are the kinds of Lardware configurations that are commonly
expected in 1988. Authors are chosen from throughout the available in universities. Second, the tools will demonstrate
software engineering community, and we intend to work the major features, if not the full functionality, of the kinds
with them to capture their expertise in appropriate cur- of tools that students are likely to use as practicing software
riculum modules as well as in the books. engineers. Because the SEI is in the business of identifying,

assessing, and developing promising new tools, we are
Both developers and uss of curriculum modules are en- ideally positioned to produce limited versions of new tools
couraged to share with the SE! the materials that they and for educaon almost as fast as the full tools appear in in-
their students produce for software engineering courses. dustry.
One package of support materials has been published
[Tomayko86b. As with curriculum modules, we work with A second variety of tools includes those that are specific to
visiting staff for the production of support materials and a single project, such as test case generators and simulators
welcome proposals for such projects, to aid in requirements analysis. It is beyond the abilities of

individual instructors to build such tools for each student
The SE! is also identifying and collecting large, production- project, so we see a role here for the SEI. Rather than

. .

'IN

Software EngIneering Education 4

attempting to build generalized versions of such tools, we operational. Each is defined and discussed below.
plan to define possible student projects, develop appropriate
support materials for each project, including tools, and offer Development activities are those that create or produce the
these to educators for their use. artifacts of a software system. These include requirements

analysis, specification, design, implementation, and testing.
Because a software system is usually part of a larger system,
we sometimes will distinguish system activities from

A Curriculum Content Organizational software activities; for example, system design from
Structure software design. We expect that many large projects will

include both systems engineers and software engineers, but
The body of knowledge called software engineering con- an appreciation of the systems aspects of the project is im-
sists of a large number of interrelated topics. We thought it portant for software engineers, and thus should be included
impractical to attempt to capture this knowledge as an un- in a curriculum.
differentiated mass, so an organizational structure was
needed. The structure described below is not intended to be Control activities are those that exercise restraining or
a taxonomy of software engineering, but rather a guide for directing influence over software development. These ac-
the SEI in collecting and documenting software engineering tivities are more concerned with controlling the way in
knowledge, and for describing the content of some recom- which the development activities are done than with the
mended courses for a graduate curriculum. (Others have production of artifacts. Two major kinds of control ac-
considered the organization of software engineering topics; tivities are those related to software evolution and those
for example, see [Babb79. AFIPS80, IEEE86].) related to software quality.

Discussions of software engineering frequently describe the A software product evolves in the sense that it exists in
discipline in terms of a software life cycle: requirements many different forms as it moves through its life cycle, from
analysis, specification, design, implementation, testing, and initial concept, through development and use, to eventual
maintenance. Although these life cycle phases are worthy retirement. Change control and configuration management
of presentation in a curriculum, we found this one- are activities related to evolution. We also consider
dimensional structure inadequate for purposes of organizing software maintenance in this category, rather than as a
all the topics in software engineering, and for describing the separate development activity, because the difference be-
curriculum. tween development and maintenance is not in the activities

performed (both involve requirements analysis, specifica-
A good course, whether a semester course in a university or tion, design, implementation, and testing), but in the way
a one day short course in industry, must have a central those activities are controlled.
thread or idea around which the presentation is focused.
Not every course can or should focus on one life cycle Software quality activities include quality assurance, test
phase. In an engineering course (including software and evaluation (T&E), and independent verification and
engineering), we can look either at the engineering process validation (IV&V). These activities, in turn, incorporate
or at the product that is the result of the process. Therefore such tasks as software technical reviews and performance
we have chosen these two views as the highest level par- evaluation.
tition of the cuniculum content. Each is elaborated below. Management activities are those involving executive, ad-

The Process View ministrative, and supervisory direction of a software project,
including technical activities that support the executive

The process of software engineering includes several decision process. Typical management activities are project
activities that are performed by software engineers. The planning (schedules, establishment of milestones), resource
range of activities is broad, but there are many aspects of allocation (staffing, budget), development team organiza-
each activity that are similar across the range. Thus we tion. cost estimation, and legal aspects (contracting,
organize those topics whose central thread is the process in licensing). This is an appropriate part of a software en-
two dimensions: activity and aspect. gineering curriculum for several reasons: there is a body of

knowledge about managing software projects that is dif-
The Activity Dimension. Activities are divided into four ferent from that about managing other kinds of projects,
groups: development, control, management, and many software engineers are likely to assume software

Ago

Software Engineering Education 5

management positions at some point in their careers, and Methods include formal methods, current practices, and
knowledge of this material by all software engineers im- methodologies. Proofs of correctness are examples of for-
proves their ability to work together as a team on large mal methods for verification. Object-oriented design is a
projects. design method, and structured programming may be con-

sidered a current practice of implementation.
Operational activities are those related to the use of a

software system by an organization. These include training Tools include individual software tools as well as integrated
personnel to use the system, planning for the delivery and tool sets (and, implicitly, the hardware systems on which
installation of the system, the transition from the old they run). Examples include general purpose tools such as
(manual or automated) system to the new, operation of the electronic mail and word processing, tools related to design
software, and retirement of the system. Although a software and implementation, such as compilers and syntax directed
engineer may not have primary responsibility for any of editors, and project management tools. Other kinds of
these activities, an awareness of these activities will often software support for process activities are also included;
impact the development of a software system, and software these are sometimes described by such terms as
engineers are often parts of teams that perform these ac- infrastructure, scaffolding, or harnesses.
tivities.

Sometimes the term environment is used to describe a set of
Software engineering support tools provide a case of special tools, but we prefer to reserve this term to mean a collection
interest. These tools are software systems, and the users of of related representations, tools, methods, and objects.
those systems are the software engineers themselves. Software objects are abstract, so we can only manipulate
Operational activities for these systems can be observed and representations of them. Tools to perform manipulations
experienced directly. An awareness of the issues related to are usually designed to help automate a particular method or
the use of software tools can not only help software en- way of accomplishing a task. Typical tasks involve many
gineers develop systems for others but can also help them objects (code modules, requirements specification, test data
adopt and use new tools for their own activities, sets, etc.), so those objects must be available to the tools.

Thus we believe all four parts are necessary for an environ-

The Aspect Dimension. Engineering activities tradition- menL

ally have been partitioned into analytic activities and Assessment aspects include measurement, analysis, and
synthetic activities. We have chosen instead to consider an evaluation of both software products, software processes,
axis orthogonal to activities that captures some of this kind and the impact of software on organizations. Metrics and
of distinction, but that recognizes six aspects of these ac- standards are also placed in this category. This is an area
tivities: abstractions, representations, methods, tools, as- where we feel considerable emphasis is needed in the cur-
sessment, and communication. riculum. Software engineers, like engineers in the tradi-

Abstractions include fundamental principles and formal tional fields, need to know what to measure, how to measure

models. For example, software development process it, and how to use the results to analyze, evaluate, and ul-

models (waterfall, iterative enhancement, etc.) are models of timately improve processes and products.

software evolution. Finite state machines and Petri nets are Communication is the final aspect. All software engineer-
models of sequential and concurrent computation, respec- ing activities inlu written iid i-ral communication. Most
tively. COCOMO' is a software cost estimation model. produce documentation. A software engineer must have
Modularity and information hiding are principles of good general technical communication skills, as well as an
software design. understanding of forms of documentation appropriate for

Representations include notations and languages. The each activity.

Adam)2 language thus fits into the organization as an im- By considering the activity dimension and the aspect dimen-
plementation language, while decision tables and dataflow sion as orthogonal, we have a matrix of ideas that might
diagrams are design notations. PERT charts are a notation serve as the central thread in a course. It is likely that
useful in project planning. individual cells in that matrix represent too specialized a

topic for a full semester course. Therefore we recommend
that courses be designed around part or all of a horizontal or

2Ada is a m r a d the U.S. govermn, Ada Joit vertical slice through that matrix.
Propam Off'ie

Software Engineering Education 6

The Product View addresses the development of systems with those charac-
teristics. Thus each class may be the central theme in a

Often it is appropriate to discuss many activities and aspects software engineering course.

in the context of a particular kind of software system. For

example, concurrent programming has a variety of notations
for specification, design, and implementation that are not Pervasive System Requirements. Discussions of system
needed in sequential programming. Instead of inserting one requirements generally focus on functional requirements.
segment or lecture on concurrent programming in each of There are many other categories of requirements that also
several courses, it is probably better to gather all the ap- deserve attention. Identifying and then meeting those re-
propriate information on concurrent programming into one quirements is the result of many activities performed
course. A similar argument can be made for information throughout the software engineering process. As with sys-
related to various system requirements; for example, achiev- tem classes, it may be appropriate to choose one of these
ing system robustness involves aspects of requirements requirement categories as the central thread for a course,
definition, specification, design, and testing. and then to examine those activities and aspects that affect

iL
Therefore we have added two additional categories to the
curriculum content organizational structure, software system Examples of pervasive system requirements are
classes and pervasive system requirements. Although these accessibility, adaptability, availability, compatibility, cor-
may be viewed as being dimensions orthogonal to the ac- recness, efficiency, fault tolerance, integrity, inter-
tivity and aspect dimensions, it is not necessarily the case operability, maintainability, performance, portability,
that every point in the resulting four-dimensional space protection, reliability, reusability, robustness, safety,
represents a topic for which there exists a body of security, testability, and usability. Definitions of these
knowledge, or for which a course should be taught. terms may be found in the ANSI/IEEE Glossary of Software

Engineering Terminology [IEEE83].
Any of the various system classes or pervasive requirements
described below might be the central thread in a course in a Educational Objectives
software engineering curriculum. We emphasize that themoftateria tghteeight aurriuls . empae ta t i ohe An additional refinement of the curriculum content can bem aterial taught m ight also be taught in co urses w hose a h e e y c n i ei g e u ai n l oj ci e . M d s b
central thread is one of the activities mentioned earlier. For achieved by e utional be tive . od eexample, techniques for designing real-time systems could jectives can be achieved by a superficial presentation, while
eample tauhi ues a design in real-time systems more ambitious objectives will require greater breadth orbedepth (or both) in the presentation of a topic. A clear state-course. Testing methods to achieve system robustness dph(rbt)i h rsnaino oi.Acersae

ment of the educational objectives of a course is valuable tocould be taught in a testing course or in a robustness course.
The purpose of adding these two new dimensions to the th tor, otand how to present iL
structure is to allow better descriptions of possible courses.

