Software Engineering Institute

Technical Report
ESD-TR-86-209

CMU/SEI-86-TR-5
December 1986

Summary of the SEI Workshop on
Software Configuration Management

Katherine E. Harvey

Approved for public release. Dlstributlon unlimited.

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official

DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl H. Shingler
SEI Joint Program Office

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors. and other U.S. Government

agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information Center,
Aun: FDRA Cameron Station, Alexandria. VA 223046145

Copies 01 this document are also available through the National Technical Information Services For information on ordering
please contact NTIS directly National Technical Information Services U S Department of Commerce, Springfield. VA 22161

Table of Contents

Summary of the SEI Workshop on Software Configuration Management
1. Participants
2. Introduction
3. Overview
3.1. Definitions of Software Configuration Management
3.2. The state of Software Configuration Management today
4. The Software Configuration Management System
4.1. A general picture
4.2. ldeal CCB characteristics
4.3. Ensuring proper documentation
5. Authority in SCM Systems
5.1. Authority hierarchies
5.2. Key authority concepts
6. Tools for Software Configuration Management
6.1. Tools of the trade
7. Documentation and Credibility
7.1. Documentation
7.2. Credibility
8. SCM and the Real World
8.1. Going from the classroom to the corporation
8.2. Two Perspectives
9. Conclusions

OO ©W OO NNOoOOoO Ul ADNDNOWWWN — — — —

= =

Summary of the SEI Workshop on
Software Configuration Management

Abstract

1. Participants

Bradley Brown
James Collofello
Robert Glass

Boeing Military Airplane
Arizona State University
Seattle University

Ted Keller IBM Fed'l Systems Div.
Richard Parten Lockheed
Mary Shaw SEI

Howard W. Tindall Martin-Marietta
James E. Tomayko SEI (host)

2. Introduction

Following is a summary of the discussion held
during the Software Configuration Manage-
ment meeting at the Software Engineering In-
stitute in Pittsburgh on July 16, 1986. In this
document | have tried to determine the major
concerns brought up and the conclusions
reached during the day tong discussion. The
discussion ran in many directions, often
changing topics quickly and not returning to
the original subject for quite some time.
Therefore, | did not try to summarize the dis-
cussion chronologically, since |felt that would
be more confusing than informative. | have,
instead, tried to sort the various concerns and
conclusions into specific areas and have sum-
marized the discussion of each major point
brought up in those areas.

3. Overview

3.1. Definitions of Software

Configuration Management

The basic definition of Configuration Manage-
ment that the workshop participants more or
less agreed upon seems the best place to
start, since the definition is fundamental to the
discussion of Software Configuration Manage-
ment (SCM). Jim Tomayko, the host of the
workshop, put as his capsule description of
Configuration Management: "the disciplines
and techniques of initiating, evaluating, and
controlling change of software products during
and after the development process.” This defi-
nition met with general approval, although the
discussion as a whole brought out a much
more complex and discerning description.
The most apparent concept missing from the
original definition was that SCM is a funda-
mental and essential management tool for
successful software development projects. It
is more a management concept than a con-
crete structure and is invaluable to the or-
ganized and rapid output of a software prod-
uct.

Although the concept of SCM was thought to
be fundamental to the maintenance of soft-
ware products, the workshop members believe
that associating SCM with maintenance is mis-

SEI-86-TR-5

leading. Configuration management should
not start simply when a software product
reaches the maintenance phase; the whole
development process must be managed in
such a way that SCM can work properly. For
instance, if the original designer does not doc-
ument the work properly, then the configura-
tion management process breaks down, be-
cause later changes create problems not im-
mediately apparent based on the existing doc-
umentation. SCM, therefore, is an integral
part of the entire software design and devel-
opment process and a vital part of all software
engineering.

3.2. The state of Software
Configuration Management
today

One of the major points of discussion was how
Software Configuration Management is being
used by the software engineering community
today. No one at the meeting thinks that SCM
is being used effectively as a management
tool; in fact, just the opposite. Although there
have been many corporations with solid SCM
programs, many others produce software
today with either no program whatsoever or
programs that hinder rather than help. What is
wrong with the SCM programs today?

