
Technical Report
CMU/SEI-87-TR-1

Evaluation of Ada Environments,
Executive Summary

Nelson Weiderman

1987

Evaluation of Ada Environments,
Executive Summary

��

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Technical Report

CMU/SEI-87-TR-1

1987

Nelson Weiderman

This work is sponsored by the U.S. Department of Defense.

Copyright © 1990 by Carnegie Mellon University.

This technical report was prepared for the

SEI Joint Program Office
ESC/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD
position. It is published in the interest of scientific and technical information
exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

John S. Herman, Capt, USAF (Signature on File)
SEI Joint Program Office

Evaluation of Ada Environments

CMU/SEI-87-TR-1 ES-1

Executive Summary

Objectives

An important goal of the Software Engineering Institute is to assess advanced software develop-

ment technologies and disseminate those that appear promising. Ada Programming Support

Environments (APSEs) have already been developed under government contract and for the

commercial marketplace, and more are certain to follow. Such environments play key roles in

increasing the productivity of software engineers, in improving the quality of embedded systems

software, and in reducing the cost of producing and maintaining software.

The initial purpose of the Evaluation of Ada Environments project was to determine the suitability

of the Army/Navy Ada Language System (ALS) and the Air Force Ada Integrated Environment

(AIE) for application to software engineering activities. The ALS was delivered to SEI in late 1985

and the AIE has yet to be completed as of the middle of 1986. Early in the project a decision was

made to develop a systematic methodology for evaluation of environments and to include a num-

ber of commercial environments in the study. These environments were extensions of existing

operating systems, but included toolsets rich enough to be considered Minimal Ada Programming

Support Environments (MAPSEs).

One major outcome of the study has been the definition of a methodology that adds a degree of

rigor and standardization to the process of evaluating environments. Without a systematic ap-

proach, evaluations offer little more than ad hoc evidence of the value of an environment. Our

methodology is comprehensive, repeatable, extensible, user-oriented, and environment inde-

pendent in the initial steps. It has been applied to several Ada environments at the Software

Engineering Institute so that they may be compared objectively according to the same criteria.

This cross-environment comparison of three environments is the second major outcome of the

study.

The full report of the study provides a detailed description of the methodology and examples of its

usage. Chapter 1 gives an extended cross-environment analysis of the results of the project. For

each of five experiment groups it compares three APSEs. The chapter provides an overview of

the results of all the experiments and is written for the technical manager. Chapter 2 describes in

detail the methodology used for evaluating the environments, along with some of the background

information and references to previous work in environment evaluation. Chapters 3 through 8

provide detailed descriptions of the six experiment groups. Here one can find the information on

Evaluation of Ada Environments

ES-2 CMU/SEI-87-TR-1

particular criteria, questions, and life cycle activities that were tested for each experiment, as well

as test scripts, checklists, and resulting data that were collected.

The purpose of this executive summary is to capture the most salient characteristics of the study

and the most important results. The remainder of the executive summary will be devoted to a

brief description of the environments evaluated, a brief description of the experiments conducted,

a summary of the most important results, and finally some reflections on where we currently

stand in APSE technology and where we are likely to make the most significant progress.

Environments Evaluated

A total of four environments were installed and tested at the SEI. The SofTech Ada Language

System was developed for the Army and was designed to be retargetable and rehostable. In

spring of 1986, continued development work on the ALS was halted by the Army and is being

continued by the Navy. The ALS is hosted on the Digital Equipment Corporation VMS operating

system and will be referred to as VMS/ALS. The remaining three environments are extensions to

existing operating systems. The extension to VMS by DEC includes the VAX Ada and five

additional tools collectively referred to as VAXSet. This environment will be referred to as

VMS/VAXSet. The third environment considered is an extension to Unix developed by Verdix.

Their product is called the Verdix Ada Development System (VADS) and is referred to here as

Unix/VADS. A fourth environment is also based on Unix and includes an Apollo environment

called DOMAIN Software Engineering Environment (DSEE) with an Alsys Ada compiler. This will

be referred to as DOMAIN/IX/Alsys environment.

It must be emphasized that all experimentation took place in the spring of 1986. The results

presented in this report represent a snapshot of the environments at that point in time. Correc-

tions of errors, improvements in performance, and new functionality or documentation may have

been incorporated in subsequent releases of the products tested.

The first three environments described above ran on MicroVAX II hardware. They were installed

on three distinct machines. In each case the hardware configurations met or exceeded the

vendor’s initial recommendations. In the case of the SofTech Ada Language System, version 3.0,

the configuration included 9 megabytes of main memory and disk space consisted of three RD53

disk drives (213 megabytes). The Digital Equipment Corporation product consisted of the VAX

Ada (version 1.2) and VAXSet. Both the VMS/ALS and VMS/VAXSet environments were run

using version 4.2 of microVMS. The configuration for VMS/VAXSet included 6 megabytes of

main memory and 102 megabytes of disk space (one 31 megabyte RD52 disk drive and one 71

megabyte RD53 drive). The Verdix product (VADS, version 5.1) ran on top of the DEC supplied

Evaluation of Ada Environments

CMU/SEI-87-TR-1 ES-3

version of Unix called Ultrix (version 1.2). The tests were run on a system configured with 6

megabytes of memory and 202 megabytes of disk space (one 31 megabyte RD52 drive and one

171 megabyte Fujitsu drive).

The fourth environment ran on an Apollo computer with the DOMAIN/IX Unix equivalent operating

system. The Domain Software Engineering Environment (DSEE) and the Alsys Ada Compiler

completed the software configuration. The hardware consisted of an Apollo DN460 workstation

with 4 megabytes of main memory and 171 megabytes of disk space. The versions tested were

version 2.0 of DSEE and version 1.0 of the Alsys Ada compiler.

Experiments Conducted

The six experiment groups are called Configuration Management, System Management, Design

and Development, Test and Debug, Project Management, and the ACEC Tests. The details of

these experiments including the functions tested, the questions asked and answered, the scripts

used to exercise the environments, as well as the conclusions reached and are presented in

Chapters 3 through 8.

Five of the six experiment groups (the exception being the Project Management experiment) were

run on the three APSEs which ran on the MicroVAX II. The other experiment was run on an

Apollo workstation. Five of the six experiment groups were constructed using the methodology

detailed in Chapter 2. The other experiment group consisted of running the prototype Ada Com-

piler Evaluation Capability (ACEC) test suite that was assembled and instrumented by the In-

stitute for Defense Analyses (IDA).

The configuration management experiment group exercises the configuration management and

version control capabilities of the APSE. The experiments simulate the system integration and

testing phase of the life cycle by having three separate development lines of descent from a

single baseline system. This process provides information about the version control capabilities

(space requirements, transparency, performance) as well as the configuration management

capabilities (translation rules, specification of modules from releases, history collection, perfor-

mance). The system management experiment group exercises the environment from the

perspective of the system manager. The activities of concern here are the installation of the

APSE on a raw machine or operating system, the management of user accounts, maintenance of

the environment, and system resource management.

The design and code development experiment group exercises the activities normally associated

with small projects, namely the design, creation, modification, and testing of a single unit or

Evaluation of Ada Environments

ES-4 CMU/SEI-87-TR-1

module. Using an editor, Ada programs are entered along with a test harness to allow initial

testing of these units. The unit testing and debugging experiment group exercises the environ-

ment from the perspective of the unit tester. It is designed to be a sequel to the design and code

development experiment. A small set of Ada units was seeded with errors and debugged using

the facilities available in the environment.

The project management experiment group took into consideration only a small portion of the

total functionality which should be attributed to project management. Namely, the purpose of the

experiment was to explore the activities surrounding the building and maintaining of the project

database which is but one aspect of the technical management activities of project management.

The ACEC tests are different from the other five in that they were externally generated and they

test only a single component of the environment, namely the compiler. Instead of creating a new

set of Ada programs to test the performance of the Ada compiler, we used the IDA prototype test

suite.

Results

VMS/ALS

The requirements for the ALS placed a strong emphasis on rehostablility and retargetability. The

extent to which it satisfies the first requirement is problematical since it has never been rehosted.

It has been retargeted to an Intel 8086, but this capability was not tested in our study. In the

areas of software development and lifecycle maintenance, however, our analysis of the ALS

(version 3) has shown that the product has not reached a level of maturity, stability, or perfor-

mance to recommend its use. Furthermore, we believe that it is unlikely to reach the required

level of maturity without significant and costly changes. It is our observation that the current ALS

product is not competitive with currently available commercial products in the four major criteria

areas identified -- functionality, performance, user interface, and system interface. We found

many errors and a general lack of robustness, which is uncharacteristic of products of high quality

already available on the commercial market.

In the areas of functionality tested by the four experiment groups, the ALS does indeed have

many of the tools required for the activities we have identified. The configuration management

functionality is good with the exception of the ability to merge a group of changes made to variant

versions from a given baseline and the automation of recompilation. The tools for programming

in the small are also present for the most part. The exceptions in this case are the lack of an Ada

browsing capability and syntax sensitive editing. In the area of testing, the functionality of the

debugger was limited as were the dynamic analysis capabilities. By modern standards many of

Evaluation of Ada Environments

CMU/SEI-87-TR-1 ES-5

the tools are not well designed and implemented. The command language lacks a number of

commonly provided features and the editor lacks a multi-window capability.

The most serious deficiency of the VMS/ALS environment is in the area of performance. The

ALS is, in many cases, more than an order of magnitude less efficient in its time and space

characteristics than other commercially available environments. Compile times are, on the

average, more than fifteen times slower than the VAX Ada compiler. Routine database com-

mands are five or more times slower on the ALS than on VMS (creating or deleting directories, for

example). New versions of files are stored in their entirety rather than storing the incremental

differences (deltas) between successive versions. This particular design decision can result in

two orders of magnitude difference in the total amount of space required for a typical series of

revisions. The most notable instance of poor performance is the time required to create a new

program library, which takes more than 15 minutes elapsed time on a dedicated MicroVAX II.

Such performance can have a direct impact on the project management philosophy by discourag-

ing the creation of multiple program libraries.

The user interface consists of a command language very similar to Ada. While this provides a

level of consistency with the language being supported by the environment, it is cumbersome to

enter long Ada commands without the appropriate automation for command entry. The poor

quality of the error messages hampered development. They are not informative and in many

cases are misleading or superfluous. The documentation is hard to use and in cases contradic-

tory and incomplete. The on-line help facility is primitive.

The interface with the underlying operating system could be one of the primary causes for perfor-

mance degradation. The layered architecture provides an isolation from the underlying system

which may be advantageous from a portability point of view, but causes additional overhead. The

sequential (rather than parallel) use of files for many operations causes the environment basically

to be a single user batch system rather than a truly multi-user interactive system. Furthermore,

the ALS user is prevented from using many of the tools provided by the underlying operating

system. Some of these tools are not available in the ALS environment, and thus useful

functionality is lost.

The software engineers found that learning the ALS was considerably more frustrating than learn-

ing and using other operating systems. This observation can be attributed to a number of bugs,

poor documentation, poor performance, and the general lack of commonly provided features.

Examples of bugs which are more fully documented in the body of the report include tools which

do not work at all, tools which do not work as documented, tools which generate incorrect Ada

programs, and tools whose names changed from one version of the ALS to another.

Evaluation of Ada Environments

ES-6 CMU/SEI-87-TR-1

Our conclusion is that there are major deficiencies in the ALS (version 3) environment and that

many of these deficiencies are not easily correctable. Discussions with a number of ALS users

indicate that the ALS has been chosen for its ability to generate code for the Intel 8086 where it is

the only available choice as of mid-1986. Only one of the four users we contacted is using the

broad functionality of the environment. In fact, the SofTech representatives told us that we had

exercised the configuration management system more than any users that they knew of.

VMS/VAXSet

The VMS/VAXSet environment is an extension of a mature and stable operating system (VMS)

which was developed for the commercial market and which has been in widespread use for many

years. In addition to the Ada compiler the VAXSet toolset includes a Language Sensitive Editor

(LSE), a Performance and Coverage Analyzer (PCA), a Test Manager (TM), a Configuration

Management System (CMS), and a Module Management System (MMS). Because the entire

toolset has been provided by a single vendor the environment provides a conceptual integrity and

consistency greater than any of the other three environments studied.

The VMS/VAXSet environment provided the strongest set of tools and features for those tools. In

the area of configuration management, CMS and MMS provide all the identified activities with the

exception of maintaining product release information. A complete set of functionality was

provided in the system management area as well. In the area of design and development, there

were no design tools and the only browsing capability was the ability to find a specified Ada

object. There was also no pretty printing capability. However, the LSE provides the ability to

enter Ada programs while catching syntax errors and formatting the code. In the area of testing

and debugging, the PCA and TM tools form the core of a rich set of features which far surpass

what is available in either VMS/ALS or Unix/VADS.

Performance of VMS/VAXSet was uniformly quite good. Most of the CM operations took small

numbers of seconds and averaged one quarter of the time required by the ALS. Most user

account management functions were also in the three second range. Program library creation

time is on the order of 13 seconds. Space requirements were modest for most functions and

successive CM versions are stored as deltas. Overall, the operations which one would expect to

be accomplished quickly were accomplished quickly and those that one would expect to take

longer were not excessively long. The Unix/VADS environment was faster in many areas, but the

differences were not significant for the majority of the operations.

The user interface of the VMS/VAXSet environment was considered the best for various reasons.

Because of its maturity, the command language supports many popular features including string

Evaluation of Ada Environments

CMU/SEI-87-TR-1 ES-7

symbols, logical names, filename wildcards, command abbreviations, command line editing, com-

mand recall, and parameter prompting. Commands are syntactically consistent, each being com-

prised of one or more command keywords, command qualifiers, and parameters. Diagnostic

messages presented to the user from all VMS utilities and tools are consistent and of high quality.

They are timely, informative, accurate, uniform in format, and consistent with the documentation.

The documentation was very good and supplemented by an excellent on-line help system.

The VMS/VAXSet environment is an extension to an existing operating system rather than a layer

on top of another operating system. There is an interface with a VMS system services package

called STARLET. For the most part this interface is invisible to the Ada developer and provides

the operating system interface for the tool developers. The tools of the VMS/VAXSet environ-

ment are well-integrated. One example is the editor which is capable of invoking the compiler

without leaving the editing session so that the user may uncover semantic errors without great

distraction while making changes to Ada units. The debugger can invoke the editor or the Ada

compiler.

Across the criteria dimensions of functionality, performance, user interface, and system interface,

it is clear that VMS/VAXSet provides a very good, production quality environment that is capable

of supporting development, integration, and maintenance of small to medium size Ada software

systems.

Unix/VADS

The Unix/VADS environment is an extension of an operating system which was developed in the

early 1970’s for laboratory use (Bell Labs) and today has received widespread acceptance in its

many versions. The two predominant versions are Berkeley 4.2 and ATT’s System 5. The

version of Unix used for this study is the one distributed by DEC called Ultrix. Unix has the

reputation of being an environment in which it is easy to add tools and to have tools work well

together, but because of its roots and history, it lacks the conceptual integrity and some of the

functionality of many single vendor commercial operating systems.

In the area of functionality, the Unix/VADS environment provides a reasonably well-integrated set

of utilities capable of supporting the development, integration, and maintenance of Ada software

systems. Support is provided for all typical configuration management activities, but the opera-

tion of including variant versions in baselines is difficult. SCCS supports common version control

activities while Unix/Make and VADS support the configuration control activities. Unix/VADS is

clearly deficient in support of user account management functions. In the area of unit develop-

ment, there was no support for syntax directed editing, but there was reasonable support for other

Evaluation of Ada Environments

ES-8 CMU/SEI-87-TR-1

functions including automatic recompilation. Browsing through Ada programs was not particularly

well supported. Unix/VADS had no data management capability and testing and regression test-

ing are manual procedures. The debugger has a reasonably rich set of features and is good at

displaying the current state of the program.

Performance of Unix/VADS was quite good, with many commands taking one quarter to one half

the time required by VMS/VAXSet. The creation of an Ada program library took approximately 3

seconds. Space utilization was reasonable for most operations and the granularity of the alloca-

tion was smaller than it was for VMS/VAXSet. Successive CM versions are stored using deltas.

The user interface for Unix/VADS is in the style of Unix and is characterized by the brevity of both

commands and diagnostic messages. It seems that there is an overriding emphasis on conserv-

ing keystrokes on input and character space on output. This may be helpful for the experienced

frequent user, but is a liability for novice or occasional users. The Unix shell does support string

aliases, wildcards, full pathname wildcards, command line editing, and command recall, but it

does not support command abbreviations, in-line keyword expansion, or parameter prompting.

Most of the VADS error messages are in the style of Unix, which tends to be terse, but the

compiler error messages are very informative and clearly presented. The on-line help system is

good and has keyword search capability. The VADS documentation contains a partial users

guide but needs more examples and detailed explanations for command options.

The interface to the underlying environment in the case of Unix/VADS is to a Unix kernel which

gives Unix its portability characteristics through a user-provided set of callable interfaces. All the

tools use standard ASCII text files which support efficient information sharing, but which do not

provide a rich information structures for persistent objects with many attributes. Tools in

Unix/VADS are for the most part standalone and utilize the piping mechanism to allow tools to

interact. The debugger can involve the editor, but not the compiler. It presented data well,

identified errors precisely, and was easy to use.

In summary, the Unix/VADS environment is a good extension of the Unix environment and will be

readily accepted by veteran Unix users. The performance is very good for both the compiler and

tools, but its user interface, documentation, account management capabilities are somewhat lack-

ing.

DOMAIN/IX/Alsys

The Apollo DSEE represents an interesting approach to some of the problems encountered in

building and maintaining large software systems of programs and documentation. Unfortunately

Evaluation of Ada Environments

CMU/SEI-87-TR-1 ES-9

the DOMAIN/IX/Alsys environment represents only a great unfulfilled potential. Problems with the

environment for Ada development and maintenance include poor integration of the Ada compiler

and DSEE, lack of individual file copy capabilities, and a multiplicity of user interfaces which

presents an inconsistent system. Since the DSEE product is currently available only on Apollo

hardware it has thus far had limited distribution. The Apollo/Alsys combination does deserve

further scrutiny if the companies get together to provide a more integrated Ada environment with

a consistent user interface.

Compiler Evaluation

Numerous problems were encountered in applying the three compilers to the ACEC test suite and

the ACEC support software. To compile successfully using the ALS compiler, the ACEC support

software had to be modified slightly.

The ALS compiler failed to compile 6 tests and, of the remainder, 21 executed incorrectly. VAX

Ada compiled and executed all tests. The VADS compiler compiled all tests, but 4 tests executed

incorrectly.

Of the many numerical results obtained by executing the ACEC suite of test programs and

analyzing the measurement files, the most reliable and meaningful were the average CPU times.

For compilation and linking, ALS took 34 times as long as the VAX Ada, while VADS took 3 times

as long. For execution, the ALS took 1.7 times as long as VAX Ada, while the VADS took 1.3

times as long.