Bloo-. [Bioom56] has defined a taxonomy of educational
Software System Clsae. Several different classes can obe. ves that describes several levels of knowledge, intel-
be considered. One group of classes is defined in terms of a lectual abilities, and skills that a student might derive from
system's relationship to its environment, and has members education. We found it useful to adapt this taxonomy to
described by terms such as batch. interactive, reactive, help describe the objectives, and thus the style and depth of
real-time, and embedded. Another group has members presentation, of a software engineering curriculum.
described by terms such as distributed, concurrent, or
network. Another is defined in terms of internal charac- The sx classes of objectives below areqrsented in increas-
teristics, such as table-driven, process-driven, or ing onder of ifficuly, in that each requires education
knowledge-based. We also include generic or specific W beyond the previous ones for the student to achieve the ob-
plications areas, such as avionics systems, communications LeC.
systems, operating systems, or database systems.

Knowledge. The student learns terminology and facts.
Clearly, these classes are not disjoinL Each class is com- This can include knowledge of the existence and names of
posed of members that have certain common characteristics, methods, classifications, abstractions, generalizations, and
and there is or may be a body of knowledge that directly theories, but does not include any deep understanding of

-t

Software Engineering Education 7

them. The student demonstrates this knowledge only by as the objectives of each course. The backgrounds,
recalling information, capabilities, and career goals of the students, the faculty and

equipment resources, and the amount of time available are
Comprehension. This is the lowest level of understand- all factors to be considered in defining objectives.
ing. The student can make use of material or ideas without In the following section, we invoke this taxonomy in the
necessarily relating them to others or seeing the fullest im- description of the curriculum. Knowing the objectives of a
plications. Comprehension can be demonstrated by rephras- course often helps guide the choice of teaching methods and
ing or translating information from one form of communica- student exercises. Most educators agree that realistic
ton to another, by explaining or summarizing information, software engineering experiences are often the best
or by being able to extrapolate beyond the given situation, mechanism for achieving the higher levels of objectives. In

a later section, we discuss examples of how to provide such
Application. The student is able to apply abstractions in experiences.
particular and concrete situations. Technical principles,
techniques, and methods can be remembered and applied.
The mechanics of the use of appropriate tools have been
mastered. A Master of Software Engineering Cur-

riculum
Analysis. The student can identify the constituent ele- Throughout the short history of computer science and
ments of a communication, artifact, or process, and can software engineering, the size and complexity of software
identify the hierarchies or other relationships among those systems have grown steadily. Advances in hardware and
elements. General organizational structures can be iden- software technology have made more ambitious systems
tified. Unstated assumptions can be recognized. feasible, but each significant increase in system size has

presented software engineers with new problems to be
Synthesis. The student is able to combine elements or solved. For example, in the 1950s the system bottleneck
parts in such a way as to produce a pattern or structure that was often getting access to the machine for a batch run.
was not clearly there before. This includes the ability to Operating systems with job schedulers, foreground and
produce a plan to accomplish a task such that the plan background processing, and timesharing helped solve that
satisfies the requirements of the task, as well as the ability to problem. Coding bottlenecks were aileviated by the
construct an artifact. It also includes the ability to develop a development of higher-level programming languages.
set of abstract relations either to classify or to explain par- Structured programming and data abstraction helped
ticular phenomena, and to deduce new propositions from a simplify software design problems. Microprocessors led to
set of basic propositions or symbolic representations. more complex embedded systems.

With each advance came the need for increased education of
Evaluation. The student is able to make qualitative and computer scientists and software engineers. We are now at
quantitative judgments about the value of methods, a point where there is a substantial body of useful
processes, or artifacts. This includes the ability to evaluate knowledge about programming-in-the-small. A software
conformance to a standard, and the ability to develop engineer needs much of this knowledge before beginning
evaluation criteria as well as apply given criteria. The stu- serious study of programming-in-the-large, meaning the
dent can also recognize improvements that might be made controlled development of large, complex systems by teams
to a method or process, and to suggest new tools or of developers. A good undergraduate program in computer
methods. science provides the necessary prerequisite knowledge for a

Because the body of knowledge called software engineering software engineering degree program. Thus it is presently
is very large, it is unreasonable to expect a software en- inappropriate to try to develop an undergraduate degree
gineer to know all of it, even at the lowest or knowledge program in software engineering. We believe that for the
level, as defined above. On the other hand, some material immediate future, software engineering education should be

must be known at the synthesis level if the engineer is to be at the master's level.

productive. The design of a curriculum, therefore, must The academic community distinguishes two master's level
identify carefully the overall educational objectives, as well technical degrees. The Master of Science in Discipline is a

Software Engineering Education 8

research-oriented degree, and often leads to doctoral level cipline. They should understand a reasonable set of prin-
study. The Master of Discipline is a terminal professional ciples, models, representations, methods, and tools, and the
degree intended to produce a practitioner who can rapidly role of analysis and evaluation in software engineering.
assume a position of substantial responsibility in an or- They should understand the existing design paradigms for
ganization. The former degree often requires a thesis, while well-understood systems, such as compilers. They should
the latter requires a project or practicun as a demonstration know of the existence and comprehend the content of ap-
of the level of knowledge acquired. The Master of Business propriate standards. They should understand the fundamen-
Administration (MBA) degree is perhaps the most widely tal economic, legal, and ethical issues of software engineer-
recognized example of such a professional degree. ing.

The SEI was charftred partly in response to the perceived
need for a greatly increased number of highly skilled Application. The students should bee of to apply fun-
software engineers. It is our belief that this need can be best damental principles in the performance of the various ac-
addressed by encouraging and helping academic institutions tivities. They should be able to apply a reasonable set ofoffer a Master of Software Engineering (MSE) degree formal methods to achieve results. They should be able to
program. use a reasonable set of tools covering all activities of thesoftware process. They should be able to collect appropriate

Objectives data for project management purposes, and for analysis and
evaluation of both the process and the product. They should

As described above, the goal of the MSE degree is to be able to execute a plan, such as a test plan, a quality
produce a software engineer who can rapidly assume a posi- assurance plan, or a configuration management plan; this
tion of substantial responsibility within an organization. To includes the performance of various kinds of software tests.
achieve this goal, the curriculum we propose is designed to They should be able to apply documentation standards in
give the student a body of knowledge that includes balanced the production of all kinds of documents.
coverage of the software engineering process activities, their
aspects, and the products they produce, and to give the stu- Analysis. The students should be able to participate in
dent sufficient experience to bridge the gap between under- technical reviews and inspections of various software work
graduate programming and professional software engineer- products, including documents, plans, designs, and code.
ing. They should be able to analyze the needs of customers.

Specific educational objectives are summarized below, and
may be found in greater detail in the descriptions of in- Synthesis. The students should be able to perform the
dividual curriculum units in the Curriculum Content section activities leading to various software work products, includ-
beginning on page 11. ing requirements specifications, designs, code, and

documentation. They should be able to develop plans, such
Knowledge. In addition to knowledge about all the as project plans, quality assurance plans, test plans, and con-
material described in the subsequent paragraphs, students figuration management plans. They should be able to
should be aware of the existence of models, representations, design data for and structures of software tests. They
methods, and tools other than those they learn to use in their should be able to prepare oral presentations, and to plan and
own studies. Students should be aware that there is always lead software technical reviews and inspections.
more to learn, and that whatever techniques they learned in
school, they will encounter more in their professional Evaluation. The students should be able to evaluate
careers. software work products for conformance to standards. They

should know appropriate qualitative and quantitative

Comprehension. The students should understand the measures of software products, and use those measures in
software engineering process, both in the sense of abstract evaluation of products, as in the evaluation of requirements
models and in the various instances of the process as prac- specifications for consistency and completeness, or the
ticed in industry. They should understand the activities and measurement of performance. They should be able to per-
aspects of the process. They should understand the issues form verification and validation of software. These activites
(sometimes called the software crisis) that are motivating should consider all system requirements, not just functional
the growth and evolution of the software engineering dis- and performance requirements. They should be able to

A&- A ":t I- I II••III••|I

Software Engineering Education 9

apply and validate predictive models, such as those for cal methods, database systems, compiler construction, corn-
software reliability or project cost estimation. They should puter graphics, or artificial intelligence. This material is
be able to evaluate new technologies and tools to determine usually found in senior level electives in a computer science
which are applicable to their own work. degree program. Some schools may choose to allow ad-

vanced computer science courses as electives in the MSE
The words appropriate and reasonable occur several times program. Knowledge of major applications areas in the
in the objectives above. The software engineering dis- sciences and engineering may also be useful.
cipline is new and changing, and there is not a concensus on
the best set of representations, methods, or tools to use. The mathematics prerequisites are those areas commonly
Each implementation of the MSE curriculum must be struc- required in an undergraduate computer science degree: dis-
tured to match the goals and resources of the school and its crete mathematics and some calculus. Some software en-
students. In subsequent reports, the SEI will offer recom- gineering topics may require additional mathematical prere-
mendations on the most promising methods and tech- quisites, such as probability and statistics. A student plan-
nologies for many of the software engineering activities. ning a career in a particular application area may want ad-

ditional mathematics, such as linear algebra or differential
Prerequisites equations, but these are no! essential prerequisites for any of

the mainstream software engineering courses.
An undergraduate degree in computer science is the most

desirable prerequisite for the MSE degree (see [Austing78, Enforcing the prerequisites can be difficult. A lesson may
Koffman84, Koffman85, Gibbs86a] for models of computer be learned from experience with master's degree programs
science programs). We recognize that most practitioners do in computer science. For many years in the 1960s and
not have such a degree but still wish to pursue the MSE 1970s, these programs often served almost exclusively as
degree. Furthermore, students with a bachelor's degree in retraining programs for students with undergraduate degrees
computer science from different schools, or from the same in other fields (notably mathematics and engineering), rather
school but five years apart, are likely to have substantially than as advanced degree programs for students who already
different knowledge. Thus the prerequisites for the MSE had an undergraduate computer science degree. In several
degree must be defined carefully, and must be enforceable schools, undergraduate computer science majors were not
and enforced. eligible for the master's program because they had already

