

Building Assured Systems Framework

Nancy R. Mead

Julia H. Allen

September 2010

TECHNICAL REPORT

CMU/SEI-2010-TR-025
ESC-TR-2010-025

CERT
®
 Program

Unlimited distribution subject to the copyright.

http://www.sei.cmu.edu

http://www.sei.cmu.edu

This report was prepared for the

SEI Administrative Agent

ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the

interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally

funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2010 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS

FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF

ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED

TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS

OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE

ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR

COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for

internal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions

and derivative works.

External use. This document may be reproduced in its entirety, without modification, and freely distributed in

written or electronic form without requesting formal permission. Permission is required for any other external

and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at

permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with

Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research

and development center. The Government of the United States has a royalty-free government-purpose license to

use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,

for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about SEI publications, please visit the library on the SEI website

(http://www.sei.cmu.edu/library).

http://en.wikipedia.org/wiki/Software_Assurance
http://www.sei.cmu.edu/library

CMU/SEI-2010-TR-025 | i

Table of Contents

List of Figures iii

List of Tables v

Acknowledgments vii

Executive Summary ix

Abstract xiii

1 The Problem 1

2 Process Models for Software Development and Acquisition 4
2.1 CMMI Models in General 4

2.1.1 CMMI for Software Development (CMMI-DEV) 5
2.1.2 CMMI for Acquisition (CMMI-ACQ) 7

3 Software Security Frameworks, Models, and Roadmaps 9
3.1 Building Security In Maturity Model (BSIMM) 9
3.2 CMMI Assurance Process Reference Model 11
3.3 Open Web Application Security Project (OWASP) Software Assurance Maturity Model

(SAMM) 12
3.4 DHS SwA Measurement Work by Bartol and Moss 13
3.5 Microsoft Security Development Lifecycle (SDL) 16
3.6 CERT

®
 Resilience Management Model Resilient Technical Solution Engineering Process

Area 18
3.7 International Process Research Consortium (IPRC) Roadmap 20

4 Security Research Roadmaps, Agendas, and Frameworks 22
4.1 Security Research Frameworks for Specific Topics 22
4.2 Broad Security Frameworks for Research 23

4.2.1 ICSE 2000 Software Engineering for Security: A Roadmap by Devanbu and

Stubblebine 23
4.2.2 Observations on Information Security Crisis by Jussipekka Leiwo 24
4.2.3 Engineering Secure Complex Software Systems and Services by ERCIM 25
4.2.4 CERT Research Roadmap 28
4.2.5 Knowledge Transfer Network Roadmap 31
4.2.6 DHS Cyber Security Research Roadmap 33
4.2.7 Cyber Security Research and Development Agenda 33

4.3 Assessment of Security Research Frameworks 34

5 Indicators of Method Maturity and the MSwA2010 Body of Knowledge (BoK) 35

6 Mapping of CERT Research to the MSwA2010 BoK 44

7 BASF Description 48

8 Gap Analysis for Identification of Promising Research Areas 52

9 Conclusion and Future Plans 53

Appendix 56

References 60

CMU/SEI-2010-TR-025 | ii

CMU/SEI-2010-TR-025 | iii

List of Figures

Figure 1: Summary of Assurance for CMMI Efforts 11

Figure 2: Cross-Disciplinary Nature of SwA [Bartol 2008] 14

Figure 3: Secure Software Development Process Model at Microsoft [Microsoft 2010a] 17

CMU/SEI-2010-TR-025 | iv

CMU/SEI-2010-TR-025 | v

List of Tables

Table 1: BSIMM Software Security Framework [McGraw 2010] 10

Table 2: OWASP SAMM Business Functions and Security Practices [OWASP 2009] 13

Table 3: RTSE Practices 19

Table 4: IPRC Research Nodes and Questions for Security as a Product Quality 20

Table 5: 2009 CERT Research Annual Report Major Projects 44

Table 6: 2009 CERT Research Annual Report Short Projects 46

CMU/SEI-2010-TR-025 | vi

CMU/SEI-2010-TR-025 | vii

Acknowledgments

This work relies heavily on the Master of Software Assurance Reference Curriculum

(MSwA2010) [Mead 2010]. It would not have been possible to develop this document without the

MSwA2010 body of knowledge and the support of our MSwA2010 coauthors Mark Ardis, Tom

Hilburn, Andrew Kornecki, Rick Linger, and Jim McDonald. Another key document for us was

the 2009 CERT Research Annual Report, which provided us with current CERT research project

information. We would like to thank John Goodenough and Carol Woody for their thoughtful

review of this report. They made many valuable comments and suggestions for improvement.

