Software Engineering Institute

COVERT: A Framework for Finding
Buffer Overflows in C Programs
via Software Verification

Sagar Chaki
Arie Gurfinkel

August 2010

TECHNICAL REPORT
CMU/SEI-2010-TR-029
ESC-TR-2010-029

Research, Technology, and System Solutions
Unlimited distribution subject to the copyright.

http://www.sei.cmu.edu

Carnegie Mellon

This report was prepared for the

SEIl Administrative Agent
ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally
funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2010 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS-1S” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for
internal use is granted, provided the copyright and “No Warranty” statements are included with all
reproductions and derivative works.

External use. This document may be reproduced in its entirety, without modification, and freely distributed in
written or electronic form without requesting formal permission. Permission is required for any other external
and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about SEI publications, please visit the library on the SEI website (www.sei.cmu.edu/library).

mailto:permission@sei.cmu.edu
http://www.sei.cmu.edu/library

Table of Contents

A DS ACt L Vil ..
L INtrOdUCH 0N o 1..
2 Related WK o 5..
3 InsStrumeNntation e
3.1 Memory Model ... s 7.
3.2 BasiC INStrumMeNntation 7.
3.3 Handling Memory Allocation and Standard String Manipulation Routines 9
3.3.1 MalloC ..o 1Q0.
3.3 2 S CPY oot 10.
B 3.3 S AL oot 11.
B4 DISCUSSION ittt ettt ettt e et e e 11..
3.4.1 Checking Underflow ... 11
3.4.2 Entry Points for AnalysisS ENgine ...t 11
343 AlIASING oo 11.
3.4.4 Aiding Numerical Analysis 11
3.4.5 Other Dynamic Approaches to Buffer Overflows 11
A ANAIY SIS ot 13..
4.1 ASSUMPLIONS ADOUL CHECKER ..ttt ittt ettt et et e e e e e e e 13
4.2 PANA: Combining Numeric and Predicate Abstractionccovvi.... 13
4.3 NUMETIC ADSIraCtiON ... 13.
4.4 Predicate AbStraction 14.
4.5 Combining Numeric and Predicate Abstractions it .. 14
4.6 Abstraction Refinement 15.
5 Implementation and Validation ... 17
5.1 Experimental Validation 17.
B CONCIUSION o 19..
R BB CES .o 21..

i | CMU/SEI-2010-TR-029

ii | CMU/SEI-2010-TR-029

List of Figures

Figure 1: Using coVERT with Static (SA) and Dynamic (DYN) Buffer Overflow Prevention

TE NI UES .o 3.
Figure 2: A Memory with a Character Buffer and Two Pointers 8
Figure 3: (a) COVERT’s Fat Pointer Structure (b) Macros Used by INSTRUMENTATION 8
Figure 4. Assignmentin (a) Is Replaced by Template in (b) during INSTRUMENTATION. 9
Figure 5: The Code Fragment (a) Is Converted to the Code Fragment (b) by INSTRUMENTA-

L8 9..
Figure 6: Definition of f p_mal | 0C 10.
Figure 7: Definition of f p_strcpy_al arm 10
Figure 8: Definitionof fp_strcat al arm 10
Figure 9: A Code Fragment (a) and Its Instrumentation (b) 15

Figure 10: Bar Chart Showing Comparison of Running Times Between COPPER, BLAST, and
PANA as the CHECKER for All TESIS . ..ot e 18

iii | CMU/SEI-2010-TR-029

iv | CMU/SEI-2010-TR-029

List of Tables

Table 1: Common ADSIraCt DOMAINS 14
Table 2: Summary of implementations of NUMPREDDOMot 15
Table 3: BLAST, COPPER, and PANA COMPAriSONottt 17

% | CMU/SEI-2010-TR-029

Vi | CMU/SEI-2010-TR-029

Abstract

Buffer overflows continue to be the source of a vast majority of software vulnerabilities. Solutions based on
runtime checks incur performance overhead, and are inappropriate for safety-critical and mission-critical
systems requiring static—that is, prior to deployment—guarantees. Thus, finding overflows statically and
effectively remains an important challenge. This report presedtERT, an automated application framework
aimed at finding buffer overflows in C programs using state-of-the-art software verification tools and
techniques. Broadl\OVERTworks in two phases:NSTRUMENTATION and ANALYSIS. The

INSTRUMENTATION phase is the core phase@dvERT. During INSTRUMENTATION, the target C program is
instrumented such that buffer overflows are transformed to assertion violations. Inthe $\s phase, a static
software verification tool is used to check for assertion violations in the instrumented code, and to generate error
reports.COVERTwas implemented and then evaluated on a set of benchmarks derived from real programs. For
the ANALYSIS phase, experiments were conducted with three software verification teakss¥, COPPER and

PANA. Results indicate that theoveERT framework is effective in reducing the number of false warnings, while
remaining scalable.

Vii | CMU/SEI-2010-TR-029

viii | CMU/SEI-2010-TR-029

1 Introduction

A 2002 study funded by the National Institute of Standards and Technology (NIST) concluded that software
bugs, or errors, are so prevalent and so detrimental that they cost the U.S. economy an estimated $60 billion
annually [NIST 2002]. A substantial portion of programming errors ultimately manifest themselves as software
vulnerabilities. For example, it is estimated that “Hacker attacks cost the world economy a whopping $1.6
trillion in 2000” and that “U.S. virus and worm attacks cost $10.7 billion in the first three quarters of

2001" [Jarzombek 2004]. This problem is further highlighted by the increasing number of successful attacks.
For example, “The CMWERT® Coordination Center reported 76,404 attack incidents in the first half of

2003, approaching the total of 82,094 for all of 2002 in which the incident count was nearly four times the 2000
total.” In fact, CERT statistics often understate the problem by counting all related attacks as a single incident.

Buffer overflows are widely recognized to be the prime source of vulnerabilities in commodity

software [Cowan 2000]. For example, the CodeRed worm that caused an estimated global damage worth $2.1
billion in 2001 [Jarzombek 2004, CERT CC 2001] exploited a buffer overflow in Windows. Wagner and
colleagues report, on the basis@ERT advisories, that “buffer overruns account for up to 50% of today’s
vulnerabilities, and this ratio seems to be increasing over time” [Wagner 2000]. A recent SANS/MITRE study
cited buffer overflows as one of the top 25 most dangerous programming errors [MITRE-CWE-09 2009].

Buffer overflows are problematic because they are used by attackers to execute arbitrary code (such as a shell)
with administrative privileges. For example, a common strategy is to redirect a program’s control flow to any
desired point by overflowing buffers. For this reason, buffer overflows are extremely dangerous and can lead to
catastrophic system compromises and failures.

Broadly speaking, a buffer overflow occurs when some daiswritten to a bufferB and the size oD is

greater than the allocated size®f In the case of a type-safe language or a language with runtime bounds
checking (such as Java), an overflow leads either to a (compile-time) type error or a (runtime) exception. In
such languages, a buffer overflow can lead to a denial of service attack (i.e., by causing an unhandled
exception), but in most cases cannot be used to compromise the security of the system. Unfortunately, a
significant fraction of current and legacy software is written in unsafe languages (such as C or C++) that allow
buffers to be overflowed with impunity. For reasons such as efficiency and infrastructural inertia, the unsafe use
of these languages is unlikely to abate. Note that the overflow problem is not solved by restricting the
programmers to using only the “safer” library routines, such@et s, snpri nt f, andst r ncpy, because
programmers can, and do, pass incorrect array bounds information to these routines. Therefore, it is important
to develop techniques to guard against buffer overflows, while still allowing low-level buffer accesses.