The primary prerequisite, therefore, is substantial taken all or nearly all of the courses as undergraduates.

knowledge of programming-in-the-small. This includes a These programs existed because there was a clearly visible
working knowledge of at least one modem, high-level lan- need for more programmers and computer scientists, and the
guage (for example, Pascal, Modula-2, Ada) and at least one applicants for these programs did not want a second
assembly language. Also important is a knowledge of fun- bachelor's degree. There were not enough applicants who
damental concepts of programming, including control and already had a computer science degree to permit enforce-
1ata structures, modularity, data abstraction and information ment of substantial prerequisities.
hiding, and language implementations (runtime environ-
ments, procedure linkage, and memory management). Stu- For the proposed MSE program to achieve its goals, it must
dents should also be familiar with the tools of the trade, take students a great distance beyond the undergraduate
meaning a user's knowledge (not a designer's knowledge) computer science degree. This, in turn, requires that stu-
of computer organization and architecture, operating sys- dents entering the program have approximately that level of
tems, and typical software tools (editor, assembler, com- knowledge. Because of the widely varying backgrounds of
piler, linking loader, etc.). An appreciation for formal potential students, this is very difficult to assess. Standar-
methods and models is also essential, including analysis of dized examinations, such as the Graduate Record Examina-
algorithms and the fundamentals of computability, tion in Computer Science, provide only part of the solution.
automata, and formal languages. Most or all of this material We recommend that schools wishing to establish the MSE
is likely to be found in the first three years of an under- We cond tha tischools ing o stai tMSgraduate computer science degree program. program consider instituting a leveling or immigration

course to help establish prerequisite knowledge. Such a
Knowledge of one or more other major areas of computer course almost never fits into the normal school calendar.
science is highly desirable, but not absolutely necessary. Rather it is an intensive two to four week course that is
Examples are functional and declarative languages, numeri- scheduled just before or just after the start of the normal

Software Engineering Education 10

school year. Students receive up to 20 hours a week of master's level programs, and even undergraduate programs,
lectures summarizing all of the prerequisite material. The without such a prerequisite. Most graduate professional
value of this course is not that the students become profi- degrees do not require it.
cient in all the material, but that they become aware of
deficiencies in their own preparation. Self-study in parallel As a discipline grows and evolves, it is a common
with the first semester's courses can often remove most of phenomenon in education for new material to be incor-
these deficiencies. porated into courses that are added to the end of an existing

curriculum. Over time, the new material is assimilated into
Another important part of the immigration course is the in- the curriculum in a process called curricula, conpression.
troduction of the computing facilities, especially the avail- Obsolete material is taken out of the curriculum, but much
able software tools, to students with varying backgrounds. of the compression is accomplished by reorganization of
Ten to 20 hours each week can be devoted to demonstra- material to get the most value in the given amount of time.
tions and practice sessions. Because proficiency with tools
can greatly increase the productivity of the students in later In a rapidly growing and changing discipline, new material
courses, the time spent in the immigration course can be of is added faster than curricular compression can accom-
enormous value. modate it. In some engineering disciplines the problem is

acute. There is a growing sentiment that the educational
Finally, the immigration course can be used to help motivate requirement for an entry level position in engineering
the study of software engineering. The faculty, and some- should be a master's degree or a five-year undergraduate
times the students themselves, can present some of their degree [NRC85]. This is especially true for a computer
own or others' experiences that led to improved understand- science/software engineering career.
ing of some of the significant problems of software en-
gineering or their solutions. If this level of education is needed for a meaningful entry

level position, then we question the value of sending stu-
The Computer Science Department at Carnegie-Mellon dents out with a bachelor's degree, hoping they will return
University has a very successful immigration course for its sometime later for a software engineering degree. The
doctoral program, which may be useful as a model for other professional experience achieved during that time will not
schools. It is described in [CMU80] and [Shaw73]. A cur- necessarily be significant. Also, the percentage of students
rent course schedule may be requested from the Department. intending to return to school who actually do return to

school declines rapidly as time since graduation increases.
Another kind of prerequisite has been adopted by four exist- Therefore we believe that an MSE curriculum structured to
ing MSE programs (at the College of St. Thomas, Seattle follow immediately after a good undergraduate curriculum
University, Texas Christian University, the and Wang In- will offer the best chance of achieving the goals of rapid
stitute of Graduate Studies3) All four require the student to increases in the quality and quantity of software engineers.
have at least one year of professional experience as a Of course, such a program does not preclude admission of
software developer. This requirement has the benefit of students with professional experience.
giving the students increased motivation for software en-
gineering, since it exposes them to the problems of develop- We do recognize that work experience can be valuable. The
ing systems that are much larger than those seen in the experience component of the MSE curriculum, which is dis-
university, and exposes them to economic and technical cussed later in this report, might be structured to include
constraints on the software development process. It is also actual work experience. It may be that the overall educa-
the case that schools cannot control the quality of that ex- tional experience is significantly enhanced if the work com-
perience, and students may acquire bad habits that must be ponent is a coordinated part of the program, rather than an
unlearned, interlude between undergraduate and graduate studies.

We have not found the arguments for an experience prereq- We also recognize that we must motivate many of the ac-
uisite sufficiently compelling to recommend it for all MSE tivities in the software engineering process. We see a great
programs. Other engineering disciplines have successful need to raise the level of awareness on the part of both

students and educators of the differences between under-
graduate programming and professional software engineer-

3A% of April 1. 1987, the Wang Institute becme part of Boston ing. The SEI Education Program is working at the under-
University. and iu MSE progrnm will be terminated at the end of August, graduate level to help accomplish this. The undergraduate
1987.

Ad- OA

Software Engineering Education 11

software engineering course described in this report is one work together toward a common goal.~example. emeThe content of the MSE curriculum is described in units,

Curriculum Content each covering a major topic area. rather than courses. There
are three reasons for this. First, not every topic area con-

We use a broad view of software engineering when choos- tains enough material for a typical university course.
ing the content of the curriculum, and include several topics Second, combining units into courses can be accomplished
that are not part of a typical engineering curriculum. This in different ways for different organizations. (An example
statement of the National Research Council about engineer- that maps the units into semester courses follows the
ing curricula reflects the views of many engineers and description of the curriculum content.) Third, this structure
educators [NRCS5]: more easily allows each unit to evolve to reflect the changes

Another element of the problem is that to make the in software engineering knowledge and practice, while
transition from high school graduate to a competent prac- maintaining the stability of the overall curriculum smcture.
ticing engineer requires more thin just the acquisition of
technical skills and knowledge. It also requires a com. Because of strong relationships among topics and subtopics,
plex set of communicaion, group-interaction. manage-
ment, and work-orientation skill& we were unable to find a concensus on an appropriate linear

presentation order of topics. We do, however, recommend a
gorering function (na distinct from MBA-style top-down approach that focuses on the software engineering

management) is notably lacking in most curricula. Es- process first because this overall view is needed to put the
sential nontechnical skills such as written and oral com- individual activities in contexL Software management and
munication, planning, aid technical project management control activities are presented next, followed by the
(including management of the individual's own work development activities and product view topics.
and career) are not sufficiently emphasized.

On the other hand, we have narrowed the curriculum by This approach is similar to the common pedagogical tech-
concentrating exclusively on software engineering nique known as the spiral approach, in which interrelated

(including some aspects of system engineering) and omitting topics are presented repeatedly in increasing depth. Viewed
applications area knowledge. Two major reasons for this is this way, there are three relatively distinct levels in the cur-
are pragmatic: first, the body of knowledge known as riculum:
software engineering is sufficiently large to require all the Level 1 The Software Engineering Process
available time in a typical master's degree program (and Software Evolution
then some), and second, students cannot study all of the Software Generation
applications areas in which they might eventually work. We Software MaintenanceTechnical Communication
believe that a student at the graduate level should have ac-

quired the skills for self-education that will allow acquisi- Level 2 Software Configuration Management
tion of some knowledge in a needed application area. Software Quality Issues

a iSoftware Quality Assurance
More important, however, is our strong belief that the Software Project Organizational and
variety of applications areas and the level of sophistication Management Issues
of hardware and software systems in each of those areas Software Project Economics
mandate a development team with a substantial range of Software Operational Issues
knowledge and skills among its members. Some members
of the team must understand the capabilities of hardware Level 3 Requirements Analysis
and software components of a system in order to do the Specification
highest level specification, while other members must have System Design

the skills to design and develop individual components. Software Implementation

Software engineers will have responsibility for software Software Testing
components just as electrical, mechanical, or aeronautical System Integration
engineers, for example, will have responsibility for the Embedded Real-time Systems
hardware components. Scientists, including computer Human Interfaces
scientists, will often also be needed on the development The first level is an overview of the software engineering
teams, and all the scientists and engineers must be able to process, including how software evolves, how it is