The main purpose of the ACEC tests is to derive differential statistics for individual language

features; that is to measure the increment in time or space caused by using a particular feature.

Unfortunately, no conclusive differential statistics were obtained (many differentials were in fact

negative!). After filtering out the clearly erroneous data, the relative ratios between compilers for

time and space utilization were roughly consistent with the aggregated ratios listed above. The

ratios showed considerable variation between language features, but without any clear pattern.

The exact cause of the erroneous differential measurements is still being investigated. The fact

that they occurred with all three environments suggests a flaw, not necessarily in the ACEC

concept, but in the ACEC implementation of that concept or in our adaptation and implemen-

tation. The erroneous measurements are not confined to the instrumented timings generated

from within the test programs, but also appear in the external measurements performed by the

respective operating systems, implying that more sophisticated measurement techniques are re-

quired (e.g., automatic calibration). Another problem with the ACEC is that the Report Writer

Evaluation of Ada Environments

ES-10 CMU/SEI-87-TR-1

provides only a rudimentary analysis facility; an entirely separate analysis program had to be

developed for this project.

Summary and Future Outlook

The work accomplished in this project represents a step forward in the ability to evaluate Ada

environments in a more standard and systematic fashion. However there are limitations to the

study which were brought about by time and resource constraints. Further work must be devoted

to issues of programming-in-the-large, project management activities, and observing performance

under load. Additional environments also need to be evaluated and compared to the initial four.

Some of the weaknesses of all the environments were the inability to navigate or browse through

Ada programs, and the lack of design tools, test generation tools, and static analysis tools. Fur-

thermore, all the environments had capabilities and features which represent the trailing edge

rather than the leading edge of technology. They all adhere to the command interfaces and the

edit-compile-link-execute cycle typical of the interactive batch operating systems of the 1960s and

1970s. All of the environments tested provide a monolithic compilation system which prevents

access to intermediate forms of Ada programs which are useful to tool builders for highly in-

tegrated tools.

It is speculated that the new generation of Ada environments will be more in the flavor of Interlisp,

Smalltalk, and the Cornell Program Synthesizer. These environments are built around a single

programming language and support a highly interactive paradigm. Because of the dependencies

built into the Ada programming language for inter-module consistency checking, even insig-

nificant changes may cause propagation of recompilations throughout a large system. The only

way to support interactive changes without excessive delays is to incorporate the changes in a

rich data object (a DIANA tree, for example) which preserves syntactic and semantic information

rather than in a simple ASCII text file. None of the environments tested supports incremental

compilation at this time, but such environments are commercially available.

In order to support programming-in-the-large it will be necessary to support persistent objects

with attributes. Requirements, code, test data, change logs, and documentation must all be

retained and related for the life of the software. These and other capabilities will be necessary in

order to provide the necessary breakthroughs in productivity for the Ada programming environ-

ments of the 1980s and 1990s.

Work on environment evaluation is continuing at the Software Engineering Institute. The current

Evaluation of Ada Environments

CMU/SEI-87-TR-1 ES-11

focus is on refining the experiments in the areas of project management and tool integration.

ESPRIT’s Portable Common Tool Environment (PCTE) and Imperial Software Technology’s IS-

TAR are candidate environments for future study. The work described in this report is being used

by Computer Sciences Corporation to evaluate Rational’s R1000 environment and by Mitre to

evaluate GTE’s System Development and Maintenance Environment (SDME).

Evaluation of Ada Environments

ES-12 CMU/SEI-87-TR-1

Evaluation of Ada Environments

CMU/SEI-87-TR-1 ES-1

1. Summary Analysis

1.1. Introduction

The purpose of this chapter is to provide a cross-environment summary analysis of the results of

the Evaluation of Ada Environments project. The results presented here are more detailed than

those in the executive summary, but not as detailed as those found in later chapters. This

chapter is aimed at providing a management level overview of the experiments conducted and

the major lessons learned from those experiments.

For each of the six areas of experimentation, this chapter provides a section which summarizes

the results of the experimentation broken down into the four criteria categories of functionality,

performance, user interface, and system interface. The six experiment groups will be referred to

in this chapter as Configuration Management, System Mangement, Design and Development,

Test and Debug, Project Management, and the ACEC Tests. The details of these experiments

including the functions tested, the questions asked and answered, the scripts used to exercise

the environments, as well as the conclusions reached are presented in Chapters 3 through 8.

Chapter 2 gives the details of the philosophy of the approach taken in this study and the broad

criteria and methodology used in developing the experiments.

Five of the six experiment groups (the exception being the Project Management experiment) were

run on nearly equivalent hardware configurations based on Digital Equipment Corporation’s

MicroVAX II. Each of these five experiment groups were duplicated for the three APSEs which

ran on the MicroVAX II. The other experiment was run on an Apollo workstation. Five of the six

experiment groups were constructed using the methodology detailed in Chapter 2. The other

experiment group consisted of running the Ada Compiler Evaluation Capability (ACEC) test suite

that has been assembled by the Institute for Defense Analysis.

The five experiment groups that were run on MicroVAX II hardware were actually run on three

distinct machines with the three different environments installed. In each case, the hardware

configurations met or exceeded the vendor’s recommendations. In the case of the SofTech Ada

Language System, version 3.0 [AlsText], (herein referred to as the VMS/ALS environment) the

configuration included nine megabytes of main memory and disk space consisting of three RD53

disk drives (213 megabytes). The Digital Equipment Corporation supplied product consisted of

the VAX Ada (version 1.2) [ACS] and a set of five tools called VAXSet. Since this runs on the

VMS operating system, it will be referred to as VMS/VAXSet. The configuration for VMS/VAXSet

included six megabytes of main memory and 102 megabytes of disk space (one 71 megabyte

RD53 drive and one 31 megabyte RD52). The Verdix product is called the Verdix Ada Develop-

Evaluation of Ada Environments

ES-2 CMU/SEI-87-TR-1

ment System (VADS, version 5.1) [VADSOper] and runs on top of the DEC supplied version of

Unix called Ultrix (version 1.2). This environment will be referred to as Unix/VADS. The tests

were run on a system configured with six megabytes of memory and 202 megabytes of disk

space (one 171 megabyte Fujitsu drive and one 31 megabyte RD52).

The final experiment group ran on an Apollo computer with the DOMAIN/IX Unix equivalent

operating system. The Domain Software Engineering Environment (DSEE) and the Alsys Ada

Compiler completed the software configuration. The hardware consisted of an Apollo DN460

workstation with four megabytes of main memory and 171 megabytes of disk space. The ver-

sions tested were Version 2.0 of DSEE and Version 1.0 of the Alsys Ada compiler.

1.2. Configuration Management Cross Environment Analysis

This section presents an overall comparative analysis of the ability of each Ada environment to

support typical Configuration Management (CM) and Version Control functions. The overall intent

of the CM experiments is to provide a comprehensive evaluation of an APSE’s version control

capabilities (i.e., support of successive versions, variant versions, file checkin/checkout) as well

as its configuration control capabilities (i.e., support of system construction and re-construction,

baselining, release management, history collection). For each Ada environment under inves-

tigation (in order, VMS/ALS, VMS/VAXSet, and Unix/VADS), the results from developing and

performing each CM evaluation experiment shall be analyzed (compared) along the criteria

dimensions of functionality, performance, user interface, and system interface. This cross-

environment comparative analysis summarizes the material presented in Chapter 3.

1.2.1. Analysis Along Evaluation Criteria Dimensions

1.2.1.1. Functionality
For the most part, the ALS CM toolset takes advantage of the capabilities of the underlying (ALS)

node model supporting such functions as creating and deleting database objects, fetching

database objects, reserving and replacing database objects, and baselining. However, it is ap-

parent from the cross-environment functionality checklist (page CMCROSSFUNLIST) that the

ALS environment does not provide support for typical Configuration Management activities in two

areas: automatic re-compilation of a system and merging changes made in variant versions of a

CM file element.

Evaluation of Ada Environments

CMU/SEI-87-TR-1 ES-3

Configuration Management/Version Control Functionality
Checklist

Activity Supported (Y|N)

VMS/ALS VMS/VAXSet Unix/VADS

Version Control
Create element .. Y Y Y
Delete element .. Y Y N
Create new version

Successive .. Y Y Y
Parallel... Y Y Y
Derived .. Y Y Y

Merge variants... N Y Y
Retrieve specific version

Explicit ... N Y Y
Dynamic... Y Y Y
Referential ... N Y Y

Compare different file versions.. Y Y Y
Display history attributes ... Y Y Y

Configuration Control
Define system model

Specify source dependencies.. Y Y Y
Specify translation rules .. Y Y Y
Specify translation options... Y Y Y
Specify translation tools... Y Y Y

Build system
Current default... N Y Y
Earlier release ... Y Y Y
Hybrid ... Y Y Y

Product Release
Baseline system .. Y Y Y
Create system release class ... Y Y Y
Maintain product release information .. N N N
Display members of a released system....................................... Y Y Y
Display system release history .. N Y Y

Also apparent from the cross-environment functionality checklist, (page CMCROSSFUNLIST) is

that the DEC VMS/VAXSet environment provides support for all typical configuration manage-

ment activities. Specifically, DEC/CMS [CMSUser] supports all typical version control functions:

creating and deleting database objects, fetching database objects, reserving and replacing

database objects, creating successive and variant versions, and baselining. Furthermore,

DEC/MMS [MMSInstall] provides support for the most common configuration control activities,

namely, system modeling ("Makefile") and automatic software system construction. These tools

in combination with the VAX Ada functionally provide the basis for an excellent Ada software

development environment which is capable of supporting various project scenarios.

The Unix/VADS environment provides support for all typical configuration management activities,

although the operation of including variant versions in baselines is difficult. Specifically, SCCS

Evaluation of Ada Environments

ES-4 CMU/SEI-87-TR-1

within the context of the Unix file system supports common version control activities such as

creating database objects, fetching database objects, reserving and replacing database objects,

creating successive and variant versions, and baselining. Furthermore, Unix/Make and the Ver-

dix Ada Development System support typical configuration control activities such as system

modeling ("Makefile"), automatic software system construction, and maintenance of transactional

history information.

1.2.1.2. Performance
As is evident in the cross-environment performance analysis table (page

CMCROSSPERFTABLE), the ALS requires on average 4 times more elapsed time than the VAX-

Set tools to perform typical Configuration Management activities. The overall performance the

ALS could be poor for a number of reasons, but the most likely reason is its layered implemen-

tation on top of VMS. Specifically, it is conjectured that the slow response times are due to the

method of database access and the ALS process model. For each reference to an ALS database

object, one must pay an overhead penalty associated with the underlying locking mechanism that

is employed for insuring the database’s integrity and correctness. A characteristic of the ALS’s

process model that greatly degrades performance is its process intensiveness, meaning its use of

many VMS processes to perform its functions.

Evaluation of Ada Environments

CMU/SEI-87-TR-1 ES-5

Configuration Management/Version Control Performance
Comparison

Activity Elapsed Time (seconds)

VMS/ALS VMS/VAXSet Unix/VADS

System build operation .. 1937(9.44) 205(1.0) 169(0.82)
Create CM file element.. 13.64(2.43) 5.61(1.0) 1.42(0.25)
System baseline operation .. 220(2.31) 95(1.0) 45(0.47)
Merge operation .. N/A No change 126

Fetch CM element ... 14.46(3.24) 4.46(1.0) 0.82(0.18)
Create variant of CM element.................................... 48(4.0) 12(1.0) 4(0.33)
Fetch variant of CM element 28(5.6) 5(1.0) 0.90(0.18
Reserve variant of CM element 15(2.73) 5.5(1.0) 2(0.36)
Replace variant of CM element 19(2.88) 6.6(1.0) 3.2(0.48)
Merge variant versions of CM element...................... N/A 13(1.0) 3.7(0.28)
Reserve CM element... 14(2.42) 5.78(1.0) 0.82(0.14)
Replace CM element ... 19(2.74) 6.94(1.0) 2.7(0.39)
Display history information for CM element N/A 0.33(1.0) 3.55(10.76)
Re-build earlier baselined
system ... 3656(11.23) 325(1.0) 188(0.58)
Delete CM element.. N/A 5.44(1.0) N/A
Compare different versions of CM element 11(6.32) 1.74(1.0) 0.23(0.13)

File size measurements Size change in bytes
Baseline inclusion.. 2560 No change 90
Successive version.. 100% increase No change 107
Variant version... 100% increase No change 110
Merge operation .. N/A No change 126

The overall performance of the Unix/VADS environment for the CM activities is good relative to

that of VMS/VAXSet. Specifically, to perform these CM functions, Unix/VADS requires on

average one third the amount of VMS/VAXSet elapsed time except for the anomalous case of

displaying history information pertaining to all the CM file elements in a CM library. This anomaly

can be attributed to a difference (between SCCS and CMS) in the method employed for main-

taining the history information. CMS maintains the transactional history information for all CM

elements in one indexed file, whereas SCCS maintains this information as a prologue to each

individual CM file element. Therefore, displaying history information for all CM file elements in a

SCCS directory requires accessing each individual file and thus more elapsed time than CMS

which need only access one special "history" file.

Evaluation of Ada Environments

ES-6 CMU/SEI-87-TR-1

1.2.1.3. User Interface
Of the three environments, the user interface of VMS/VAXSet is the best for various reasons.

First, it supports many popular features including: string symbols, logical names, filename

wildcards, command abbreviations, command line editing, command recall, and parameter

prompting. Second, the DEC Command Language (DCL) is very powerful and easy to learn.

The commands are syntactically consistent each being comprised of one or more command

keywords, command qualifiers, and parameters. A helpful feature of DCL is that the command

qualifiers can be placed anywhere on the command line following the command keyword(s).

Third, the diagnostic messages presented to the user (from all VMS utilities) are of a high quality.

They possess many characteristics common to messages generated within any production

quality software development environment: timely, informative, accurate, uniform in format, and

consistent with the documentation. Lastly, consistency exists in the user interface across in-

dividual tools in the form of a similar command structure and functionality.

The ALS user interface is missing some essential features including: command abbreviations,

command completion, parameter prompting, in-line keyword help, and wildcards. Additionally,

the quality of the error diagnostics is poor since limited information is displayed and the useful-

ness of what is presented is diminished by the inconsistent and lacking documentation.

Overall, the Unix/VADS user interface is good with the only exception being the brevity of its

commands and diagnostic messages. The diagnostic messages generated by SCCS and VADS

are adequate, but as is the case with most error messages provided by Unix-based tools they

tend to be brief and cryptic. Also, the Unix command language being targeted to the expert user

is more difficult to learn (more odd command names to learn) than other command languages.

1.2.1.4. System Interface
A side-effect of the ALS’s layered implementation approach is the subsetting or in some cases

total hiding of some of the underlying operating system’s features. Most notably the KAPSE

interfaces compare unfavorably to the VMS system services provided in the STARLET (VMS

system services package) [Run-Time] specification. Another shortcoming is the inability to submit

batch jobs from within the ALS. Yet another missing capability is that of determining the size in

blocks (or bytes) of a file within the ALS. Other VMS features are also limited or hidden by the

ALS layer: monitoring the activity of the system, multiple command recall, invocation of third party

software (e.g., the EMACS editor can be used within VMS but the ALS cannot currently support

any editor other than the DEC standard EDT).

Both the DEC VMS/VAXSet and Unix/VADS environments provide a well integrated, comprehen-

sive set of utilities capable of supporting the development and integration of Ada software sys-

Evaluation of Ada Environments

CMU/SEI-87-TR-1 ES-7

tems. All of their respective CM tools utilize ASCII text files wherever possible to promote and

support information sharing. Furthermore, both the VAX Ada and Verdix Ada Development Sys-

tem support a full complement of VMS and Unix system service calls respectively. One drawback

of the VMS/VAXSet system interface is the fact that the smallest granularity of VMS files is a 512

byte block which affects the accuracy of the file size measurements.

1.2.2. Summary
Judging from the analysis across the criteria dimensions of functionality, performance, user inter-

face, and system interface, it is clear that both VMS/VAXSet and Unix/VADS provide an excel-

lent, production quality environment which is capable of supporting the development, integration,

and configuration management of large Ada software systems. The analysis shows that although

the ALS environment provides support for a majority of typical configuration management ac-

tivities, its execution performance, user interface, and system interface prohibit it from being com-

petitive with the other Ada programming support environments under evaluation.

1.3. System Management Cross Environment Analysis

This section presents an overall comparative analysis of the ability of each Ada environment to

support typical system management (SM) functions. The overall intent of the SM experiments is

to provide a comprehensive evaluation of an APSE’s support for typical system management

activities (i.e., environment installation, user account management, environment maintenance,

and system resource management). For each Ada environment under investigation (in order,

VMS/ALS, VMS/VAXSet, and Unix/VADS), the results from developing and performing each SM

evaluation experiment shall be analyzed (compared) along the criteria dimensions of functionality,

performance, user interface, and system interface. This cross-environment comparative analysis

summarizes the material presented in Chapter 4 of this document.

Evaluation of Ada Environments

ES-8 CMU/SEI-87-TR-1

1.3.1. Analysis Along Evaluation Criteria Dimensions

1.3.1.1. Functionality
Both the VMS/ALS and VMS/VAXSet environments provide a well-integrated operating environ-

ment capable of supporting a wide range of System Management functions (See the cross-

environment functionality checklist on page SMCROSSFUNLIST for further details). Specifically,

the underlying VMS operating system provides the context for performing all aspects of the ALS

and VAXSet installation process, including such functions as reading the release media, recon-

figuring the operating environment, establishing logical names, establishing command aliases,

and performing verification and acceptance tests. Furthermore, the VMS operating system

provides the Authorize utility which supports commonly performed user account management

functions such as creating, deleting, renaming, copying, and listing user accounts, as well as

creating and deleting user account groups. In general, VMS user accounts own a vast number of

system resource quotas and attributes, all of which are maintained by the Authorize utility.

