Technical Report
CMU/SEI-87-TR-5

Distributed Systems Technology
Survey

Eric C. Cooper



Technical Report

CMU/SEI-87-TR-5
1987

Distributed Systems Technology
Survey

Eric C. Cooper

Unlimited distribution subject to the copyright.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213



This report was prepared for the SEI Joint Program Office
HQ ESC/AXS

5 Eglin Street

Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed
as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF, SEI Joint Program Office
This work is sponsored by the U.S. Department of Defense.
Copyright 1987 by Carnegie Mellon University.

Permission to reproduce this document and to prepare
derivative works from this document for internal use is
granted, provided the copyright and \'No Warranty\’
statements are included with all reproductions and derivative
works. Requests for permission to reproduce this document or
to prepare derivative works of this document for external and
commercial use should be addressed to the SEI Licensing

Agent.
NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN \'AS-IS\' BASIS.

CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTIBILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF
THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal
Government Contract Number F19628-95-C-0003 with Carnegie
Mellon University for the operation of the Software

Engineering Institute, a federally funded research and
development center. The Government of the United States has a
royalty-free government-purpose license to use, duplicate, or
disclose the work, in whole or in part and in any manner, and

to have or permit others to do so, for government purposes
pursuant to the copyright license under the clause at

52.227-7013.

This document is available through Research Access, Inc. /



800 Vinial Street / Pittsburgh, PA 15212. Phone:
1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a
World Wide Web home page at http://www.rai.com

Copies of this document are available through the National
Technical Information Service (NTIS). For information on
ordering, please contact NTIS directly: National Technical
Information Service / U.S. Department of Commerce /

Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical
Information Center (DTIC). DTIC provides acess to and
transfer of scientific and technical information for DoD
personnel, DoD contractors and potential con tractors, and
other U.S. Government agency personnel and their contractors.
To obtain a copy, please contact DTIC directly: Defense
Technical Information Center / 8725 John J. Kingman Road /
Suite 0944 / Ft. Belvoir, VA 22060-6218. Phone:
1-800-225-3842 or 703-767-8222.

Use of any trademarks in this report is not intended in any

way to infringe on the rights of the trademark holder.




Distributed Systems Technology Survey

Foreword

The Technology Identification and Assessment Project combined a number of
related investigations to identify:

* existing technology in a specific problem area to review research and development
results and commercially available products;

» new technologies through regular reviews of research and development results, peri-
odic surveys of specific areas, and identification of particularly good examples of the
application of specific technologies; and

* requirements for new technology through continuing studies of software development
needs within the DoD, and case studies of both successful and unsuccessful
projects.

Technology assessment involves understanding the software development
process, determining the potential of new technology for solving significant
problems, evaluating new software tools and methods, matching existing
technologies to needs, and determining the potential payoff of new
technologies. Assessment activities of the project focused on core
technology areas for software engineering environments.

This report is one of a series of survey reports. It is not intended to
provide an exhaustive discussion of topics pertinent to the area of
distributed systems technology. Rather, it is intended as an
informative review of the technology surveyed. These

surveys were conducted in late 1985 and early 1986.

Members of the project recognized that more general technology surveys have
been conducted by other investigators. The project did not

attempt to duplicate those surveys, but focused on points not addressed in
those surveys. The goal in conducting the surveys was not to describe the
technology in general, but to emphasize issues that either have a strong
impact on or are unique to software engineering environments.

The objective in presenting these reports is to provide an overview of the
technologies that are core to developing software engineering environments.

1. Introduction

One of the core technology areas in which project members were interested is
distributed systems technology. This report surveys the technical issues
involved in designing distributed systems, with particular emphasis on those
aspects that affect software engineering environments.




Economics is the driving force behind the proliferation of distributed systems.
Workstations are a cost-effective way of providing computing power to
individuals. Local area networks are a cost-effective way of sharing access
to more expensive and less frequently used resources like laser printers and
large disks, as well as a means for users to share information.

In distributed systems, however, there is a fundamental dichotomy between
the need for integration (to achieve sharing) and the need for autonomy (to
control one’s local environment). Many of the technical solutions presented
here can be evaluated in terms of how they balance these two needs.

Distributed systems have a humber of well known potential benefits:
* Modularity: Resources can be added and reconfigured easily.
» Performance: Parallelism can be used to perform jobs more quickly.
« Availability: Redundancy can be used to provide non-stop service.

To achieve these benefits in practice, however, requires solutions for a
number of difficult technical problems. Also, there are

trade-off relationships between, for example, using a distributed system for
increased performance versus using it for increased availability.

The following sections discuss some of the important technologies and issues
involved in distributed systems.

References to appropriate surveys are included in the discussion, but

two general references are appropriate here. First, the book edited by
Lampson et al. [18] is an excellent overview of

many aspects of distributed systems. Second, Tanenbaum’s book on computer
networks [36] is probably the best starting point for more

information on networks and protocols.

2. Hardware Technology

Economic factors are a major reason for the proliferation of distributed
systems. Processors, memory, and magnetic and optical disks are
sufficiently inexpensive to allow an organization to deploy a workstation in
every office, in addition to supporting a machine room with mainframes and
file servers. Current workstations typically have from 1 to 10 MIPS
(million instructions per second) of processing power, 1 to 10 megabytes of
memory, 20 to 200 megabytes of disk storage, and cost less than 20,000
dollars.