A number ofstaticanddynamicapproaches have already been used effectively to partially mitigate the buffer
overflow problem. Dynamic approaches (e.g., by Ruwase, Jones, Dahn, and Dhurjati) work by instrumenting
buffer accesses of the program with runtime checks that abort the program as soon as a buffer overflow is
detected [Ruwase 2004, Jones 1997, Dahn 2003, Dhurjati 2006]. The approaches differ in whether the
instrumentation is done on the source or binary levels, in runtime and memory overheads, and in compatibility
with third-party library routines that cannot be instrumented. The runtime overhead is the major cost of a
dynamic approach, ranging anywhere from a 2x to 10x slowdown. This often defeats the performance
advantages of using an unsafe low-level language. Moreover, by aborting a program when an overflow is
detected at runtime, dynamic approaches often eliminate overflows at the cost of introducing denial-of-service
attacks. This is unacceptable in many situations where downtime is extremely expensive, for example, finance,
telecommunication, and avionics.

Static approaches work by examining the source code of the program statically, looking for conditions (i.e.,
program inputs) that may result in a buffer overflow. Several such techniques (e.g., those of Wagner and

® CERT Coordination Center is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

1 | CMU/SEI-2010-TR-029

Ganapathy) have been used to find buffer overflows in indlisitile software [Wagner 2000],

[Ganapathy 2003]. While these approaches are very scalable, in many situations they produce a large number of
warnings (or alarms). These warnings must then be inspected manually, which makes the overall process very
tedious. Alternatively, the warnings can be guarded by runtime checks, but this compromises the strong
guarantees of static analysis, since it introduces the prospect of a runtime abort. In practice, many of these
warnings turn out to be false alarms—owing to timprecisionthat static analysis tools must allow for in order

to achieve scalability. For example, Zitser and colleagues report false alarm rates of as high as 50% when using
static analysis tools for buffer overflow detection in real programs [Zitser 2004]. Today an effective use of static
analysis for buffer overflows requires a significant manual effort from the user—either in manually examining
false alarms, or in guiding a static analysis tool by annotating the program with tool-specific annotations.

On the other hand, there is a wide array of existing software verification tools—for example,

BLAST [Henzinger 2002]cBmc [Clarke 2004],coppPER[Chaki 2005], andPANA [Gurfinkel 2008]—that use
counter-example guided abstraction refinement (CEGAR) to eliminate or minimize false positives

[Clarke 2003, Ball 2001]. These tools generally detect assertion violations (or equivalently, reachability of a
statement) in C programs. Thus, in principle, they are applicable to detecting buffer overflows. However, in
practice, there is no mechanism to do this systematically.

In this report, we present an automated framewgocklledcoveRT, that provides such a mechanism. The input
to COVERTIs a pair(P, ALARM) of a programP, and a set AARM of control locations of? with possible

buffer overflows. We assume that the setsiM is either generated by some other static analysis technique, or
simply contains all control locations @f. The output froncOVERTis a triple(Goob, BAD, ALARM') such

that

e GOoOD C ALARM is a list ofcontrol locationsof P that are free of buffer overflows.
e BAD is a list ofexecution tracesf P leading to buffer overflows.

e ALARM’ is the list ofcontrol locationsfor which the technique failed to prove safety and
failed to construct an execution leading to a buffer overflow.

Thus, the progran® has no buffer overflows if both BARM’ and BAD are empty, has a demonstrable buffer
overflow if BAD is not empty, and has potential buffer overflows ifARMm’ is not empty. The current
implementation o£ovERTlooks only for buffer overflow in C strings (i.e., null-terminated arrays of
characters), but the techniques easily generalize to arbitrary buffer overflows as well.

COVERTworks in two stages, called\BTRUMENTATION and ANALYSIS. The INSTRUMENTATION phase

converts the target programinto a new progran?;. COVERTS instrumentation isound. In other words, any

input that leads to a buffer overflow at someaRm location in P causes an assertion violation at the
corresponding location i;. This is similar to what is traditionally done in dynamic approaches to buffer
overflows. The key difference is that our instrumentation is targeted towards efficient static analysis and not
towards efficient runtime behavior. The instrumentation replaces each character array Jcéi@rence inP

with a specialized “fat” pointer that keeps track of the size of the buffer and the length of the string contained in
it, and adds assertions to check whether the buffer overflows.

In the ANALYSIS phaseCOVERTuses a safety analysis engine, henceforth callegCKER, to check for

possible assertion violations . If an assertion inP; is proved to be safe, the correspondingaim location

in P is added to @opD. If an execution trace leading to a violation of an assertioR;irs discovered, then the
corresponding execution trace fhis added to BD. If a control location in AARM could not be classified as

either Goob or BAD, it is added to AARM’. It is noteworthy that even thoughoVERT uses code

instrumentation, it is a static technique—that is, it is applicable prior to deployment—and hence does not suffer
from the disadvantages of dynamic analysis techniques.

1 Specifically, we present an application framework.

2 | CMU/SEI-2010-TR-029

________________ COVERT |
(P, ALARM) !

|
|
SA i
|
[

P
INSTRUMENTATION —{ ANALYSIS |,
|

(Goob, BAD, ALARM") [

e A D L —— 2

P [DYN}— P

Figure 1: Using cOVERT with Static (SA) and Dynamic (DY N) Buffer Overflow Prevention Techniques

One of the strengths @foVvERT s that it allowsCHECKERtO be instantiated by a wide variety of software
verification tools, subject to some reasonable assumptions (see Section 4.1 for a discussion on these
assumptions). This enable®VERTto leverage the state of the art in software verification technology. In
particular, we experimented with the following three instantiationsi#CKER (1) the software model
checkemBLAST [Henzinger 2002], (2) the software model checkerrPeER[Chaki 2005], and (3)

PANA [Gurfinkel 2008], a software verification tool that combines three sophisticated techniques: numeric
abstraction [Mite 2006], predicate abstraction [Graf 1997], and CEGAR. Further details aboutitkier &S
phase ofcovERT are presented in Chapter 4.

Another strength o OVERT s that it can be combined naturally with other static and dynamic techniques for
buffer overflow prevention. A typical work-flow is illustrated in Figure 1. In the figuPds a programp; is the
programP instrumented for analysis, arfg; is the programP instrumented with runtime checks.

First, the set of possible buffer overflow locations is identified by a scalable (but conservative) static analysis
tool SA. Second¢coOVERTIs used to eliminate false alarms, and, if possible, produce error traces for real buffer
overflows. Third, any of the alarms that could not be conclusively classified are protected with dynamic runtime
checks.

We implemented and evaluatedVERT on a set of benchmarks derived from real C programs with buffer
overflows for which existing static analysis tools are known to be inadequate [Zitser 2004]. We compared
between the threeHECKERINnstances—BLAST, COPPER andPANA. Our experiments indicate theANA is
superior to botlBLAST andcoPPERINn terms of successfully, and quickly, proving the presence or absence of
buffer overflows in realistic C programs.

The rest of this report is organized as follows. In Section 2 we survey related work. In Section 3 and Section 4
we describe the instrumentation and analysis stage®@ERT, respectively. In Section 5, we present our
implementation and evaluation obvERT. Finally, we conclude in Section 6.