S

Software Engineering Education 12

generated, and how it is maintained. The educational objec- among the various classes of activities. The students should
tive is to give the students a minimal degree of knowledge begin to understand the substantial differences between pro-
and comprehension. In addition, a segment on technical gramming, as they have done in an undergraduate program.
communication is recommended at this level Although this and software engineering, as it is practiced professionally.
is not strictly software engineering material, it is important
in later courses, and is unlikely to have been covered in the 2. Software Evolution
student's undergraduate curriculum. Implementations of the
curriculum may choose either to have a separate short Topics: The concept of a software product life cycle. The
course or to integrate this material into other courses. various forms of a software product, from initial conception

through development and operation to retirement. Controll-
The second level stresses the control and management ac- ing activities and disciplines to support evolution. Planned
tivities of software engineering. These are the activities that and unplanned events that affect software evolution. The
most clearly distinguish software engineering from pro- role of changing technology.
gramm ing; they also complement the student's knowledge Aspects: Models of software evolution, including develop-
for amme detailed study. ment life cycle models such as the waterfall, iterative en-

hancement, phased development, spiraL

The third level presents in-depth coverage of development Objectives: Knowledge and comprehension of the models.
activities in the context of programming-in-the-large. The Knowledge and comprehension of the controlling activities.
students should achieve a level of skill in using tools, apply-
ing methods, and synthesizing software work products.
Project courses or other forms of software experience a 3e
most appropriate at this level. Topics: Various methods of software generation, including

designing and coding from scratch, use of reusable con-
Social and ethical issues are also important to the education peignin cding exam such as mathemal oc-

ponents (including examples such as mathematical proce-
and development of a professional software engineer. Ex- dure libraries, packages designed specifically for reuse, Ada
amples are privacy, data security, and software piracy. We generic program units, and program concatenation as with
do not recommend a course or unit specifically on these pipes), use of program or application generators and very
issues, but rather encourage instructors to frind opportunities high level languages, role of prototyping. Factors affecting
to discuss them in appropriate contexts in all courses and to choice of a software generation method. Effects of genera-
set an example for students. tion method on other software development activities, such

The curriculum topics are described below in units of un- as testing and maintenance.

specifed size. Nearly all have a software engineering ac- Aspects: Models of software generation. Representations
tivity as the focus. For each, we provide a short description for software generation, including design and implemen-
of the subtopics to be covered, the aspects of the activity tation languages, very high level languages, and application
that are most important, and the educational objectives of generators. Tools to support generation methods, including
the unit. Curriculum modules and detailed course descrip- application generators.
tions in each of these areas are under development at the Objectives: Knowledge and comprehension of the various
SEI. methods of software generation. Ability to apply each

method when supported by appropriate tools. Ability to
1. The Software Engineering Process evaluate methods and choose the appropriate ones for each

Topics: The software engineering process and software Project

products. All of the softwame engineering activities. The
concepts of software process model and software product 4. Software Maintenance
life cycle model. Topics: Maintenance as a part of software evolution.

Aspects: Al aspects, a appropriate for the various ac- Reasons for maintenance. Kinds of maintenance
tivities. (perfective, adaptive, corrective). Comparison of develop-

Objectives: Knowledge of activities and aspects. Some ment activities during initial product development and

comprehension of the issues, especially the distinctions during maintenance. Controlling activities and disciplines

tI

Software Engineering Education 13

that affect maintenance. Designing for maintainability, formal verification methods.

Techniques for maintenance.

Aspects: Models of maintenance. Current methods. S. Software Quality Assurance
Objectives: Knowledge and comprehension of the issues of Topics: Software quality assurance as a controlling dis-
software maintenance and current maintenance practice. cipline. Organizational structures for quality assurance. In-

dependent verification and validation teams. Test and
S. Technical Communication evaluation teams. Software technical reviews. Software

quality assurance plans.
Topics: Fundamentals of technical communication. Oral
and written communications. Preparing oral presentations Aspects: Current industrial ractice for quality assurance.
and supporting materials. Software project documentation Documents including quality assurance plans, inspection
of all kinds. reports, audits, and validation test reports.
Aspects: Principles of communication. Document prepara- Objectives: Knowledge and comprehension of quality as-

tion tools. Standards for presentations and documents. surance planning. Ability to analyze and synthesize quality
assurance plans. Ability to perform technical reviews.

Objectives: Knowledge of fundamentals of technical com- Knowledge and comprehension of the fundamentals of
munication and of software documentation. Application of program verification, and its role in quality assurance.
fundamentals to oral and written communications. Ability Ability to apply concepts of quality assurance as part of a
to analyze, synthesize, and evaluate technical communica- quality assurance team.
tions.

9. Software Project Organizational and Management
6. Software Configuration Management Issues
Topics: Concepts of configuration management. Its role in Topics: Project planning: choice of process model, project
controlling software evolution. Maintaining product in- scheduling and milestones. Staffing: development team
tegrity. Change control and version control. Organizational organizations, quality assurance teams. Resource alloca-
structures for configuration management. tion.

Aspects: Fundamental principles. Tools (such as sccs or Aspects: Fundamental concepts and principles. Scheduling
rcs). Documentation, including configuration management representations and tools. Project documents.
plans. Objectives: Knowledge and comprehension of concepts and

Objectives: Knowledge and comprehension of the issues. issues. It is not expected that a student, after studying this
Ability to apply the knowledge to develop a configuration material, will immediately be ready to manage a software
management plan and to use appropriate tools. project.

7. Software Quality Issues 10. Software Project Economics

Topics: Definitions of quality. Factors affecting software Topics: Cost estimation, cost/benefit analysis, risk analysis
quality. Planning for quality. Quality concerns in each for software projects. Factors that affect cost.
phase of a software life cycle, with special emphasis on the
specification of the pervasive system attributes. Quality Aspects: Models of cost estimation. Current techniques and
measurement and standards. Software correctness assess- tools for cost estimation.
ment principles and methods. The role of formal verifica- Objectives; Knowledge and comprehension of models and
tion and the role of testing. techniques. Ability to apply the knowledge to tool use.

Aspects: Assessment of software quality: appropriate
measures. Tools to help perform measurement. Correctness 11. Software Operational Issues
assessment methods, including testing and formal verifica- Topics: Organizational issues related to the use of a
tion. Formal models of program verification, software system in an organization. Training, system instal-

Objectives: Knowledge and comprehension of software lation, system transition, operation, retirement. User
quality issues and correctness methods. Ability to apply documentation.

I

Software Engineering Education 14

Aspects: User documentation and training materials. Methods for system design, including object oriented

Objectives: Knowledge and comprehension of the major design, and tools to support those methods. Iterative design

issues. techniques. Performance prediction.

Objectives: Comprehension of the issues in system design,

12. Requirements Analysis emphasizing engineering tradeoffs. Ability to use ap-
propriate system design models, methods, and tools, includ-

Topics: The process of interacting with the customer to ing those for specifying interfaces. Ability to analyze and
determine system requirements. Defining software require- synthesize small systems.
ments. Identifying functional, performance, and other re-
quirements: the pervasive system requirements. Tech-
niques to identify requirements, including prototyping,
modeling, and simulation. Topics: Principles of design, including abstraction and in-
Aspects: Principles and models of requirements. Tech- formation hiding, modularity, reuse, prototyping. Levels of

niques of requirement identification. Tools to support these design. Design representations. Design practices and tech-

techniques, if available. Assessing requirements. Corn- niques. Examples of design paradigms for well-understood

munication with the customer. systems.

Objectives: Knowledge and comprehension of the concepts Aspects: Principles of software design. One or more design

of requirements analysis and the different classes of require- notations or languages. One or more widely used design

ments. Knowledge of requirements analysis techniques. methods and supporting tools, if available. Assessment of

Ability to apply techniques and analyze and synthesize re- the quality of a design. Design documentation.

quirements for simple systems. Objectives: Knowledge and comprehension of one or more
design representations, design methods, and supporting

13. Specification tools, if available. Ability to analyze and synthesize designs
for software systems. Ability to apply methods and tools as

Topics: Objectives of the specification process. Form, con- part of a design team.
tent, and users of a specifications document. Specifying
functional, performance, reliability, and other requirements 16. Software Implementation
of systems. Formal models and representations of specifica-
tions. Specification standards. Topics: Relationship of design and implementation. Fea-

Aspects: Formal models and representations. Specification tures of modem procedural languages related to design prin-

techniques and tools that support them, if available. Assess- ciples. Implementation issues including reusable com-

ment of a specification for attributes such as consistency ponents and application generators. Programming support

and completeness. Specification documents. environment concepts.

Objectives: Knowledge and comprehension of the fun- Aspects: One or more modem implementation languages

damental concepts of specification. Knowledge of and supporting tools. Assessment of implementations:

specification models, representations, and techniques, and coding standards and metrics.

the ability to apply or use one or more. Ability to analyze Objectives: Ability to analyze, synthesize, and evaluate the
and synthesize a specification document for a simple sys- implementation of small systems.
tern.

17. Software Testing
14. System Design Topics: The r'.le of testing and its relationship to quality

Topics: The role of system design and software design. assurance. The nature of and limitations of testing. Levels
How design fits into a life cycle. Software as a component of testing, unit, integration, acceptance, etc. Detailed study
of a system. Hardware vs. software tradeoffs for system of testing at the unit level. Formal models of testing. Test
performance and flexibility. Subsystem definition and planning. Black box and white box testing. Building test-
design. Design of high level interfaces, both hardware to ing environments. Test case generation. Test result
software and software to software. analysis.

Aspects: System modeling techniques and representations. Aspects: Testing principles and models. Tools to support

I

Software Engineering Education 15

specific kinds of tests. Assessment of testing; testing stan- of operator input errors, uses of color in displays.
dards. Test documentation. Objectives: Comprehension of the major issues. Ability to

Objectives: Knowledge and comprehension of the role and apply design techniques to produce good human interfaces.
limitations of testing. Ability to apply test tools and tech- Ability to design and conduct experiments with interfaces,
niques. Ability to analyze test plans and test results. to analyze the results, and to improve the design as a result.
Ability to synthesize a test plan.