Evaluation of Ada Environments

CMU/SEI-87-TR-1 ES-9

System Management Functionality Checklist

Activity Supported (Y|N)

VMS/ALS VMS/VAXSet Unix/VADS

Environment Installation
Load environment software from media Y Y Y

Integrate with existing operating environment
Setup necessary alias/logical names .. Y Y Y
Operating environment configuration .. Y Y Y
Run installation procedure... Y Y Y
Install help files .. Y Y Y
Establish access control .. Y Y Y
Modify system wide start-up procedures Y Y Y

Perform acceptance tests
Query the on-line help facility .. Y Y Y
Create a program library.. Y Y Y
Edit an Ada source code file.. Y Y Y
Compile a small (main) Ada program .. Y Y Y
Link a small (main) Ada program... Y Y Y
Execute a small (main) Ada program .. Y Y Y
Delete a program library .. Y Y Y

User Account Management
Create user account .. Y Y Y
Delete user account... Y Y Y
Copy user accounts... Y Y N
Create user account groups .. Y Y Y
Add user account to group .. Y Y Y
Disable user accounts ... Y Y Y
Delete user account from group .. Y Y Y
Establish user account characteristics .. Y Y N
Modify user account characteristics .. Y Y N
Establish default account chars... Y Y N
Modify default account characteristics... Y Y N
Display user account characteristics ... Y Y N
Display default account characteristics Y Y N
Create initial working directories.. Y Y Y
Establish default login/logout macros .. Y Y Y
Verify creation of user accounts .. Y Y Y

While the Unix/VADS environment provides support for all typical System Management activities

in the category of environment installation, it is deficient in its support of user account manage-

ment functions. Specifically, the underlying Unix operating system provides the context for per-

forming all aspects of the VADS installation process, including such functions as reading the

release media, establishing symbolic links, linking the source code debugger against existing

object libraries, integrating the electronic error reporting program with the standard Unix mailer,

and performing verification and acceptance tests. Unix does not, however, provide an account

management utility similar to Authorize; rather it supports a minimal set of account management

Evaluation of Ada Environments

ES-10 CMU/SEI-87-TR-1

functions (create a user account group, add/delete a user account) using command scripts

provided within the Unix environment. In general, Unix provides a simplistic user account model

(i.e., minimal account information, minimal functionality) relative to what is provided within VMS

and supports more or less ad hoc maintenance of the user account files.

1.3.1.2. Performance
As is evident in the cross-environment performance analysis table (page

SMCROSSPERFTABLE), the ALS installation (command) procedure takes a long time (3 - 3.5

hours) to complete. In part, this lengthy duration can be attributed to the fact that the installation

command procedure performs a verification pass over the release media in order to guarantee

that the ALS software and database are properly read. In terms of disk space usage, the ALS

software and database consume 35 MB of disk space. In contrast, the VAXSet and VADS

installations take considerable less elapsed time to complete (1 hour, 15 minutes respectively)

and both have lower disk space requirements (15 MB, 9MB respectively).

Evaluation of Ada Environments

CMU/SEI-87-TR-1 ES-11

System Management Performance Comparison

Activity Elapsed Time (seconds)

VMS/ALS VMS/VAXSet Unix/VADS

Environment Installation
Load the environment software 12080(3.10) 3900(1.0) 272(0.07)
Reconfigure underlying operating system 258(1.11) 232(1.0) N/A
Install on-line help files .. N/A 120(1.0) 2.40(0.02)
Establish symbolic links and/or logical

names for execution access 0.80 N/A N/A
Modify system-wide startup procedures 1.76(1.0) 1.76(1.0) N/A
Perform acceptance tests on environment software.. 1918(20.62) 93(1.0) 77(0.83)

User Account Management
Create a user account group 3.52(1.02) 3.44(1.0) 5.75(1.67)
Create a new user account.. 3.20(1.05) 3.05(1.0) 20.20(6.62)
Add a user account to a user group 3.22(1.01) 3.18(1.0) N/A
Copy old account characteristics to a new account... 3.79(1.01) 3.74(1.0) Not supported

Display user account characteristics 2.64(0.85) 3.11(1.0) 0.33(0.11)
Modify a user account’s characteristics..................... 2.84(1.03) 2.75(1.0) Not supported
Remove a user account to a user group 3.69(1.22) 3.03(1.0) Not supported
Delete a user account.. 3.19(1.05) 3.03(1.0) 15.80(5.21)

File size measurements Size change in bytes
Create user account group .. No change No change 10
Create a new user account.. No change No change 56
Add a user account to a user group No change No change 5
Disable logins for a user account N/A N/A N/A
Modify a user account’s characteristics..................... No change No change N/A
Remove a user account to a user group No change No change Relative
Delete a new user account .. No change No change 55

In the system management activity category of user account management, the performance of

the VMS/ALS and VMS/VAXSet environments are identical since they both use the Authorize

utility provided within VMS. On the other hand, of the few user account management functions

supported by the Unix/VADS environment, displaying only user account information takes less

elapsed time in comparison to the other environments; all other user account management func-

tions involve more elapsed time. This can be attributed to the fact that these functions are

supported using Unix command scripts rather than as individual tasks of a user account manager

utility.

1.3.1.3. User Interface
Throughout the system management experiments two different user interfaces were presented in

both the VMS/ALS and VMS/VAXSet environments. The first, used for interaction during the ALS

and VAXSet installation, was simply the view of the environment presented to the user through

the DCL Command Interpreter. This interface is good with the possible exception of the limited

Evaluation of Ada Environments

ES-12 CMU/SEI-87-TR-1

capabilities of the Micro-VMS window manager. Features supported include string symbols, logi-

cal names, filename wildcards, command abbreviations, command line editing, command recall,

and parameter prompting. The diagnostic messages presented to the user through this interface

are excellent—timely, informative, accurate, uniform in format, and consistent with the documen-

tation. The second user interface seen within the context of the system management experi-

ments and the VMS/ALS and VMS/VAXSet environments was that of the Authorize utility. This

interface provides a uniform set of syntactically consistent commands, all with mnemonic names

and qualifiers, making it quite easy to learn and use. Furthermore, Authorize utilizes the hierar-

chical VMS help facility for on-line command assistance and general information regarding its

use.

Unlike the other environments, interaction between the user and the Unix/VADS environment was

completely with the Unix Command Language Interpreter (shell) during both the VADS instal-

lation and account management activities. Overall, the Unix user interface is satisfactory with a

notable exception being the brevity of its command names and diagnostic messages. The Unix

shell is a comprehensive user interface that supports string aliases, wildcards, full pathname

wildcards, command line editing, and command recall; however, it does not support command

abbreviations, in-line keyword expansion, and parameter prompting. Also, the Unix command

language, being targeted towards the expert user, is more difficult to learn (more odd command

names to learn) than other command languages.

1.3.1.4. System Interface
Both the installation of the ALS and VAXSet environments and the maintenance of ALS and VAX

Ada user accounts depend on the underlying VMS operating system. The installation of the ALS

and VAXSet requires that certain VMS system parameters be modified and a new, Ada-tailored

operating system, be built. Additionally, certain ALS and VAXSet images are installed as either

known or sharable images to reduce the invocation overhead and to minimize the memory re-

quirements of multiple environment users. The activities of account management interact with

VMS in numerous ways; specifying Ada users’ account resource requirements (quotas), specify-

ing Ada users’ account attributes, creating home directories for Ada users, maintaining the ALS

Access Authorization File, maintaining the ALS Team Configuration File, and maintaining the

VMS user account files. The Authorize utility supports establishing and/or modifying VMS user

account characteristics for ALS and VAXSet users. A privileged user account can be used not

only to create an ALS user’s root directory (within the ALS), but also to maintain environment

users’ directories within the VMS file system.

As with the other environments, both the installation of VADS and the maintenance of Ada user

accounts depend on the underlying Unix operating system. The installation of VADS requires

Evaluation of Ada Environments

CMU/SEI-87-TR-1 ES-13

installing VADS help files (man pages), linking the source code debugger to the existing Unix

object code libraries, and tailoring the error reporting program to utilize the standard Unix mailer.

The activities of account management interact with Unix in two ways, creating home directories

for Ada users, and maintaining the Unix user account files "/etc/passwd" and "/etc/group". The

Unix root account can be used to create an Ada user’s home directory with the appropriate

ownership and protection attributes. The "/etc/adduser" and "/etc/removeuser" command scripts

respectively support establishing and removing Unix user accounts for Ada users.

1.3.2. Summary
The analysis across the criteria dimensions of functionality, performance, user interface, and

system interface indicates that both VMS/ALS and VMS/VAXSet provide an excellent, production

quality environment which is capable of supporting typical system management functions such as

software installation and user account management. The analysis of the Unix/VADS environment

shows that it provides adequate support for software installation activities, but that it does not

provide a sophisticated user accounting model nor does it offer direct support for a majority of the

typical user account management functions. Since these account management functions are

relatively infrequent activities in the overall scheme of software development and maintenance,

the Unix/VADS deficiencies in this area should not be considered major. However, it is clear that

large projects will be better served by the VMS/ALS or VMS/VAXSet environments in the area of

account management. In the area of environment installation, the major difference among the

environments under investigation is the time required to load the systems. Here Unix/VADS is

significantly faster than VMS/VAXSet which is significantly faster then VMS/ALS. If these instal-

lations are infrequent (as they should be), the significantly different load times should not be a

matter of major concern.

1.4. Design and Development Cross Environment Analysis

The purpose of the Detailed Design and Development experiment is to exercise environment

tools that support the classical programming-in-the-small activities associated with the detailed

design process and code development. This section encapsulates the results of implementing

this generic experiment using VMS/ALS, VMS/VAXSet and Unix/VADS by comparing the three

environments. The environments will be compared using four main criteria categories:

functionality, performance, user interface and system interface. This cross-environment analysis

summarizes the material presented in Chapter 5 of this document.

Evaluation of Ada Environments

ES-14 CMU/SEI-87-TR-1

1.4.1. Analysis Along Evaluation Criteria Guidelines

1.4.1.1. Functionality
Several areas of comparison concerning code development and program library manipulation are

outlined below. This is followed by a table that compares the functionality of each environment by

using the functionality checklists completed in Phase 4 of the analysis of each environment.

None of the environments support a graphical design interface and do not support detailed

design, nor do they explicitly provide an Ada browser. All of the environments support the crea-

tion of inter-program library relationships and the creation, modification and deletion of package

specs and bodies.

There are differing mechanisms used to establish inter-program library relationships. The ALS

employs a static pointer. Changes to a child library are not reflected in the parent library without

explicitly reestablishing the relationship. The VMS/VAXSet environment also uses statics

pointers, but unlike ALS, unit obsolescence is propagated back to the parent library thereby

notifying the user that the relationship must be reestablished. The Unix/VADS environment cir-

cumvents this problem by utilizing a library searchlist to link program libraries.

The productivity of code development can be greatly affected by the functionality of the environ-

ment editor. The ALS uses DEC’s screen-oriented keypad editor EDT. EDT is not language

sensitive and provides only a single window for text entry. Source code entry in the VMS/VAXSet

environment is facilitated by the DEC language sensitive editor (LSE), [LSEInstall] which is based

upon EDT. The LSE supports source code templates, source compilation, review of diagnostics,

interaction with the VAX/VMS symbolic debugger and an on-line help facility. As a user becomes

increasingly familiar with LSE usage, Ada source code entry becomes easier and proceedes with

increasing efficiency. The Unix/VADS environment supports any editor supported by the Ultrix

operating system. EMACS was used in this study. EMACS is a highly flexible editor that supports

multi-windowing but has no language sensitive features.

Each environment varies slightly in the functionality concerning translation of source code and the

creation of an executable module. The most important difference lies in the area of recompilation

where VMS/ALS offers no automatic recompilation facility. Both VMS/VAXSet and Unix/VADS

support automatic recompilation of modified units in the closure of a specified unit.

All of the environments support most of the program library query and manipulation functions,

including listing unit names and types, determining recompilation status, removing units and

clearing the program library. VMS/ALS does not provide a vehicle for querying existing inter-

Evaluation of Ada Environments

CMU/SEI-87-TR-1 ES-15

program library relationships; both VMS/VAXSet and Unix/VADS support this capability.

VMS/VAXSet is the only environment that provides a command to query the completeness of the

program library. None of the environments provide a mechanism to query for subprogram inter-

dependencies.

VMS/VAXSet and Unix/VADS provide easy mechanisms for controlling program execution: start-

ing, terminating, suspending and resuming execution. To terminate execution of a process under

VMS/ALS, one must interact with a special break-in processor, which tends to be confusing.

When a program abnormally aborts, both VMS/ALS and VMS/VAXSet produce traceback listings;

Unix/VADS does not.

Evaluation of Ada Environments

ES-16 CMU/SEI-87-TR-1

Detailed Design and Development Functionality Checklist

Activity Supported (Y|N)

VMS/ALS VMS/VAXSet Unix/VADS

Detailed Design
Def./redef. objects and operations N N N
Def./redef. data structures... N N N
Def./redef. prog. units.. N N N
Def./redef. prog. unit interfaces N N N
Design/redesign control flows ... N N N
Create system skeleton... N N N

Code Development and Translation
Create program library .. Y Y Y
Create prog. lib. interdep... Y Y Y

Develop package specs
create package spec. .. Y Y Y
modify package spec... Y Y Y
delete package spec. .. Y Y Y

Develop package bodies
create package bodies .. Y Y Y
modify package bodies.. Y Y Y
delete package bodies .. Y Y Y

Browse code
find a specified object... N Y Y
browse a body from the spec. .. N N N
browse a dependent (WITHed) package........................ N N N
browse a called subprog. ... N N N
browse the parent subprog... N N N
browse a specified compilation unit................................ N N N

Query and manip. prog. lib.
list unit names. .. Y Y Y
list unit type Y Y Y
list prog. lib. interdep. .. N Y Y
list package interdep. .. Y Y N
list subprog. interdep. .. N N N
determine completeness ... N Y N
determine recomp. status.. Y Y Y
remove unit.. Y Y Y
clear prog. lib. .. Y Y Y

Translate code
trans. into a prog. lib. ... Y Y Y
create cross-reference map .. Y Y N
display error messages ... Y Y Y
list subprog. interdep. .. Y Y N
pretty print source code... Y N Y

Create executable image Y Y Y

Execute code
halt/resume/terminate execution Y Y Y
trace execution path .. Y Y N
clock CPU time by subprog. .. N Y Y

Evaluation of Ada Environments

CMU/SEI-87-TR-1 ES-17

1.4.1.2. Performance
The three environments are compared by summarizing the time and space required to perform

several development tasks. This data is not to be viewed as tool benchmark data, but to give a

feel for the time involved with performing routine tasks in each environment.

As seen in Table TC_TABLE, the ALS takes more than an order of magnitude longer than the

other two environments for program library creation and significantly longer for unit compilation

and executable module creation. These differences force the VMS/ALS user into a batch mode

of code development. In addition, the VMS/ALS user may have a tendency to shy away from

those activities which take an inordinate amount of time, such as program library creation, as it

inhibits the use of experimentation when faced with implementation decisions.

Table 1-1: Timing Comparison

• Program library creation:
VMS/ALS VMS/VAXSet Unix/VADS

Elapsed time 17 min. 17 sec. 13.0 sec. 3.2 sec.
CPU time............................... 12 min. 26 sec. 2.9 sec. .1 sec.

• Small Compilation Unit (average of two package specifications):

VMS/ALS VMS/VAXSet Unix/VADS

Elapsed time 1 min. 23 sec. 11.6 sec. 8.0 sec.
CPU time............................... 45 sec. 5.0 sec. .9 sec.

• Executable Module Creation:

VMS/ALS VMS/VAXSet Unix/VADS

Elapsed time 7 min. 45 sec. 23.9 sec. 25.1 sec.
CPU time............................... 4 min. 50 sec. 1.5 sec. 10.5 sec.

Table SC_TABLE illustrates that there are significant differences in the space required to perform

the itemized tasks. It appears as if VMS/VAXSet requires much more space than the other en-

vironments. However, ALS allocates roughly 4 megabytes of space for the program library prior

to the creation of the first program library. When the command is issued to create a program

Evaluation of Ada Environments

ES-18 CMU/SEI-87-TR-1

library, only pointers are created, and little additional space is needed. VMS/VAXSet builds an

index file for each program library that requires the indicated amount of space. Unix/VADS

requires very little additional space when creating a program library.

For translation of a small unit VMS/VAXset and Unix/VADS vary only slightly, but ALS utilizes

approximately 15 times the space of the other environments.

The load module created by the VMS/VAXSet environment is the smallest. The Unix/VADS

module is approximately 5 times as large. The VMS/ALS module is over ten times the size of that

produced under VMS/VAXSet.

Space Comparison (in bytes):

Note that the measurements for ALS and DEC are accurate only to 512 bytes (1 block).

Table 1-2: Space Comparison

• Program library creation:
VMS/ALS VMS/VAXSet Unix/VADS

512 58,880 690

• Translating a small unit:
VMS/ALS VMS/VAXSet Unix/VADS

Object Code.......................... 81,920 1536 378
Intermediate Representation

(included in obj.)................. 3584 3639

• Executable Module Creation:
VMS/ALS VMS/VAXSet Unix/VADS

Executable Module 151,040 11,776 64,512

1.4.1.3. User Interface
The ALS possesses its own command oriented user interface that is syntactically modeled after

Ada. The other two environments utilize the command interface of their respective underlying

operating systems. The ALS lacks many of the features that have become standard in modern

day operating systems. It lacks a wildcarding mechanism, has very limited command history

retrieval (only the last command) and has very little tolerance for minor command input errors.

Evaluation of Ada Environments

CMU/SEI-87-TR-1 ES-19

On the other hand, the VMS and Ultrix operating systems exhibit the maturity gained from over

fifteen years of evolution. VMS includes a rich set of wildcard capabilities providing an easy

mechanism for complex file manipulations. Command history and command line editing are sup-

ported. Command entry is flexible; command abbreviations and arbitrary parameter and option

ordering are acceptable. A high degree user interface customization is possible through com-

mand aliasing and command procedures which support parameter passing, lexical functions and

string manipulation.

The Ultrix C-shell was utilized as the VADS user interface. It is highly tailorable and also supports

wildcarding, command history, command line editing. Ultrix command names and command

syntax are less readable and less flexible than the same for VMS.

The clarity with which information is conveyed to the user, both in written and machine readable

forms, is an important aspect of the user interface. This includes error messages, on-line help

facilities and documentation. The ALS suffers from extremely cryptic, at times incomprehensible

and inaccurate error messages. It posesses a minimal on-line help facility which is not context

sensitive and does not support keyword search. The written documentation is also poor; it con-

sists of a single volume ALS Textbook and a two volume ALS VAX/VMS Target User’s Reference

Manual. Navigating through the documentation is difficult, especially in the user’s guide, which

lacks an index.

The environment feedback provided by the VMS/VAXSet environment is good. Error messages

are consistent in both quality and format. The help system serves as comprehensive on-line

documentation. It is not context sensitive nor does it support keyword search. The written

documentation contains information that is similar to the on-line help with the addition of illustra-

tive examples and sample sessions.

Most of the VADS commands issue error messages in a manner consistent with the style of

Ultrix, which tends to be terse. However the VADS compiler error messages are informative and

clearly presented. The VADS on-line help facility presents information very much the same as

Ultrix man pages and serves as an on-line reference manual. A simple keyword search

mechanism is also supported. The documentation for VADS is well suited for a reference guide

but a user’s guide is lacking. The VADS Operations Manual represents a starting point for a

user’s guide but needs more examples and detailed explanations for command options.