Thank you also to Rachel Callison on the SEI Library staff who helped us with references. We are

appreciative of all the support we have received while working on this effort and document.

CMU/SEI-2010-TR-025 | viii

CMU/SEI-2010-TR-025 | ix

Executive Summary

This report‟s authors initiated the research described in this report in response to observing that

there is no single, recognized framework to organize research topics and areas of practice focused

on building assured systems (BAS). A building assured systems framework (BASF) could provide

a meaningful context and structure within which to describe, compare, and contrast research and

development methods for building assured systems. It could also be used to identify gaps,

prioritize new research projects, and stop or decommission current research projects that are not

contributing useful results as defined by the framework.

We began this inquiry by addressing these “pain points” raised by the CERT
®
 Program‟s

customers and sponsors and use these as our research questions:

 How do I decide which security methods fit into a specific life-cycle activity?

 How do I know if a specific security method is sufficiently mature for me to use on my

projects?

 When should I take a chance on a security research approach that has not been widely used?

 What actions can I take when I have no approach or method for prioritizing and selecting

new BAS research, or when promising research appears to be unrelated to other research in

the field?

In the CERT Program at Carnegie Mellon University‟s Software Engineering Institute (SEI), such

a framework can also be used to demonstrate how CERT research efforts and results contribute to

building assured systems. Areas related to software assurance, such as software safety, reliability,

and dependability, are not our primary focus, although we recognize that these areas provide

important contributions to software assurance. Information assurance, as distinct from software

assurance, was also not our primary focus at this time, although the protection of information in

deployed software is important and could be considered in more depth in the future.

To understand previous and current work that could inform BASF development, we started by

examining a number of existing software development and acquisition life-cycle process models,

models for the development of more secure software, and research frameworks in software

security and assurance. Summary descriptions of those that we reviewed appear in the first three

sections of this report. Descriptive material often appears as direct excerpts from the source

models and frameworks (noted as sans-serif, blue type). These can be easily skimmed if desired.

With this information, we formed a hypothesis that the recently developed Master of Software

Assurance (MSwA2010) body of knowledge (BoK) [Mead 2010] could serve as our starting point

for the BASF. This makes sense given that the curriculum BoK draws extensively from more than

25 sources describing methods, practices, and technologies for software assurance and security

(including the software security models considered in this report). Also, as the authors of this

report, we led and contributed to the development of the MSwA2010 curriculum.

®
 CERT is a registered mark owned by Carnegie Mellon University.

CMU/SEI-2010-TR-025 | x

We tested this hypothesis by assigning “maturity levels”
1
 to each area of the MSwA2010 BoK.

BoK areas include assurance across life cycles, risk management, assurance assessment,

assurance management, system security assurance, system functionality assurance, and system

operational assurance. We defined these levels as follows:

 L1—The area provides guidance for how to think about a topic for which there is no proven

or widely accepted approach. The intent of the area is to raise awareness and aid the reader

in thinking about the problem and candidate solutions. The area may also describe promising

research results that may have been demonstrated in a constrained setting.

 L2—The area describes practices that are in early pilot use and are demonstrating some

successful results.

 L3—The area describes practices that have been successfully deployed (mature) but are in

limited use in industry or government organizations. They may be more broadly deployed in

a particular market sector.

 L4—The area describes practices that have been successfully deployed and are in

widespread use. Readers can start using these practices today with confidence. Experience

reports and case studies are typically available.

To test this hypothesis further, we mapped existing CERT research work, described in the 2009

CERT Research Annual Report [CERT 2010], to the MSwA2010 BoK to see whether there are

corresponding BoK areas for each research project. All major research projects did correspond to

one or more BoK areas, either directly or indirectly. This gave us confidence that the BoK areas

(and the research from which they were derived) could be used as our initial framework. Once we

mapped the current CERT research projects to the MSwA2010 BoK, we performed an initial gap

analysis to identify some promising research areas for CERT.

The BASF helps to address some, but not all, of the four research questions stated previously.

Since the BASF naturally covers the development life cycle, mapping a particular security method

to the appropriate knowledge area(s) does help to answer the first question (relationship of

security method to life-cycle phase). For the second question (security method maturity),

considering knowledge area maturity levels in conjunction with examining a specific method

provides information to help decide whether the method is sufficiently mature for use. The third

question is a bit harder to answer and requires more work on the part of a BASF user. A

cost/benefit analysis or risk assessment aids in answering the third question of whether it is worth

taking a chance on a method that has not been widely used.