3 | CMU/SEI-2010-TR-029

4 | CMU/SEI-2010-TR-029

2 Related Work

Manual approaches for overflow detection are inherently non-scalable, therefore we focus on automated
procedures only. A number of approaches for overflow detection are type-theoretic [Shankar 2001] in nature.
These approaches require that programs be written in a type-safe language and are not applicable to the vast
body of (legacy as well as in-production) code that involves type-unsafe languages such as C or C++.
Techniques based on simulation or testing suffer from low coverage and are typically unable to provide any
reasonable degrees of assurance about critical software systems. Dynamic or runtime buffer overflow detection
schemes [Ruwase 2004, Jones 1997, Dahn 2003, Dhurjati 2006] incur performance penalties that are
unacceptable in many situations. Even when performance is not a serious issue, it is often imperative that we be
assured of the correctness of a system before it is deployed. Such guarantees can only be obtained, if at all, via
static approaches.

A number of static approaches for buffer overflow detection have been proposed that rely on static analysis of
programs. These approaches are usually based on converting the buffer overflow problem into a constraint
solving problem, such as integer range checking [Wagner 2000] or integer linear programming

[Ganapathy 2003], or to a static analysis problem on an integer program [Dor 2003]. Static analysis amounts, in
principle, to a form of model checking over the control flow graph (CFG) of a program [Schmidt 1998].

However, a CFG is an extremely imprecise model because it retains control flow information but ignores other
semantic details completely. Thus, in practice, static analysis based on the CFG is plagued by false

alarms [Zitser 2004]coVERT uses abstraction refinement to eliminate false alarms in an automated manner.

Hovemeyer and colleagues use an unsound and incomplete static analysis to find NULL pointer

bugs [Hovemeyer 2005]. Beyer and colleaguesBiesT to also check for NULL pointer bugs in C

programs [Beyer 2005]. Specifically, they umeAST to detect violations of runtime checks inserted by the
CCuREDtool. However, the checks added by GRED are geared toward preserving the runtime behavior of

the target program [Necula 2005]. They involve complicated pointer manipulations and dynamic memory
allocation, and therefore are not easy to analyze statically for a more general class of memory errors, for
example, buffer overflows. In contrast, the runtime checks usetbgRT limit dynamic memory allocation

and pointer dereferencing, are designed to be static-analysis friendly, and are targeted toward buffer overflows.

5 | CMU/SEI-2010-TR-029

6 | CMU/SEI-2010-TR-029

3 Instrumentation

The instrumentation stage obvERT transforms a C prograrR and a set of locations 18aRM into a new C
programP; by adding for every locatiofloc in ALARM a set of assertions $sERT Loc) such that the
following claim holds:

Claim 1 (Soundness) Any input that leads to a buffer overflow at a locatibox: in ALARM in P also causes a
violation of an assertion iIMSSERT Loc) in P;. If P has no buffer overflows; behaves exactly the same&s

That is, buffer overflows in the original programare reduced to assertion violations in the instrumented
programpP;. COVERTS instrumentation phase is really a form of a dynamic approach of adding runtime checks
(or assertions) to prevent buffer overflow. The key difference from other dynamic approaches is that the
meta-data and assertions usedclmwERT are designed not for runtime performance, but to be easily checkable
via static analysis.

In the rest of this section, we describe the instrumentation process and its data structures, and explain how
COVERT handles string manipulation functions from the standard C library. We conclude with a discussion of
our approach.

3.1 Memory Model

coVERTdivides memory into two regions: a region for character buffers, and a region for all other data. The
memory for character buffers is modeled as a set of disjoint objects—one per buffer. Each object is identified by
its base address, and has two properties: (i) allocated size, and (ii) string length, which is the position of the first
"\ 0’ character if one exists, and the allocated size otherwise. A pgirttea character buffdB is represented

as an integer offset from the base address of the memory object that cdhtdiessay thaB is an intended

referent (IR) ofp.

For example, Figure 2 shows a memory with a single allocated objeatd two pointerg andq with O as
their IR. The base address@©fis 10, the size is 7, and string length is 5. The offsgt & 2, so thap is“l | 0,”
and the offset of is 4, so thag is “0.”

3.2 Basic Instrumentation

COVERTimplements the above memory model by using “fat pointers” to keep track of meta-data, such as
allocated size, with each pointer. This technique is used in a wide variety of applications ranging from memory
management and memory profiling to dynamic analysis [Dhurjati 2006] and ensuring memory

safety [Necula 2005]. The key idea of fat pointers is to replace each pointer varigileachchar * variable

in COVERTS case) with a data structure that keeps track of at least: (1) the actual addressahiains, and (2)

the base address of the block of memory ghpbints into, also known as thietended referenof p. In addition,

a CoVERTfat pointer also keeps track of tisezeof the intended referent @f Specifically, acOVERT fat

pointer is declared by the structure_char shown in Figure 3(a). The fields of the structure are

1. base: base address of the intended referent
2. of f set the offset frombase todat a, that is,of f set = dat a — base
3. al | oc the allocated size of the intended referent

4. | en apointerto thestring lengthof the intended referent, that is, the offset of finst
NULL character fronbase if one exists, oral | oc otherwise

7 | CMU/SEI-2010-TR-029

char *p

oj ect O
base = 10 ——={h[e[l [I [o[\0 [| offset = 2
len =5 char *q

base = 10
offset = 4
Figure 2: A Memory with a Character Buffer and Two Pointers

#defi ne FPDATA(p) (p.base + p.offset)
#define I N.BOUNDS(p) (p.offset < p.alloc)
#define NULL_TERM p) (p.offset <= =(p.len))

struct fp_char {
char =*base ;

int offset ; #define STRLEN(p) (*(p.len) - p.offset)
int alloc ; #define MN(X,y) ((x <) 2 X : y)
int *xlen ; Y y) oo -y
b extern int GET_LEN(fp_char x);
(@) (b)

Figure 3: (a) cCOVERT's Fat Pointer Structure (b) Macros Used by INSTRUMENTATION

Thel en field is maintained as a pointer to enable us to model aliasing (see Section 3.4.3 for more details). If
| en points to a value between zero amldl oc - 1, then the intended referent is null-terminated; otherwise,
the intended referent is not null-terminated. The meta-data captured by the fi€lolcbfar lets us model

string manipulations performed by the program via simple numeric operations.

Recall that the NSTRUMENTATION phase takes a C prografhas input and produces an instrumented C
programp;. In addition to functions and macros usedByP; may use macros and external functions shown in
Figure 3(b). In the macrog, is assumed to be of tydep_char . The macrd N_BOUNDS(p) checks whether

p overflows its intended refereMlULL_ TERM p) checks ifp is null-terminated, an&TRLEN(p) returns the
computedstring lengthof p. The functionGET_LEN(p) computes the exact string lengthmpfbase.
Specifically, it returns the offset, from base, of the firstNULL character between. base andp. base +
p.alloc - 1.IfsosuchNULL character exists, it returms al | oc. The INSTRUMENTATION phase

proceeds as follows:

1. Pisreduced to use only simple types, variables, and statements. For example,
complicated expressions (such as those involving nested function+caks)d- -
operators, etc.) are broken down into simpler form.

2. The typechar = is promoted to typé p_char throughoutP. Other types are left
unchanged.

3. For each string constaat a uniquef p_char variablev is created and initialized
appropriately. All subsequent references tare replaced by.

4. Any variablex of typechar = is replaced byrPDATA(x) if

e X is a sub-expression of a branch condition, a function argument, or a return
expression, or

e X is a sub-expression of the right-hand-side of an assignment whose left-hand-side is
not of typef p_char.

5. Every assignment of the form = e, wherel is of typef p_char is converted to a
sequence of assignments represented by the template shown in Figure 4. The exact

8 | CMU/SEI-2010-TR-029

definitions ofBASE(e) , OFFSET(e) , ALLOC(e) andLEN(e) depends on the
structure ofe. These definitions are straightforward, and we omit a detailed presentation
for brevity.