Evaluation of Ada Environments

ES-20 CMU/SEI-87-TR-1

1.4.1.4. System Interface
Factors considered when examining the system interface include the interaction with host operat-

ing system and level of integration of the environment tools. The ALS is an operating system built

upon a host operating system. This results in the loss of accessibility to certain features and

functions of the underlying operating system. Both the VMS/VAXSet environment and the

Unix/VADS environment represent good extensions to existing, mature and stable operating sys-

tems.

The ALS database is implemented by a customized index file mechanism. The master index file

resides in what is known as a frame file. This file grows in increments of 8000 blocks when

additional space is needed. Once additional space is allocated, it is never returned. The

VMS/VAXSet environment program library structure consists of a standard VMS directory plus a

specially created index file. The Unix/VADS program library consists of a standard Ultrix directory

plus four Ultrix subdirectories and several files.

Tools in the ALS operate in a standalone fashion. The VMS/VAXSet environment exhibits good

tool integration as can be seen in the language sensitive editor. Unix/VADS tools, with a few

exceptions, are standalone. The Ultrix piping mechanism allow the tools to interact easily.

1.4.2. Summary
With the exception of support for detailed design and browsing, all environments support most of

the activities associated with code development. VMS/VAXSet is the only environment to provide

a language sensitive editor. The ALS is the only environment that does not support an automatic

recompilation facility. VMS/VAXSet and Unix/VADS perform program library creation, unit com-

pilation and module creation well within acceptable bounds for interactive code development. On

the other hand, ALS performance is conducive only to a batch mode of operation. The ALS lacks

many of the user interface features that have become standard in modern operating systems

such as VMS and Unix. The clarity with which information is conveyed in both written and

machine readable forms is exemplary for VMS/VAXSet. Unix/VADS presents information in a

manner consistent with Unix, which is terse at times. ALS information presentation is consistently

poor, characterized by uninformative error messages and low quality documentation.

1.5. Testing and Debugging Cross Environment Analysis

This section presents an overall comparative analysis of the capability of each Ada environment

to support typical testing and debugging activities. The intent of the Testing and Debugging

experiments is to exercise the Ada debugger and to explore other tools to be used in testing.

This section summarizes the results of implementing the generic experiment using VMS/ALS,

Evaluation of Ada Environments

CMU/SEI-87-TR-1 ES-21

VMS/VAXSet and Unix/VADS by comparing the three environments using the criteria categories

of functionality, performance, user interface, and system interface. This cross-environment

analysis summarizes the material presented in Chapter 6.

1.5.1. Analysis Along Evaluation Criteria Dimensions

1.5.1.1. Functionality
VMS/ALS provides no special support for unit testing. The construction and management of test

data files, as well as initial testing and regression testing, is totally manual. It is impossible to use

existing test data files from within the debugger because there is no way to redirect standard

input for the target program to a file.

There are no separate tools in VMS/ALS that perform static analysis. By specifying options to the

compiler, certain static analysis information can be provided, including the location, scope, type,

and size of each symbol, as well as the number of lines of source code, number of comments and

number of times each operator and reserved word is used. VMS/ALS provides two types of

dynamic analysis: statistical analysis, which yields information concerning the distribution of

processing time among the subprograms in a module; and frequency analysis, which yields infor-

mation about the number of times each subprogram is executed.

The VMS/ALS debugger has a basic set of functions. Breakpoints can be set, and tracepoints

can be simulated. Breakpoints and tracepoints cannot be set upon the raising of an exception

nor upon rendezvous with a specified task. The mechanism for specifying breakpoint locations in

a subprogram is cumbersome. There are many occasions where breakpoints are not set at the

requested location. In general, the debugger is not robust in its ability to manage source state-

ment numbers and source-to-object code relationships. The debugger has commands for dis-

playing source code and variable values, breakpoints, actions associated with breakpoints, and

the call stack. With virtually no support provided for querying the status of executing tasks,

debugging parallel programs is difficult in this environment.

The VMS/VAXSet environment does not provide tools to generate a test harness or test data.

The Test Manager tool, however, does assist the user in organizing tests in a library, running the

tests as a collection, and comparing test results. Regression testing (comparing new results

against a benchmark) is therefore supported.

There is no support for the static analysis of programs in VMS/VAXSet. On the other hand, the

Performance & Coverage Analyzer can thoroughly analyze the dynamic behavior of a program

and produce plots or tables from the data collected. This tool collects and analyzes program

Evaluation of Ada Environments

ES-22 CMU/SEI-87-TR-1

counter sampling data, I/O data, system services calls, exact execution counts, test coverage

data, and page fault data.

The VMS/VAXSet debugger has a full complement of commands for setting, resetting, and dis-

playing breakpoints and tracepoints. This includes the ability to set conditional breakpoints, set

breakpoints upon a rendezvous, set breakpoints upon an exception, specify that a break action

begins to take affect upon the nth time the breakpoint is hit, and associate a list of debugger

commands with the breakpoints. All subprogram names can be made visible to the breakpoint

command, thus allowing a breakpoint to be set at the entry point of any subprogram. For debug-

ging Ada tasks, the techniques applicable to non-concurrent programs can be used, and ad-

ditional commands can monitor the behavior of tasks. There are commands for stepping through

the execution of a program one or more instructions at a time, for modifying the program state,

and a comprehensive set of commands for querying the program state. An optional screen

oriented display clearly indicates the current position of the program counter.

Unix/VADS has no test data management facility. Initial testing and regression testing are

manual procedures, as is the management of test data. Unix/VADS provides no static analysis

capabilities, although it does have a simple cross-referencing facility. It supports code profiling

through the use of Unix tools and instrumentation code. Execution of the instrumented module

produces an output file containing analysis data which is then interpreted by Ultrix tools to

produce analysis reports. The granularity of analysis is at the subprogram level. Statistics

provided include resident time in each subprogram and the number of times each subprogram

was invoked.

The Unix/VADS debugger provides a full set of breakpoint capabilities, including conditional

breakpoints and the ability to associate a list of debugger commands with breakpoints. Setting a

breakpoint upon the raising of an exception is straightforward. There is no direct way to set a

breakpoint upon task rendezvous. Tracepoints are not directly supported but they can often be

simulated via a contrived form of a conditional breakpoint. The breakpoint command is not re-

quired to abide by Ada visibility rules. Instead, all subprograms are visible to the breakpoint

command, making it easy to set a breakpoint at the entry point of any subprogram.

Unix/VADS is good at displaying the state of the program. The source code around the home

position is automatically displayed in the source window when using the debugger in screen

mode, or can be displayed manually in line mode. Variable values are also easily displayed.

Other commands are available to display the call stack, list all active tasks, and display detailed

information about the status of a particular task.

Evaluation of Ada Environments

CMU/SEI-87-TR-1 ES-23

1.5.1.2. Performance
In VMS/ALS, creating modules with analysis options turned on does not affect the size of the load

module. CPU time and elapsed time are increased, however, as shown in Table THREE.

Table 1-3:

Elapsed time
without analysis ...13.7 sec
with analysis ..20.5 sec

CPU time
without analysis ...7.0 sec
with analysis ..10.7 sec

In order to debug a program with VMS/ALS, it must be re-exported. This does not change the

size of the load module. Qualitatively, the VMS/ALS debugger exhibits good response times (1-3

seconds) for all activities except loading a module, which requires more than one minute of

elapsed time.

In the VMS/VAXSet environment, the creation of test descriptions and test collections takes only

a few seconds. Running a collection of tests is also rapid, and regression testing on a small test

suite takes less than 20 seconds. The Test Manager stores benchmark files, test system files,

and (in a subdirectory) files relating to each collection in a special user-defined directory.

The collection of performance and coverage data in VMS/VAXSet is rapid, except for execution

counts which, by their nature, incur high overhead. Once the data is collected, it can be analyzed

and displayed with only a few seconds delay. Instrumenting code for analysis incurs negligible

space overhead.

Using the VMS/VAXSet debugger does not appear to slow down the execution of a program,

although this is hard to judge because the act of debugging a program in execution (setting

breakpoints and tracepoints, displaying variable values and call stacks, etc.) naturally takes

longer. Compiling and linking a program for debugging does increase the space utilization of the

object code (by about sixty percent) and the executable (by about eighty percent).

Test management is not supported in Unix/VADS, nor is static analysis of programs. The Unix

dynamic analysis tools were not available for this experiment, and consequently there are no

performance results to report in this area. No recompilation or instrumentation of the Unix/VADS

load module is necessary for debugging. Qualitatively, the debugger exhibits excellent response

times for most functions.

Evaluation of Ada Environments

ES-24 CMU/SEI-87-TR-1

1.5.1.3. User Interface
The VMS/ALS debugger is easy to learn but cumbersome to use due to its command-line orien-

tation. Not only is there no automatic feedback concerning execution location, there is no source

code window. Thus, the user must repeatedly display source code. In some cases, the source

display is difficult to read. The VMS/ALS command level help facility is available from within the

debugger. This facility provides a short description of each debugger command and can serve as

a useful reminder of the available debugger commands. Error messages from VMS/ALS are

confusing, and the display of information tends to be poor. Certain commands (for example, the

setting of breakpoints) operate in a manner inconsistent with the documentation.

The VMS/VAXSet Test Manager [TMInstall] tool has a clear user interface and is easy to learn.

The three steps in unit testing which are automated -- organizing tests into collections, running

these tests with previously-written test data, and comparing test results to expected results -- flow

in a natural order under the control of the Test Manager. At each stage, the tool interacts with the

user by reporting on the results of running tests and comparing results.

The Performance & Coverage Analyzer [PCAInstall] in VMS/VAXSet is also easy to use. The

Collector accepts defaults for the name of the file to contain collected data and for the type of

data to collect. The Analyzer operates in screen mode, and the plots and tables it generates are

readable and well labeled.

The VMS/VAXSet debugger can operate in line mode or screen mode. In screen mode, the

debugger displays a window of source code with a cursor at the current statement location.

Setting breakpoints and tracepoints, querying the state of the program, and modifying the state of

the program are all straightforward. Overloaded symbols are detected and can be qualified.

On-line help is accessible from within the VMS/VAXSet debugger, the test manager, and the

performance analyzer.

The Unix/VADS debugger is easy to use and easy to learn. It requires knowledge of only a few

basic commands to start using it effectively and allows for a natural progression to more ad-

vanced usage. The debugger offers both full screen and command line oriented user interfaces.

The majority of commands can be used in either the screen mode or the command line mode of

operation. In addition, there are special commands applicable only to the screen-oriented inter-

face. These commands facilitate cursor movement and source window movement and also dupli-

cate a subset of the command line functions. The debugger handles overload resolution

elegantly. In the important area of task debugging, the Unix/VADS debugger proved quite satis-

factory.

Evaluation of Ada Environments

CMU/SEI-87-TR-1 ES-25

When using the screen-oriented interface to the Unix/VADS debugger, a window of source code

around the home position is automatically displayed. Other aspects of the program state are very

easily solicited. The entire Unix/VADS on-line help facility is accessible from within the debugger.

The one area of weakness in this environment is a lack of consistently clear error messages.

1.5.1.4. System Interface
The VMS/ALS debugger is a standalone tool, not integrated with the editor or compiler. No VMS

commands are accessible from the debugger or from the ALS, but the ALS command level is

accessible from within the debugger.

With respect to VMS/VAXSet, the debugger, the dynamic analyzer, and the test manager are

tools that can be used across a wide range of applications and programming languages. Where

these tools need to keep track of auxiliary data, they store this data in files in VMS directories.

From within the debugger, the user can invoke the editor or the Ada compiler but must re-link and

re-execute the modified program to initiate a subsequent debugging session. That is, the debug-

ger is not fully integrated with other tools.

Like the VMS/VAXSet debugger, the VADS debugger is not tightly integrated with the other tools

in its environment. Specifically, source code cannot be modified and then incrementally recom-

piled from within the debugger. Editors are accessible from within the debugger to alter source

code. The analysis tools are those provided by Unix.

1.5.2. Summary
The VMS/ALS unit testing and debugging tools provide a rudimentary set of functions and there is

no test manager. Limited support is provided for static and dynamic analysis. The debugger is

weak in its support of breakpoints and in its ability convey the program state. It also provides little

functionality to facilitate task debugging. The debugger does not consistently operate as stated in

the documentation and frequently responds with cryptic and uninformative messages.

The VMS/VAXSet environment demonstrates that separate tools can work together smoothly in a

powerful way. The tools for test management and for dynamic analysis are functionally rich, easy

to use, and more than adequate with respect to performance. The debugger is excellent. Clear

error messages, a hierarchical on-line help facility, and comprehensive documentation contribute

to a pleasant user interface.

Tools for the management of tests and test data are absent from Unix/VADS, there are no static

analysis tools, and dynamic analysis are limited and are borrowed from Unix. The Unix/VADS

debugger can enhance the unit development process. It supports task debugging and the reveal-

ing of the program state. Comprehensive on-line help is available, and the screen-oriented inter-

Evaluation of Ada Environments

ES-26 CMU/SEI-87-TR-1

face greatly facilitates debugger usage, however, error messages need to be improved. Overall,

the Unix/VADS debugger is an excellent tool.

Evaluation of Ada Environments

CMU/SEI-87-TR-1 ES-27

Unit Testing and Debugging Functionality Checklist

Activity Supported (Y|N)

ALS VMS/VAXSet Unix/VADS

PRIMARY ACTIVITIES

Unit testing

Create and debug test harness N N N

Create test input data for functional testing..................... N N N
boundary case testing ... N N N
structural testing ... N N N
stress testing ... N N N

Perform initial test
create expected output data.. N N N
produce actual output data.. Y Y Y
compare actual and expected data Y Y Y

Perform dynamic analysis
measure execution time by subprogram Y Y Y
perform test data coverage analysis N Y N
identify code not executed... N Y N
measure statement execution frequency N Y N

Perform regression testing .. N Y N

Debugging

Set/reset breakpoints on
program unit entry/exit... N Y Y
exception ... N Y Y
statement... Y Y Y
n’th iteration of a loop .. N Y N
variable changing value... N Y Y
variable taking on a specified value N Y Y
rendezvous.. N Y N

Control execution path
jump n statements ... N Y N
enter a specified subprogram.. N Y N
exit the current subprogram .. N Y N

Query program state
display source code... Y Y Y
display variable values .. Y Y Y
display breakpoints.. Y Y Y
display tracepoints... Y Y Y
display stack.. Y Y Y
display history.. N N N
display task status ... N Y Y

Modify program state
modify variable values... Y Y Y
add, modify and delete code ... N N N

Evaluation of Ada Environments

ES-28 CMU/SEI-87-TR-1

SECONDARY ACTIVITIES

Unit testing

Perform static analysis
check against prog. guidelines N N N
measure subprogram’s complexity................................ N N N
identify unreachable statements.................................... N N N

Debugging

Set/reset tracepoints on
program unit entry/exit... N Y Y
exception ... N Y N
statement... Y Y Y
n’th iteration of a loop .. N Y N
variable changing value... N Y N
variable taking on a specified value N Y N
rendezvous.. N Y N

1.6. Project Management Analysis

The project management experiment took into consideration only a small portion of the total

functionality which should be attributed to project management. As more environments support

project management activities, it will become increasingly important to expand the scope of this

experiment area. The purpose of this particular experiment was to explore the activities sur-

rounding the building and maintaining of the project database which is but one aspect of the

technical management activities of project management. Chapter 7 describes the whole realm of

project management activities, but defines an experiment for key technical management activities

only. Since the experiment was run only on Apollo hardware using the Alsys compiler, this

section will describe only the lessons learned from a single instantiation of the experiment.

1.6.1. Analysis Along Evaluation Criteria Guidelines

1.6.1.1. Functionality
The DSEE/Alsys environment represents a great unfulfilled potential. DSEE represents some of

the best technology available for project management and would be the Alsys Ada compiler is

one of a family of Ada compilers from Alsys. Unfortunately, these two systems are provided by

separate vendors and are not integrated so that they can be used usefully together. A project

database consists of three fragmented libraries and directories. The DSEE library is used most

profitably to hold program source and documentation text. DSEE provides configuration manage-

ment, version control, file locking, and a history mechanism to record reasons for changes and

maintaining file history. The Alsys Ada library must be used to hold compiled Ada modules

before their assembly into running programs. It must be used to maintain the Ada program

dependency relationships between files. Finally the Unix file system must be used to hold ex-

Evaluation of Ada Environments

CMU/SEI-87-TR-1 ES-29

ecutable program files and any miscellaneous files required which do not fit in the DSEE or Alsys

Ada libraries.

The DOMAIN/IX operating system is the basis for all the database elements described above.

Both the DSEE and Alsys Ada libraries consist of a series of directories and files which can be

examined using operating system commands. Safe and controlled access to these files is

limited, however, to the utilities provided by the program creating the libraries.

The Apollo DOMAIN system provides a distributed file system built around a proprietary local

area network (LAN). All elements of the database can make use of the distributed file system. A

project database can be divided among multiple workstations, and each component of the

database is fully accessible from any other workstation. Unlike the standard versions of either

Unix or VMS, the Apollo Domain operating system supports a network file system that is trans-

parent to the user.

Among the features supported by DSEE are a file control system supporting version control and

configuration management, system building, monitors for automatic notification when file changes

are completed, and tasklists for project tracking. Some of these capabilities (such as system

building) are provided by Alsys Ada and are not fully compatible with DSEE.

1.6.1.2. Performance
During this experiment, all measurements were taken under conditions of light load for both net-

work and local tests. When typing commands directly to the user interfaces, responses were

consistent with interactive use, with the exception of Ada compilation. When Ada compilation

was invoked from DSEE, builds were prolonged in comparison to the DEC and Verdix compilers

running on MicroVAX hardware. Extremely simple programs required several minutes to com-

plete. Creating, copying, and deleting the modest sized program libraries used in this experiment

required less than a minute to complete.

Operating system commands, when invoked from DSEE, took approximately four seconds while

the same action required only 1 second when invoked from Alsys Ada. Operations performed

over the network took no longer than operations performed on the local workstation, suggesting

that at least for lightly loaded systems there is little network overhead. For the most part, the

performance was considered consistent with interactive use for the functions tested.

1.6.1.3. User Interface
A variety of user interfaces were provided in the course of this experiment. First, the DOMAIN/IX

operating system and Apollo hardware provide a bit-mapped windowing console screen. Second,

DSEE provides a consistent user interface that utilizes the Apollo hardware. Third, the Alsys Ada

Evaluation of Ada Environments

ES-30 CMU/SEI-87-TR-1

user interface is command based since it is meant to be portable and is available on a number of

different systems. Each of the user interfaces was competent for the purpose designed. Each

provided help on demand and error messages as required. The error messages were normally

helpful.

Documentation was provided in a minimum of four separate manuals: a DSEE Reference, a

DOMAIN/IX Reference [IX], an Aegis Reference [SCR], and an Alsys Ada [AlsyComp] manual.