A variety of network technologies are available for interconnecting these
components. A distinction is commonly made between local area and long-haul
networks. For both physical and administrative reasons, local area networks
(LANS) are typically used within, and managed by, a single organization.
Currently, most LANs are constructed from coaxial cable or

fiber optics, with bandwidths ranging from 10 to 100 million bits per second

and lengths on the order of 1 kilometer. The interconnection topologies of

such networks include bus, ring, tree, and star structures.

Long-haul networks, on the other hand, can span continents, and are usually
managed by companies or government agencies for use by others. The




technologies used for long-haul networks include telephone lines and
satellite links. Long-haul networks use one or more of the following
switching techniques:

« Circuit switching
* Message switching

» Packet switching

Circuit switching is used in the telephone system. In this scheme, a route
through the network is established before any data is sent. Since
communication between computers tends to come in bursts, circuit switching
does not provide good utilization of available bandwidths, and the time
required to pre-allocate a circuit may be unacceptably long.

Message-switched and packet-switched networks are also called
store-and-forward networks because data is independently routed from one
switching node to another. For reasons of reliability, the network topology
of a store-and-forward network should be connected redundantly, so that
there are several paths or routes between any two nodes.

In message switching, individual messages are routed from one switching node
to another. This eliminates the long set-up time associated with circuit
switching and provides better utilization of bandwidths. The disadvantage of
this approach is that the variable size of messages makes it difficult to

allocate node buffering resources efficiently.

In packet switching, messages are first broken up into fixed-size packets,
which are then individually routed through the network and reassembled at
the destination. Different packets of the same message may be routed along
different paths, and hence may arrive out of order. Higher level protocols
are used to handle out-of-order packets. Since all packets are of the same
(relatively small) size, buffering at intermediate nodes is simplified. The
ARPANET is an example of a long-haul packet-switched network.

3. Internetworks

Because of their low cost, workstations tend to proliferate in
organizations, and the need for LANs tends to grow as well. Large
organizations are soon faced with the necessity of connecting several LANs
through a structure called an internetwork. In fact, some of the components
of an internetwork can be long-haul networks. In the DARPA Internet,
for example, the long-haul ARPANET is connected with hundreds of LANs
at universities and research laboratories. The same
store-and-forward approach can be used in an internetwork, viewing the
internet gateways as the packet switches of a single larger network.




4. Protocols

Protocols are used to provide virtual communication services with properties
different from (and typically at a higher level than) those provided by the
physical network. This leads naturally to a layered model of protocols,
such as the one that has been standardized in the ISO Reference Model for
Open Systems Interconnection [17].

Further discussion about protocols may be found in the survey article by
Tanenbaum [37].

4.1. ISO Reference Model
The ISO Reference Model consists of the following seven layers:

1. Physical layer: low-level communication of bits

2. Data link layer: framing, checksumming

3. Network layer: internetwork addressing and routing

4. Transport layer: reliable communication, host-to-host addressing

5. Session layer: connection management, process-to-process addressing
6. Presentation layer: data formatting, encryption, compression

7. Application layer: user programs

The 1ISO Reference Model does not match all protocol architectures perfecily.
In the DoD Internet family of protocols, for example, the IP [26] and

TCP [27] protocols provide functionality that ranges from the data

link layer to the session layer.

4.2. Transport Protocols
Communication services can be characterized by a number of attributes:

» The need for a connection establishment protocol before communication can occur
e The number of communicating entities

* Reliability of data delivery

* Client interface (messages or stream abstraction)

* Fixed or variable length of messages

The following is a brief characterization of a number of transport protocols
according to the above attributes.

» Datagram protocol: connectionless, unreliable delivery, fixed-size packets. Ex-
amples include the Xerox PARC PUP protocol, the DoD Internet Protocol (IP), and
the DoD User Datagram Protocol (UDP).

» Byte stream protocol: connection-based, reliable delivery, stream abstraction. Ex-
amples include the Xerox PARC byte stream protocol (BSP) and the DoD trans-
mission control protocol (TCP).




» Message protocol: connectionless, reliable delivery, variable-length messages. Ex-
amples include the protocol used by the Spice system [29].

» Request/response protocol: connectionless, reliable delivery, variable-length alter-
nating request/response messages. Examples are described by Birrell and
Nelson [6].

A recent topic of research has been the incorporation of many-to-many
communication semantics into various transport

protocols [1, 8, 9].

New protocols in each of the above classes will likely be extended

with many-to-many semantics.

4.3. Higher-Level Protocols

Higher-level protocols, those implemented at the session layer or higher in
the 1ISO model, are correspondingly harder to characterize. Examples from
the DoD Internet family include the Telnet network terminal protocol, the
file transfer protocol (FTP), and the mail delivery protocol (SMTP). Other
areas of research include protocols for graphics, window managers, voice,
multi-media messages, bootstrap loading, remote debugging and monitoring,
and remote procedure call, discussed more fully below.

5. Heterogeneity

Currently, there is no single standard machine architecture, operating
system, programming language, or programming environment, and such standards
are not likely to appear in the near future. As a result, organizations find
themselves faced with the problem of integrating a heterogeneous
collection of such resources. As evidenced by a recent workshop in
Eastsound, Washington, that was devoted
solely to the problems of heterogeneity, and by current research projects in
heterogeneity at institutions such as CMU and MIT, this is the key problem in
distributed systems today [24].