The Software Engineering Experience Com-
18. System Integration ponent

Topics: Testing at the software system level. Integration of In addition to coursework covering the units described
software and hardware components of a system. Uses of above, the curriculum should incorporate a significant
simulation for missing hardware components. Strategies for software engineering experience component representing at
gradual integration and testing. least 30% of the student's work.

Aspects: Methods and supporting tools for system testing One form of experience is a cooperative program with in-
and system integration. Assessment of test results and diag- dustry, which has been common in undergraduate engineer-
nosing system faults. Documentation: integration plans, ing curricula for many years. The University of Stirling
test results. uses this form in their Master of Science in Software En-

Objectives: Comprehension of the issues and techniques of gineering program [BudgenSaj. Students enter the

system integration. Ability to apply the techniques to do program in the fall semester of a four semester program.

system integration and testing. Ability to develop system Between the first and second semesters they spend two to

test and integration plans. Ability to interpret test results three weeks in industry, as an introduction to that company.

and diagnose system faults. They return to the company in July for a six month stay,
during which time they participate in a professionally
managed project. The fourth semester is devoted to a thesis

19. Embedded Real-time Systems or project report, based in part on their industrial experience.

Topics: Characteristics of embedded real-time systems. Imperial College of Science and Technology has a similar
Existence of hard timing requirements. Concurrency in sys- industry experience as part of a four year program leading to
tems and representing concurrency in requirements a Bachelor of Science in Engineering degree (Lehman86a.
specifications, designs, and code. Issues related to complex For this purpose, the College has set up Imperial Software
interfaces between devices and between software and Technology, Ltd. (IST), in partnership with the National
devices. Criticality of embedded systems and issues of Westminster Bank PLC, The Plessey Company PLC, and
obustmess, reliability, and fault tolerance. Input and output PA International. IST is an independent, technically and

considerations, including unusual data representations re- commercially successful company providing software tech-
quired by devices. Issues related to the cognizance of time. nology products and services.
Issues related to the inability to test systems adequately.

Objectives: Comprehension of the significant problems in The more common form of experience, however, is one or
the analysis, design, and construction of embedded real-time more project courses as part of the curriculum. Two forms
systems. Ability to produce small systems that involve in- are common: a project course as a capstone following all
terrupt handling, low level input and output, concurrency, the lecture courses, and a project that is integrated with one
and hard timing requirements, preferably in a high level or more of the lecture courses.
language. The Wang Institute of Graduate Studies, Texas Christian

University, ,nd Seattle University have each offered the
20. Human Interfaces MSE degree for several years, and the College of St.
Topics: Software engineering factors applying design Thomas is in its third year of offering such a degree (the
techniques to human interface problems, including concepts TCU and St Thomas degrees are actually named Master of
of device independence and virtual terminals. Human fac- Software Design and Development). Each incorporates a
tors: definition and effects of screen clutter, assumptions capstone project course into its curriculum [McKwiman$6,
about the class of users of a system, robustness and handling Comer86, MiIs86]. In recent years, the Wang Institute has

chosen projects related to software tools that could be useful

-and"

Software Engineering Education 16

to future students. TCU takes the professional backgrounds Arizona State University has attempted to build the project
of its students into consideration when choosing projects. experience into a sequence of courses, combining lectures
Seattle sometimes solicits real projects from outside the with practice [Colofello82]. The four courses were Software
university. Analysis (requirements and specifications), Software
It is worth noting that the project course descriptions forDesign Software Testing, and Software Maintenance. The

courses were offered in sequence so that a single project
three of these institutions do not mention software main- could be continued through all four. However, the students
tenance. Educators and practitioners alike have long reog- could take the courses in any order, and although many
nized that maintenance requires the majority of resources in students did take them in the normal order, the turnover in
most large software systems. The minimal coverage of enrollment from one semester to the next gave a realistic
maintenance in software engineering curricula may he at- experience.
tributed to several factors: there does not appear to be a

coherent, teachable body of knowledge on software main- We do not believe that there is only one correct model for
tenance; current thinking on improving the maintenance providing software engineering experience. It can be argued
process is primarily based on improving the development that experience is the basis for understanding the abstrac-
process including the capturing of development information tions of processes that make up formal methods and that
for maintenance purposes; and that giving students main- allow reasoning about processes. Therefore we should give
tenance experience requires that there already exists a sig- the students experience first, with some guidance, and then
nificant software system with appropriate documentation show them that the formalisms are abstractions of what they
and change requests, the preparation of which is completely have been doing. It can also be argued that we should teach
beyond the capabilities of an instructor in the normal time "theory" and formalisms first, and then let the students try
allotted to course preparation (the SEI has a small project them in capstone project courses.
underway to address this final problem). No matter what form the experience component takes, it
The University of Southern California has built an in- should provide as broad an experience as possible. It is
frastructure for student projects that continue beyond the especially important for the students to experience, if not
boundaries of semesters and groups of students. The Sys- perform, the control activities and the management ac-
tem Factory Project [Scacchi86] has created an experimental tivities. Without these, the project can be little more than
organizational environment for developing large software advanced programming.
systems that allows students to encounter many of the
problems associated with professional software engineering The MSE Curriculum Structured as Semester
and to begin to rind effective solutions to the problems. To Courses
date, over 250 graduate students have worked on the project A typical master's degree curriculum requires 30 to 36
and have developed a large collection of software tools. semester hours4 credit. The units described in the previous

The University of Toronto has added the element of section can be structured as semester courses of three hours
software economics to its project course [Horning76. each (except for Technical Communication, which may be a
Wortman86]. The Software Hut (a small software house) one or two hour course), totalling approximately 21
approach requires student teams to build modules of a larger semester hours, leaving time for the software engineering
system, to try to sell their module to other teams (in com- experience component and for some electives. This struc-
petition with teams that have developed the same module), ture is described below.
to evaluate and buy other modules to complete the system,
and to make changes in purchased modules. At the end of
the course, systems were "sold" to a "customer" at prices
based on the system quality (as determined by the
instructor's letter grade for the system). The instructor
reports that this course had a very different character from 'Now for maders not familiar wish United States univenities: A

seAmuster how repsesems one cotmct hour (Usually lectum) and two to threeprevious project courses. The students' attempts to max- hours of outside work by the student per week fora semester of about
imize their profits gave the course the flavor of a game and raft'e weeks. A cows coven a single sbjet am of a discipline, ond

helped motivate the use of many techniques for increased typiealy momtshree heus par week. for which tie studen eaes three
semester hours of credit. A graduate student with teachiWg or reeah

software quality, responsibilities might take three courses (nine semester hours) each
semester a student without such duties might take five courses.

Software Engineering Education 17

Introduction to Software Engineering The courses outlined here focus almost exclusively on the
Units: The Software Engineering Process, Software Evolu- software engineering process. It is recommended that the
tion. Software Generation, Software Maintenance, Software electives focus on the product. Courses based on particular
Configuration Management system classes (such as distributed systems or expert

systems) or on pervasive system attributes (such as fault
tolerance or maintainability) will complement the process

Software Quality courses.
Units: Software Quality Issues. Software Quality A- Because of the wide range of choices for electives, students
surnce can be well served by creative course design. For example,

several small units of material (roughly one semester hour
Software Project Management each) might be prepared by several different instructors.

Units: Software Project Organizational and Management Three of these could then be offered sequentially in one
Issues, Software Operational Issues semester, under the title Topics in Software Engineering.

with different units offered in different semesters.

Software Requirements Specification Resources
Units: Requirements Analysis, Specification Any new degree program will require a commitment of

resources by a university. We cannot give a prescription for
System Design the exact kinds and levels of resources needed for an MSE

Units: System Design, Embedded Real-time Systems, program, but we can make some observations (in large part

Human Interfaces bused on the experience of the schools that currently offer
an MSE).

Software Design and Implementation Faculty. Because software engineering is a new discipline,
Units: Software Design, Software Implementation universities cannot simply recruit faculty from those with

doctorates in software engineering--there are none. Fur-
Software Testing and Integration thermore, because most of the expertise in software en-

gineering is found among the best practitioners in industry,
Units: Testing, System Integration the majority of whom do not have a doctorate in any field,

universities should give very careful consideration to theThe unit on technical communication should be prsne selection of software engineering faculty and to the

early in the curriculum but need not be a separate course. It academic reward structure for those faculty.

may be better integrated into other courses at appropriate

places. Oral presentation skills might be taught along with There is a particularly difficult dilemma here. The faculty
software technical reviews, and writing skills might be needs to be formed of persons committed to the academic
taught in the fust course where significant documents are profession, including curriculum development, teaching,
required. We recommend that instructors look for pos- and scholarly activity. At the same time, the expertise in
sibilities to collaborate in the development of this unit with software engineering may be outside the university, in per-
a university's English or Communications Department. sons committed to the software engineering profession.

The material learned in the technical communication course It may be tempting to try to build a new program with a
should be reinforced throughout the curriculum by requiring substantial number of adjunct faculty from local industry.
the students to produce written documents and to make oral We recommend against this approach, primarily because we
presentations. In the past, many instructors in the sciences believe there must be a coherence and continuity to the core
and engineering have shown a reluctance to make technical curriculum that can only be achieved with faculty that live
communication a factor in student evaluations and grades, with it every day and from year to year. The curriculum
Becamuse of its imporance in software engineering, we must be more than a set of independent courses.
strongly urge instructors to make it an integral part of all
apmoriate courses. Adjunct faculty can be used effectively in seminar and

topics courses, but the subjects to be covered in those

Software Engineering Education 18

courses should be chosen by the regular faculty and should Software. New software tools will continue to shape the
serve a specific purpose in the curriculum. We estimate that way software engineers work, so the use of tools should be a
ten to twenty percent of courses might be taught by adjunct major part of the curriculum. Some examples of important
taculty. classes of tools are:

Most software engineering courses, especially project * those that support communication, such as word or

courses, will require a large commitment of time by the document processing systems, electronic mail and

instructor in addition to traditional teaching activities. This bulletin boards, and text editors;

time must be devoted to activities such as developing the * language-oriented tools, such as compilers, profilers,
computing environment, creating software tools or acquir- cross reference generators, syntax analyzers, syntax-
ing and rehosting tools, and playing a project management directed editors, path analyzers, and prettyprinters;
role for student project teams. In addition, there are ad-
ditional time costs in starting a new degree program and in e project management tools, including those for project
developing the relationships with the industrial community scheduling, resource management, and cost estima-
that are useful for software engineering education. There- tion;
fore, we recommend that the teaching load for faculty, at
least in the early years of a new program, be one course per * application generators and other very high level lan-
semester. guage tools.