The Apollo manuals were of high quality, relatively complete, and well indexed. Illustrations were

used as required, along with appropriate examples. An on line tutorial provided with DSEE was

useful for initial exposure. The Alsys Ada manual was fair. It did not cover all topics needed

during the experiment, and the command information was scattered in a fashion that made it

difficult to locate the individual commands without consulting the table of contents. For example,

there was no information on invoking the compiler directly from the operating system, the infor-

mation on PRAGMA INTERFACE was incorrect, and the command summary was incomplete.

The user interface as suffers from the inconsistency one would expect when it is provided by two

separate vendors. Separate commands and command styles are required by Alsys Ada, DSEE,

and the two command shells. In addition, some important administrative functions must be per-

formed by Aegis (the native operating system) rather than DOMAIN/IX (the Unix operating sys-

tem) since there are no equivalents that will work with the DSEE database.

1.6.1.4. System Interface
Since there are three software components (DSEE, Alsys Ada, and the underlying operating

system (DOMAIN/IX or Aegis)) there are several system interfaces to consider. The DSEE to

Alsys Ada interface is the weakest interface link. The DSEE build operation assumes Unix-like

compiler invocations, but Alsys Ada uses their own format for compiler invocations. While all

possible solutions to the problem were not explored, the solution to this inconsistency is at best

problematical and was not overcome.

The DSEE/operating system interface works reasonably well. The direct invocation of shell com-

mands is surprisingly sluggish, but a user with a windowing terminal will make little use of this

feature. Versions of DSEE files can be read into the operating system file space as required for

modification, printing, or other uses. DSEE also can provide correctly versioned files for a num-

ber of operating system translators including compilers, text formatters, and other utilities.

The Alsys Ada/operating system interface also functions well. A user reads files to the Ada front

end which processes them and, sometimes, writes the results back to the operating system’s file

space. Internal Alsys Ada files (notably the program binary files) are more or less inaccessible,

Evaluation of Ada Environments

CMU/SEI-87-TR-1 ES-31

except via the intervention of Alsys Ada. However, combinations of binary files (e.g. the con-

struction of an Ada program that calls C functions and libraries) works satisfactorily.

One major flaw in the system interface for database administration is the lack of copy facilities.

Both DSEE and Alsys Ada lack any provision for copying individual, internal format files that the

database administrator can use. This means that it is impossible to cleanly copy files between

DSEE libraries. Instead one must copy files a version at a time. Likewise, Alsys Ada files can

only be copied by recompilation. On the other hand, libraries as a whole can be easily copied.

1.6.2. Summary
The Apollo DSEE represents an interesting approach to some of the problems encountered in

building and maintaining large software systems of programs and documentation. From the

standpoint of technical management, it offers the features of:

• Distributed database with full functionality across a local area network

• Decentralized structure, allowing individuals to create personal database elements

• Automated allocation and return of disk space

• Maintenance of all versions of program source

• File locking for modification

Problems with the environment for Ada development and maintenance include poor integration of

the Ada compiler and DSEE, lack of individual file copy capabilities, and a multiplicity of user

interfaces which presents an inconsistent system. Since the DSEE product is currently available

only on Apollo hardware it is of limited value to those with other hardware. The Apollo/Alsys

combination does deserve further scrutiny if the companies get together to provide a more in-

tegrated Ada environment with a consistent user interface.

1.7. ACEC Analysis

This section presents an overall comparative analysis of the ability of each Ada compiler to com-

pile, link and execute a set of test programs, consisting of:

• the 286 programs in the IDA/ACEC test suite

• the programs comprising the ACEC support software

• a large and a medium-size program (used as independent checks).

For each Ada compiler under investigation (in order, ALS, DEC, and VADS), the aggregate

results of compiling, linking and executing the set of test programs will be compared along the

criteria dimensions of functionality and performance. (The user interface and system interface to

the compilers have been examined already as part of the Design and Development experiment.)

Evaluation of Ada Environments

ES-32 CMU/SEI-87-TR-1

This cross-environment comparative analysis summarizes the material presented in Chapter 8 of

this document.

1.7.1. Analysis Along Evaluation Crteria Dimensions

1.7.1.1. Functionality
ALS failed to compile 6 of the ACEC tests; DEC and VADS compiled all tests. A total of 21

ACEC tests did not execute correctly under ALS; all tests appeared to execute correctly under

DEC; 4 tests did not execute correctly under VADS.

ALS did not compile the ACEC support software as given - the INSTRUMENT package had to be

dissected, the IO_PACKAGE specification and body had to be compiled separately and pragma

ELABORATE(TEXT_IO) had to be added to certain packages. DEC and VADS compiled the

ACEC support software with or without these modifications. It is worth noting that the ACEC was

developed using the VMS operating system that supports the DEC compiler.

ALS failed to compile a ’large’ program of 2200 text lines (excluding comments), whereas DEC

and VADS did compile it. All three systems compiled a ’medium-size’ program of 1078 lines.

1.7.1.2. Performance
Running the complete ACEC test suite required nearly 5 days for the ALS and less than half a

day for DEC or VADS.

For each of the test programs, three groups of measurements were taken:

Compilation The facilities of the underlying operating system were used to measure the
total time required to compile and link each program to produce an ex-
ecutable image. The O/S facilities were also used to measure the size of the
object code module.

Instrumentation Each test program was instrumented to record its execution start and stop
times by calling the appropriate procedures in the ACEC support software.

Run-time

The facilities of the underlying operating system were used to measure the
time required to execute each test program

In each group, two types of time were measured;

• "elapsed time" - which can be defined as "wall clock time", and

• "CPU time" - which is the portion of this time that the processor is busy executing the
program.

Since the tests were run on dedicated processors, the difference between the two times is the

time spent waiting for I/O (plus the time consumed by any residual system daemons).

Evaluation of Ada Environments

CMU/SEI-87-TR-1 ES-33

The results are summarized in Table AMM.TABLE; times are rounded to tenths of seconds and

code size is in bytes. The numbers in parentheses are the ratios of the ALS and VADS measure-

ments relative to the DEC measurements. All problem programs have been eliminated and each

group of measurements is for an identical set of programs on the three systems. (Table

AMM.TABLE is restricted to the ’test’ versions of the ACEC programs; the measurements for the

’control’ versions have been omitted).

Table 1-4: Arithmetic Mean of Measurements for ACEC Tests

Times in seconds, code size in bytes (figures in parentheses are ratios with
respect to DEC).

ALS DEC VADS

Compilation_Quantity

Elapsed Time ... 817.0 (15.6) 52.5 (1.0) 61.9 (1.2)
CPU Time... 505.0 (33.6) 15.0 (1.0) 44.9 (3.0)
Object Code Size ... 224012 (93.6) 2392 (1.0) 2601 (1.1)

Instrumentation Quantity
Elapsed Time ... 23.8 (1.5) 16.1 (1.0) 22.9 (1.4)
CPU Time... 23.3 (1.5) 16.0 (1.0) 0.2 (0.0)

Run-Time Quantity
Elapsed Time ... 47.6 (1.7) 28.6 (1.0) 36.0 (1.3)
CPU Time 29.0 (1.7) 16.8 (1.0) 22.7 (1.3)

The object code size for ALS is anomalous because it measures the size of an ’object container’

which holds much more than just the straightforward object code. The instrumentation CPU time

for VADS is also anomalous; in fact the reliability of the instrumentation results is questionable.

The compilation results for the ’medium sized’ program are shown in Table AMCM_TABLE.

Table 1-5: Arithmetic Mean of Compilation Measurements for ’Medium-Size’ Program

Times in seconds, code size in bytes (figures in parentheses are ratios with
respect to DEC).

ALS DEC VADS

Elapsed Time ... 2242. (14.4) 156. 123. (0.8)
CPU Time... 1019. (9.6) 106. 108. (1.0)

Evaluation of Ada Environments

ES-34 CMU/SEI-87-TR-1

The relative mean values in Table 1-4 show clearly that, for small programs such as the ACEC

tests, ALS is by far the slowest compiler, and that VADS is marginally slower than DEC.

However at run-time, the disparity between ALS and VADS narrows dramatically, with VADS

again marginally slower than DEC. The instrumentation elapsed times mirror this trend, but the

instrumentation CPU times do not seem useful (too many individual zero measurements).

The single, independent test on the ’medium size’ program indicates that, as program size in-

creases, the performance of the VADS compiler improves slightly with respect to DEC, and the

performance of the ALS compiler improves dramatically.

The ACEC tests are divided into various architecture categories and each test is designed to test

one or more specific features of the Ada language. The only significant variation of mean values

across architecture categories is that, in the Optional-Features category, ALS and VADS perform

better relative to DEC than in the other categories, in some cases even outperforming DEC; but

this category consists of only three tests and is thus too small a sample to warrant any conclu-

sions. The relative mean values between compilers for individual language features are roughly

consistent with the overall mean values. There is considerable variation across language fea-

tures, but no clear trend.

The main purpose of the ACEC tests is to derive differential statistics for individual language

features; that is to measure the increment in time or space caused by using a particular feature.

Unfortunately, no conclusive differential statistics were obtained (many differentials were in fact

negative!). After filtering out the clearly erroneous data, the relative ratios for time and space

utilization were roughly consistent with the aggregate results and showed considerable variation

between language features, but without any clear pattern.

1.7.2. Summary
Judging from the analysis across the criteria dimensions of functionality and performance, it is

clear that both the DEC and VADS provide reasonably robust Ada compilers with adequate per-

formance both for the translation phase and for the execution phase, but with the DEC compiler

being somewhat better. The analysis shows that the ALS provides a fragile compiler with poor

performance for the translation phase, although the ALS performance for the execution phase is

comparable to the other two systems.

Evaluation of Ada Environments

CMU/SEI-87-TR-1 ES-35

References

[ACS 85] Developing Ada Programs on VAX/VMS.
Digital Equipment Corporation. 1985.

[ALS Text 84] Ada Language System Textbook.
SofTech Inc., 1984.

[Apollo Compiler Reference 86]
Apollo Domain Compiler User’s Guide.
Alsys Inc. Waltham MA 02154, 1986.

[CMS User’s 84] User’s Introduction to VAX DEC/CMS.
Digital Equipment Corporation Maynard, Massachusetts, 1984.

[DOMAIN/IX 86] DOMAIN/IX User’s Guide.
Apollo Computer Inc. 330 Billerica Road, Chelmsford, MA 01824, 1986.

[LSE Install 86] VAX DEC/Language Sensitive Editor Installation Guide
Digital Equipment Corporation Maynard, Massachusetts, 1986.

[MMS Installation 84]
Installing VAX DEC/MMS.
Digital Equipment Corporation Maynard, Massachusetts, 1984.

[PCA Installation 85]
VAX DEC Performance Coverage Analyzer Installation Guide
Digital Equipment Corporation Maynard, Massachusetts, 1985.

[Run-Time Reference 85]
VAX Ada Programmer’s Run-Time Reference Manual.
Digital Equipment Corporation Maynard, Massachusetts, 1985.

[SCR 86] DOMAIN System Command Reference.
Apollo Computer Inc. Chelmsford, MA 01824, 1986.

[TM Installation 85]
VAX DEC/Test Manager Installation Guide.
Digital Equipment Corporation Maynard, Massachusetts, 1985.

[VADS Operations 85]
VADS Operations Manual Version 5.1.
VERDIX Corporation, 1985.

Evaluation of Ada Environments

CMU/SEI-87-TR-1 2-1

2. Methodology for the Evaluation

2.1. Introduction

2.1.1. Objective
An important goal of the Software Engineering Institute is to assess advanced software develop-

ment technologies and disseminate those that appear promising. A number of Ada Programming

Support Environments (APSEs) are being developed, and more are certain to follow. Such en-

vironments could play key roles in increasing the productivity of software engineers, in improving

the quality of embedded systems software, and in reducing the cost of producing and maintaining

software.

The initial purpose of the Evaluation of Ada Environments project was to determine the suitability

of the Army/Navy Ada Language System (ALS) and the Air Force Ada Integrated Environment

(AIE) for application to software engineering activities. The ALS was delivered to SEI in late 1985

and the AIE has yet to be completed as of the middle of 1986. Early in the project a decision was

made to develop a systematic methodology for evaluation of environments and to include a num-

ber of commercial environments in the study. These environments must be evaluated with

respect to their ability to support the complete software life cycle.

Most of the work on the evaluation of software development environments has fallen into one of

three categories. First, there are evaluations of particular components, such as compilers,

editors, or window managers (e.g. [ROBERTS83], [HOOK]). These evaluations are useful in their

own right, but they fail to consider global aspects of the environment or how components interact.

Second, there are evaluations of particular environments (e.g., [BRINKER], [BRINKER85A]) that

usually consider the tools available in that environment, but they do not lend themselves to cross-

environment comparisons. Third, there are lists of questions and criteria without the details of

how to answer the questions or how to apply the criteria (e.g., [LYONS]). These lists are useful,

but they are frequently difficult to apply.

There has been a long tradition of using benchmark tests and test suites for evaluation of

hardware and certain kinds of software, such as compilers. The idea is to find a representative

set of programs that provide a common yardstick against which competing products can be

measured. These tests must be chosen carefully to reflect accurately the applications in the

working environment of interest. For example, installations running commercial applications may

emphasize input/output performance, whereas installations running scientific applications may

emphasize floating point computations.

Evaluation of Ada Environments

2-2 CMU/SEI-87-TR-1

Machine or compiler benchmarking usually is aimed at a small set of performance measure-

ments. The purchaser of a machine may be interested in throughput for batch-oriented systems

and response time for interactive systems. The purchaser of a compiler may be interested in

compile time in terms of statements translated per minute, in execution speed, or in the size of

the resulting object code. In running a benchmark test, the tester attempts to maintain as many

constants as possible, varying only those components to be compared.

The evaluation of environments is far more difficult than the evaluation of single components.

There is much more diversity to consider and often no mapping from the set of tools in one

environment to the set in another. For example, it is difficult to compare an environment that

performs the traditional edit-compile-link-execute cycle for program unit development with an en-

vironment that performs incremental compilation during the edit step. The other complication in

environment evaluation is the pervasiveness of the user in the process of software development:

Performance variation among different software developers may exceed an order of magnitude.

The purpose of defining a methodology is to add a degree of rigor and standardization to the

process of evaluating environments. Without a systematic approach, evaluations offer little more

than ad hoc evidence of the value of an environment. The purpose of this chapter is to discuss a

methodology that addresses the shortcomings of previous approaches to environment evaluation.

The methodology is comprehensive, repeatable, extensible, user-oriented, and partly environ-

ment independent. This methodology has been applied to several Ada environments at the

Software Engineering Institute allowing them to be compared objectively according to the same

criteria. The following sections provide some background and previous work in environment

evaluation and then discuss the principles for an effective environment evaluation methodology,

its phases, and the evaluative criteria. Finally, we describe the environments which were

evaluated and give a summary of the experiments conducted.

2.1.2. Previous Work
This study was not undertaken in a vacuum. A great deal of work has been done already in the

evaluation of environments, and much of it can be applied to Ada environments. The purpose of

this section is to give a brief overview of the previous work that has been done in this area. The

impression that one gets after conducting a literature search and talking to the people interested

in evaluation is that there has been a good deal of thinking about the problems of evaluation, but

not much in the way of actual work. What has been done is mainly in the area of evaluation of

editors and compilers. Evaluation has taken a back seat to studies of correctness and validation.

Unless we have missed some important work, we believe that this study represents a venture into

virgin territory.

Evaluation of Ada Environments

CMU/SEI-87-TR-1 2-3

2.1.2.1. Software Engineering Institute
The Software Engineering Institute has undertaken in its first year two related activities which

provide input to this study. They are the Technology Identification and Assessment project and

the Software Factory Workshop project [SFW]. The first project was undertaken to identify and

assess available technologies that have potential to improve the software engineering process.

The latter was undertaken to bring experts in the field together to explore existing technologies

and ongoing efforts to develop new technologies to meet the objectives of automated software

factories.

The Technology Identification and Assessment project is producing a series of assessment

reports [Ellison86, Feiler85, Kellner85, Nestor86, Newcomer85] covering the areas of user inter-

face technology, tool interface technology, database technology, distributed computing technol-

ogy, and programming environment technology. Some of these reports are more applicable to

the evaluation of APSEs than others, but taken as a whole, they represent a good approximation

of the current state of the art and provide an indication of what is possible and desirable in

APSEs.

The Software Factory Workshop project consisted of a series of workshops, some with restricted

attendance, which culminated with an open workshop in Pittsburgh in February 1986. The pur-

pose of these workshops was to explore means of transforming the labor intensive process of

developing software for embedded systems into a more automated capital intensive process.

The "software factory" is the embodiment of all those tools and techniques which can enhance

the process and the product of software engineering. The initial meetings took place in Pittsburgh

in March and April and in Morgantown, West Virginia, in October of 1985. The results of these

workshops have provided a strong influence on the development of the criteria and desirable

functionality for APSEs. The final report for the Software Factory Workshop project was sub-

mitted at the end of April, 1986.

2.1.2.2. Stoneman
One of the earliest efforts at specifying the requirements for a programming environment specifi-

cally for the Ada programming language was written by Buxton and Stenning [STONEMAN]. This

document is known as "Stoneman" and introduced the concepts of the Kernel Ada Program

Support Environment (KAPSE) and Minimal Ada Programming Support Environment (MAPSE) as

an approach to providing portability. It specified the purpose of an APSE: "to support the

development and maintenance of Ada applications software throughout its life cycle, with par-

ticular emphasis on software for embedded computer applications." It divided the APSE into

three principal components: the data base, the (user and system) interfaces, and the toolset.

Evaluation of Ada Environments

2-4 CMU/SEI-87-TR-1

The shortcomings of Stoneman have been well-documented [STONEANL], and there has been a

migration to a somewhat different concept of portability with the Common APSE Interface Set

(CAIS) [CAIS]. There is a Stoneman Working Group within STARS which has already produced

one update of Stoneman [STONEMANII] and is working on another. This series of work on the

requirements of an APSE provides the context in which this study is undertaken.

2.1.2.3. STARS Software Engineering Environment
STARS (Software Technology for Adaptable Reliable Systems) is one of three efforts, along with

the SEI and the Ada Joint Program Office (AJPO), which constitute the DoD’s Software Initiative.

The STARS Joint Program Office formed a STARS Joint Service Team for Software Engineering

Environments. This group produced version 1.0 of an Operational Concept Document which

describes the mission, functions, and characteristics of the STARS Software Engineering En-

vironment (SEE) [SEE]. The purpose of the STARS-SEE is to define the benchmark for accept-

able SEE capability, to provide a framework and technical interface standards and guidelines

used to build SEEs, and to ensure compatibility among SEEs and associated software tools.