The most important pitfall to avoid in a heterogeneous system is the lowest
common denominator effect. This occurs when interfaces are only defined for
those operations that are supported by all components in the system. As the
number of heterogeneous components increases, this set of common operations
may approach the empty set.

A number of techniques can be used to avoid the lowest common denominator
effect. One technique is a common data representation protocol, in which
all communicating components translate their interactions into a standard
external representation. As described below, this can be handled
automatically in remote procedure call systems through the use of a stub
generator. The main difficulty with this technique is that the

representation protocol itself suffers from the lowest common denominator
effect. The advantage, however, is that such protocols are flexible

since they are capable of representing arbitrary programming language data
types like arrays and records. DeSchon surveys a number of data
representation standards [10].




Another technique is called option negotiation [34], in which

each pair of communicating parties negotiates which protocol options they
will support. This approach allows each pair to communicate with maximal
functionality. The option negotiation approach is applicable at many levels
in a heterogeneous distributed system.

The data representation protocol and option negotiation techniques can be
successfully combined. For example, the remote procedure call system at the
DEC Systems Research Center uses negotiation at binding time to decide
between two possible data representation protocols.

A third and somewhat ad hoc approach to coping with heterogeneity is

the proxy technique. A proxy is a specialized agent in a remote environment
whose purpose is to provide an interface to that environment that is more
compatible with other components of the system. This approach was first
used in remote job entry (RJE) systems to access batch facilities from
timesharing systems. It has been used successfully in the Locus

system [25] to integrate IBM mainframes transparently into a

distributed Unix!

environment.

6. Models of Distributed Programs

Although transparency is desirable at the highest levels of a distributed
system, at some lower level the fact that the system is distributed must be
made available to the programmer. How this is done is largely determined by
the model of distributed programs that the systems designer adopts.

One of the most well known approaches, developed at Xerox PARC in the 1970s,
is called the client/server model. The computing environment is assumed to
consist of personal workstations and a collection of shared network services
implemented by server machines. Such services might include file storage
(discussed more fully below), printing, and electronic mail. The programs
running on the user’s workstation are viewed as clients of these servers.

The client/server model is a simple extension of the application
program/operating system model familiar in centralized timesharing systems.
It is flexible because new services are easily added, and it supports a
heterogeneous environment well: “Black boxes” can be used as

servers as long as some interface can be constructed on the client side. A
disadvantage of the client/server model is that it does not support load
balancing or multi-machine parallel applications, although such program
structures can be shoe-horned into this model by using a pool of

“‘compute servers.”

Some of these deficiencies are remedied in the network operating system
(NOS) model. In this model, a transparent interface to all network
resources is presented to the applications programmer, not just at the user
interface level. The Locus system at UCLA [25] and the Spice system

at CMU [29] are successful examples of systems that follow this

lunix is a registered trademark of Bell Laboratories.




model. A major disadvantage of the network operating system model is its
difficulty in accommodating heterogeneity (in the form of black boxes)
because it assumes that a common software interface can be installed on all
the network resources.

7. Operating System Issues

This section briefly describes a number of operating system features that
are particularly important for supporting distributed systems.

A message-based operating system consists of an efficient kernel
implementation of processes, virtual memory, and inter-process
communication, together with a set of server processes providing
conventional operating system services such as device drivers and file
systems. The Accent kernel is a prime example of a message-based
system [29].

Message-based kernels allow inter-process communication to be extended over
the network in a simple and transparent fashion. The key is the notion of
intermediary processes that intercept remotely destined messages and perform
the appropriate forwarding.

There is growing agreement that a lightweight process mechanism is essential
to support commonly used distributed program structures. A number of
lightweight processes can share a single address space; this allows the
construction of servers, for example, that correctly handle concurrent
incoming requests. The lack of such lightweight processes has been a weak
point of UNIX and a number of message-based operating systems.

A process migration facility allows a running process to be moved from one
machine to another. Such a facility is a valuable mechanism for
implementing load balancing policies, whereby jobs are moved off heavily
loaded machines and onto lightly loaded ones. Variants of process migration
can be used to increase fault tolerance by checkpointing process state.
Process migration is greatly simplified in message-based operating

systems [28].

A simpler form of load balancing can be accomplished at task creation time
by starting the task on a lightly loaded processor. Further experience is
needed to determine whether the full power of process migration is
necessary.

Workstation technology has advanced to the point where most new high-end
workstations are multiprocessors with approximately 10 processors.
Operating system support for multiprocessors, and in particular for

efficient execution of parallel programs, will be an increasingly important
requirement.

Finally, UNIX compatibility is often a practical necessity. The wide
variety of software tools available under UNix would be prohibitively
expensive to port to an incompatible environment.

Many of the features mentioned in this section have been included in the




design and implementation of the MACH-1 operating system at CMU [3],
a kernel and programming environment that will probably serve as the new
foundation for DARPA-sponsored research in strategic computing.

8. Programming Language Issues

One approach to integrating distributed programming primitives into the
programming environment is to incorporate them into the programming language
itself. This approach can be accomplished in two ways: the mechanisms can
be built into the language, or they can be provided externally.