A major problem is the lack of a widespread
understanding of the usefulness of a solid
SCM program. Although many large com-
panies do have configuration management
systems, often when they turn a project over
to a smaller contractor, the Software Configu-
ration Management is left up to that contractor,
who often chooses to do nothing. If the con-
figuration management is bad, one can almost
guarantee that the documentation will be bad.
Then, when the development process for a
software product is over and it goes into main-
tenance mode, the contractor turns over a
software project with incomplete documenta-

tion. So the company left with the project is
lost, they start playing around with it, and they
are left with “spaghetti” software. According to
the members of the workshop, this happens all
the time, even though many of these projects
are expected to interact with others.

One key factor in an effective configuration
management system is a solid Configuration
Control Board structure. However, in most
companies today the importance of the boards
and their members is overlooked. Often the
people put on these boards do not have the
training or experience to make decisions about
changes or problems in software products.
One example is an entire Software Configu-
ration Management division that is virtually a
hindrance to the organization. In this organi-
zation, when a change request is written (often
only a paragraph or less of information) and
sent into headquarters it goes to the Configu-
ration Control Division (CCD). However, this
division’s job is simply to put a number on the
change report (CR) and send it out, without
any kind of board meeting or discussion what-
soever. This CR is sent out for review to
people who can't possibly tell from a couple of
sentences of information whether the change
is a good idea. Afler several weeks, the
reviewers send the request back to the CCD
with “nonconcur” or “concur” stamped on it,
and often it takes months before any real ac-
tion is taken on the document. If the change is
approved, it goes to the implementation organ-
ization, which writes the functional specifica-
tion and the detail design with no review of ei-
ther document. This same organization does
all of the coding and testing, without ever con-
sulting a review board or the originator of the
request; then when the change finally shows
up in the field, the originator probably won't
even recognize it.

Many times the people at higher levels of large
projects don't understand software and think

SEI-86-TR-5

of it as simply “another subsystem.” |t be-
comes a difficult task to convince these project
managers that on a large complex system, or
any project that has as its root a data system,
the software is an integral function of the proj-
ect. Often in these projects the usefulness of
a configuration management system is over-
looked and therefore this vital management
tool is not used properly. Many times attempts
are made to use other methods, like the CSSR
or C Spec. system, to maintain control over
projects. But these programs tend to be cur-
sory measurements of progress and costs
without ever getting down to the real work of
change management. It is in the configuration
boards that changes are discussed and infor-
mation gets moved around, the place where
sleeves are rolled up and the nuts and bolts of
the software are laid out.

So it is apparent that there is a great need for
improving Software Configuration Manage-
ment. The problems are large and
widespread; of course, they won't be solved
overnight. However, the workshop par-
ticipants had a great many ideas about the
components of an ideal configuration manage-
ment system. These may provide the base for
educating future software engineers to better
manage their projects through Software Con-
figuration Management.

4. The Software Configuration
Management System

4.1. A general picture

The participants more or less agreed that
there are too many unpredictable cir-
cumstances in the corporate world to build a
generic all-purpose configuration management
structure. However, it is possible to sketch in
certain key elements without creating a defini-
tive structure. Some of the elements are just

fundamental characteristics of a SCM system,
while others are more subtle details that will
create a more efficient management machine.

All large system projects have systems of
Change/Configuration Control Boards
(hereafter known as CCB). The structure of
the CCB may differ widely according to the
type of project, the company in charge, and
the size or cost of the program. However, the
CCB are a necessary element to almost any
SCM structure. These boards work in a kind
of waterfall structure with a great number of
control boards at the lower levels which feed
up into the higher levels. Change usually
bubbles up from the bottom where the pro-
gramming activity is boiling. At times there is
reverse traffic when change requests come
down from either the customer or the system
manager, but the vast majority come from the
area of the most programming activity. There-
fore the greatest number of boards is at this
bottom level of great activity, and these boards
should be the most active.

4.2. |deal CCB characteristics

One of the most important characteristics for
any control board, but especially the lower
level boards, is that they should be active. Be-
cause this is where information is passed
around, where you begin to see the project’s
shape and direction, it is vital that the boards
be a well-used and functioning body in the
SCM structure. The CCB should be a place of
discussion, where any problems or requests
that come up in a project get hammered out.
On large projects these board meetings often
last longer than a full day, but the work being
done in them is vital.

Because this work is so vital to a project,
“casual involvement” simply cannot exist in the
CCB system. It is important that the manage-
ment people on each board look into every
CWDR that comes before them. Even if the

SEI-86-TR-5

change or bug is presented in a very casual or
non mission-critical way, it is the duty of the
board members to look into it as if it were. If
board members allow the casual nature of a
presentation to affect their decisions and
evaluations, problems may be overlooked that
could escalate later into emergency situations.