6. Every assignment of the forrl = e, wherel is of typef p_char is preceded by the
following code fragment, which updates the length aof required.
(l.len) = (e =="\0") 2 MN(I.offset,(l.len)) : =(l.len);

7. Every assignment in Barm of the form=1 = e, wherel is of typef p_char , is

preceded with a statemea$ser t (| NNBOUNDS(|)) . Note that thisasser t
statement follows the instrumentation introduced by the previous step.

8. Some specific function calls are handled in a special way, as described in the next section.
base = BASE(e);
of fset = OFFSET(e);

alloc = ALLOC(e);

l.
l.
I,
I.len = LEN(e);

(@) (b)

Figure 4: Assignment in (a) Is Replaced by Template in (b) during INSTRUMENTATION.

1 fp_char_"t ; 10: p. si ze=t . si ze;
" " 2: t.base="abc";
char »p="abc";) A 11:p.len=t.len;
3: t.offset=0
4: t.size=4 ' 12:i f (FPDATA(p)[0]=="a") {
if(p[0]=="a") s o . 13: p. base=p. base;
5: t.len=malloc(lS2Z); :)
{ . _a. 14: p.of fset ++;
. 6: *(t.len)=3; : Lo
p++; . . 15: p.size=p.size;
7: fp_char p; 16- Len=p. | en-
} 8: p. base=t. base; 17: p-Ten=p.len,
9: p.offset=t.offset; 2

(a) (b)

Figure 5: The Code Fragment (a) Is Converted to the Code Fragment (b) by INSTRUMENTATION.

To illustrate NSTRUMENTATION, consider code fragments before and aftes TRUMENTATION as shown in
Figure 5(a) and Figure 5(b), respectively. In the cdd&Z stands foisi zeof i nt, and variablé stands for
the string constaritabc" . In the instrumented code, lines 1-6 initializelines 7-11 are the assignmenttp,
line 12 is the branch conditional, and lines 13-17 are the incremgntibte that we have expand8ASE,
OFFSET, Sl ZE, andLEN for a pointer increment in this example (see lines 13, 14, 15 and 16, respectively).

3.3 Handling Memory Allocation and Standard String Manipula tion Routines

Effective static analysis crucially depends on partitignine analysis problem across function boundaries. To

this end, we have enhancedVERTS fat-pointer instrumentation to model the semantics of common string
manipulation routines. That is, calls to such functionstascpy andst r cat are instrumented so that the

f p_char meta-data is updated directly based on the semantics of these functions. In this section, we describe
the instrumentation famral | oc, st r cpy, andst r cat . The instrumentation for other functions is done

similarly.

9 | CMU/SEI-2010-TR-029

fp_char fp_malloc(size_t e) {

1. fp_char p;

2: p.base = (char*)nmalloc(e);

3: p.offset = 0;

4: p.alloc = e

5: p.len = malloc(sizeof int);

6: *(p.len) = GET_LEN(p);

7. return p;

}

Figure 6: Definition of f p_mal | oc

3.3.1 Malloc
Acalltol = mall oc(e),wherel isoftypef p_char,isreplacedbyacalltb = fp_nal |l oc(e). The

functionf p_mal | oc is defined in Figure 6. The function allocates the space for the pointer, sets allocation
size and offset meta data, and (re)computes the string length of the allocated memory block to ensure that the
length is initialized appropriately. Note that this is necessary since we don’t know the contents of the newly
allocated block of memory in advance.

fp char fp_strcpy_alarm(fp_char x,fp_char y) {
assert (NULL_TERMy));
assert(x.offset + STRLEN(y) < x.alloc);
st rcpy(FPDATA(X) , FPDATA(Y)) ;
*(X.len) = NULL_TERMy) ?

x.of fset + STRLEN(y) : GET_LEN(X);
return x;

“”9?9.‘:’?9?!\’“

Figure 7: Definition of f p_strcpy_al arm

3.3.2 Strcpy

Acalltostrcpy(x,y) isreplaced by a call tbp_strcpy_al ar m(x, y) orto

fp_strcpy_no_al arn(x, y) depending on whether the original call was in theakm set or not. The
definition off p_st r cpy_al ar mis shown in Figure 7. Lines 1-2 check for buffer overflows, line 3 makes the
actual call tost r cpy, lines 4-5 update the value ®f x. | en) . Note thatGET_LEN s called if the C

expression for new value &f(x. | en) cannot be determined statically. Finally, line 6 returns the result. The
definition off p_st rcpy_no_al ar mis the same akp_st r cpy_al ar m with lines 1 and 2 removed.

fp char fp_strcat_alarm(fp_char x,fp_char y) {

assert (NULL_TERM x) && NULL_TERMYy));

assert(*(x.len) + STRLEN(y) < x.alloc);

strcat (FPDATA(x) , FPDATA(Y)) ;

*(x.len) = NULL_TERM x) && NULL_TERMy) ?
*(X.len) + STRLEN(y) : GET_LEN(X);

return x;

“”9?9.":’?9?!\’“

Figure 8: Definition of f p_strcat _al arm

10 | CMU/SEI-2010-TR-029

3.3.3 Strcat

Acalltostrcat (x,y) isreplaced by a call tbp_st r cat _al arn{x, y) orto

fp_strcat _no_al ar n(x, y) depending on whether the original call was in thea&km set or not. The
definition off p_st rcat _al ar mis given in Figure 8. Lines 1-2 check for buffer overflows, line 3 makes the
actual call tost r cat , lines 4-5 update the value ®{ x. | en) , and line 6 returns the result. The definition of
fp_strcat _no_al ar mis the same afp_st r cat _al ar m with lines 1 and 2 removed.

3.4 Discussion

In this section, we discuss a number of issues relatetERT's fat pointer design.

3.4.1 Checking Underflow

The definition ofit N.-BOUNDS(p) in Figure 3(b) checks only for overflow. To check for buffer underflow, the
macro is changed top. of f set >= 0) . To check for both overflow and underflow, the macro is changed to:

((p.offset < p.alloc) && (p.offset >= 0))

3.4.2 Entry Points for Analysis Engine

An analysis engine used to validafe must decide on how to interpretl | oc, GET_LEN, and standard C

string manipulation routines (liket r cpy andst r cat). The simplest sound choice is to assume that these
functions return a non-deterministic value and do not modify any memory that is not directly accessible through
their arguments. This is the assumption we make during theLAsis phase ofcoVERT. Other (existing and

future) analyzers can model these functions differently, and this choice influences their precision versus
scalability tradeoff.

3.4.3 Aliasing

Thel en field of f p_char is apointerto an integer value. This ensures that fat pointers that have the same
intended referent share the length field. Thus, updating this field through one particular fat pointer is reflected in
all other fat pointers with the same intended referent. An alternative choice is to store the length Wik ¢he

field. However, we believe our current design leads to a simpler fat pointer data structure.

3.4.4 Aiding Numerical Analysis

The instrumentation fomal | oc, st r cpy, andst r cat involved only simple numerical operations. We were

able to instrument about two dozen commonly used string manipulation routines—maf ee, st r cpy,
strcpy_s,strncpy,strncpy._s,strcat,strcat_s,strncat,strncat _s,gets,gets._s,fgets,
strlen,scanf,sprintf,snprintf,cuserid,getcwd, menset, nencpy, nrenctpy_s, nrermove,
andmenmove_s—using only such numerical operations. We believe that in most of these types of routines, the
safety of a buffer access is provable, or a counterexample is deducible, by relying only on those numeric
annotations. Our experience with different analysis engines (see Section 5) suggests that this is in fact the case.