CSP [16] and Ada [12] are examples of languages with built-in
communication primitives. This approach extends the benefits of strong
typing to distributed programs because the language is the only interface

to the communication mechanism. Unfortunately, most languages of this type
ignore the problem of heterogeneous environments. As discussed previously,
in order to cope with heterogeneity, some common data representation
protocol or negotiation scheme must be used among the language
implementations on different machines. Without a language-defined standard,
programs produced by different compilers are unlikely to be able to
communicate. Ada provides only a partial solution to this problem in the

form of pragma statements that allow control over the representation of data

types.

In message-based operating systems, primitives for message communication are
typically integrated into the programming language in the form of a

subroutine library. Again, little support for heterogeneity has been provided.
Issues of data representation and type safety are usually the

responsibility of the programmer.

Remote procedure call (RPC) systems represent a compromise between the
built-in and the external approach. By using a stub generator, the remote
procedure call mechanism can be closely coupled to, yet separate from, the
compiler. This approach is described in more detail in the next section.

9. Remote Procedure Call

Remote procedure call
is a combined protocol-level and language-level
mechanism for constructing distributed programs. A remote procedure call
mechanism allows a programmer to write a distributed program in the same way
one writes a single-machine program: using procedure calls in one’s favorite
programming language. Remote procedure call meshes well with both the
client/server and network operating system models.

The language-level integration of remote procedure call into a conventional
programming language is typically accomplished by the use of a stub
generator, a specialized compiler that translates a module interface into
stub procedures for the client and server halves of a remote interface. The
stub procedures handle the details of representing the data types of the




programming language in an external form when they are sent in messages, and
the conversion to and from the internal form. The stub procedures also

interface with the lower level request/response protocol used to exchange

the call and return messages.

The stub generator approach has a number of advantages:

» The stub generator manipulates source-level programs, so strong typing can be
provided.

» The stub generator is separate from the compiler, so the same stub generator can be
used with any compiler for that language.

» The stub generator is a natural place to “hide” knowledge about the external
representation protocols and/or negotiation schemes used between heterogeneous
machines.

To invoke a remote procedure, the client stub builds a call message
containing the name of the procedure to be invoked and the external
representation of its arguments. The client sends the call message to the
server machine, where it is interpreted by the server stub. The arguments
are converted to their internal representation and are passed to the named
procedure. When the procedure returns, its results are externalized in a
return message and sent back to the client. Finally, the client stub
converts the results back into internal form and returns them to the client
program.

Nelson gives a comprehensive treatment of remote procedure call in his
thesis [23]. Birrell and Nelson describe the transport protocol

and binding mechanisms used in an implementation of RPC at Xerox
PARC [6].

9.1. Advantages of Remote Procedure Call

The single biggest advantage of remote procedure call is that it
makes writing distributed programs almost as easy as writing single-machine
programs. The same software development methodologies that work well for
centralized systems, such as the use of modularity, abstract data types, and
stepwise refinement, continue to work just as well when extended with remote
procedure call.

9.2. Disadvantages of Remote Procedure Call

Although remote procedure call has become extremely popular, it is not a
panacea. In particular, it is not suitable for the transfer of large
amounts of data, or for communication over high-latency media. Special bulk
data transfer protocols are preferred in such cases.

One common criticism of remote procedure call, namely that the synchronous
nature of remote procedure call does not allow any parallelism, is really not a
problem. In fact, remote procedure call neither helps nor hinders

parallelism. The above criticism is usually accompanied by an argument in
favor of non-blocking remote calls, where the application can either poll

for the return value or have it delivered asynchronously. Such features are
actually a poor man'’s substitute for lightweight processes, and are only




desirable in environments where processes are heavyweight and expensive. If
lightweight processes are well supported in the programming language and
environment, they become the natural means of achieving parallelism in
conjunction with remote procedure call. If not, polling or

asynchronous delivery mechanisms can be simulated with remote procedure
call, but use of such features can result in rather convoluted programs.

For the most effective match, systems should support both remote procedure
call and lightweight processes.

10. Software Tools for Distributed Environments

Making software tools function transparently in a distributed environment
often requires substantial effort.. Consider some of the tools that have
become standard equipment in centralized environments:

» Compilers

* Linkers

» Debuggers

* Profiling tools

« Version control and system configuration tools

A number of issues must be addressed
when extending these tools to distributed environments.

Programming language compilers and interpreters must be integrated with
communication facilities such as message primitives or remote procedure

call. The software engineering issues are complicated by machine
dependencies, language dependencies, and compiler dependencies, any one of
which can effect the representation of programming language data types in
messages.

Debuggers must be extended to allow single-stepping across machine
boundaries when following a chain of remote procedure calls. It should be
possible to set breakpoints in remote modules and to trace the flow of
control of a distributed program. An advantage of message-based operating
systems for distributed debugging is the ability to encapsulate the entire
environment of a process, since all of its interactions occur via messages.

Profiling tools provide the programmer with histograms of where time is
spent in a program. This allows the programmer to detect bottlenecks and to
apply optimizations where they will do the most good. In the distributed
case, profiling must work correctly when portions of the program execute at
remote nodes.

Version control and system configuration is a particularly difficult problem

in a distributed environment. Schmidt describes a variety of techniques for
maintaining consistent releases of large software systems in the Xerox PARC
environment [31]. Shared file servers, discussed below, are

essential to the success of such a scheme.