From a research perspective, researchers could consider periodically rating the maturity of their

methods using an approach such as that described above. This would assist BASF users in

deciding which methods to use. It would also be helpful if researchers and research methods users

could begin to collect and provide cost/benefit data. All too often, researchers and research

method users decide on a particular method but do not collect any information to determine

whether the benefit justified the cost or to help inform future decisions.

1
 The development and definition of these maturity levels support our work in software security engineering [Allen

2008].

CMU/SEI-2010-TR-025 | xi

We believe the BASF provides a context and structure for CERT‟s research work in building

assured systems and that it can be used to show how various research efforts fit together. The gap

analysis that we have done could be used to help in selecting new research and, to some extent, in

prioritizing research projects. We anticipate that the BASF could be used in planning and

justifying CERT‟s research program and communicating about it with others.

We expect that the U.S. Department of Defense (DoD) and other sponsors will find the BASF

useful for tracking current research and development (R&D) efforts in building assured systems

and possibly in acquiring assured systems.

CMU/SEI-2010-TR-025 | xii

CMU/SEI-2010-TR-025 | xiii

Abstract

Researchers at the CERT
®
 Program, part of Carnegie Mellon University‟s Software Engineering

Institute, need a framework to organize research and practice areas focused on building assured

systems. The Building Assured Systems Framework (BASF) addresses the customer and

researcher challenges of selecting security methods and research approaches for building assured

systems. After reviewing existing life-cycle process models, security models, and security

research frameworks, the authors used the Master of Software Assurance Reference Curriculum

knowledge areas as the BASF. The authors mapped all major CERT research areas to the BASF,

proving that the BASF is useful for organizing building assured systems research. The authors

also performed a gap analysis to identify promising CERT research areas. The BASF is a useful

structure for planning and communicating about CERT research. The BASF will also be useful to

CERT sponsors to track current research and development efforts in building assured systems.

CMU/SEI-2010-TR-025 | xiv

CMU/SEI-2010-TR-025 | 1

1 The Problem2

There is no single, recognized framework to organize research and practice areas focused on

building assured systems (BAS). Sponsors of the CERT
®
 Program‟s research at the Carnegie

Mellon
®
 Software Engineering Institute (SEI) could use such a framework to help address the

following challenges, including customer “pain points” and general research problems:

 How do I decide which security methods fit into a specific life-cycle activity?

 How do I know if a specific security method is sufficiently mature for me to use on my

projects?

 When should I take a chance on a security research approach that has not been widely used?

 What actions can I take when I have no approach or method for prioritizing and selecting

new research or when promising research appears to be unrelated to other research in the

field?

Although the pain points use the term “security,” the terms “security” and “assurance” are often

used interchangeably when it comes to building systems. Our work relates to the following

definition of software assurance from Software Assurance Curriculum Project Volume I: Master

of Software Assurance Reference Curriculum [Mead 2010]:

Application of technologies and processes to achieve a required level of confidence that

software systems and services function in the intended manner, are free from accidental or

intentional vulnerabilities, provide security capabilities appropriate to the threat environment,

and recover from intrusions and failures.

Areas related to software assurance, such as software safety, reliability, and dependability, are not

our primary focus, although we recognize that these areas provide important contributions to

software assurance. Information assurance, as distinct from software assurance, was also not our

primary focus at this time, although the protection of information in deployed software is

important and could be considered in a follow on effort.

We define a framework using the following definitions from Babylon dictionary [Babylon 2009]:

A framework is a basic conceptual structure used to solve or address complex issues. This

very broad definition has allowed the term to be used as a buzzword, especially in a software

context.

A structure to hold together or support something, a basic structure.

The Building Assured Systems Framework (BASF) provides a meaningful context and structure

within which to describe research and development for building assured systems. For example,

the framework could be used in CERT to demonstrate how CERT research efforts contribute to

building assured systems.

2
 The authors also address this problem in the 2009 CERT Research Annual Report [CERT 2010].

®
 CERT is a registered mark owned by Carnegie Mellon University.

http://en.wikipedia.org/wiki/Software
http://www.csl.sri.com/users/neumann/chats.html

CMU/SEI-2010-TR-025 | 2

Background on Assured Systems

The following topics from internal research planning
3
 at CERT in some way address the problem

of BAS. These topics exhibit varying levels of maturity and use differing terminology, but they all

are involved in building assured systems:

 engineering resilient systems—encompasses secure software engineering, as well as

requirements engineering, architecture and design of secure systems and large systems of

systems, and service and system continuity of operations

 containment—focuses on the problem of how to monitor and detect a component‟s behavior

to contain and isolate the effect of aberrant behavior while still being able to recover from a

false assumption of bad behavior

 architecting secure systems—defines the necessary and appropriate design artifacts, quality

attributes, and appropriate tradeoff considerations that describe how security properties are

positioned, how they relate to the overall system/IT architecture, and how security quality

attributes are measured

 secure software engineering (secure coding, software engineering, and hardware design

improvement)—improves the way software and hardware are developed by reducing

vulnerabilities from software and hardware flaws. This work includes technology life-cycle

assurance mechanisms, advanced engineering disciplines, standards and certification

regimes, and best practices. Research areas in secure software engineering include refining

current assurance mechanisms and developing new ones where necessary, developing

certification regimes, and exploring policy and incentive options.