There should be a route for emergency
changes so that the system won't break down
during emergency situations. There should
also be a CCB appeal route. This means that
it would be possible to go to a higher CCB if
the originator of the change request deemed it
absolutely necessary to reverse the original
board’'s decision. This would help keep the
board meetings from becoming “shouting
matches,” and help people discuss things ra-
tionally. However, the appeal route must be
carefully controlled (perhaps by upper level
boards making decisions as to which appeal
request should be accepted) in order to keep
the authority of the lower boards intact.

It is important not to limit the number of boards
because of past SCM practices or “efficiency”.
It is actually more efficient to have as many
boards as possible within cost and common
sense parameters. Each board should have
the minimum number of people possible
needed to make decisions. Therefore each
CCB'’s jurisdiction should be well documented,
and only those people directly involved in or
affected by changes in their jurisdiction need
to be at the CCB meetings. This way, only
vital people are involved in their particular
CCB decisions, and other important people
who not directly involved don’'t waste their
time.

4.3. Ensuring proper documentation
At a basic level, CCB should be involved with
all changes taking place at the project level,
using a lot of discussion and review for each
change being made. For this to happen, doc-

umentation standards throughout the develop-
ment phase of a system must be enforced. In
every SCM structure it would be a good idea
to have a division to make sure that the
original developers are writing down
everything. Documentation rarely gets done
without outside influence by those developing
the code, and almost never gets done post-
facto (certainly not accurately). If there is no
documentation, there is nothing to control.
Documentation “enforcers” are a good idea for
a strong SCM system, provided their authority
is well documented and strictly monitored.

These various characteristics of a good SCM
structure may vary a great deal, especially
when the existing authority levels are different.
The authority hierarchy in a company or
program has a great deal to do with the config-
uration management system, and all the ele-
ments that have been talked about so far rest
upon well-organized authority levels.

5. Authority in SCM Systems

5.1. Authority hierarchies

Although, as previously stated, the CCB areas
for discussion, the final decision-making au-
thority should lie with one individual. The con-
trol boards do not vote on changes; one per-
son makes a decision under advisement. This
is extremely important when trying to avoid in-
terproject politics and to keep a program
oriented toward its proper goal. The higher
level boards have greater authority, of course,
than the lower boards, and the system level
CCB belongs at the top of the pyramid. It is
the head of the system level CCB who has au-
thority to make the final judgments on CR/DR
and any last minute emergency “patches,” al-
though this authority is usually delegated to
lower level boards who are more often con-
fronted with the problems as they come up.
This means that whoever is making those final

SEI-86-TR-5

decisions had better be pretty sharp, or the
program is headed for trouble.

It is also healthy to a project to have a slightly
adversary relationship between the software
design manager and the head of the program.
The design manager fights for the needs of a
particular area, while the head of the program
sees a more overall picture, hardware systems
as well as software. If both these people are
well trained in project management, then the
adversary relationship will provide much
needed checks and balances within the proj-
ect system.

The various CCB should have documentation
readily available to them detailing specific
areas over which they have authority. Each
board needs to be sure what decisions they
have authority over and how much authority
they have to make a decision. When CR/DR
come up, there should never be confusion as
to who is responsible for looking into them. So
it is very important that CCB jurisdiction and
authority cover every area at some level,
especially those critical to the project, and this
authority must be documented. For example,
if the Testing and Evaluation division dis-
covers a DR, it must be clear whether they
have the authority to make changes in the
program or if they need the authority of a
higher board to make the change, and
whether this authority changes in the event of
a mission critical DR. At the workshop, two
experiences were given as examples: in one
situation the Test/Evaluation people did have
authority to make changes even on non
mission-critical DR, while in the other situation
they simply reported the DR to higher boards
for action, or the Evaluation people simply
figured out ways to work around non mission-
critical DR. The responsibility for these deci-
sions need to be well documented to avoid
confusion.

5.2. Key Authority concepts

It is very important to understand that authority
levels cannot be generically structured to fit
any situation. Usually the structure of any
given SCM system depends on the authority
levels already in existence in the particular
company or program involved. Any project
manager coming into a company or program
must have a good appreciation for the existing
authority hierarchy. The Software Configura-
tion Management system must be molded
around those authority levels.