10



11. Security

A distributed environment raises a number of security issues. First, the
broadcast nature of most local area networks makes them particularly
vulnerable to eavesdropping. Anyone with a personal workstation on an
Ethernet can easily monitor all network traffic. Secondly, the lack of
control over the software run in an individual workstation makes
masquerades, replays, and similar active threats possible.

These problems are solved in single-machine or centralized environments by
physical security: locked machine rooms and protected terminal lines.
Unfortunately, the decentralized nature of distributed systems precludes
such measures. Logical rather than physical schemes must be used instead.

The simplest problem to solve is that of eavesdropping. The solution uses
encryption: two persons wishing to communicate do so by

encrypting all their messages with a secret key known only to them. This
effectively constructs a secure private communication channel on top of the
underlying insecure public channel. The Data Encryption Standard (DES) can
be used for secret-key encryption and decryption [21]. Hardware
implementations of DES are available and should be included in new
workstations.

More elaborate encryption-based schemes can be used to solve the
authentication problem, in order to prevent masquerades and similar active
threats [11, 22]. In such a scheme, a person

can securely identify himself to another person by obtaining from a mutually
trusted authentication service an “proof of identify” that is unable to be
forged. Birrell has described a comprehensive scheme that provides both
privacy and authentication for remote procedure

calls [7].

The encryption-based schemes that have been proposed in the literature do
not afford much protection against denial-of-service attacks. It has been
observed that passive threats are difficult to detect but easy to prevent, while
active threats are easy to detect but difficult to prevent.

12. Distributed File Systems

Distributed file systems have more impact on programming environments than
any other aspect of distributed systems. A good discussion of file servers
and distributed file systems may be found in the survey article by
Svobodova [35].

12.1. Files and Directories

Files are the primary means of storing and sharing long-lived information in
computer systems. File systems may impose structure on the contents of
files (index or record structures or file types) or may treat the contents
merely as sequences of bytes. This report takes the latter approach and views a
file as a sequence of uninterpreted bytes; any structure imposed on file
contents is viewed as a logically higher level. A common approach is to

11



deal only in machine-sensible unique identifiers at the file system level.

A separate concept, often lumped together with the file system, is the
directory system, which provides a mapping from user-sensible names to file
identifiers. Directories may themselves be implemented as files containing
name/identifier pairs. The directory system implements creation, deletion,
lookup, and enumeration of name/identifier pairs. Additional functions may
include expansion of patterns containing wildcard characters.

The directory system is responsible for any structuring of file names. A
common approach is a tree structured directory system, in which the full
name of a file is a path name consisting of a sequence of components
starting with the root directory of the tree. For example, in the UNIX
directory system (probably the most common tree-structured system) the path
name /usr/ecc/paper.tex denotes the file found by starting at the root
directory (the leftmost /"), consulting the directory usr to find the

directory ecc, which in turn contains the entry paper.tex. In the

UNIX system, only the “/” is interpreted by the directory system; file
extensions such as .tex are purely convention. Other directory systems
provide more support for, and often more restrictions on, the use of file
extensions. Another feature of directory systems that is missing from UNIx
is the provision of multiple versions of files. Versions are typically
specified through additional file name syntax, and file operations typically
use different default versions if none is specified. For example, opening a
file for reading would default to the most recent version, while deleting a
file would default to the oldest version.

A final component is the protection system, often subsumed by the directory
system. For example, the directory system can allow access control lists to
be associated with each directory entry, and can provide default access
controls through an inheritance mechanism. Note that an access control
mechanism presupposes some method of securely identifying people. In

a distributed environment, this can be accomplished with an authentication
service as outlined above.

12.2. Sharing Files in a Distributed System

The ease with which files can be shared in a distributed system is a good
measure of the overall success of the system. Several approaches are
possible. The lowest level technique is the disk server. A disk server can
be viewed as a multiported disk controller whose I/O bus is the network.

This approach requires minimal changes to the operating system of the client
machine, since the interface is similar to that of a local disk. The

abstraction provided is simply that of virtual disk pages. Although

read-only sharing of files is simple with this technique, write sharing

poses difficulties.

The disk server’s interface is too low-level to implement concurrent write
operations properly. For example, there is no way to lock a file or to
enforce access controls. Instead, the client operating systems have to
negotiate among themselves using a separate protocol.

An intermediate level approach is to provide an abstraction of files with
unique IDs. The interface to such a file server can allow individual blocks

12



of files to be read or written, as well as logical operations on the entire
file such as locking. File servers of this type are usually accessed via a
directory system, which must itself be a shared service.

The highest level approach is to use a complete file and directory server,
functionally equivalent to the file and directory system on a client
machine. Interfacing is again simple because file operations can be
intercepted at a high level and redirected to the remote server.

12.3. Integrating Workstation Disks and File Servers

Another issue that is raised when workstations are networked with
file servers is how to use workstation disks most effectively. One
successful method, used in the Cedar file system [32], considers
all shared files to be immutable (read-only), and uses each workstation file
system as a cache for some portion of the globally shared file system.
Files are created on the local file system and remain private until they are
stored back on the shared file server. From that time on, that version of
the file may not be modified, and may be shared by other users (subject to
normal protection mechanisms, of course). Guaranteeing consistency is
relatively simple; the shared file server must provide atomic creation of a
new version of a file.