Secure software engineering encompasses a range of activities targeting security. Software

Security Engineering presents a valuable discussion of these topics [Allen 2008]. In varying levels

of detail, the book examines the spectrum of these appropriate activities:

 requirements engineering for secure software

 secure architecture and design

 secure coding and testing

 security and complexity: system assembly challenges

 governance and management for more secure software

Although these topics are discussed in Software Security Engineering [Allen 2008] additional

research is ongoing. In fact, several of these topics are the focus of current research projects in

CERT: security requirements engineering, secure coding, governance and management, software

security measurement and analysis, and systems complexity, including global software supply

chain, distributed management environments, and systems of systems.

Some organizations have begun to pay more attention to BAS, including

 organizations participating in the Building Security In Maturity Model (currently 30)

[McGraw 2010]

 Microsoft‟s software development lifecycle (SDL) [Lipner 2005]

3
 These materials are not publicly available.

CMU/SEI-2010-TR-025 | 3

 Software Assurance Forum for Excellence in Code (SAFECode) consortium members

[SAFECode 2010]

 Oracle

 members of the Open Web Application Security Project (OWASP) using the Software

Assurance Maturity Model (SAMM)

These efforts tend to be stronger in software product development organizations, which

characterize the type of organizations that have provided the most significant contribution to the

efforts listed above. However, they are weaker in large organizations that develop systems for use

in house and integrate systems across multiple vendors. They are also weaker in small- to

medium-sized organizations developing software products for licensed use. Furthermore, there are

a variety of life-cycle models in practice—no single approach has emerged as standard. Even in

the larger organizations that adopt secure software engineering practices, there is a tendency to

select a subset of the total set of recommended or applicable practices. Such uneven adoption of

practices for BAS makes it difficult to evaluate the results using these practices.

Approach

We, the authors of this report, started BASF research by reviewing existing frameworks and life-

cycle models for BAS. In the literature, we typically see life-cycle models or approaches that

serve as structured repositories of practices from which organizations select those that are

meaningful for their development projects. Some of these are discussed in Software Security

Engineering [Allen 2008], as well as in the article “Software [In]security: A Software Security

Framework: Working Towards a Realistic Maturity Model” [McGraw 2008].

Summary descriptions of several software development and acquisition process models that are in

active use appear in Section 2, models for software security are summarized in Section 3, and

descriptions of applicable security research frameworks appear in Section 4. Readers who are less

interested in this background information can skim it or skip ahead to Section 5. In Section 5, we

explore the hypothesis that the recently developed Master of Software Assurance (MSwA2010)

body of knowledge (BoK) [Mead 2010] could serve as our starting point for BASF. The

curriculum body of knowledge draws extensively from more than 25 sources describing methods,

practices, and technologies for software security (including the models described in Section 3). In

Section 6, we describe how current related research activities within CERT fit into the proposed

BASF as a proof of concept for how BASF can be used. We then identify BASF as a framework

that could serve as a context and structure for research into how to build assured systems (Section

7) and identify gap areas in Section 8. In Section 9 we conclude the report and outline future work

to extend the results. This report could be used in the CERT Program‟s research planning and

communications with others and also in the CERT Research Annual Report. We expect that the

U.S. Department of Defense (DoD) and other sponsors would find it useful for tracking current

research and development (R&D) efforts in BAS and possibly in acquiring assured systems.

CMU/SEI-2010-TR-025 | 4

2 Process Models for Software Development and Acquisition

A framework for building assured systems needs to build upon and reflect known, accepted,

common practice for software development and acquisition. One commonly accepted expression

of the codification of effective software development and acquisition practices is a process model.