3.4.5 Other Dynamic Approaches to Buffer Overflows

As we explained above, oUKETRUMENTATION phase can be seen as a form of dynamic runtime checks. In

this domain, the approach of fat pointers is considered to have an unacceptable cost—for example, the runtime
overhead, incompatibility with third-party library routines, and so on. An alternative solution is to maintain

some information about each pointer (e.g., the allocated object a pointer belongs to) in a global data structure.

11 | CMU/SEI-2010-TR-029

For example, Dhurjati and Adve use a global partitioned spleg to keep track of all allocated memory

objects [Dhurjati 2006]. So, checking for overflow is reduced to checking whether the memory address
accessed belongs to an allocated memory object. Although such approaches perform well at runtime, we believe
they are not well suited for producing instrumentation for static analysis. When used with static analysis, such

an approach would require that, in addition to showing absence of buffer overflows, the analyzer establish the
correctness of the global data structure (e.g., insertions, deletions, and lookups in the partitioned splay tree in
the example above). Thus, they make an already difficult problem (detecting buffer overflows) even more

difficult (proving correctness of data structures).

12 | CMU/SEI-2010-TR-029

4 Analysis

Once the instrumented prograR is generated, it is analyzed l;ypVERTS CHECKER As mentioned
previously,cOVERT allows theCcHECKERt0 be instantiated by any software verification tool that satisfies some
reasonable assumptions, as we will discuss next.

4.1 Assumptions About CHECKER
The minimal requirements f@HECKER are that it

1. accepts input programs in the fragment of C with primitive data types (char , etc.),
pointers, and structures

2. provides syntax to specify non-deterministic integer values
3. checks for assertion violations (or, equivalently, reachability of a program label)

The first requirement is obvious since we target C programs. Structures and pointers are used in the
INSTRUMENTATION phase as explained earlier in Chapter 3. The second requirement ensucessthrER
accepts non-deterministic models. For example, the syntaxAsT isx = __BLAST_NONDET with the
meaning thak is assigned a non-deterministic value. This requirement is essentialSORUMENTATION,
especially for modeling the behavior of library routines soundly. We rely on the third requirement to convert
buffer-overflows to assertion violations. Of course, the soundness of the overall analysis depends on the
soundness af HECKERWith respect to the semantics of C.

As mentioned previously, we experimented with the following three instantiatioos BEKER (1) BLAST, (2)
copPPER and (3)PANA [Gurfinkel 2008]. TheBLAST [Henzinger 2002] andopPPER[Chaki 2005] software

model checking tools use only predicate abstraction to construct models from programs [Graf 1997]. They are
discussed elsewhere. In the rest of this section, we give an overviemnaf which combines predicate

abstraction and numeric abstraction for model extraction, and yielded the best experimental results.

4.2 PANA: Combining Numeric and Predicate Abstraction

FundamentallypANA works by combining two techniques called predicate abstraction and numeric abstraction.
These two techniques statically infer program invariants in terms of the elements of an abstract domain. For any
programpP, the invariant at locatioroc is an expression over’s variables that is true every time the execution

of P reaches locatiohoc. For exampleg > 0 is an invariant at locatiooc if = is always positive whenever

the program is aL.oc. A program invariant is a map from every program location to the corresponding program
invariants. A program locatiofoc is unreachable if there exists a program invariant that niapgo false.

Both numeric and predicate abstraction are instances of abstract interpretation [Cousot 1977]. They differ in the
underlying abstract domain they use. Numeric abstraction is based on a numeric domain, such as

Intervals [Cousot 1977] or Octagons [Mir2006] over the numeric variables of the program. In contrast,

predicate abstraction is based on a predicate domain, that is, the set of Boolean formulas over a finite set of
predicates on program variables [Graf 1997].

4.3 Numeric Abstraction

Numeric abstraction uses a numeric domain to compute andseptrprogram invariants. Three commonly
used numeric abstract domains are shown in the top three rows of Table 1. In thé&tabéeset of

13 | CMU/SEI-2010-TR-029

Table 1: Common Abstract Domains

Name Notation Abstract Elements
Intervals Box (V) {a1 <v<ey e, € NjveV}
Octagons @T(V) {F+vi+wvy>c|ceN,vi,v2 €V}
Polyhedra R(V) linear inequalities ovey’
Predicates ReD(V) propositional formulas over

numeric/propositional variabled{ is the domain of numeric constants. For example, in the case of numeric
abstraction with Octagons, a program invariant at every control locatiolis represented by an abstract value
(an expression) of the form

/\j:x:tygc,

wherez andy are numeric program variables, ants a numeric (unbounded integral or real) constant. Thus, if
the analysis concluded that at locatiboc the invariant iz — y < 5) A (y + 2z < —2), then whenever the
program reachesoc the difference betweenandy is bounded by, and the sum of andz is bounded by-2.

Note that numeric abstraction involves an infinite abstract domain (e.g.,sise® arbitrary constant) but

abstract elements are of a restricted form. For example, arbitrary disjunctions and negations are not expressible
in Octagons and have to be over-approximated. As the result, numeric abstractions tend to be very efficient and
scalable, but their imprecision leads to a high rate of false alarms.

4.4 Predicate Abstraction

Predicate abstraction uses a Boolean formula over a finitef peedicates to compute and represent program
invariants. For example, let a finite set of predicéfelse defined a® = {p, ¢}, wherep = 22 + y < 0 and

q = =+ z > 5. Then, the abstract values available for predicate abstractign are A ¢, p vV q, p A —¢q, and so
on. If the analysis declares thap V ¢ is a program invariant at locatiakoc, then whenever the program
execution reacheboc, either2xz +y > 0orx + z > 5.

The advantage of predicate abstraction is that it supports predicates from any (semi)decidable theory, and allows
for arbitrary propositional combination of predicates. Therefore, predicate abstraction is able to express a richer
class of program invariants. It is able to detect a strong invariant in many situations where numeric abstraction
fails with a false alarm. The disadvantage of predicate abstraction is its (lack of) scalability. Application of
predicate abstraction requires an exponential (in the siZ) aumber of calls to a (semi)decision-procedure

for the theory from which the predicates are drawn.

4.5 Combining Numeric and Predicate Abstractions

PANA combines numeric and predicate abstraction to achieve both scalability and precision. The technical
details of this approach are available elsewhere [Gurfinkel 2008]. The key idea is to use an abstract domain
(called NumPREDDOM) whose abstract elements are a combination of abstract elements from the numeric and
predicate domains. A number of such combinations, with varying expressiveness and efficiency, are possible.
The combinations supported BgNA are shown in Table 2. In the tabl®,= predicates;V = numerical

abstract valuesyalue = type of an abstract elemerixample = example of allowed abstract valugum =

numeric part representation (explicit or symbolic).

To illustrate the power of the combined domain, consider the code fragment shown in Figure 9(a), and its
instrumented version shown in Figure 9(b). Using the combined domain, we can establish the following

14 | CMU/SEI-2010-TR-029

program invariant at locatiohO:

cond " x.alloc = 5™ x.offset = 0~ FPDATA(x) = FPDATA .
p
(zcond ™ x.alloc = 8 M x.offset = 0/ FPDATA(x) = FPDATA(q))

This is sufficient to conclude théx. of f set < x. al | oc) is a program invariant at locatiohd andL2.