2.1.2.4. IDA Benchmarks
Under contract to AJPO, the Institute for Defense Analyses (IDA) has produced a Prototype Ada

Compiler Evaluation Capability (ACEC) [HOOK]. This is a test suite collected from Ada test

programs that have been in the public domain for some time. These include contributions from

IBM, SRI, Harris, Ada Fair ’84, and SigAda and were originally collected by the Evaluation and

Validation (E&V) Team. The test suite was designed to be a representative sample of programs

which measure Ada language feature performance. The tests have been instrumented to provide

performance and capacity statistics as well as differential execution statistics for the various lan-

guage features.

These IDA benchmark tests were used as the primary vehicle for evaluating the Ada compiler

itself. This is in keeping with the desire to avoid replication of the work done by others and our

emphasis on components of the environment other than the compiler.

2.1.2.5. Evaluation and Validation Team
In June of 1983, AJPO defined the E&V Task and established a tri-service Ada Programming

Support Environment (APSE) E&V Team, with the Air Force designated as the lead service

[EVPLAN]. The overall goal of the E&V Task is (1) to develop the techniques and tools that will

provide a detailed and organized approach for assessing APSEs and (2) to determine confor-

mance of APSEs to the CAIS. The Team consists of 30-40 members and has met quarterly since

December, 1983. The Team has also held annual E&V Workshops at which distinguished

reviewers have had the opportunity to comment on the documents produced by the Team. The

Team has four working groups:

Evaluation of Ada Environments

CMU/SEI-87-TR-1 2-5

• The Requirements Working Group (REQWG) is producing the functional require-
ments for the evaluation and validation of APSEs.

• The APSE Working Group (APSEWG) is gathering information and obtaining exper-
tise on the three government sponsored APSEs (the ALS, ALS/N and the AIE) as
well as commercially available APSEs.

• The Coordination Working Group (COORDWG) is identifying technical issues,
gathering technical information and interfacing with the public.

• The Standards Evaluation and Validation Working Group (SEVWG) is exploring
issues related to the CAIS interface standard.

The REQWG has produced a document called the Requirements for Evaluation and Validation of

Ada Programming Support Environments [EVREQTS]. This document, which is being continually

updated, levies the requirements for a comprehensive evaluation of APSEs. Another related

document, the E&V Classification Schema Report [EVSCHEMA], provides a framework and or-

ganization for an E&V Reference Manual [EVREF] which provides information on the classifica-

tion of APSE components and identifies the criterion/standard or metrics capability used to as-

sess a particular component. An E&V Guidebook ([EVGuide] is meant to provide detailed

descriptions and instructions regarding application of E&V techniques or references to other

documents where such details may be found. The Reference Manual and Guidebook have been

delivered in draft version to the E&V Team.

The COORDWG has kept track of APSE evaluation efforts and produces a regular report which

updates this information. Many of the efforts described in this section are described in greater

detail in their Technical Coordination Strategy Document [EVCOORD]. The APSEWG maintains

an APSE Analysis Document [EVANAL], which provides descriptions and taxonomies of the fea-

tures provided in APSEs developed by the DoD.

2.1.2.6. Ada-Europe
The Environment Working Group of Ada-Europe is chaired by John Nissen. They have recently

released a document entitled Selecting an Ada Environment [LYONS], which is being published

by Cambridge University Press. The group’s meetings are partially funded by the Commission of

the European Communities. The guide is meant to be used in the selection of APSEs, but it

could be used also for the specification of Ada environments. The book provides considerable

help in understanding the issues of specifying, implementing, selecting, using, and producing

standards for environments. The book divides the issues into six parts: host and target con-

siderations, kernel, aids for tool building, man-machine interaction, tool functions, and other

issues. Each of the 19 chapters ends with a series of questions which help characterize an

environment. This excellent reference has helped to focus and clarify our understanding of en-

vironments.

Evaluation of Ada Environments

2-6 CMU/SEI-87-TR-1

2.1.2.7. Other Evaluations of APSEs
There are at least three known evaluations of the ALS environment. Two of the studies were

funded by the DoD. They are the study done by System Development Corp. (SDC) for Ballistic

Missile Defense in Huntsville, Alabama, and the study done by GTE for the Army WIS at Ft.

Belvoir, Virginia. NASA has performed evaluations of the ALS [BRINKER85A] and the DEC VAX

Ada [BRINKER]. These studies provide much information but they are less systematic and com-

prehensive than the study described in this report and they are not easily used for cross-

environment analyses.

2.1.2.8. Academic Studies
A study done by the Wang Institute of Graduate Studies by Mark Ardis, et al. [ARDIS] is titled An

Assessment of Eight Programming Environments. Their report deals primarily with

"programming-in-the-small" environments, which concentrate on only the program development

portion of the life cycle. The work is interesting, however, for the methodology that was chosen.

Each of the coauthors has ranked the eight environments according to nineteen features. The

environments are also ranked according to their support for various user tasks. These rankings

are boiled down to a three level scale of importance and support. This work not only provides

some interesting ideas for a methodology, but also lists some useful features of the programming

portion of the life cycle.

An extensive study was undertaken at the University of Maryland to monitor an Ada Software

Development project [BASILI84]. The project began in February 1982 and ended in July 1983

and was supported in part by the Office of Naval Research and the Ada Joint Program Office.

Among the goals of the project were to develop a set of metrics which could be used to evaluate

APSEs. Unfortunately, at the time of the experiment there were no integrated APSEs and only

rudimentary Ada compilers. The New York University (NYU) Ada/Ed interpreter was used and

logistical and performance problems caused early termination of the project. The primary results

described in the final report were the number of errors and the changes required at each phase of

the life cycle. These errors are broken down in various ways including the type of programmer

making the error, the type of the error, and the language feature associated with the error. This

study is useful from the point of view that it can be used to make our experiments more realistic

with respect to error seeding.

The Georgia Institute of Technology is the site of the Software Test and Evaluation Project

(STEP). This group is supported by the Army Institute for Research in Management Information

and Computer Science (AIRMICS). They have produced a software test tools baseline which has

been located as a result of an extensive literature search [STEP]. While this initial list is con-

cerned with languages other than Ada, it does provide a taxonomy for test tools as an indication

of what should be possible in an APSE.

Evaluation of Ada Environments

CMU/SEI-87-TR-1 2-7

2.1.2.9. User Interface Studies
There has been a significant body of experimental work done in the area of user interfaces,

particularly in the area of text editors [ROBERTS83]. This work has been primarily a collaborative

effort between Xerox Palo Alto Research Center and Carnegie-Mellon University. The resear-

chers in these efforts include Card, Moran, Newell, and Roberts [CARD80]. These studies are

important from the perspective of providing a user or task oriented approach to the evaluation

rather than a function or feature oriented approach. This is the same approach that is adopted

here for the evaluation of APSEs.

2.2. Principles

Any sound methodology should be based on a set of principles that represent the underlying

philosophy from which the methodology is derived. Six principles form the basis of the SEI

approach and govern the the methodology:

• environment independent,

• user oriented,

• experimentally based,

• emphasizing primary functionality,

• evolutionary,

• extensible.

These principles are described in detail below, with our rationale for selecting them.

2.2.1. User Oriented
Perhaps the most important criterion for developers of an environment evaluation methodology is

to focus on the activities of the users rather than on the tools provided by the environment. This

focus on user activities provides the common ground for comparing environments. This approach

is adopted by Roberts and Moran in their evaluation of text editors [ROBERTS83]. Some of the

basic operations of text editing include inserting text, deleting text, searching for strings, and

replacing one string with another. The actions required to accomplish these tasks vary greatly

depending on the type of editor one is using (line oriented versus screen oriented, for example).

In the context of environments, one should postpone as long as possible the issues relating to

particular tools of the environment. For example, given that a generalized user interface could be

command based, menu based, graphically based, or some combination, it is best initially to base

an evaluation on the interactions the user needs to have with the system rather than the

mechanisms needed to perform them. Eventually the evaluation must consider the details of

implementation; but by postponing decisions as long as possible, the evaluator keeps the process

environment independent longer, thereby avoiding the tendency to assume that locally optimized

solutions are global solutions.

Evaluation of Ada Environments

2-8 CMU/SEI-87-TR-1

2.2.2. Environment Independent
The principle of environment independence is motivated by two factors. First, it ensures that the

methodology is not biased for or against any existing environment. Second, it means that much

of the difficult work can be performed once for all environments, while the more mechanical parts

of the evaluation take place for each environment. The mechanism for ensuring environment

independence depends on the first principle (basing the evaluation on user activities) as well as

making sure that the initial formulation of any criteria and tests is generic.

The approach of focusing on the activities of the users rather than the tools requires a great deal

of care, forethought, and expertise. The implementor of the environment-independent part of the

process must be knowledgeable enough about environments to understand the complex interplay

between tools and activities. Experience with a large number of environments is necessary, but

so is independent judgement as to what the underlying user model is or should be.

2.2.3. Experimentally Based
The evaluations should be based on the analysis of the results of a number of well-defined

experiments. This principle ensures that the evaluation is objective and repeatable. The experi-

ments should be based on different activities of the life cycle, and the steps of the experiments

should be defined rigorously. Accompanying the experiments should be questions and measure-

ments that must be recorded as the experiment is carried out. These will not be experiments in

the sense of controlled experiments using many subjects performing the same task, but logically

connected sequences of tests performed by a single experimenter or team. These sequences of

tests provide a concrete mechanism for answering questions about environments.

The objectivity of the experiments will be demonstrable if they yield the same or similar results

and the same or similar conclusions when applied by different groups. Although it is desirable to

be as objective as possible, certain criteria do not lend themselves to quantitative measurement.

When subjective judgements are required, there may be a certain amount of variability in the

evaluation of the results. Sound professional judgement is required in cases where there is

subjectivity in the criteria, the questions, or the analysis of the results. Others using this

methodology may impose different subjective judgements and reach somewhat different conclu-

sions. This is particularly true in the area of the user interface, where the preferences of users

vary significantly.

There are some strong advocates of a methodology that removes much of the judgement and

subjectivity from the evaluation [BAILEY, LINDQUIST]. Criteria such as "ease of use," or "ease of

learning" would be given operational definitions in terms of how long it takes a group of people,

with specified training and experience, to do a certain task. The results of this controlled experi-

Evaluation of Ada Environments

CMU/SEI-87-TR-1 2-9

ment would then be used as the basis for evaluation. Using suitably large numbers of subjects

and the appropriate statistical techniques, this approach is deemed by its proponents to be very

effective, despite high variability (one or more orders of magnitude) of the abilities of the subjects.

We question the controlled experiment approach for evaluating environments, because of its high

cost, and because of its underlying assumption that one can make objective operational defini-

tions for concepts that are inherently subjective. We believe that informed subjective judgement

based on systematic use is more valuable than batteries of controlled experiments that may give

only the appearance of objectivity.

2.2.4. Emphasizing Primary Functionality
No environment is likely to perform equally well on all experiments, and it is not the purpose of

the experiments to set absolute standards for environments. Different environments are built to

satisfy different requirements. For example, portability may be emphasized at the expense of

performance. Our intent is to test a broad set of necessary functionality and to report on how well

an environment implements that functionality. Conclusions based on the experiments may vary

according to the weight given to various criteria. The methodology must provide a standardized

benchmark of core functionality against which environments may be measured. This core

functionality must include activities associated with programming-in-the-small and, especially, ac-

tivities associated with programming-in-the-large. Requirements for environments can be in-

fluenced then both by what is desirable and by what is achievable.

2.2.5. Evolutionary
Just as it is important in software engineering to iterate through several stages of the life cycle, it

is important to iterate through several phases of an evaluation. The methodology should recog-

nize that the evaluator will not be able to write down all the criteria until some experiments have

been executed. Similarly, it is difficult to specify all desirable functionality until experience has

been gained with several environments. For these reasons, the approach should allow iteration

and refinement of the various artifacts of the methodology as the evaluation proceeds. By the

time several experiment suites have been applied to a number of environments, the evaluation

technology will be much stronger than it would have been if each phase were completed entirely

before moving to the next phase. This criterion has the usual effect of uncovering problems as

early as possible and minimizing the cost of recovery.

2.2.6. Extensible
The methodology should be extensible so that additional user activities and accompanying ex-

periments can be added easily. This enables the evaluation to become more comprehensive or

better tailored to the current needs of the evaluator. It also permits future expansion of the

evaluation into new areas as the capabilities of environments are expanded. Because there is a

Evaluation of Ada Environments

2-10 CMU/SEI-87-TR-1

shortage of tools and aids for evaluating software development environments, it is important to

concentrate first on the most important user functions. Optional or specialized functionality that

may be important for certain communities can be added when evaluations are undertaken on

behalf of those communities.

2.3. Methodology

There are six discrete phases of the methodology. The overall approach is to determine the key

software life-cycle activities rather than use any pre-existing tool taxonomy. These activities form

the basis for experiments that are designed to extract evaluative information. The first three

phases are environment independent and are performed only once for all environments, while the

remaining three are environment dependent and are performed once for each environment

evaluated. Several of the six phases contain more than one step.

The six phases of the methodology are as follows:

Phase 1: Identify and Classify Software Development Activities

Phase 2: Establish Evaluative Criteria

Phase 3: Develop Generic Experiments

Phase 4: Develop Environment Specific Experiments

Phase 5: Execute Environment Specific Experiments

Phase 6: Analyze Results

Figure PRODUCTS shows the products of the methodology and their relationships. It is not a

flowchart of the process, but rather it shows how the artifacts of the process depend on one

another. The figure is divided into two parts: The products on the left are gathered or produced

once and apply to the evaluation of environments in general; the products on the right are

produced for each environment under evaluation and in some cases for each experiment. The

products on the left of the figure can be used by anyone wishing to evaluate a new environment,

while the products on the right are useful in evaluating particular environments.

It should be noted in the following discussion that the methodology is amenable to parallel ac-

tivities on several experiments. For example, development of environment specific experiments

for one set of activities can take place in parallel with development of generic experiments for

another set of activities. This is in keeping with the rapid prototyping philosophy of the approach.

It is important to recognize that the methodology applies to the evaluation of environments as a

whole as well as to its individual parts or tools. The phases are described as a set of experi-

ments, but they also apply to each experiment.

Evaluation of Ada Environments

CMU/SEI-87-TR-1 2-11

Figure 2-1: Products of the Evaluation Methodology

2.3.1. Identify and Classify Activities
The first phase of the methodology consists of three steps:

Step 1: Identify the activity classes that will be exercised by the set of generic
experiments.

Step 2: Refine each activity class of the previous step into a list of specific ac-
tivities.

Step 3: Classify as primary and secondary the refined list of activities. An
environment’s level of support for primary activities will be carefully
scrutinized.

This phase of the methodology answers the question "What do the software developers, system

administrators, project managers, and others involved in the software development process have

to do to accomplish their jobs?" It attempts to avoid the question of "How are they going to

accomplish their tasks?" This phase is therefore based on the underlying activities of software

engineering rather than on the tools of the environment. The second step in this phase is simply

a recognition that stepwise refinement makes sense in defining the activities. The third step is a

recognition that often it will be unnecessary or too costly to carry out a comprehensive evaluation

and that the evaluation should concentrate on those activities that are considered most important.

Evaluation of Ada Environments

2-12 CMU/SEI-87-TR-1

There are a number of sources, in addition to one’s own experience, for defining and classifying

activities that can be supported by an environment. Some are more oriented toward tools than

activities, but all are helpful in defining what can be automated. Those that have been used in

defining the activities in our study of Ada Programming Support Environments include the SEE

taxonomy [SEE], the NBS taxonomy [NBS], the Software Development Standard [SDS], the

Evaluation and Validation Team’s Classification Schema [EVSchema], and the AdaEurope study

[LYONS].

There is no requirement for this phase to result in an exhaustive set of activities. An evaluator

may choose to evaluate only a subset of the entire set of software development activities. The

product of this phase is labeled "activities" in Figure 2-1.

2.3.2. Establish Evaluative Criteria
This phase of the methodology consists of two steps:

Step 1: Establish the criteria by which each activity may be judged using the
broad categories of functionality, performance, user interface, and sys-
tem interface.

Step 2: Develop a set of questions spanning the criteria, highlighting specific
areas where quantitative and qualitative assessments will be made
when performing each experiment step.

The evaluative criteria must be defined at two levels. First, the criteria must be defined at a high

level to apply to the environment as a whole. Second, the criteria for particular activities must be

established. The criteria are grouped into four major areas: functionality (the broad capabilities

available in the environment and the narrower capabilities of individual tools), performance, the

user interface, and the system interface. These are not mutually exclusive categories, but they

are reasonably complete and distinct.

A reasonably complete set of criteria categories has been constructed by the Evaluation and

Validation Team of the Ada Joint Program Office [EVReqts]. The criteria categories must be

quantified by measurements and questions related to these categories. It is generally better to

avoid absolute standards for criteria, allowing the marketplace of products to provide a set of

achievable standards. As more environments are evaluated using a particular set of generic

experiments, what is desirable and what is achievable will become more clear.

Evaluation of Ada Environments

CMU/SEI-87-TR-1 2-13

2.3.3. Develop Generic Experiments

Step 1: Develop a logically continuous sequence of environment independent
(generic) experimental steps instrumented with data collection opera-
tions. The generic experiments collectively should be designed to in-
volve a large subset of the individual activities enumerated in Step 2 of
Phase 1.

Step 2: Identify those evaluative questions from Step 2 of Phase 2 that apply to
each experimental step.

Based on the user activities, the evaluative criteria and questions, and what is currently available

in exemplary systems, a set of generic experiments is produced. First, a series of general areas

of experimentation is defined. In each of these areas, one or more experiments is developed to

test the broad criteria areas. The experiments are generic in the sense that they do not use

specific tools in specific environments, but refer to generic tasks that must be performed in se-

quence. These experiments must be constructed with a great deal of care. They must be

detailed enough to allow the implementor to translate them into specific experiments, but general

enough not to imply a specific set of tools. The specific questions to be asked and the specific

measurements to be made at each step of the experiment must be inserted at each step. The

products of this phase are the "generic experiments" themselves as well as the "functionality

checklists" as shown in Figure 2-1.

2.3.4. Develop Environment Specific Experiment

Step 1: Instantiate the generic experiment in the host environment. This in-
volves transforming each generic step into a sequence of environment
specific actions and assessing the level of support the environment of-
fers for each activity. A functionality checklist will be completed as part
of this step.

This phase must be performed by an expert in the specific environment so that the translation will

take best advantage of the available tools. The translation process results in a "script" in the

command language of the subject environment so that the execution of the script is a mechanical

process. There may be some subjectivity in the translation process, but the idea is that the

expert will find the most effective way to accomplish the objectives of the generic experiment.

The results of the translation process include the determination of the difficulty of the translation

(how many actions must the user perform to accomplish a task?) and answers to questions about

Evaluation of Ada Environments

2-14 CMU/SEI-87-TR-1

functionality (what can and cannot be done easily?). It is not assumed that all of the generic

experiment can be performed easily in the subject environment. Those areas in which the en-

vironment lacks functionality or where the functionality is less than what is desirable will be noted.