A different approach is taken by the designers of the Carnegie-Mellon ITC
file system [30]. Workstation disks are also used as caches, but

shared files are not assumed to be immutable. As a result, cache validation
is required, initiated either by the workstation before using a cached file,

or by the file server when a shared file is modified.

12.4. Integrating File System Name Spaces

Once file servers are used to permit sharing of files in a network,
integration of many file name spaces becomes an issue. The integrated name
space should allow a file to be named in the same way from any machine in
the network, in order to foster portable programs and minimize confusion
when users change workstations.

If the different file servers are at the intermediate or low level described
above, integration can be achieved through a single (logically

centralized) directory service. A more common case, however, is that
existing workstations, mainframes, and file servers all have their own file
and directory systems that must be integrated into a single name space. For
tree-structured name spaces, two schemes are possible. The first uses a
super-root that logically contains the roots of all file systems in the

network. Additional syntax is used to refer to the super-root in full
pathnames. For example, the file name /../A/usr/lib might be used to

refer to /usr/lib on machine A from any other machine in the network.
Advantages of this scheme are that it is simple to implement and guarantees
consistent interpretation of file names anywhere in the network. A
disadvantage is that this approach is not transparent since the location of

a remote file is reflected in its full path name. This problem can be
circumvented through the use of symbolic links, a directory system feature
which allows a user to impose an arbitrary view on top of the actual tree

13



structure.

The second scheme allows remote mount points in each local directory tree, so
that each directory system may have a different view of the distributed

system. The problem with this approach is that consistent interpretation of
names must be obtained by convention; it is not enforced by any mechanism.
The logic of name interpretation on the local machine is also more
complicated. On the other hand, it gives individual machines more control
over their view of the name space.

12.5. File Servers versus Database Servers

There is growing agreement among designers of distributed file systems that
it is important to distinguish between file system and database system
functionality. For example, file servers must support efficient sequential
reading of small files and creation of new versions of files, but probably
do not need to support large files or synchronized modification of portions
of files. Database servers, on the other hand, can be used for
transactional updates to shared information and efficient access to large
files. Making this distinction allows optimized file server and database
server designs, rather than compromised designs stretched to fit both
classes of needs.

13. Fault Tolerance

Another area in which distributed systems differ from centralized systems is
failure semantics. Partial failures, in which some but not all of the
components of a system continue to function, are more common in distributed
systems and add to their complexity. Various mechanisms are used in order
to cope with this complexity. The book by Anderson and Lee presents a
thorough overview of fault tolerance techniques [2].

13.1. Transactions for Reliability

Transactions are used to simplify the construction of reliable distributed
programs, ones which do not lose or corrupt data. Transactions were first
used in database systems [14], but have since been adopted in
operating systems [33] and programming languages [20]. A
transaction has three essential properties, each of which must be guaranteed
even in the presence of processor and communication failures.

Serializability, the first property, means that the concurrent execution of
any number of transactions is equivalent to their serial execution in some
order. This property insures that if each transaction transforms a
consistent database state into another consistent database state, the
overall consistency of the database is preserved when transactions execute
concurrently.

The second property is atomicity, which guarantees that a transaction is an
all-or-nothing operation; no partial effects of a transaction are ever
visible to other transactions. When more than one processor is involved,

14



this requires some form of distributed commit protocol, the most well known
of which is two-phase commit [14, 19]. At any time

before committing, a transaction may abort, leaving the system state as if
the transaction had never been executed. The fact that intermediate effects
are not visible to other transactions means that the domino effect (cascaded
aborts) cannot occur. When a transaction is aborted, one can be sure that
no other transaction, either still running or already committed, could have
relied on updates performed by the aborted transaction.

The third property is permanence, which states that once a transaction
commits, its effects become permanent. Providing permanence in the presence
of failures requires some form of stable storage [19].

This involves writing each logical page of data onto more than one disk and
modifying the read and crash recovery operations to take advantage of the
redundancy. It is still possible that the copies of the disk page can

become corrupted in such a way that the read operation would fail; but by
increasing the degree of replication, the probability of such a catastrophic
failure can be made arbitrarily small.

Crash recovery mechanisms use stable storage in two ways: for checkpoints
and logs. A checkpoint is a snapshot of a consistent state that can be

restored after a crash. A log is a record of the events or operations that

affect the state of the system; it is replayed after a crash. Checkpoints

provide faster crash recovery, while logs are less expensive during normal
operation. If a combination of these two schemes is used, the log need only

be replayed from the most recent checkpoint, and the time between
checkpoints can be used to balance the cost of the normal and recovery modes
of operation.

13.2. Nested Transactions

Nested transactions are a generalization of single-level atomic
transactions, in order to allow them to mesh properly with the concepts of
composition and abstraction supported by programming languages. In this
scheme, a transaction consists of a tree of subtransactions, with a single
top-level transaction at the root. The intermediate effects of a
transaction that has not yet committed are visible only to its descendants
in the tree. The effects of a committed subtransaction are visible only to
ancestors and siblings in the tree. If a transaction aborts, any
uncommitted subtransactions must be aborted, and the effects of any
committed subtransactions must be undone. The nested transaction model was
chosen for the Argus system at MIT [20].