Thus, there are no buffer overflowslat andL2. The same result could not be obtained using numeric
abstraction alone since the crucial invarianit@tis a disjunction of numeric terms. Intuitively, this means that
executions on whickond is true and executions on which it is false must be considered separately. Of course,
the combination is not more powerful than predicate abstraction, but it is much more efficient, since a single
predicatecond (along with other numeric terms) is sufficient to express the desired invariant.

Table 2. Summary of implementations of NUMPREDDOM

Name Value Example Num.
NEXPOINT 22" x N (pVg)A(0<a<5) EXP
NEX 2P N (pA0<2<3)V(gNn1 <z <5h) EXP
MTNDD 2P N (pA0<2<3)V(gA1<x <5) SYM
NDD 2P 2N pA(z=0va=3)V(gA(zr=1Vz=5))) SYM
p.offset = 0; p.alloc = 5;
g.of fset = 0; g.alloc = 8;
if(cond) {
X. base = p. base; x.offset = p.offset;
x.alloc = p.alloc;
} else {
int cond; X. base = q.base; x.offset = qg.offset;
char p[5],q[8], *x; x.alloc = q.alloc;
}
x =cond ? p: Q; LO: if(cond) {
@) i f(cond) (b) whi | e(FPDATA(X) < FPDATA(p) + 5) {
while(x < p + 5) L1: assert(x.offset < x.alloc);
*X++ = 'a’; *FPDATA(X) = 'a’';
el se x.of fset = x.offset + 1;
while(x < q + 8) }
*X++ = 'a’; } else {

whi | e(FPDATA(x) < FPDATA(q) + 8) {
L2: assert(x.offset < x.alloc);
*FPDATA(X) = 'a’;
x.of fset = x.offset + 1;

}
}

Figure 9: A Code Fragment (a) and Its Instrumentation (b)

4.6 Abstraction Refinement

Predicate abstraction is effective only when combined witrchnique to infer the appropriate set of predicates.
This is achieved via a process called counter-example guided abstraction refinement (CEGAR). In general,
CEGAR is an area of active research [Henzinger 2004, Gulavani 2008]. The problem of refining a combination
of numeric and predicate abstractions is the subject of our ongoing work. In our cekrextmplementation,

15 | CMU/SEI-2010-TR-029

we use the following naive refinement strategy. Given an di@ttraceCF leading to a potential buffer

overflow (a counterexample), we extract a set of constraints, known as an UNSAT core. Specifically, the

UNSAT core is a syntactic subformula of the weakest preconditaiifothat is also unsatisfiable. Intuitively,

the UNSAT core explains why the counterexample is infeasible. If the core is empty, the counterexample is
feasible and no refinement is needed. Otherwise, we add all of the numeric variables appearing in any constraint
in the UNSAT core to the numeric part of the combined abstract domain. If these variables are already part of
the domain, we add the constraints appearing in the UNSAT core to the predicate part of the domain.

Recall that the NSTRUMENTATION phase ofcovERT reduces buffer manipulations to numeric operations over
the buffers’ attributes, for examplef f set , base, etc. In addition, a precise analysis must know the values of
specific predicates at specific program locations, for example, the value of argumastetot . Therefore,
successful analysis of programs generatedC@8ERTS INSTRUMENTATION requires keeping track of the

values of both numeric variables and predicates, and the way they influence each other. We believe that this
makesPANA particularly suited as the analysis enginecafvERT due to its combination of numeric abstraction
and predicate abstraction. Our belief is vindicated by our experimental validation, described in Chapter 5.

16 | CMU/SEI-2010-TR-029

5 Implementation and Validation

The INSTRUMENTATION phase is implemented on top of the CIL infrastructure for instrumentation of C
programs [UC Berkeley 2010]. By default, CIL simplifies the C program, thereby achieving Step 1 of
INSTRUMENTATION [Necula 2002]. The rest of the steps are implemented using the extensive mechanisms for
rewriting C programs provided by CIL. In our implementation, the bodies of instrumentation functions, such as
fp_strcpy.-al armandf p_strcat _al ar m are inlined at their call sites; variants likg_st r cpy_al arm

andf p_st r cpy_no_al ar mare merged into a single function.

The ANALYSIS phase was implemented usiBgAST, COPPER andPANA. BLAST andCOPPERare written in

Ocaml and C++ respectively, and use18LIFY for theorem provingPANA is written in AvA , and uses

CVCLITE for theorem proving, APRON library for numeric abstraction, and CUDD for manipulating Binary
Decision Diagrams. Theorem proving is used for constructing predicate abstraction, for deciding feasibility of
abstract counterexamples, and for constructing UNSAT cores for refinement. For our experimentswwith

we use the NEX combination from Table 2.

Table 3: BLAST, COPPER, and PANA Comparison

sendnai | wu-ftpd
Safe Unsafe Unsafe
Total| Crash Time | SpeedupTotal| Crash Time | SpeedupTotal| Crash Time| Speedup
BLAST | 32 | 32 | 0.0 * 24 | 10 | 66.0| 2.2 11| 0 |56.6| 4.5
COPPER 32 | 11 |254.7 4.0 24 | 8 |350.4| 6.2 11| 0 |16.9| 13
PANA | 32 | O [235.8 1.0 24| 0 |849| 10 11| 0 |126| 1.0

5.1 Experimental Validation

We evaluateadtOVERT using a suite of benchmarks created by Zitser and colleagues from vulnerable and safe
versions of open source prograssndnai | andwu- f t pd [Zitser 2004]. When Zitser and colleagues

analyzed these examples with static analysis tools, they yielded many false warnings, low error detection rates,
and poor disambiguation between safe (i.e., with no overflows) and unsafe (i.e., with overflows) versions. Thus,
these examples are known to be hard for static analysis. From this suite, we constructed 67 different test cases
that were analyzed successfully ByNA with no false warnings. The average test case consisted of about 2000
lines of C. Out of these 67 test cases, 32 and 35 are safe and unsafe, respectively. Table 3 summarizes our
results. In the table, Total = total # of test cases; Crash = # of crashes; Time = Total running time (in seconds)
for cases that the tool completed successfully; Speedup = Factor by which total running Hmeain the
successful cases of this tool is smaller. A “Crash” meansghasT or cOPPEReither crashed or terminated

with an incorrect resulBLAST crashes in 42 cases, whit®ppPERcrashes in 19 cases. Note that the successful
test cases foBLAST andcopPPERoverlap but are not exactly the same.

The chart in Figure 10 shows a complete breakdown of running times for all three tools. A negative value
indicates a crash. We see tmaiNA appears to be superior to ba@bhAsT andcopPpPERIN terms of analyzing the
test cases successfully. Specifically, in 56 out of 67 cages) outperforms botltoPPERaNABLAST,

sometimes by over a factor of 20 in terms of running time. In the remaining 11 eagesjs slower, but the
running times are less than 1.5 seconds, and hence negligible. Overall, the running timesfbave the least
variance. Our results indicate thabVvERTis successful in analyzing real programs for buffer overflows with no
false warnings. Moreover, theHECKERbased orPANA is superior to those based 8nAST andCOPPER

17 | CMU/SEI-2010-TR-029

4

TETgr 1T 17 7T

63 65

#

i

&

a5 <

[« 9 m =

o] <

O oo a

H BB

T

o o o o o o o
m o0 ©o < o~ N

Figure 10: Bar Chart Showing Comparison of Running Times Between COPPER, BLAST, and PANA as the
CHECKER for All Tests

18 | CMU/SEI-2010-TR-029

6 Conclusion

Buffer overflows continue to be a major source of software vulnerabilities. Despite recent advancements,
finding overflows statically and effectively remains an open challenge. Automated software verification is an
active area of investigation, and improved tools and techniques continue to emerge from the research and
development efforts in this domain. Therefore, an application framework that is able to leverage the power of
the latest software verification tools for finding buffer overflows would be extremely useful. This report presents
such a framework, calledovERT.