Oftentimes the way people perceive problems
can create difficulties. While one person may
see something as a “problem,” someone else
may see it as simply a “change.” Who has the
authority to deal with these varying percep-
tions? It may be that it comes under the au-
thority of each CCB head, or that an entirely
different division or CCB should be set up to
deal with this question. Once again, this will
probably depend on the already existing au-
thority hierarchy. However, it may also de-
pend on the people in the program, the size of
the project, and various other management
considerations.

It is also important for each company that
goes under contract with another to have ap-
preciation for the existing authority hierarchy in
the other company or organization. When
everyone involved in a project understands the
authority structure and the way they are ex-
pected to work within it, a smoother operation
and a more productive work atmosphere will
result.

SEI-86-TR-5

6. Tools for Software
Configuration Management

6.1. Tools of the trade

Quite a few methods for maintaining control
over change were discussed. Many were
technical devices that are well documented
and available, so the group spent very little
time on these. Others were not discussed
necessarily as “tools,” but | think that they
could be labeled as specific tools for software
configuration management and that this would
be a good place to summarize them. First,
let's look at the naming and/or numbering of
products.

One of the most important aspects of any sys-
tem for naming software products is that the
name be specific as well as unambiguous. A
specific example was brought up regarding
NASA back when the name of a software sys-
tem matched the mission for which it was
being built. This, however, soon became a
problem. In these projects there is usually a
long time between starting to build a software
system and the time the mission it is intended
for finally flies. Often halfway through the
maintenance life cycle of this software, major
changes are made in the project: payloads
may be swapped or scrapped, as may the
mission vehicles, and so on. When these
changes are made, the name of the mission is
often changed. Then, one is left with a soft-
ware system named for a mission that may not
fly for years if it ever goes up at all. It is easy
to see how this could become confusing.
Therefore, the software is now named and
numbered in a completely separate way so
that there can be no relevance to the mission
for which it's being developed. What is impor-
tant to see in this example is that the naming
system had to be adjusted to become more
specific to the product as well as less am-
bivalent.

Because various divisions may have different
names for a single system, and because com-
munication must eventually extend beyond the
purely technical community, it is important to
be able to see how the nhomenclature evolves
and how the various nomenclatures relate to
one another. IBM uses a waterfall diagram to
show the path of each particular system and
its various names along the way. But perhaps
more importantly, IBM puts on the same page
a cross reference list. Since each nomencla-
ture may for a particular software build have
three different names with each of these
names understood by different divisions, the
cross reference list is important for clear un-
derstanding and communication. Using
diagrams is also a useful tool for communicat-
ing with those outside the technical com-
munity.

A management tool that might not be distinctly
thought of as a SCM “tool” is that of using
“freeze dates” when putting out incremental
releases of a software system. The example
at the meeting went something like this:
Usually, the top management people on a
project are anxious to see some sort of work-
ing software even though the software desig-
ners are still working out the bugs in a code
and may be reluctant to release it. In a case
like this, having freeze dates for the software
to be turned in will force the developers to
release what they have even if they feel it is
incomplete. Usually the first release will be
chaotic but this will give a good idea about
where to go and what needs to be fixed, and
the consumer has a working product. Even if
it has a lot of DR, having a completed product
is a positive incentive and will improve the
working atmosphere. The freeze dates must
be rigid; if the developers don’t get their
projects in on time, they won’'t be included in
the release. If this isn’t enforced, the comput-
er people will keep fiddling around and chang-

SEI-66TR-5

ing things, and the entire program will fall be-
hind schedule. Once again it is important to
remember that implementing a tool like this
will depend a great deal on the existing situa-
tion.

7. Documentation and
Credibility

7.1. Documentation

At one point in the day’s conference, Jim
Tomayko asked the group if they knew
whether anyone paid attention to the stan-
dards for software configuration management
put out by IEEE. No one at the meeting had
even heard of them. They were aware of the
Department of Defense Standard 2167, but it
was generally acknowledged that this was
overlooked by most program managers. The
standards get overlooked because the
rigorous documentation requirements that they
establish are seen as cumbersome and so
documentation standards do not get enforced.
At first, ignoring the standards seems easier
for both the managers and developers. It isn't
until they are waste deep in the mire of unmet
schedules, undocumented software with
hundreds of unseen DR, rising costs, and con-
sumers anxious to see this project that is now
out of control, that the importance of enforced
documentation standards is apparent. How do
you motivate people to use cumbersome stan-
dards when they haven't been “burned” by
past experience? Obviously, standards for
software configuration management are a use-
ful tool, but getting people to use them is
anot her matter.