The products shown in Figure 2-1 are the "environment specific experiments" and the "translation

analysis."

2.3.5. Execute Environment Specific Experiment
This phase represents the execution of the environment specific experiment on the subject en-

vironment.

Step 1: Perform the experiment in the host environment, creating an experimen-
tal transcript that includes command responses and measurement data.
Answer the appropriate questions at each step and make the measure-
ments and observations indicated within each experimental step.

From this step comes a "transcript" of the execution of the experiment and the measurements

and answers to questions that were formulated in phase 3. This represents the "raw data" from

the experiment without any interpretation.

2.3.6. Analyze Results
The final phase requires that we analyze the raw data. Both the results of the translation and the

results of the experiment are inputs to this phase.

Step 1: Examine the experimental transcript, the response to each question and
the functionality checklist and draw conclusions about each activity class
for each major criterion category.

In this phase, there will be qualitative statements made about the experiment as it relates to the

specific environment. The analyses for the individual experiments will form the basis for the

"environment analysis" as shown in Figure 2-1.

After the methodology has been applied to several environments, it will be possible to compare

the results of the same experiments across different environments. Recommendations for select-

ing existing environments or for constructing new environments can therefore be derived from a

common pool of experiments using the same activity and criteria base.

Evaluation of Ada Environments

CMU/SEI-87-TR-1 2-15

2.4. Software Development Activities

The following taxonomy of APSE functions was derived from a number of sources and represents

the areas to be covered in this study. The four primary areas are (1) system management

activities, (2) project management activities, (3) technical development activities, and (4) con-

figuration management activities. While there is not a one to one relationship between these

primary functional areas and the experiment categories, the experiments tend to test the test the

functionality of one area more than the others.

1. System Management Activities

a. Environment Installation
• Load environment software from release media
• Integrate with existing operating environment
• Perform acceptance tests

b. User Account Management
• Create/Delete user accounts
• Copy user accounts
• Rename user accounts
• Create/Delete user account groups
• Disable User Accounts
• Add user account to group
• Remove user account from group
• Establish user account characteristics
• Modify user account characteristics
• Establish default account characteristics
• Modify default account characteristcs
• Display user account characteristics
• Display default account characteristics
• Create initial working directories
• Establish default login/logout macros
• Verify creation of user accounts

c. System Resource Management
• Collection of accounting information
• System workload monitoring
• Modification of system configuration

d. Environment Maintenance
• Software bug reports
• Software updates
• Disk Back-ups

e. System Statistics Collection
• Accounting information
• System performance statistics

2. Project Management Activities

a. Administrative Management [Project planning, estimating, reporting and
communication]

• Create work breakdown structure
• Allocate resources to task

Evaluation of Ada Environments

2-16 CMU/SEI-87-TR-1

• Identify when resources are available
• Create high level project schedule

• Establish milestones
• Perform critical path analysis (PERT)
• Create reports (PERT/GANTT)

• Document preparation
• Text formatting
• Business graphics
• Spreadsheet capability

• Intra-project communication
• Mail
• Bulletin boards

b. System Management [Project database configuration, access and control]
• Directory structure
• Program library sharing
• Default access control
• Security precautions
• Very large system activities
• Distributed development and access

• File access (transparent or file transfer program)
• Remote login

• Subsystems
• Interfaces, specifications and hiding above the package level

c. Technical/Supervisory Management [Project monitoring, execution, and
control]

• Automatic notification
• Set user defined dependency monitors (semantic depen-

dencies)
• Alert changing user when dependency triggered
• Alert dependent user when dependency triggered

• Project activity management
• Enter activity list for individual or group
• Display activity list for individual or group
• Update activity list for individual or group
• Name, date, and completion time for each task
• Automatic iteration between library unit changes and activity list
• Graphical task editor
• Check off for completed tasks

• Analyze progress against schedule
• Analyse resource utilization against schedule
• Perform "what if" analysis
• Modify project schedule

d. Quality Management [Project quality assurance]
• Project review - structured walkthroughs
• Documentation review
• Code audits
• Dependency tracking

• Requirements

Evaluation of Ada Environments

CMU/SEI-87-TR-1 2-17

• Design
• Code
• Documentation
• Help files

• History management
• Requires reason for changes - plus time, date, node id,

programmer name
• Retrieval of changes line-by-line
• Notification of changes

3. Technical Development Activities

a. Requirements analysis

b. Requirements definition

c. System specification

d. Preliminary design

e. Implementation
• Detailed design
• Code development and translation
• Unit testing
• Debugging

f. Product integration

g. Product testing

h. Product maintenance

i. Documentation
• Requirements specifications
• Design document
• Test plans and procedures
• User’s manual
• Installation guide
• Maintenance manual

4. Configuration Management Activities

a. Version control

b. Configuration control

c. Product release

2.4.1. Excluded and Deferred Issues

2.4.1.1. Portability/CAIS
The initial requirement for portability of tools from one host machine to another was contained in

the Stoneman document. Since that time a great deal of work has been done in defining a

Common APSE Interface Set which represents the core of functionality upon which an environ-

ment could be built. In January 1985 the DoD issued a proposed military standard CAIS [CAIS].

The stated purpose of this document was to encourage prototype implementations and ex-

perimentation with the CAIS. Over the last year there have been numerous suggestions for

Evaluation of Ada Environments

2-18 CMU/SEI-87-TR-1

changes in the CAIS, and the CAIS Working Group has been addressing issues as they arise.

As of the end of 1985 there were three prototype implementations being developed at Arizona

State, Mitre, and Gould.

There has been some success in porting environments that are extensions of the Unix operating

system. However, it is felt that the current state of the practice in portability is not sufficiently

developed to consider it in this evaluation. The issues of rehosting tools are many and complex

and involve the internal structure of the environment. Therefore, it is beyond the scope of this

study to consider portability.

2.4.1.2. Run-time Systems
One of the most important results of a software engineering environment is the final product: the

program running on a target system. The performance of the run-time system in a Mission

Critical Computer Resource (MCCR) is our important evaluation criterion. Unfortunately, we are

only beginning to see environments which produce object code for a target other than the

development machine. There are a whole series of issues that are raised (such as the ability to

dynamically configure the run-time system based on the needs of the object program). In order to

evaluate these systems, it is necessary to have access to the target machines. Because this

area is so poorly developed at present, this topic of evaluation will be left as a deferred topic. It is

worth noting, however, that there is an Ada Run Time Environment Working Group (ARTEWG)

under SigAda which was formed in early 1985 to address these issues. The group consists of

20-30 members and meets quarterly.

2.4.1.3. Commodity Software
Commodity software refers to those programs which are peripheral to the software engineering

process, but important to communication and management functions. Examples of these

programs include mail systems, document preparation systems, and spreadsheet programs. For

any but the smallest of projects, commodity software is critical. This study considered commodity

software to the extent to which it can be integrated with the APSE. It did not consider the

functionality and performance of the individual programs. One of the criteria for the APSE will be

the ability to use the software of the underlying operating system. This will be tested and

evaluated.

2.4.1.4. Validation Issues
Validation deals with the correctness of a program and requires rigorous testing by the vendor as

well as the accepting organization. This study has not consciously attempted to uncover bugs in

the environment. When they were found inadvertently, the report has noted them. This study

has tried to exercise the environment fully, but the emphasis has been on the usability of the

environment rather than the correctness.

Evaluation of Ada Environments

CMU/SEI-87-TR-1 2-19

2.5. Criteria

The four broad categories of criteria with their relationships to each other, the user, and the

underlying system are shown in Figure CRITERIA. The functionality criteria category dominates

and controls the three other criteria categories of user interface, performance, and system inter-

face. Without functionality, there can be no other criteria. Performance relates to the user in the

form of responsiveness and to the system in the form of time and space efficiency.

The criteria described here are still general in that they provide only guidelines for tools and

environments in the aggregate. The generic experiments will provide more detailed criteria that

apply explicitly to each activity. It should be emphasized that the criteria described in this section

apply in some cases to the components of an environment, in some cases to the environment as

a whole, and in yet other cases to both.

Figure 2-2: Criteria Categories

2.5.1. Functionality
The functionality criteria will be described for the most part by checklists to be provided in the

individual experiments. The functionality of a programming support environment (as opposed to

more narrowly defined programming environments) should span the entire life cycle. That is,

there should be tools available for system management activities, project management activities,

technical development activities, and configuration management and version control.

The functionality of each individual tool should be complete in the major functional areas that are

commonly available in other similar tools. The spanning set of functions for tools can be derived

from a number of exemplary environments in common use today. In that way we avoid the

criticism that we are asking for what is impossible or for what will be available only in the future

after considerable work.

Evaluation of Ada Environments

2-20 CMU/SEI-87-TR-1

There is an overlap between functionality criteria (what is available in an environment) and the

user interface criteria (what is available to help the user perform tasks effectively). In some

cases, there may be duplication of this information in the taxonomy of criteria presented.

The following activities are considered essential in any environment used for Ada program

development and should be provided with the environment from the beginning.

Translation: The language translator is central to any Ada environment. However, since this

function is being evaluated extensively by others, the SEI study is applying existing tests. It will

evaluate broad performance characteristics, diagnostics, documentation, and the user interface.

Command Interpretation: The Stoneman guidelines [STONEMAN] allow a wide latitude for im-

plementors of the generalized user interface. The environment may use a command language or

a graphically driven menu system. Evaluating this function involves specifying a number of

generic tasks to be accomplished and then observing what is required by the command inter-

preter to carry out those tasks.

Program and Data Management: Each environment must have a database system that

provides a mechanism for organizing and retrieving a variety of program and data objects. There

must be operations for creating, deleting, moving, and copying these objects. The process of

navigating within a database and the process of browsing through Ada programs are functions

included in this category.

Access Control: Users of the environment have different access rights to the objects in the

database. For example, once a program has been released as a product, all rights to modify a

program object may cease to exist. Experimental versions of a program object may be modified

by selected programmers but not others.

Version Control: In medium and large projects, program modules undergo many improvements

and modifications. Versions coexist with minor variations in performance and memory utilization.

Official releases coexist with experimental versions that have restricted access. A system

development environment must provide the necessary bookkeeping facilities for version main-

tenance.

Configuration Management: In medium and large projects, the interdependencies between in-

dependently constructed modules must be recorded and tracked by the environment.

Project Management: In large projects, it becomes necessary to add tools for management of

people, tasks and software modules.

Evaluation of Ada Environments

CMU/SEI-87-TR-1 2-21

Linking/Loading: Independently developed modules must be linked together and loaded in order

to be executed.

Editing: Editing of source and documentation objects is an essential task, that has received

extensive study. The SEI evaluation treats the editor similarly to the translator in that it is not

studied in detail. Its general characteristics as well as its interface with the system and the user

are important criteria.

Debugging: Debugging is a critical part of the program development process used to isolate and

correct execution-time errors. The debugger allows the development process to be more inter-

active and provides significant productivity gains in the testing and integration phases of the life

cycle.

2.5.2. Performance
Performance, like functionality, can be considered a criterion for each tool and for the aggregate.

Each tool should be space and time efficient. The environment as a whole must allow the user to

be efficient by executing trivial requests quickly. Raw compilation speeds are less important than

the strategy of recompilation when changes occur. The following represent several of the global

criteria that relate directly to performance.

Responsiveness: How quickly does the system respond to various user requests? Certain func-

tions (such as a long compilation) should take longer than simple requests (such as changing the

current working directory). There are no fixed standards for responsiveness, but users who are

required to wait for more than a second or two for simple requests generally find systems un-

usable.

Efficiency: How efficiently do the tools of the environment use the resources of the underlying

abstract machine? This will influence how much resource is required or conversely, how many

users can be supported on a given resource. Both time and space requirements of the software

are considered part of this criterion.

Avoidance of Recompilation: Some changes to modules (e.g., addition of comments) do not

strictly require recompilation. Changes to the body of an Ada unit do not strictly require the

recompilation of dependent units. Many environments for a variety of programming languages

currently support incremental compilation and hence avoid recompilation in many cases. This is

certainly a desirable performance improvement and can be more important than raw compilation

speed. The benefits can be enormous in the large systems for which Ada was developed. The

costs are more complex compilers and the retention of more information during program develop-

ment.

Evaluation of Ada Environments

2-22 CMU/SEI-87-TR-1

2.5.3. User Interface
The evaluation of a user interface must take into account the characteristics of the tool as well as

the characteristics of the user employing the tool. At least three types of users may be expected

to become familiar with Ada environments. The novice or first time user needs a great deal of

assistance in the form of documentation, tutorials, help facilities, and a command structure that is

easy to understand. A novice will be content to use a small subset of the full power of the

system. A casual or occasional user can be expected to know many of the functions but will need

help in remembering how to use them. The proficient or frequent user can be expected to know

most of the functionality of the system and will be impatient with features that require long se-

quences of repetitious or redundant input.

Among the points to be considered in an evaluation of the user interface are the following:

Learnable/usable: Ideally, a system should be easy to learn and easy to use; however, there

may be a tradeoff between the two criteria. The emphasis in the SEI study is placed on the

"power user," i.e., the reasonably experienced user who prefers as little system intervention and

interference as possible. Thus, we consider ease of learning to be important, but secondary to

ease of use.

Interactive: Users are more productive in an interactive mode than in a batch mode. Interactivity

has to do with the responsiveness of a system in providing feedback to a user. In general, users

make fewer errors if informed about errors early.

Consistent/uniform: The environment is easier to use if it is consistent within and across tools.

For example, the mechanism for exiting a tool should be the same whenever this is reasonable.

Command languages or other tool invocation methods should be consistent in naming or pointing

conventions.

Not unnecessarily complex: Certain complex functions require complex mechanisms to imple-

ment them. Simplicity of structure is a desirable goal, but not always achievable. Thus, the rule

of thumb is to make a mechanism no more complex than it has to be. If a given capability or

feature is seldom used, it should not affect those who do not use it.

Predictable: The environment should not make surprising responses or cause unexpected

results, except perhaps to warn the user of catastrophic types of errors. In an environment that

appears to be predictable, the user will be comfortable and productive. If forced to interpret the

meaning of unexpected responses, the user will be confused and unproductive.

Evaluation of Ada Environments

CMU/SEI-87-TR-1 2-23

High bandwidth communication: The user should be able to communicate a maximum amount

of information with minimum effort. On the input side, the user should be able to tell the system

what to do using as few keystrokes or as little physical motion as possible. On the output side,

the system should be able to use the minimum amount of space on the screen. This criteria is

highly machine dependent and relates to the system interface criteria of using all the capability of

the underlying machine. If a multiple window capability can provide higher bandwidth com-

munication by providing information about several topics simultaneously, and if the underlying

system provides these capabilities, then the environment should take advantage of them.

Helpfulness: The environment should include the following characteristics to help the user when

necessary.

• On-line assistance: The environment should provide on-line assistance rather than
require the user to refer to paper documentation for all questions and problems. This
feature should permit the user to perform keyword searches when the user knows
what to look for and hierarchical searches when the user does not know precisely
what to look for. Both the on-line and paper documentation should have appropriate
indices and cross references.

• Command completion: The environment should help the user by providing com-
mand completion and prompting for command parameters. For keywords and con-
texts in which only one entry is possible, the user should have the option of allowing
the environment to provide the remainder of the entry. This is similar to allowing the
user to provide an abbreviation file, but it takes no intervention on the part of the user
and is consistent across all users in the environment.

• Avoid taxing user’s memory: Mnemonic names should be chosen in environments
that use a command language. When there are a number of options to a command,
there should be on-line help to explain those options. The syntax of the command
language should be consistent throughout the environment to avoid the need to
remember more than is necessary.

• Effective documentation: Both paper and on-line documentation should be com-
plete, clear, and easy to use. It should be easy to find the answer to a specific
question. For vague questions, the user ought to be able to navigate through either
form of documentation to find an answer.

• Tutorials: For new users, there should be both paper and on-line tutorials that step
through both the fundamental and the more advanced features of the environment.
These tutorials should be comprehensive and based on sound educational prin-
ciples. Advanced tutorial systems could track the user, tailoring the lessons for the
user’s current state of knowledge.

Customization: Users should be able to customize the environment according to their

preferences.

• Key bindings: The user (or at least the system administrator) should be able to
change the meanings of keys to customize the keyboard. This is particularly impor-
tant for control keys and function keys, but must be used judiciously because it may
cause inconsistency of the generalized user interface.

• Command procedures: It is generally accepted practice to permit commonly used

Evaluation of Ada Environments

2-24 CMU/SEI-87-TR-1

sequences of commands to be placed in a file so that they can be referenced with a
single name. Various levels of capabilities exist for adding parameters to command
procedures and allowing various kinds of program control within the command
procedures. Special command procedures can be invoked automatically upon login
to customize the environment and upon logout to provide cleanup operations.

Error handling: Errors should be handled in a way that improves the user interaction.

• Tolerance: Minor errors that are correctable by the system ought to be corrected by
the system. One of the most annoying things a system can do in response to an
erroneous command is tell you that you made an error, tell you what you meant to
do, and then tell you to reenter the command. The system need not guess what you
meant to do, but neither should it force you to take three steps backward if it is not
necessary. If an error does not require stopping forward progress (e.g. a warning)
then it should not stop forward progress.

• Location and identification: The system should have a fine granularity in locating
and identifying errors. The environment should provide precise information on the
source of the error and avoid cascading error messages if possible.

• Early detection: Failure to detect errors early can cause a cascade of subsequent
errors and a significant amount of backtracking on the part of the user. For example,
if the editor has information about the syntax of the Ada language, syntax errors can
be detected and corrected as the program is entered rather than when it is trans-
lated. This may also, as a side effect, prevent semantic errors.

• On-line messages: Error messages produced in the output listings of language
translators seldom provide enough information for diagnosis. An on-line error mes-
sage capability can provide an extended explanation of the error and its probable
causes.

• "Undo" ability: When a user makes a mistake, such as deleting a portion of a file
by accident, it is very useful to have a capability to "undo" the deletion. This
capability can apply to the last executed command, the last n commands, or back to
the beginning of the session. Obviously, there is a tradeoff here between perfor-
mance and desired functionality.

Support for multiple views: The environment should enable the user to view objects at different

levels of detail.

• Formatting: The user of an Ada development environment ought not to have to
worry about how Ada program appears on a page. The mechanical process of
indenting a program for readability and inserting a pleasing amount of white space in
the appropriate spaces should be left to a tool. Either this function should be
provided by the editor, or by a program called a "prettyprinter." In either case, some
flexibility should be permitted to account for different tastes and different local stan-
dards.

• Elision: The user ought to be able to view Ada programs and libraries in a way that
suppresses those parts of the program or library that are not currently of interest at
the level of abstraction that the user is working. As one example, the user may wish
to look at the specification part of a unit or group of units and not be concerned about
the implementation details of the bodies.