Broadly,covERTworks in two phases:NSTRUMENTATION and ANALYSIS. During INSTRUMENTATION, the
target C program is instrumented such that buffer overflows are reduced to assertion violations. In the
ANALYSIS phase, a static software verification tool, calta¢ECKER, is used to check for assertion violations
in the instrumented code, and to generate error reports. We implemented and evatheted on a set of
benchmarks derived from real programs. For therArsis phase, we experimented with three instances of
CHECKER—BLAST, COPPERanNdPANA. Our results indicate thatovERTis effective at reducing the number of
false warnings, while remaining scalable.

Our results withcovERT are encouraging, but preliminary. ldeally, we envision taveRT would be

integrated within a full-fledged software development environment, and used routinely by programmers, and
quality-control engineers. In fact, an ultimate deploymentoferRTwould be used like a compiler, and it

would emit warnings, errors, and other appropriate diagnostic feedback related to buffer overflows. Such a
deployment would also be able to use an array of state-of-the-art verification tools in a seamless manner. Many
of the remaining issues requiring resolution to get to this point are essentially those of robust software
development, and we believe that wider industrial support is needed to achieve this goal.

19 | CMU/SEI-2010-TR-029

20 | CMU/SEI-2010-TR-029

References

URLs are valid as of the publication date of this document.

[Ball 2001] Ball, T. & Rajamani, S. K. “Automatically Validating Temporal Safety
Properties of Interfaces”, 103-122. Dwyer, M. B., edingceedings of
the 8th International SPIN Workshop on Model Checking of Software (SPIN
'01), volume 2057 of_ecture Notes in Computer Science. Toronto, Canada,
May 19-20, 2001. New York, NY: Springer-Verlag, May 2001.

[Beyer 2005] Beyer, D.; Henzinger, T. A.; Jhala, R.; & Majumdar, R. “Checking Memory
Safety with B.AsT”, 2-18. Cerioli, M., editorProceedings of the 8th
International Conference on Fundamental Approaches to Software
Engineering (FASE '05), volume 3442 bécture Notes in Computer
Science. Edinburgh, UK: Springer-Verlag, April 2005.

[CERT CC 2001] CERT CC. “Code Red Worm Exploiting Buffer Overflow in IIS Indexing
Service”, 2001. http://www.cert.org/advisories/CA-2001-19.html.

[Chaki 2005] Chaki, S.; Ivers, J.; Sharygina, N.; & Wallnau, K. “The ComFoRT
Reasoning Framework”, 164-169. Etessami, K. & Rajamani, S. K., editors,
Proceedings of the 17th International Conference on Computer Aided
Verification (CAV '05), volume 3576 dfecture Notes in Computer Science.
Edinburgh, Scotland, July 6-10, 2005. New York, NY: Springer-Verlag,
July 2005.

[Clarke 2003] Clarke, E. M.; Grumberg, O.; Jha, S.; Lu, Y.; & Veith, H.
“Counterexample-Guided Abstraction Refinement for Symbolic Model
Checking”. Journal of the ACM (JACM) 50, 5 (September 2003): 752—794.

[Clarke 2004] Clarke, E.; Kroening, D.; & Lerda, F. “A Tool for Checking ANSI-C
Programs”, 168-176. Jensen, K. & Podelski, A., editBreceedings of the
10th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS '04), volume 2988 of
Lecture Notes in Computer Science. Barcelona, Spain, March 29—April 2,
2004. New York, NY: Springer-Verlag, March—April 2004.

[Cousot 1977] Cousot, P. & Cousot, R. “Abstract Interpretation: A Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of
Fixpoints”, 238—252Proceedings of the 4th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL '77). Los
Angeles: Association for Computing Machinery, January 1977.

[Cowan 2000] Cowan, C.; Wagle, P.; Pu, C.; Beattie, S.; & Walpole, J. “Buffer Overflows:
Attacks and Defenses for the Vulnerability of the Decade”, 119-129.
Proceedings of the DARPA Information Survivability Conference and Expo
(DISCEX). Hilton Head, South Carolina, January 25-27, 2000. Los
Alamitos, CA: IEEE Computer Society, January 2000.

[Dahn 2003] Dahn, C. & Mancoridis, S. “Using Program Transformation to Secure C
Programs Against Buffer Overflows”, 323-333. van Deursen, A.; Stroulia,
E.; & Storey, M.-A. D., editorsProceedings of the 10th Working
Conference on Reverse Engineering (WCRE '03). Victoria, BC, Canada,
November 13-16, 2003. Los Alamitos, CA: IEEE Computer Society, 2003.

21 | CMU/SEI-2010-TR-029

http://www.cert.org/advisories/CA-2001-19.html

[Dhurjati 2006] Dhurjati, D. & Adve, V. S. “Backwards-Compatible Array Bounds
Checking for C with Very Low Overhead”, 162—-171. Osterweil, L. J;
Rombach, H. D.; & Soffa, M. L., editor®roceedings of the 28th
International Conference on Software Engineering (ICSE '06). Shanghai,
China, May 20-28, 2006. New York, NY: Association for Computing
Machinery, May 2006.

[Dor 2003] Dor, N.; Rodeh, M.; & Sagiv, S. “CSSV: Towards a Realistic Tool for
Statically Detecting All Buffer Overflows in C”, 155-16Proceedings of
the ACM SIGPLAN 2003 Conference on Programming Language Design
and Implementation (PLDI '03). San Diego, CA, June 9-11, 2003. New
York, NY: Association for Computing Machinery, June 2003.

[Ganapathy 2003] Ganapathy, V.; Jha, S.; Chandler, D.; Melski, D.; & Vitek, D. “Buffer
Overrun Detection Using Linear Programming and Static Analysis”,
345-354. Jajodia, S.; Atluri, V.; & Jaeger, T., editdPspceedings of the
10th ACM Conference on Computer and Communications Security (CCS
'03). Washington, D.C., October 27—-30, 2003. New York, NY: Association
for Computing Machinery, October 2003.

[Graf 1997] Graf, S. & Sadi, H. “Construction of Abstract State Graphs with PVS”,
72-83. Grumberg, O., editdProceedings of the 9th International
Conference on Computer Aided Verification (CAV '97), volume 1254 of
Lecture Notes in Computer Science. Haifa, Israel, June 22-25, 1997. New
York, NY: Springer-Verlag, June 1997.

[Gulavani 2008] Gulavani, B. S.; Chakraborty, S.; Nori, A. V.; & Rajamani, S. K.
“Automatically Refining Abstract Interpretations”, 443—-458.
Ramakrishnan, C. R. & Rehof, J., editoPspceedings of the 14th
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS '08), volume 496Beadfture Notes in
Computer Science. Budapest, Hungary: Springer-Verlag, March—April
2008.

[Gurfinkel 2008] Gurfinkel, A. & Chaki, S. “Combining Predicate and Numeric Abstraction
for Software Model Checking”, 127-13Proceedings of the 8th
International Conference on Formal Methods in Computer-Aided Design
(FMCAD ’'08). Portland, OR: IEEE Computer Society, November 2008.