In selecting and rewarding faculty, we also recommend that The SEI plans to work with software engineering resear-

significant professional experience in software engineering chers and educators to identify, develop, and disseminate

be considered along with academic and research experience. additional software tools for use in education.

Most advances in software engineering are likely to be
found in industry, rather than in university laboratories, so Hardware. Even a university with existing computer
faculty should be encouraged to be part of that industry science degree programs should plan a significant increase
environment whenever possible. The National Science in hardware to support an MSE program. The trend in
Board [NSBS6] suggests a variety of faculty professional software engineering is toward a local network of powerful
development efforts for engineering faculty, and we recom- workstations for developers. The cost of such workstations
mend that they be studied by schools considering an MSE continues to fall, with typical examples now available for
program. $4,000 to $12,000 with educational discounts. Both larger

and smaller machines are also likely to be useful because
The number of faculty needed depends on the number of there is a growing set of useful software tools on these
courses to be offered, which in turn depends on the number machines. High quality printers are also needed to support
of sadents in the program. We estimate that a program the substantial amount of documentation produced in
based on the curriculum described here and that serves software engineering courses.
about twenty graduates per year would require a minimum
of five full time faculty. Part of the process of planning a new degree program is the

development of a detailed resource requirements list and a

Staff. Because of the substantial computing resources plan for acquiring those resources. University committees

needed to support an MSE program, the students and faculty and state boards involved in the approval process need this

will need the support of a facilities staff. Wang Institute has information. The SEI, when requested, will work closely

reported needing two full time staff members to maintain with its Academic Affiliates to do this planning.

the software tools used by the students. A hardware main-
tenance staff may also be needed.

As software engineering becomes mire tool-intensive, there A One Semester Course In Software
will be an increasing need for training in tool use. This will Engineering
be true in universities also. It is recommended that the staff Establishing a number of MSE programs will eventually
include a person responsible for offering the appropriate have an impact on the number and quality of professional
training in a structured way, separate from the normal software engineers, but for the next five years we expect

very few such programs producing very few graduates. A

I

Software Engineering Education 19

more moderate goal, but one that can be achieved very software engineering process, it is necessary to track all
quickly, is to provide some software engineering education resources used in the course of the project. This includes
within existing undergraduate computer science programs. both student time and machine time. Students should be
For many schools, the starting point is a one semester elec- asked to keep accurate records of their activities and to
tive course, probably at the senior level, that helps students make appropriate reports at weekly intervals. Since most
understand the major differences between computer science student computing environments (personal computers or
and software engineering, and that helps prepare the stu- workstations) do not do extensive accounting of time and
dents for careers or further education in software engineer- resources used, the students ,hould also be asked to record
ing. and report their machine use. The student project ad-

ministrator should convert these reports to project costs
The emphasis of the course should be on those things that using typical industry values for salaries and overhead costs.
are most different from typical student programming:
project teams in which different members play very dif- In order for the project to be completed, it must be of ap-
ferent roles, and the discipline imposed on the process by propriate size for the skills of the students. If they will need
configuration management, quality assurance, and resource to learn a new computer system or programming language
constraints. To accomplish this, the course should be struc- for the course, a smaller project should be attempted. In any
tured as a software development project, with students as case, some flexibility can be achieved if the life cycle
the project team. Lectures will be mixed with project meet- models segment of the first lecture emphasizes phased
ings and the various reviews and inspections of work development or iterative enhancement models for this
products. project. It is then possible to modify the project completion

goals several weeks into the project.
A good course, like a good project, needs a good manager.

Instructors will have to be the project managers because The SEI has prepared a detailed (750 pages) description of
only they will have sufficient authority and knowledge to this course including a full, annotated syllabus, recom-
keep the project on schedule. The students will still ex- mended texts and readings, descriptions of the student roles
perience project management, although from the point of and responsibilities, sample examinations, and examples of
view of the managed rather than the manager. (In the fu- all the project documents expected [Tomayko87].
ture, students in an MSE program may play the role of
project manager for the undergraduate course.) Project Team Roles. The exact structure of the student

Because all students have already had a lot of experience project team will necessarily be affected by the class size,

writing code, we believe it is not necessary for all of them to but the roles described below are essential. The numbers in

write more code in this course. Instead, it is much more parentheses indicate a suggested number of students for the

important for them to be part of an entire project team. Not particular role. If the class is substantially larger than this

every student can play every role on the team, but each model, then two parallel development teams (design, ir-

student will see each role being played and will interact with plementation, and testing) might be used.

students in other roles. A suggested set of roles is outlined Project Manager (1): The instructor usually plays this role.
below.

Project Administrator (1): This student is responsible forMost of the products of the course, like most of the products tracking resource usage and other administrative activities.

of a software project, are documents. Therefore it is impor-

tant that all students have skills using some kind of docu- Principal Architect (1): This student is responsible for the
ment production software. In addition, it is critically impor- overall specification of the system and writes the require-
tant that the instructor be prepared to exemplify all the ments and specification documents.
necessary kinds of documents to be produced, perhaps by
giving copies of documents from another project and by Configuration Management (2-3): These students are

preparing document skeletons or templates for student use. responsible for writing the configuration management plan,

Instructors can be guided by existing standards for these establishing a configuration control board, creating neces-

documents, such as those established by the DoD, NASA, sary forms for configuration management procedures, main-

and IEEE. raining a repository of current and previous software con-
figuration items, receiving change requests and discrepancy

In order for students to understand the budget aspects of the reports and presenting them to the configuration control

"JA

Software Engineering Education 20

board, ensuring that approved changes are made, and con- 3. Requirements Engineering: How requirements are
ducting audits of the configuration management process. determined. Interactions with customers, marketing, and

development organizations. Stating requirements and
Quality Assurance (2-3): These students are responsible for developing the requirements documenL
establishing documentation and source code standards, plan-
ning and conducting reviews, audits, and inspections of 4. Controlling Disciplines: Quality Assurance and Con-
documentation, source code, and testing procedures, and figuration Management: What software QA and configura-
participating in the activities of the configuration control tion management organizations do in a software project.
board. Relationship of their activities to the developers. Concept of

Design (2-4): These students are responsible for detailed independent verification and validation.

system design, including choice of a design method and 5. Cost, Size, and Manpower Planning: These topics re-
representation, and for writing the design documents. late to project management. Cost estimation techniques and

methods such as COCOMO. Software size estimating and
Implementation (2-4): These students implement the design its relation to schedule and cost. Staff loading on a project
as provided by the design team. Deviations from the design over the life cycle. Mythical man-month discussion.
must be submitted to and approved by the configuration
control board. 6. Review of requirements document; quality assurance

and configuration management plans due.
Test and Evaluation (2-3): These students develop the test

plan and strategy for unit and system testing, perform those 7. Specification Techniques: Formal specification tools
tests, and record the results of the tests. They lead the and techniques such as on-line tools and data flow diagrams.
implementors in integration testing. Functional specification development.

Ver~flcation and Validation (3-5): These students are 8. Design Concepts and Methods: Survey of design
responsible for development of test plans and test data, and methods: Top-down structured, Jackson, Warnier-Orr,
for planning and conducting the final acceptance tests of the object-oriented, etc. Advantages and disadvantages of each
system. This includes functional, performance, stress, and in differing problem domains.
validation testing. 9. Design Concepts and Methods: Continued discussion.
Document Manager (1): This student is responsible for
user-level documentation. 10. Review of specification document.

1 Preliminary design review; test plans and user docu-
Course Outlin. The course outline below is structured as ment outline due.
22 class meetings of 75 to 90 minutes each, and thus can
easily be taught in a semester with classes twice each week. 12. Design Representation: Using structure charts, HIPO
The remaining class time should be used for examinations, charts, data flow diagrams, pseudocode, and other tools in
for additional emphasis on topics of the instructor's choice, implementing designs.
and for recovering from unexpected delays. 13. Structured Programming and Implementation

1. Software Engineering: Programs as ProductslLife Considerations: Review of the concepts of structured pro-
Cycle Models: Introduction to the concept of software en- gramming. Discussion of Bohm and Jacopini paper
gineering as opposed to computer science or programming. [Bohm66]. Applying structure to non-structured tools such
Discussion of software as products to be used by people as assembly languages. Coding considerations in
other than the developers Presentation of different life cycle FORTRAN and COBOL versus Pascal and Ada.
models, such as waterfall, rapid prototype, incremental
development, etc. Introduction to the class project. 14. Configuration control board meeting to close dis-

crepancy reports and change requests against the require-
2. Developnvnt StandardslProject Organization: Stan- ments and specification.

dards for software development, including government stan-
dards, [EME standards, and corporate standards. Models of 15. Critical design review.
team organization, such as surgical team, democratic, and 16. Software Testing and Integration Concepts: Unit
chief programmer.

Software Engineering Education 21

testing techniques, white-box versus black-box testing. Con- a senior level software engineering course, such as the one
cept of coverage. Integration methods, such as top-down, described in the previous section, in existing computer
bottom-up, and Big Bang. Development of testing and in- science degree programs. The second is continued evolu-
tegration suites. tion of lower level programming courses in the direction of

increased consideration of concepts and language features
17. Verification and Validation: Formal verification, that support programming-in-the-large, primarily data

concept of validation and acceptance testing. Development abstraction, information hiding, concurrency, and exception
of validation suites. Automated testing. handing.