13.3. Replication for Availability

The availability of a system is the probability that the system will be up
(either at a particular time or on average). Replication is used to
increase the availability of distributed systems, either through the use of
a primary/standby architecture or via a modular redundancy scheme. Ina
primary/standby scheme, only a single component performs its normal
functions; all the other components are on standby in case the primary
fails. In a modular redundancy approach, all components perform the same
function, and some form of voting on the outputs is used to mask failures.

15



A classic primary/standby architecture is Tandem’s method of process

pairs [4]. The processes in a process pair execute on different

physical processors. One process is designated as the primary, the other as
the standby. Before each request is processed, the primary sends
information about its internal state to the standby in the form of a

checkpoint. The checkpoint enables the standby to complete the request if
the primary fails.

The Isis project at Cornell uses a primary/standby architecture for
replicated objects [5]. In each interaction with a

replicated object in Isis, one replica plays the role of coordinator, and
only it performs the operation. The coordinator then uses a two-phase
commit protocol to update the other replicas.

Triple modular and N-modular redundancy have long been familiar to
designers of fault-tolerant computer systems [2]. In

triple modular redundancy, every computation is carried out by each of three
processors. The results are then compared, and if at least two agree, that
value is used. In the Circus system, replication was integrated with remote
procedure call in order to support modular redundancy at the program module
level [9].

Gifford’s weighted voting scheme uses quorums and version numbers to provide
replication transparency for files [13]. In this algorithm, read

and write quorums (sets of replicas) are chosen so that any read operation

will include the most recently written version. Herlihy extended Gifford’s
algorithm to handle replicated abstract data types [15]. In

Herlihy’s approach, constraints on quorum assignments are derived from
analysis of the semantics of the abstract data types.

14. Conclusion

Well designed distributed systems should strike appropriate balances between
the needs for integration and autonomy, and between the needs for increased
performance and increased availability. The itemized points below
represent the features that project members recommend for inclusion in the
operating system, programming language, and support environment of any
future distributed system.

» Message-based kernel

» Transparent network inter-process communication

» Remote procedure call facility

» Group communication integrated with remote procedure call

» Conventional software tools extended for distributed environments
* Lightweight processes

« Distributed file system

« Distributed database system

» UNIX compatibility

16



References

[1]

(2]

3]

[4]

[5]

[6]

[7]

(8]

9]

[10]

[11]

[12]

Mustaque Ahamad and Arthur J. Bernstein.

Multicast Communication in UNIX 4.2BSD.

In Proceedings of the 5th International Conference on Distributed Computing Systems,
pages 80--87. May, 1985.

T. Anderson and P. A. Lee.
Fault Tolerance: Principles and Practice.
Prentice-Hall, 1981.

Robert V. Baron, Richard F. Rashid, Ellen Siegel, Avadis Tevanian, and Michael

W. Young.

MACH-1: A Multiprocessor Oriented Operating System and Environment.

In Arthur Wouk (editor), New Computing Environments: Parallel, Vector, and Symbolic.
SIAM, 1986.

Joel F. Bartlett.

A NonStop Kernel.

In Proceedings of the 8th Symposium on Operating Systems Principles, pages 22--29.
December, 1981.

Published as Operating Systems Review, 15(5).

Kenneth P. Birman, Thomas A. Joseph, Thomas Raeuchle, and Amr El Abbadi.

Implementing Fault-Tolerant Distributed Objects.

In Proceedings of the 4th Symposium on Reliability in Distributed Software and Database
Systems, pages 124--133. October, 1984.

Andrew D. Birrell and Bruce Jay Nelson.
Implementing Remote Procedure Calls.
ACM Transactions on Computer Systems 2(1):39--59, February, 1984.

Andrew D. Birrell.
Secure Communication Using Remote Procedure Calls.
ACM Transactions on Computer Systems 3(1):1--14, February, 1985.

David R. Cheriton and Willy Zwaenepoel.
Distributed Process Groups in the V Kernel.
ACM Transactions on Computer Systems 3(2):77--107, May, 1985.

Eric C. Cooper.

Replicated Distributed Programs.

In Proceedings of the 10th ACM Symposium on Operating Systems Principles, pages
63--78. December, 1985.

Published as Operating Systems Review, 19(5).

Annette L. DeSchon.
A Survey of Data Representation Standards.
Technical Report RFC 971, SRI Network Information Center, January, 1986.

Whitfield Diffie and Martin E. Hellman.
Privacy and Authentication: An Introduction to Cryptography.
Proceedings of the IEEE 67(3):397--427, March, 1979.

Reference Manual for the Ada Programming Language
United States Department of Defense, 1983.
U.S. Government Printing Office, ANSI/MIL-STD-1815A-1983.

17



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

David K. Gifford.

Weighted Voting for Replicated Data.

In Proceedings of the 7th Symposium on Operating Systems Principles, pages 150--162.
December, 1979.

Published as Operating Systems Review, 13(5).

J. N. Gray.

Notes on Data Base Operating Systems.

In R. Bayer and R. M. Graham and G. Seegmueller (editor), Operating Systems: An Ad-
vanced Course, pages 393--481. Springer-Verlag, 1978.

Volume 60 of Lecture Notes in Computer Science.

Maurice Herlihy.
A Quorum-Consensus Replication Method for Abstract Data Types.
ACM Transactions on Computer Systems 4(1):32--53, February, 1986.