[Henzinger 2002] Henzinger, T. A.; Jhala, R.; Majumdar, R.; & Sutre, G. “Lazy Abstraction”,
58-70.Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL '02), volume 37(1) of
SIGPLAN Notices. Portland, OR, January 16-18, 2002. New York, NY:
Association for Computing Machinery, January 2002.

[Henzinger 2004] Henzinger, T. A.; Jhala, R.; Majumdar, R.; & McMillan, K. L.
“Abstractions From Proofs”, 232-244. Jones, N. D. & Leroy, X., editors,
Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL '04). Venice, Italy: Association for
Computing Machinery, January 2004.

[Hovemeyer 2005] Hovemeyer, D.; Spacco, J.; & Pugh, W. “Evaluating and Tuning a Static
Analysis to Find Null Pointer Bugs”, 13—1®roceedings of the ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis For Software Tools
and Engineering (PASTE '05). Lisbon, Portugal: Association for
Computing Machinery, September 2005.

22 | CMU/SEI-2010-TR-029

[Jarzombek 2004] Jarzombek, J. “Systems, Networks and Information Integration Context for
Software Assurance”.
http://www.sei.cmu.edu/acquisition/start/publications/asconferenceonsis2004.cfm,
January 2004.

[Jones 1997] Jones, R. & Kelly, P. “Backwards-Compatible Bounds Checking for Arrays
and Pointers in C Programs”, 13—26. Kamkar, M., ediwoceedings of
the Third International Workshop on Automatic Debugging (AADEBUG
'97), volume 2(009) ot.inkoping Electronic Articles in Computer and
Information Science. Linkoping, Sweden, May 26-27, 1997. Linkoping,
Sweden: Linkoping University Electronic Press, May 1997.

[Min é 2006] Miné, A. “The Octagon Abstract DomainHigher-Order and Symbolic
Computation 19, 1 (March 2006): 31-100.

[MITRE-CWE-09 2009] “2009 CWE/SANS Top 25 Most Dangerous Programming Errors”, 2009.
http://cwe.mitre.org/top25.

[Necula 2002] Necula, G. C.; McPeak, S.; Rahul, S. P.; & Weimer, W. “CIL: Intermediate
Language and Tools for Analysis and Transformation of C Programs”,
213-228. Horspool, R. N., editd?Proceedings of the 11th International
Conference on Compiler Construction (CC '02), volume 2304eaxfture
Notes in Computer Science. Grenoble, France, April 8-12, 2002. New
York, NY: Springer-Verlag, April 2002.

[Necula 2005] Necula, G. C.; Condit, J.; Harren, M.; McPeak, S.; & Weimer, W. “Ccured:
type-safe retrofitting of legacy softwareACM Transactions on
Programming Languages and System (TOPLAS) 27, 3 (May 2005):
477-526.

[NIST 2002] NIST. The Economic Impacts of Inadequate Infrastructure for Software
Testing(02-3). : National Institute of Standards and Technology (NIST),
2002. National Institute of Standards and Technology (NIST) Planning
Report 02-3, http://www.nist.gov/director/planning/upload/report02-3.pdf.

[Ruwase 2004] Ruwase, O. & Lam, M. S. “A Practical Dynamic Buffer Overflow
Detector”, 159-169Proceedings of the 11th Annual Network and
Distributed System Security Symposium (NDSS '04). San Diego, CA,
February 5-6, 2004. Reston, VA: Internet Society, February 2004.

[Schmidt 1998] Schmidt, D. A. “Data Flow Analysis is Model Checking of Abstract
Interpretations”, 38—48Proceedings of the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL '98). San
Diego, CA, January 19-21, 1998. New York, NY: Association for
Computing Machinery, January 1998.

[Shankar 2001] Shankar, U.; Talwar, K.; Foster, J. S.; & Wagner, D. “Detecting Format
String Vulnerabilities with Type Qualifiers”, 201-21Broceedings of the
10th USENIX Security Symposium. Washington, D.C., August 13-17,
2001. Berkeley, CA, August 2001.

[UC Berkeley 2010] UC Berkeley. “CIL Infrastructure for C Program Analysis and
Transformation (v 1.3.7)". http://www.eecs.berkeley.edu/~necula/cil/,
2010.

23 | CMU/SEI-2010-TR-029

http://www.sei.cmu.edu/acquisition/start/publications/asconferenceonsis2004.cfm
http://cwe.mitre.org/top25
http://www.nist.gov/director/planning/upload/report02-3.pdf
http://www.eecs.berkeley.edu/%E2%88%BCnecula/cil/

[Wagner 2000]

[Zitser 2004]

Wagner, D.; Foster, J. S.; Brewer, E. A.; & Aiken, A. “A First Step Towards
Automated Detection of Buffer Overrun Vulnerabilitiedroceedings of

the 7th Annual Network and Distributed System Security Symposium (NDSS
'00). San Diego, CA, October 31-November 5, 2004. Reston, VA: Internet
Society, 2000.

Zitser, M.; Lippmann, R.; & Leek, T. “Testing Static Analysis Tools Using
Exploitable Buffer Overflows from Open Source Code”, 97-106.
Proceedings of the 12th ACM SIGSOFT Symposium on Foundations of
Software Engineering (FSE '04). Newport Beach, CA, October
31-November 5, 2004. New York, NY: Association for Computing
Machinery, October—November 2004.

24 | CMU/SEI-2010-TR-029

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY 2. REPORTDATE 3. REPORT TYPE AND DATES

(Leave Blank) August 2010 COVERED
Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
COVERT: A Framework for Finding Buffer Overflows in C Programs via Software Verification FA8721-05-C-0003

6. AUTHOR(S)
Sagar Chaki, Arie Gurfinkle

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Software Engineering Institute REPORT NUMBER
Carnegie Mellon University CMU/SEI-2010-TR-X209
Pittsburgh, PA 15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
HQ ESC/XPK AGENCY REPORT NUMBER
5 Eglin Street ESC-TR-2010--029
Hanscom AFB, MA 01731-2116

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT 12B DISTRIBUTION CODE
Unclassified/Unlimited, DTIC, NTIS

13. ABSTRACT (MAXIMUM 200 WORDS)
Buffer overflows continue to be the source of a vast majority of software vulnerabilities. Solutions based on runtime checks incur perfor-
mance overhead, and are inappropriate for safety-critical and mission-critical systems requiring static—that is, prior to deployment—
guarantees. Thus, finding overflows statically and effectively remains an important challenge. This report presents COVERT, an auto-
mated framework aimed at finding buffer overflows in C programs using state-of-the-art software verification tools and techniques.
Broadly, COVERT works in two phases: INSTRUMENTATION and ANALYSIS. The INSTRUMENTATION phase is the core phase of
COVERT. During INSTRUMENTATION, the target C program is instrumented such that buffer overflows are transformed to assertion vi-
olations. In the ANALYSIS phase, a static software verification tool is used to check for assertion violations in the instrumented code,
and to generate error reports. COVERT was implemented and then evaluated it on a set of benchmarks derived from real programs. For
the ANALYSIS phase, experiments were conducted with three software verification tools — BLAST, COPPER, and PANA. Results indi-
cate that the COVERT frame-work is effective at reducing the number of false warnings, while remaining scalable.

14. SUBJECT TERMS 15. NUMBER OF PAGES
buffer overflows, software verification, CHECKER, PANA, instrumentation 35

16. PRICE CODE

17. SECURITY CLASSIFICATION OF 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION | 20. LIMITATION OF
REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified uL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

	COVERT: A Framework for Finding Buffer Overflows in C Programs via Software Verification
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	2 Related Work
	3 Instrumentation
	4 Analysis
	5 Implementation and Validation
	References

	Untitled