It cannot be said enough that without docu-
mentation there is nothing to put under config-
uration control. There must be a valid func-
tional specification document in order to get
past the Preliminary Design Review or there is

nothing to put under the management system
and you're already off schedule. A brief list of
documentation includes:

« requirement specification
documents

« functional specification
documents,

« detail design documents,

« USer manuals,

« Maintenance manuals,

« interface control documents,
« memory layouts,

« test plans,

. and the code itself, of course.

All of this, plus more not mentioned here,
comes under maintenance control, unless it is
subject to a project specific waiver. Because
many of these documents are scrapped when
a product reaches maintenance phase, it
would be best perhaps to maintain a configu-
ration index for each product so that enough
documentation is maintained for configuration
control during the maintenance phase.

Even in the essential area of documentation
there must be consideration for the project in-
volved. If the project is large, the managers
are usually more careful about enforcing docu-
mentation standards because the project as a
whole is probably being approached in a very
careful and cautious way. However, in a
smaller project, SCM tends to take a back seat
and the documentation, therefore, doesn’t
seem important or economical. Sometimes full
rigor on the SCM and documentation stan-
dards can be relaxed slightly on a smaller proj-
ect, but then you need someone in command
who knows when full rigor can be relaxed and
when it should be enforced. However, good
documentation will always help configuration
management people to make sounder judg-
ments and more credible evaluations.

SEI-86-TR-5

7.2. Credibility

Good basic documentation is the basis for
Configuration Control Board evaluations on
the issues before them. In order for CCB to
make intelligent, rational, and credible deci-
sions on CR/DR, certain data are necessary.
These data should be well documented so that
the CCB evaluation of the data will carry
weight. This list of necessary data was devel-
oped at the workshop:

« The size of the change.

« Alternatives are there any?
Would it be relatively simple to
work around whatever is being
changed?

The complexity of the change.
Does it reference other systems?
Does this system support other
software or rely on other support
software that would need to be
changed accordingly?

The need date. Basically, the
board needs to know how much
time they would have to make the
change and test it, before the
consumer needs a working
product.

Impact. This is related to
complexity. What kind of effect
will this change have on
subsequent work? The board
needs to took down the road a bit
and see where the project is

going.

Cost. How much will the change
cost? Also, will this change save
money in the overall project?

The criticality of the area. NO
CR/DR can be overlooked if the
problem will prove to be mission
critical. All other areas of
evaluation should be rethought if
the bug might possibly create
critical problems.

Other CR under current
evaluation. Will another change
solve this problem or do other
more critical changes rely on this
software remaining the same?

« Test requirements. How much
testing will be needed which will
affect the costs and time needed
for the change?

« Resources. Do you have the
people available to work on this
program? Do you have the
hardware equipment available to
use for this change?

0 CPU and memory impact.

« Benefit. How much of an
advantage will it be to change the
software?

« Politics. In the corporate and
commercial world, it would be
good idea to evaluate who is
asking for the change and
whether or not the board decision
might be used as a bargaining
point in the future.

« Maturity of the change. How long
has the change been before the
board? If it is still considered
worthwhile to change something
after a tong time has passed, then
the board should consider it more
carefully.

By using these data, you can often minimize
the number of “side effects” that the changes
will have. Even if the side effects are unavoid-
able, the use of this carefully documented
evaluation process may help to identify where
those effects are going to be. Of course, it is
now impossible to be sure that all the side ef-
fects have been discovered. For example,
suppose there are two changes that are being
made at the last minute in an emergency
situation, and they are each tested and
evaluated. Although they may have no real
side effects on the system separately, when
they are “patched” in at the last minute, they
may have serious side effects together. This
is the greatest fear when dealing with late
patches, but careful documentation and evalu-
ation of the data involved in each change may
help to alleviate some of the guesswork.

SEI-86-TR-5

In the purely commercial arena, credibility is
the key in dealing with the marketing division
or the customer. if they have a change re-
quest that is going to create more difficulty
than it is worth, the configuration management
people should be able to show documentd

data that will make the control board evalua-
tion credible. When customers can see the
kind of impact a change is going to have on
the time, size, or cost involved in a project,
they will better understand and more readily
accept management’s decisions regarding the

project. The key is a thorough and well-

documented evaluation based on the previous
listed data. The list can be changed or ex-
panded on, according to the needs of the proj-
ect, but as it stands, it gives a fairly accurate
picture of the kind of information that is going
to be needed for credible evaluation.