C. A. R. Hoare.
Communicating Sequential Processes.
Communications of the ACM 21(8):666--677, August, 1978.

Reference Model of Open Systems Interconnection
ISO/TC97/SC16, 1979.
Document N227.

B. W. Lampson and M. Paul and H. J. Siegert (editor).

Lecture Notes in Computer Science. Volume 105: Distributed Systems---Architecture
and Implementation: An Advanced Course.

Springer-Verlag, 1981.

Butler W. Lampson and Howard E. Sturgis.
Crash Recovery in a Distributed Data Storage System.
Computer Science Laboratory, Xerox PARC.

Barbara Liskov and Robert Scheifler.
Guardians and Actions: Linguistic Support for Robust, Distributed Programs.
ACM Transactions on Programming Languages and Systems 5(3):381--404, July, 1983.

Data Encryption Standard
National Bureau of Standards, 1977.
Federal Information Processing Standards Publication 46.

Roger M. Needham and Michael D. Schroeder.
Using Encryption for Authentication in Large Networks of Computers.
Communications of the ACM 21(12):993--999, December, 1978.

Bruce Jay Nelson.

Remote Procedure Call.

PhD thesis, Computer Science Department, Carnegie-Mellon University, May, 1981.
Published as CMU report CMU-CS-81-119 and Xerox PARC report CSL-81-9.

David Notkin, Norm Hutchinson, Jan Sanislo, and Michael Schwartz.
Report on the ACM SIGOPS Workshop on Accomodating Heterogeneity.
Operating Systems Review 20(2):9-24, April, 1986.

G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G. Rudisin, and G. Thiel.

LOCUS: A Network Transparent, High Reliability Distributed System.

In Proceedings of the 8th Symposium on Operating Systems Principles, pages 169--177.
December, 1981.

Published as Operating Systems Review, 15(5).

18



[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Jon Postel.
Internet Protocol.
RFC 791, SRI Network Information Center, September, 1981.

Jon Postel.
Transmission Control Protocol.
Technical Report RFC 793, SRI Network Information Center, September, 1981.

Michael L. Powell and Barton P. Miller.

Process Migration in DEMOS/MP.

In Proceedings of the 9th ACM Symposium on Operating Systems Principles, pages
110--119. October, 1983.

Published as Operating Systems Review, 17(5).

Richard F. Rashid and George G. Robertson.

Accent: A Communication Oriented Network Operating System Kernel.

In Proceedings of the 8th Symposium on Operating Systems Principles, pages 64--75.
December, 1981.

Published as Operating Systems Review, 15(5).

M. Satyanarayanan, John H. Howard, David A. Nichols, Robert N. Sidebotham, Alfred

Z. Spector, and Michael J. West.

The ITC Distributed File System: Principles and Design.

In Proceedings of the 10th ACM Symposium on Operating Systems Principles, pages
35--50. December, 1985.

Published as Operating Systems Review, 19(5).

Eric Emerson Schmidt.

Controlling Large Software Development in a Distributed Environment.

PhD thesis, Computer Science Division, University of California, Berkeley, December,
1982,

Published as Xerox PARC report CSL-82-7.

Michael D. Schroeder, David K. Gifford, and Roger M. Needham.

A Caching File System for a Programmer’s Workstation.

In Proceedings of the 10th ACM Symposium on Operating Systems Principles, pages
25--34. December, 1985.

Published as Operating Systems Review, 19(5).

Alfred Z. Spector, Dean Daniels, Daniel Duchamp, Jeffrey L. Eppinger, and Randy

Pausch.

Distributed Transactions for Reliable Systems.

In Proceedings of the 10th ACM Symposium on Operating Systems Principles, pages
127--146. December, 1985.

Published as Operating Systems Review, 19(5).

Robert F. Sproull and Dan Cohen.
High-Level Protocols.
Proceedings of the IEEE 66(11):1371--1386, November, 1978.

Liba Svobodova.
File Servers for Network-Based Distributed Systems.
ACM Computing Surveys 16(4):353--398, December, 1984.

Andrew S. Tanenbaum.
Computer Networks.
Prentice-Hall, 1981.

19



[37] Andrew S. Tanenbaum.
Network Protocols.
ACM Computing Surveys 13(4):453--489, December, 1981.

20



Table of Contents

Distributed Systems Technology Survey
1. Introduction

2. Hardware Technology

3. Internetworks
4

. Protocols
4.1. 1ISO Reference Model
4.2. Transport Protocols
4.3. Higher-Level Protocols

. Heterogeneity
. Models of Distributed Programs
. Operating System Issues

. Programming Language Issues

© 00 N O O

. Remote Procedure Call
9.1. Advantages of Remote Procedure Call
9.2. Disadvantages of Remote Procedure Call

10. Software Tools for Distributed Environments
11. Security

12. Distributed File Systems
12.1. Files and Directories
12.2. Sharing Files in a Distributed System
12.3. Integrating Workstation Disks and File Servers
12.4. Integrating File System Name Spaces
12.5. File Servers versus Database Servers

13. Fault Tolerance
13.1. Transactions for Reliability
13.2. Nested Transactions
13.3. Replication for Availability

14. Conclusion

O O (o] ~ » ol a b~ b~ Bpd w N = =

[
O

PR R PR R
ARWWNR P

(T S T
g o~ b

[EnN
(o3}