18. Verfi cation and Validation: Continued discussion. There are also two longer term possibilities in under-

19. Code inspections; release of code to test and evalua- graduate software engineering education to be explored.

tion team. The first is the development of an undergraduate def'ree
with the same kind of expectations of its graduates as is now

20. Post-Development Software Evolution: The software the case with traditional undergraduate engineering degrees.
maintenance problem. Designing for maintenance. The SEI Education Program will investigate such degree
Developing a maintenance handbook for a software product. programs, although our best recommendation today is that it
Reverse-engineering of software product documentation to is premature. The body of knowledge needed by software
improve maintainability of existing code. engineers depends heavily on undergraduate computer

science knowledge, and both cannot easily be taught in a
21. User Documentation: Characteristics of good user four year program.

documentation. Writing user documentation if you are a
developer. Document organization and style; ways to assist As the distinctions between computer science and software
the reader. engineering become clearer, it is feasible that separate un-

dergraduate programs will emerge. We would expect that
22. Final product review and acceptance. they would have two years of common studies, much as the

traditional engineering disciplines share an engineering
core. The third year would also probably have some com-

The Future of Software Engineering mon courses, while the fourth year might be entirely dif-

Education ferent between the two programs.

A second, quite different possibility for undergraduate
Software engineering is an emerging discipline, and it will education is based on the expectation of some members of
be a challenge to educators to keep pace. The next ten to the software engineering community that the profession will
fifteen years can be expected to bring many changes in the partition itself into at least two levels of skill. Software
structure of software engineering academic programs. engineers at the higher level will be project leaders, system

We expect that computer science and software engineering architects, and designers, while those at the lower levels will

will continue to distinguish themselves from each other. be skilled in the use of particular software tools or in per-

Also, even though we expect an overall increase in the forming particular tasks, such as testing. The two levels of

resources devoted to education in these two fields, it is practitioners will require different levels of education and

probable that software engineering education will grow experience, the higher level requiring an MSE degree and

faster than the two combined, thus siphoning off some of the lower level perhaps a bachelor's degree.

the resources currently devoted to computer science educa- There are precedents for this kind of partitioning of effort.
ion. However, we do not expect many universities to estab- The data processing community has long distinguished sys-
lish separate academic departments anytime soon, so the tems analysts from coders, and the engineering community
resource tradeoffs will be intradepartmental and relatively is supported by engineering technicians. It is too soon to
easy to handle. see clear trends in software engineering, but the SEI Educa-

Undergraduate Education ion Program plans to continue monitoring the profession.

We believe there are two immediate trends in undergraduate Graduate Education
software engineering education. The first is the adoption of A professional master's degree in software engineering

Lif

Software Engineering Education 22

(MSE) is our current recommendation for the most effective SE! to reach potential users.
graduate education. Our preliminary suggestions for the
content of such a degree program have been presented in Separate affiliate programs serve academic, industry, and

this report. government organizations. All provide for exchange of in-
formation, but their most important aspect is that they en-

The software community generally agrees that experience courage staff from affiliated organizations to come to the
still plays a very large role in the development of a good SEI for an extended period to work with us in the inves-
software engineer. Some persons have suggested that tigation and development of new software engineering tech-
software engineering may want to look to medicine for nology.
educational models, such as internships, residencies, and
teaching hospitals. Thus the structure of the experiential Academic Affiliates Program. The Academic Affiliates
component of the MSE program will continue to be an area Program provides a means whereby educational institutions
of investigation for the SET. can join the SEI in cooperative efforts of mutual interest.

Doctoral level education in software engineering is also pos- Faculty members from affiliate institutions have been major

sible. The Wang Institute of Graduate Studies has done contributors to the Graduate Curriculum Project and may

preliminary development of a program leading to a Doctor also apply for visiting positions in any of the SET's research

of Philosophy degree in software engineering. The rapid or development projects.
growth of software engineering as an academic discipline Academic affiliates normally participate in the educational
leads us to believe such programs will begin to appear in the activities of the SEI, including faculty development
1990s. workshops and the annual Conference on Software En-

gineering Education. We also ask them to share their ex-
Certification and Accreditation periences and ideas with us, which we in turn share with

Although it is certainly premature to begin, suggestions that other interested parties.
software engineers be certified and that software engineer-degre pogrms b acredted avebee mad. Tere Affiliate institutions wishing to xvelop a graduate level
ing degree programs be accredited have been made. eredesignated
is certainly precedent for both in the traditional engineering c urriculum e Sie e may wr desed
disciplines. The SE! does not intend to be in the business of Graduate Curriculum Test Sites. The SEI works closelywith these schools to tailor the curriculum, courses, anddoing either but expects to serve as a resource to the mtrast hi atclrnes

software engineering community in these matters. materials to their particular needs.

A related area that the SE! does expect to investigate is the Industry Affiliates Program. The Industry Affiliates
assessment of student backgrounds relative to prerequisites Program provides for direct interactions between the SE!
for ar MSE program. Such assessments are likely to be technical staff and the commercial segment of the software
useful to instructors for purposes of choosing appropriate community. These organizations are the sources of many of
starting points for the first courses in the curriculum, and to the important new ideas in software engineering, which the
students for purposes of identifying areas were extra work is SET can then investigate and develop. The companies can
needed. We also expect to offer self-study guidelines and send resident affiliates to the SE! to participate in that
materials for students wishing to remove prerequisite development, to absorb information from other SEI projects,
deficiencies, and finally return to their companies with new technology.

Industry affiliates also interact with the SE! Education
Program. Software engineers from several companies have
already come to the SE! to share their knowledge with us
for the development of curriculum modules, and some

SEI Affiliate Programs modules have been packaged and taught as short courses at
The SET has established a number of affiliate programs to the affiliates' sites.
promote direct interactions between the Institute and the
software engineering community. These interactions we Government Affiliates Program. The Government Af-
critical to the success of the SE!, since they are the sources filiates Program is similar to the Industry Affiliates
of new ideas and the best path for new technology from the Program, but the interactions are with government organiza-

Software Engineering Education 23

tions. The Department of Defense is perhaps the world's References
larger purchaser and maintainer of software, and the SEI
plays an important role as a resource for the various defense [AFIPS80]
agencies involved. AFIPS Taxonomy Committee. Taxonomy of Computer

For additional information on the SEI affiliate programs, Science & Engineering. AFPS Press, Arlington, VA, 1980.

contact the Director of Affiliate Relations at the SEI. [Ardis85]
Ardis, Mark, James Bouhana, Richard Fairley, Susan Ger-
hart, Nancy Martin, and William McKeeman. Core Course
Documentation: Master's Degree Program in Software
Engineering. TR-85-17, Wang Institute of Graduate

Acknowledgements Studies, Sept., 1986.

The curriculum recommendations in this report have [Austing78]
benefitted from the suggestions of a large number of per- Austing, Richard, Bruce Barnes, Della Bonnette, Gerald
sons. We had valuable discussions with many members of Engle, and Gordon Stokes. Curriculum '78: Recommen-
the SEI technical staff, including Mario Barbacci, Clyde dations for the Undergraduate Program in Computer
Chittister, Lionel Deimel, Larry Druffel, Peter Feiler, Pris- Science. Comm. ACM 22, 3 (March 1979), 147-166.
cilia Fowler, Dick Martin, John Nestor, Joe Newcomer,
Mary Shaw, Nelson Weiderman, Chuck Weinstock, and Bill (Babb79]
Wood, and with visiting staff members Bob Aiken, Brad Babb, Robert G., and Leonard L. Tripp. An Approach to
Brown, David Budgen, Fred Cohen, Jim Collofello, Bob Defining Areas Within the Field of Software Engineering.
Glass, Paul Jorgensen, Nancy Leveson, Ev Mills, Rich Sin- ACM Software Engineering Notes 4,4 (Oct. 1979), 9-17.
covec, Joe Turner, and Peggy Wright. BarbaccB5]

Earlier versions of the MSE recommendations were written Barbacci, Mario R., A. Nico Habermann, and Mary Shaw.
by Jim Collofello and Jim Tomayko, and reviewed by Evans The Software Engineering Institute: Bridging Practice and
Adams, David Barnard, Dan Burton, Phil D'Angelo, David Potential. IEEE Software 2, 6 (Nov. 1985), 4-21.
Gries, Ralph Johnson, David Lamb, Manny Lehman, John
Manley, John McAlpin, Richard Nance, Roger Pressman, [Bloom56]
Dieter Rombach, George Rowland, Viswa Santhanam, Walt Bloom, B. Taxonomy of Educational Objectives: Handbook
Scacchi, Roger Smeaton, Joe Touch, and K. C. Wong. I: Cognitive Domain. David McKay, New York, 1956.

An early version of the MSE curriculum was the subject of [Bohm66]
discussion at the Software Engineering Education Bohm, C., and G. Jacopini. Flow Diagrams, Turing
Workshop, which was held at the SEI in February, 1986 Machines and Languages with Only Two Formation Rules.
[Gibbs86c]. In addition to several of the persons mentioned Comm. ACM 9, 5 (May 1966), 366-371.
above, the following participants at the workshop con-
tributed ideas to the current curriculum recommendations: [Brooks86]
Bruce Barnes, Victor Basili, Jon Bentley, Gordon Bradley, Brooks, Frederick P. No Silver Bullet-Essence and Ac-
Fred Brooks, James Comer, Dick Fairley, Peter Freeman, cidents of Software Engineering. In Information Processing
Susan Gerhart, Nico Habermann, Bill McKeeman, Al 86, H.-J. Kugler, ed. IFIP, 1986.
Pietrasanta, Bill Richardson, Bill Riddle, Walter Seward, Ed [Budgen8a]
Smith, Dick Thayer, David Wortman, and Bill Wulf. Budgen, David, Peter Henderson, and Chic Rattray.