8. SCM and the Real World

8.1. Going from the classroom to

the corporation
Two points came up early in the meeting that
helped to categorize many of the problems
discussed later in the day.

1. We live in an irrational world, but
computer science and software
engineering are based on
concrete and rational logic. How
does one make this rational
knowledge fit into an irrational
world? Software Engineering
and Design is not just like it is in
the textbooks.

2. Very often the existing system
dictates what kind of changes
take place and what kind of
configuration management is
used, rather than the ideal or
proper software design
practices.

Both of these concepts are difficult to teach to
young, inexperienced software engineers who

are coming directly from the classroom. They
are concepts usually learned through ex-
perience A software engineering graduate
expects to put the principles of Software Con-
figuration Management directly into effect, but
is suddenly confronted with an irrational world
that does not easily follow the logical course of
configuration management t isn't the main-
line textbook problems that are going to throw
an educated software engineer; instead, it's
the small peripheral problems that build up
and take control of a project. These little
things, the result of this irrational world, in-
clude corporate politics, unforeseeable ac-
cidents, human personalities, and day to day
unexpected emergencies Also, a new.
program manager may have to deal with a
system that does not follow regulation SCM
practices and does not want to change. Often
corporations have become comfortable with a
particular structure that does not have room
for SCM, and it can be quite frustrating to a
young manager to be asked to comply with
“company policy’ rather than smart software
configuration management.

There are some attributes of the irrational
world and som e system protocol specifications
that will never be able to be changed, regard-
less of a software engineers chagrin when
dealing with them. Learning to deal with these
inexplicable and usually frustrating areas of
SCM requires experience in the world where
they exist. A textbook will never be able to
adequately transfer the kind of knowledge
needed to deal with the irrational world. There
will always be people who will be able to
manage corporate software configuration bet-
ter than others, regardless of classroom
performance---another of that irrational
world.

A few well educated configuration manage-
ment personnel are not going to make much of
an impact on Software Configuratio Manage-

ment today. There must be a way to commu-
nicate the concepts of SCM to a great number
of people involved in the development of soft-
ware products, even the people who are not
directly responsible for the configuration
management of a particular system (this would
include everyone from the computer scientist
writing the actual code to the final consumer of
the product). If a few concepts of SCM are
known by a majority of people dealing with the
development of a software product, then
people will be able to function more smoothly
within the system and the whole process will
be tighter. This is also important when you
remember the large number of companies that
are using contracts and subcontracts with
other companies. Unless the concepts of
SCM are widespread among many com-
panies, Software Configuration Management
will be dependent upon whether a subcontrac-
tor chooses to use SCM or not.

8.2. Two Perspectives

One last point that was emphasized at the
meeting was that of two perspectives emerg-
ing. It has been previously stated that when a
company goes under contract with another to
develop a software system, the management
people should have respect for the existing
SCM structure in the contracting company.
The two perspectives are (1) that of the
originator of the project and (2) that of the con-
tractor that goes into this program. NASA is a
good example. They will often put several
companies under contract for a single mission
and these companies often turn around and
subontract another company to work on
variius parts of the system. NASA has a very
structured system for configuration manage-
ment, and the companies under contract often
have SCM systems of their own. It is very
easy to see the “give and take” needed in a
situation like this. Each company needs to try
and comply with the SCM demands of the

contract originator. A software engineer trying
to take the concepts of SCM into the real
world should be prepared to deal with these
perspectives.

9. Conclusions

It is apparent to me that Software Configura-
tion Management courses are essential to
progress within Software Engineering today.
SCM s tied to every stage of software product
development. A good configuration manage-
ment team could make the difference between
products coming in on time and within cost,
and those coming in late, full of bugs, and with
greater costs. Education seems to be the
place to start, but there seems to be much
more involved than classroom development
alone. What the group tried to do was begin a
program that would teach software engineers
that they need to learn the concepts of Soft-
ware Configuration Management wherever
that education may be available (whether
learning in the classroom or gaining ex-
perience in the field). | would conclude that
what seems to be wrong in Software Configu-
ration Management today is that too many
software engineers don’t seem to think they
are missing much without a solid knowledge of
SCM. If they can be shown the importance of
SCM, then perhaps they will be more eager to
learn its concepts and to use it more often and
more effectively in the software development
field today.

10

SEI-E%-TR-5