• Browsing capability: When a user is trying to understand the complexities of Ada
programs, it is important to be able to browse rapidly through a program library. For

Evaluation of Ada Environments

CMU/SEI-87-TR-1 2-25

example, when one unit is "withed" into another, it may be necessary for the user to
determine the definition of an object that is made visible in the current unit. The user
may wish to know all those units that depend on the unit being worked on. For these
and other similar functions, a browsing capability is important to an Ada program-
ming environment.

2.5.4. System Interface
Many operating systems provide much of the functionality required by Ada environments. When

an Ada environment is built on top of an existing environment, it is important that the interface be

a smooth one. If it is not, a duplication of effort and a consequent loss in performance results.

For this criteria category, we propose that each duplicated or nearly duplicated feature in the

underlying environment be tested to compare the functionality, performance, and user interface of

the two features. If the characteristics of the tool in the operating environment are superior to the

similar tool in the Ada environment, one should question the wisdom of using the new tool.

The consistency of the command set with the command set of the underlying environment and

the compatibility of the tools with those of the underlying environment may be especially impor-

tant during a start-up period in which software professionals are being retrained. All people resist

change; but if it is perceived that the change does not bring a significant improvement, then it will

be extremely difficult to impose the change.

If the Ada environment does not provide a significant improvement over the underlying system for

the basic functionality, it will be necessary to evaluate the possibility of using an Ada compiler

with the underlying environment at least as an interim measure while environments are improved

to the extent that Ada compilers have been improved over the last several years.

Open (easy to add tools): The openness of an environment refers to the ability to add new tools

to that environment. When an environment is highly integrated from the start, there may be

specialized interfaces between tools that make it difficult to add new tools from outside the en-

vironment. When an environment is an extension to an existing environment, the question is

whether all the tools of the host environment are available to the Ada environment.

Integrated (tools work well together): The extent to which an environment is integrated refers

to how well the tools work together. Integrated environments tend to be more uniform and con-

sistent. If the output from one tool must be altered in format before it can be used as input to

another tool, then there is evidence that there is a lack of integration. Furthermore, we can

distinguish between tools provided with the environment which ought to be well integrated be-

cause they should be designed to work well together, and tools added later. If tools are to be

added later, then the environment should provide the definition of the interfaces to the base

environment.

Evaluation of Ada Environments

2-26 CMU/SEI-87-TR-1

Able to use operating system tools/facilities: When an environment is built on top of an

existing operating system, it should be possible to use those operating system tools and facilities

when it is appropriate to do so. Conversely, the environment should be able to prevent the use of

tools and facilities that are inappropriate in an Ada environment.

Able to use hardware effectively: The Ada environment should make appropriate use of the

underlying hardware. Input devices such as mice should be used when appropriate to choose

from a menu. Output devices such as bit mapped displays should use windowing. Memory

allocation schemes of the underlying machine, such as caching or virtual memory, should be

used to maximum advantage and not be subverted or duplicated.

Support distributed development (when appropriate): There is currently a trend away from

the centralized computing systems of the 1960s and 1970s and toward distributed systems of

personal workstations connected by local-area networks or wide-area networks. When environ-

ments for large system development are hosted on distributed systems, the distribution of func-

tion and data must be as transparent as possible. In particular, it should be possible for a project

group to be working on a common software library without being concerned about where the

library resides in the network.

2.6. Environments Evaluated

The contract called for the evaluation of the Ada Language System (ALS), the Ada Integrated

Environment (AIE), and "other environments." The ALS was installed at the SEI since November,

1985. It was upgraded from version 2 to version 3 in May, 1986. The AIE was downgraded from

an APSE to a single component Ada compiler and was renamed the VAX Ada. As of mid-1986, it

still had not been delivered to the Air Force. Also installed were DEC’s VAX Ada compiler with

five tools called VAXSet running under the VMS operating system and the Verdix Ada Develop-

ment System (VADS) running under the Ultrix operating system. The Alsys compiler running on

the Apollo Domain operating system was evaluated on one group of experiments (Project

Management). Five groups of experiments were conducted on the other three environments.

2.6.1. Hardware Considerations
The performance of an environment will depend critically on the hardware configuration on which

it runs. In particular the processor, memory size, and the disk configuration are crucial to good

performance. In this study we have run the environments on configurations that meet or exceed

the vendor’s initial recommendations. It would at first appear to be desirable for all hardware

configurations to be exactly the same, but this is not necessarily the case. It is possible that one

system uses more resources in order to make significant gains in performance or to improve the

Evaluation of Ada Environments

CMU/SEI-87-TR-1 2-27

functionality. Thus in all cases we have attempted to meet or significantly exceed vendor recom-

mendations for resource requirements. Three of the environments tested operate on DEC VAX

hardware and the MicroVAX II was selected to test all three. This machine offers the advantage

of being a single user system to avoid problems of interactions with other users, while still being

approximately 80 percent as powerful as the older multi-user VAX 11/780. The Alsys Ada testing

was conducted on an Apollo DN460 node.

The five experiment groups that were run on MicroVAX II hardware were actually run on three

distinct machines with the three different environments installed. In each case the hardware

configurations met or exceeded the vendor’s recommendations. In the case of the SofTech Ada

Language System, version 3.0, the configuration included 9 megabytes of main memory and disk

space consisting of three RD53 disk drives (213 megabytes). The environment supplied by

Digital Equipment Corporation consisted of the VAX Ada, version 1.2 and a set of five tools called

VAXSet, all of which run on the VMS operating system. The configuration for VMS/VAXSet

included 6 megabytes of main memory and 102 megabytes of disk space. The Verdix environ-

ment is called the Verdix Ada Development System (VADS, version 5.1) and runs on top of the

DEC supplied version of Unix called Ultrix (version 1.2). The tests were run on a system con-

figured with six megabytes of memory and 202 megabytes of disk space.

The final experiment group ran on an Apollo computer with the DOMAIN/IX Unix equivalent

operating system. The Domain Software Engineering Environment (DSEE) and the Alsys Ada

Compiler completed the software configuration. The hardware consisted of an Apollo DN460

workstation with 4 megabytes of main memory and 171 megabytes of disk space. The versions

tested were version 2.0 of DSEE and version 1.0 of the Alsys Ada compiler.

2.7. Experiment Groups

Six experiment groups have been defined. Each experiment group consists of a set of tests

which exercise various aspects of an environment. The first five experiment groups are based on

the methodology defined in this chapter. The last experiment group is a suite of compiler tests

assembled by IDA. The succeeding chapters describing these experiments identify and classify

the programming activities being tested, specify the evaluative criteria and associated questions,

and define the specific steps required to carry out the experiment. While the IDA test suite does

not conform to the methodology defined in the report, it is, nevertheless, an integral part of the

total evaluation.

Evaluation of Ada Environments

2-28 CMU/SEI-87-TR-1

2.7.1. Configuration Management
The configuration management experiment group exercises the configuration management and

version control capabilities of the APSE. In medium and large systems projects, modules un-

dergo many improvements and modifications. Versions exist with minor variations. Official

releases coexist with experimental versions that have restricted access. This experiment defines

a set of modules which are derived from a real system, the Texas Instruments APSE Interactive

Monitor (AIM) project [TIAIM, TIAIM2], and strips them of all their code other than the intermodule

dependencies. The experiment then simulates the system integration and testing phase of the

life cycle by having three separate development lines of descent from a single baseline system.

This process provides information about the version control capabilities (space requirements,

transparency, performance) as well as the configuration management capabilities (translation

rules, specification of modules from releases, history collection, performance).

2.7.2. System Management
The system management experiment group exercises the environment from the perspective of

the system manager. The activities of concern here are the installation of the APSE on a raw

machine or operating system, the management of user accounts, maintenance of the environ-

ment, and system resource management. Installation is concerned with loading the environment

from the release media, integrating it with the existing operating system, and performing accep-

tance testing. User account management is concerned with establishing, modifying, and deleting

accounts or groups of accounts, creating access control, establishing default login/logout macros,

and displaying account information. Maintaining the environment has to do with updating the

environment software, performing backups, and archiving. System resource management in-

volves the collection and recording of various accounting and system performance data, monitor-

ing the system workload, and reconfiguring the operating environment for optimal performance.

2.7.3. Design and Code Development
The design and code development experiment group exercises the activities normally associated

with small projects, namely the design, creation, modification, and testing of a single unit or

module. In particular, this involves the entry of an Ada program unit and evaluating that unit

using a test program. The hypothetical setting is one in which a small team is tasked to create

vector and matrix handling modules. This experiment provides a primary vehicle for the testing of

the user interface of the environment. The ease of use, consistency, helpfulness, and error

handling capability are evaluated here. The system’s space and time efficiency are recorded, but

this experiment is not the primary source of information about the performance of the compiler.

Evaluation of Ada Environments

CMU/SEI-87-TR-1 2-29

2.7.4. Unit Testing and Debugging
The unit testing and debugging experiment group exercises the environment from the perspective

of the unit tester. It is designed to be a sequel to the design and code development experiment.

A small set of Ada units was seeded with errors and debugged using the facilities available in the

environment. This experiment tested the capabilities and functionality of the debugger and ex-

amined the user interface of the debugger. This experiment also looked at the dynamic and static

analysis tools as well as the tools available for test creation and test management.

2.7.5. Project Management
This experiment group is meant to investigate the facilities available for very large programming

projects, particularly as they relate to management functions. Among the functions that should be

automated is the traceability of a number of data objects back to their requirements. There

should be databases which show relationships between programs, requirements, specifications,

documentation, and other artifacts of the programming process. There ought to be mechanisms

to automate the maintenance phase of the software so that all change requests and changes are

documented and cross referenced. Work assignments to project members should be recorded,

tracked, and closed when completed. Furthermore, there should be mechanisms which allow

projects to be broken down into subsystems in order to minimize the impact of changes to one

subsystem on another.

The project management experiment group took into consideration only a small portion of the

total functionality which should be attributed to project management. Namely, the purpose of the

experiment was to explore the activities surrounding the building and maintaining of the project

database which is but one aspect of the technical management activities of project management.

Chapter 7 describes the whole realm of project management activities, but defines an experiment

for key technical management activities only. The experiment was run only on Apollo hardware

using the Alsys compiler.

2.7.6. IDA Prototype Ada Compiler Evaluation Capability
This experiment is different from the previous three in that it was externally generated and tests

only a single component of the environment. Instead of creating a new set of Ada programs to

test the performance of the Ada compiler, we used the Institute for Defense Analysis (IDA)

prototype test suite. This test suite is derived from a number of sources and is designed to give a

fairly rigorous test of the performance of the various features of the language. The suite is

designed to be automated and instrumented to provide a report for each test and the entire suite.

Numerous problems were encountered in applying the test suite to the three environments.

These problems as well as the many useful results are documented in Chapter 8.

Evaluation of Ada Environments

2-30 CMU/SEI-87-TR-1

2.8. Summary of the Remainder of the Report

This report contains six additional chapters, one for each of six experiment groups. Chapter 3

gives the results of the System Management experiment group. Chapter 4 gives the results of

the Configuration Mangement experiment group. Chapter 5 presents the results of the Design

and Code Development experiment group. Chapter 6 gives the results of the Test and Debug

experiment group. Chapter 7 presents the Project Management experiment group. Finally,

Chapter 8 provides the results of the IDA ACEC prototype test suite.

Evaluation of Ada Environments

CMU/SEI-87-TR-1 2-31

Glossary

ACEC Ada Compiler Evaluation Capability

ACVC Ada Compiler Validation Capability

AIE Ada Integrated Environment

AIRMICS Army Institute for Research in Management Informations and Computer
Science

AJPO Ada Joint Program Office

ALS Army/Navy Ada Language System

APSE Ada Programming Support Environment

APSEWG APSE Working Group

ARTEWG Ada Run Time Environment Working Group

CAIS Common APSE Interface Set

COORDWG Coordination Working Group

CVC CAIS Validation Capability

DoD Department of Defense

E&V Evaluation & Validation

KAPSE Kernal Ada Programming Support Environment

MAPSE Minimal Ada Programming Support Environment

MCCR Mission Critical Computer Resource

MIL Military

REQWG Requirements Working Group

SDC System Development Corp.

SDS Software Development Standard

SEE Software Engineering Environment

SEI Software Engineering Institute

SEVWG Standards Evaluation and Validation Working Group

SigAda ACM Special Interest Group on Ada

STARS Software Technology for Adaptable Reliable Systems

STD Standard

WIS WWMCCS Information System

WWMCCS World Wide Military Command and Control System

Evaluation of Ada Environments

2-32 CMU/SEI-87-TR-1

References

[Ardis 85] Ardis, M.A., Gehling, J., Gill, T.D., Glushko, R. and Vishniac, E.
An Assessment of Eight Programming Environments.
Technical Report TR-85-16, Wang Institute of Graduate Studies, August,

1985.

[Bailey 85] Bailey, E.K. and Kramer, J.F.
A Framework for Evaluating the Usability of Programming Support

Environments.
Technical Report, Computer and Software Engineering Division, Institute for

Defense Analysis, 1985.

[Basili 84] Basili, V.R., Panlilio-Yap, N.M., Ramsey, C.L., Shih, C. and Katz, E.E.
A Quantitative Analysis of a Software Development in Ada.
Technical Report TR-1403, ADA165337, University of Maryland, May, 1984.

[Brinker 85a] Brinker, A.
A Critique of the DEC Ada Compilation System (ACS).
NASA/GSFC Code 522.1, NASA, December, 1985.

[Brinker 85b] Brinker, E.
An Evaluation of Softech, Inc. Ada Language System, Version 1.5.
NASA/GSFC Code 522.1, NASA, May, 1985.

[Card 80] Card, S.K., Moran, T.P., and Newell, A.
The Keystroke-Level Model for User Performance Time with Interactive Sys-

tems.
Communications of the ACM 23(7):396-410, July, 1980.

[E&V Guide 86] E&V Team.
E&V Reference Manual.
Technical Report, Air Force Wright Aeronautical Laboratories, Wright-

Patterson AFB, February, 1986.

[E&V Ref 86] E&V Team.
E&V Reference Manual.
Technical Report, Air Force Wright Aeronautical Laboratories, Wright-

Patterson AFB, February, 1986.

[E&V Team 84a] E&V Team.
Evaluation and Validation Plan.
Technical Report, Air Force Wright Aeronautical Laboratories, Wright-

Patterson AFB, December, 1984.

[E&V Team 84b] E&V Team.
Requirements for Evaluation and Validation of Ada Programming Support En-

vironments, Version 1.0.
Technical Report, Air Force Wright Aeronautical Laboratories, Wright-

Patterson AFB, October, 1984.

[E&V Team 84c] E&V Team.
APSE Analysis Document.
Technical Report, Air Force Wright Aeronautical Laboratories, September,

1984.

Evaluation of Ada Environments

CMU/SEI-87-TR-1 2-33

[E&V Team 85] E&V Team.
Technical Coordination Strategy Document, Version 2.0.
Technical Report, Air Force Wright Aeronautical Laboratories, August, 1985.

[Ellison 86] Ellison, R.J.
Technology Identification and Assessment: Distributed Computing

Technology.
Technical Report draft, Software Engineering Institute, February, 1986.

[Feiler 85] Feiler, P.H.
Technology Identification and Assessment: User Interface Technology.
Technical Report SEI-85-MR-4, Software Engineering Institute, September,

1985.

[Flashpohler 85] Flashpohler, J.C., Harder, R.M., and Offutt, A.J.
The Software Test and Evaluation Project.
Technical Report GIT-ICS-85/28, School of Information and Computer

Science, Georgia Institute of Technology, September, 1985.

[Hook 85] Hook, A.A., Riccardi, G.A., Vilot, M. and Welke, S.
User’s Manual for the Prototype Ada Compiler Evaluation Capability (ACEC)

Version 1.
IDA Paper P-1879, ADA163272, Institute for Defense Analyses, October,

1985.

[Houghton 82] Houghton, R.C.
A Taxonomy of Tool Features for the Ada Programming Support Environment

(APSE).
Technical Report, U.S. Department of Commerce, National Bureau of Stan-

dards, December, 1982.

[Kellner 85] Kellner, M.I.
Technology Identification and Assessment: Database support for Software En-

gineering Environments.
Technical Report SEI-85-MR-6, Software Engineering Institute, November,

1985.

[Lindquist 85] Lindquist, T.E.
Assessing the Usability of Human-Computer Interfaces.
IEEE Software 2(1):74-82, January, 1985.

[Lyons 86] Lyons, T.G.L. and Nissen, J.C.D.
Selecting an Ada Environment.
Cambridge University Press, New York, 1986.

[Milton 83] Milton, D.
Requirements for Ada Programming Support Environments.
January, 1983.
Computer Sciences Corporation.

[Nestor 86] Nestor, J.R.
Technology Identification and Assessment: Programming Environment

Technology.
Technical Report, Software Engineering Institute, February, 1986.

Evaluation of Ada Environments

2-34 CMU/SEI-87-TR-1

[Newcomer 85] Newcomer, J.M.
Technology Identification and Assessment: Tool Interface Technology.
Technical Report SEI-85-MR-5, Software Engineering Institute, October, 1985.

[Reedy 85] Reedy, Ann.
Stoneman Analysis.
September, 1985.
KIT/KITIA Working Paper, 6/5/84.

[Roberts 83] Roberts, T.L. and Moran, T.P.
The Evaluation of Text Editors: Methodology and Empirical Results.
Communications of the ACM 26(4):265-283, April, 1983.

[SFW 86] Barbacci, Mario R.
Software Factory Workshop.
1986.

[STARS 85] STARS Joint Service Team.
STARS Software Engineering Environment (SEE) Operational Concept Docu-

ment (OCD).
Proposed Version 001.0, Department of Defense, October, 1985.

[TASC 85] The Analytical Sciences Corporation.
E&V Classification Schema Report, Draft Version 1.0.
Technical Report TR-5234-2, TASC, November, 1985.

[Texas Instruments 85a]
Texas Instruments.
APSE Interactive Monitor -- Final Report on Interface Analysis and Software

Engineering Techniques.
Naval Ocean Systems Center Contract No. N66001-82-C-0440, Equipment

Group - ACSL, July, 1985.

[Texas Instruments 85b]
Texas Instruments.
APSE Interactive Monitor -- Program Design Specifications.
Naval Ocean Systems Center Contract No. N66001-82-C-0440, Equipment

Group - ACSL, July, 1985.

[U.S. Department of Defense 80]
U.S. Department of Defense.
Requirements for Ada Programming Support Environments.
Technical Report ADA100404, DoD, February, 1980.

[U.S. Department of Defense 85a]
U.S. Department of Defense.
Military Standard Common APSE Interface Set (CAIS).
Technical Report MIL-STD-CAIS, DoD, January, 1985.

[U.S. Department of Defense 85b]
U.S. Department of Defense.
Defense System Software Development.
Technical Report DoD-STD-2167, DoD, June, 1985.