Academic/Industrial Collaboration in a postgraduate MSc
course in Software Engineering. In Software Engineering
Education: The Educational Needs of the Software
Community, Gibbs, Norman E., and Richard E. Fairley, eds.
Springer-Verlag, New York, 1986, 201-211.

Software Engineering Education 24

[Budgen86b] [Fairley8O]
Budgen, David, and Richard Sincovec. Introduction to Fairley, Richard E. Software Engineering Education. Proc.
Software Design. Curriculum Module SEI-CM-2.0, Thirteenth Hawaii Intl. Conf. System Sciences. 1980, 70-75.
Software Engineering Institute, Carnegie-Mellon Univer-
sity, Sept., 1986. [Freeman76]

Freeman, Peter, Anthony I. Wasserman, and Richard
[CMU80] E. Fairley. Essential Elements of Software Engineering
The Computer Science Ph.D. Program at Carnegie-Mellon Education. Proc. 2nd Intl. Conf. on Software Engineering.
University. Department of Computer Science, Carnegie- 1976, 116-122.
Mellon University. Dec., 1980.

[Freeman78]

[Cohen86] Freeman, Peter, and Anthony I. Wasserman. A Proposed
Cohen, Fred. Information Protection. Curriculum Module Curriculum for Software Engineering Education. Proc. 3rd
SEI-CM-5.0, Software Engineering Institute, Carnegie- Intl. Conf. on Software Engineering. May, 1978, 56-62.
Mellon University, Sept., 1986.

[Gibbs86a]
[Collofello82] Gibbs, Norman, and Allen Tucker. A Model Curriculum for
Collofello, James S. A Project-Unified Software Engineer- a Liberal Arts Degree in Computer Science. Comm. ACM
ing Course Sequence. Proc. Thirteenth SIGCSE Technical 29,3 (March 1986), 202-210.
Symposium on Computer Science Education. 1982, 13-19.

[Gibbs86b]
[Collofello86] Gibbs, Norman, and Gary Ford. The Challenges of Educat-
Collofello, James. The Software Technical Review Process. ing the Next Generation of Software Engineers. SEI-86-
Curriculum Module SEI-CM-3.0, Software Engineering In- TM-7, Software Engineering Institute, Carnegie-Mellon
stitute, Carnegie-Mellon University, Sept., 1986. University, June, 1986.

[Comer86] [Gibbs86c]
Comer, James R., and David J. Rodjak. Adapting to Chang- Software Engineering Education: The Educational Needs
ing Needs: A New Perspective on Software Engineering of the Software Community. Gibbs, Norman E., and
Education at Texas Christian University. In Software En- Richard E. Fairley, eds. Springer-Verlag, New York, 1986.
gineering Education: The Educational Needs of the
Software Community, Gibbs, Norman E., and Richard [Goldberg86]
E. Fairley, eds. Springer-Verlag, New York, 1986, 149-171. Golberg, Robert. Software engineering: An emerging dis-

cipline. IBM Systems J. 25, 3/4 (1986), 334-353.
(DOD85]
Department of Defense. Contract F19628-85-C-003. Con- [Hoffman78a]
tract with Carnegie-Mellon University for the creation of the Hoffman, A. A. J. A Proposed Masters Degree in Software
Software Engineering Institute. Engineering. Proc. 1978 ACM National Conf. 1978, 54-57.

[Falrley78] [Hoffman78b]
Fairley, Richard E. Educational Issues in Software En- Hoffman, A. A. J. A Survey of Software Engineering
gineering. Proc. 1978 ACM National Conf. 1978, 58-62. Courses. ACM SIGCSE Bulletin 10, 3 (Aug. 1978), 80-83.

[Falrley79a] [Hopcroft87]
Fairley, Richard E. MSE79: First Draft of a Masters Cur- Hopcroft, John E. Computer Science: The Emergence of a

riculum in Software Engineering. ACM Software Engineer- Discipline. Comm. ACM 30, 3 (March 1987), 198-202.
ing Notes 4, 1 (Jan. 1979), 12-17. Transcription of the 1986 ACM Turing Award Lecture.

[Falrley79b] [Horning76]
Fairley, Richard E. MSE79: Second Draft of a Masters Cur- Homing, J. 1. The Software Project as a Serious Game. In
riculum in Software Engineering. ACM Software Engineer- Software Engineering Education: Needs and Objectives:
ing Notes 4, 2 (April 1979), 13-16. Proceedings of an Interface Workshop, Anthony Wasser-

Software EngIneering Education 25

man and Peter Freeman, eds. Springer-Verlag, New York, [McGIII84]
1976. 71-75. McGill, J. P. The Software Engineering Shortage: A Third

Choice. IEEE Trans. Software Eng. SE-JO, 1 (Jan 1984),
[IEEE83] 42-49.
IEEE. IEEE Standard Glossary of Software Engineering
Terminology. ANSI/IEEE Std 729-1983, IEEE. [McKemar]l

McKeeman. William M. Experience with a Software En-
[IEEE86] gineering Project Course. In Software Engineering Educa-
IEEE Computer Society Software Engineering Standards tion: The Educational Needs of the Software Community,
Subcommittee. Draft Standard Taxonomy for Software En- Gibbs, Norman E., and Richard E. Fairley, eds. Springer-
gineering Standards. IEEE Computer Society. Final ver- Verlag, New York. 1986,234-262.
sion not yet published.

[M11186]
[Jonson78] Mills, Everald. The Master of Software Engineering UMSE]
Jensen, Randall W., Charles C. Tonies, and W. I. Fletcher. Program At Seattle University After Six Years. In Software
A Proposed 4-Year Software Engineering Curriculum. Engineering Education: The Educational Needs of the
Proc. Ninth SIGCSE Tech. Symp. on Computer Science Software Community, Gibbs, Norman E., and Richard
Education. 1978, 84-92. E. Fairley, eds. Springer-Verlag, New York, 1986, 182-200.

[Jensen7g] [Mulder75]
Jensen, Randall W., and Charles C. Tonies. Software En- Mulder, M. C. Model Curricula for Four-Year Computer
gineering Education: A Constructive Criticism. In Science and Engineering Programs: Bridging the Tar Pit.
Software Engineering, Jensen, R. W., and C. C. Tonics, eds. IEEE Computer 8. 12 (Dec. 1975), 28-33.
Prentice-Hall, Englewood Cliffs, 1979, 553-567.

[Nance80]
[Jorgensene6] Nance, Richard E., and Walter P. Warner. Anticipating the
Jorgensen, Paul. Requirements Specification Overview. Software Engineer: The Academic Preparation. NSWC
Curriculum Module SEI-CM-1.0, Software Engineering In- TR 80-108, Naval Surface Weapons Center, Dahlgren, Vir-
stitute, Carnegie-Mellon University, Sept., 1986. ginia, May, 1980.

[Koffman4] [NRC85]
Koffman, E. B., P. L. Miller, and C. E. Wardle. Recom- National Research Council, Commission on Engineering
mended Curriculum for CSI, 1984. Comm. ACM 27, 10 and Technical Systems. Engineering Education and Prac-
(Oct. 1984),998-1001. tice in the United States: Foundations of Our Techno-

Economic Future. National Academy Press, Washington,[Koffman85] D.C., 1985.

Koffman, E. B., D. Stemple, and C. E. Wardle. Recom-

mended Curriculum for CS2, 1984. Comm. ACM 28, 8 [NSB86]
(Aug. 1985), 815-818. NSB Task Committee on Undergraduate Science and En-

gineering Education. Undergraduate Science, Mathematics
[Lehman6a] and Engineering Education. NSB 86-100, National Science
Lehman, Manny M. The Software Engineering Under- Board, Washington, D.C., March, 1986.

graduate Degree at Imperial College, London. In Software

Engineering Education: The Educational Needs of the [Scacch8f]
Software Community, Gibbs, Norman E., and Richard Scacchi, Walter. The Software Engineering Environment
E. Fairley, eds. Springer-Verlag, New York, 1986, 172-181. for the System Factory Project. Proc. Nineteenth Hawaii

[Lehman86b] Intl. Conf. Systems Sciences. 1986,822-831.

Lehman, M. M. Advanced Software Technology-Develop- [Shaw73]
ment and Introduction to Practice. In Information Process- Shaw, Mary. Immigration Course in Computer Science:
ing 86, H.-J. Kugler, ed. IFIP, 1986. Teaching Materials and 1972 Schedule. ACM SIGCSE Bid-

letin 5, 2 (June 1973), 26-32.

Software Engineering Education 26

[Stuckl78e
Swcki, Leon G., and Lawrence J. Peters. A Software En-
gineering Graduate Curriculum. Proc. 1978 ACM National
Conf. 1978, 63-67.

fTomaykoa6a]
Tomayko, James. Software Configuration Management.
Curriculum Module SEI-CM-4.0, Software Engineering In-
stitute, Carnegie-Mellon University, Sept., 1986.

[Tomaykoa6b]
Tomayko, James, ed. Support Materials for Software Con-
figuration Management. Support Materials SEI-SM-4.0,
Software Engineering Institute, Carnegie-Mellon Univer-
sity, Sept., 1986.

[Tomayko87]
Tomayko, James E. Teaching a Project-Intensive Introduc-
tion to Software Engineering. SEI-87-SR-1, Software En-
gineering Institute, Carnegie-Mellon University, March,
1987.

[Warner82]
Warner, Walter P., and Richard E. Nance. The Develop-
ment of Software Engineers: A View from a User. Proc.
AFIPS National Computer Conference. 1982,293-300.

(Wasserman76]
Software Engineering Education: Needs and Objectives:
Proceedings of an Interface Workshop. Wasserman, An-
thony I., and Peter Freeman, eds. Springer-Verlag, New
York, 1976.

[Wt-rlmanad]
Wortman, David B. Software Projects in an Academic En-
vironment. In Software Engineering Education: The
Educational Needs of the Software Community, Gibbs, Nor-
man E., and Richard E. Fairley, eds. Springer-Verlag, New
York, 1986,292-305.