Process models define a set of processes that, when implemented, demonstrably improve the

quality of the software that is developed or acquired using such processes. The SEI has been a

recognized thought leader for more than 20 years in developing capability and maturity models

for defining and improving the process by which software is developed and acquired. This

includes building a community of practitioners and reflecting their experiences and feedback in

successive versions of the models. These models reflect commonly known good practices that

have been observed, measured, and assessed by hundreds of organizations. Such practices serve

as the foundation for building assured systems; it makes no sense to attempt to integrate software

security practices into a software development process or life cycle if this development process is

not defined, implemented, and regularly improved. Thus, these development and acquisition

models serve as the basis against which models and practices for software security are considered.

These development and acquisition models also serve as the basis for considering the use of

promising research results. The models described in this section apply to newly developed

software, acquired software, and extending the useful life of legacy software.

The content in this section is excerpted from publicly available SEI websites and reports. It

summarizes the objectives of Capability Maturity Model Integration (CMMI
®
) models in general,

CMMI for Development, and CMMI for Acquisition. Readers of this report should be familiar

with software development and acquisition process models in general (including CMMI-based

models) to better understand how software security practices, necessary for building assured

systems, are implemented and deployed. In addition, reflecting the current body of common

practice in BASF helps researchers to identify new areas of research and possible gaps versus

revisiting topics that are already well defined with demonstrated solutions.

2.1 CMMI Models in General

According to the SEI‟s CMMI website [SEI 2010a]:
4

Capability Maturity Model Integration (CMMI®) is a process improvement approach that

provides organizations with the essential elements of effective processes that ultimately

improve their performance. CMMI can be used to guide process improvement across a

project, a division, or an entire organization. It helps integrate traditionally separate

organizational functions, set process improvement goals and priorities, provide guidance for

quality processes, and provide a point of reference for appraising current processes.

The benefits you can expect from using CMMI include the following:

 Your organization‘s activities are explicitly linked to your business objectives.

®
 CMMI is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

4
 Excerpted material is presented in this report in sans-serif, blue type.

CMU/SEI-2010-TR-025 | 5

 Your visibility into the organization‘s activities is increased to help you ensure that your

product or service meets the customer‘s expectations.

 You learn from new areas of best practice (e.g., measurement and risk).

CMMI models are collections of best practices that you can compare to your organization‘s

best practices and use to guide improvement to your processes.

2.1.1 CMMI for Software Development (CMMI-DEV)

The SEI‟s CMMI for Development website states the following [SEI 2010b]:

Whether your business is developing high-tech systems, consumer software, or IT services,

you want to ensure the highest quality product or service reaches your customer on time.

Using CMMI-DEV
5
 as part of a process improvement program in your development

organization can help you achieve on-time delivery and high quality, especially if your product

or service relies heavily on software.

CMMI-DEV is used for process improvement in development organizations. CMMI-DEV is a

model or collection of ―best practices‖ that organizations follow to dramatically improve the

effectiveness, efficiency, and quality of their product and service development work. CMMI-

DEV also is supported by training courses and appraisal methodologies to help organizations

objectively measure their improvement progress.

CMMI-DEV guidance covers the lifecycles of products and services from conception through

delivery and maintenance. CMMI-DEV best practices are flexible enough to apply to a variety

of industries, yet stable and consistent enough to provide a benchmark against which your

organization can measure and compare itself.

Adopting CMMI-DEV is a solid, high-return investment that your organization can make to

ensure long-term results. The business benefits experienced by organizations using CMMI-

DEV in their process improvement programs include the following:

 better customer satisfaction

 increased quality

 more accurate schedules

 lower development costs

 substantial return on investment

 improved employee morale and reduced turnover

CMMI-DEV-based process improvement includes identifying your organization‘s process

strengths and weaknesses and making process changes to turn weaknesses into strengths.

CMMI-DEV best practices and process improvement goals are organized into intuitive groups

called ―process areas.‖ Your organization chooses its path to excellence by focusing on the

process areas most important to its business objectives.

CMMI-DEV includes the following 23 process areas, grouped into four categories [CMMI

Product Team 2006]:

 Process Management: Process Management process areas contain the cross-project

activities related to defining, planning, deploying, implementing, monitoring, controlling,

appraising, measuring, and improving processes.

- Organizational Process Focus

5
 Details can be found in CMMI for Development, Version 1.2 [CMMI Product Team 2006] and at

http://www.sei.cmu.edu/cmmi/tools/dev/.

http://www.sei.cmu.edu/library/abstracts/reports/06tr008.cfm
http://www.sei.cmu.edu/cmmi/tools/dev/

CMU/SEI-2010-TR-025 | 6

- Organizational Process Definition + IPPD
6
 [integrated product and process

development]

- Organizational Training

- Organizational Process Performance

- Organizational Innovation and Deployment

 Project Management: Project Management process areas cover the project

management activities related to planning, monitoring, and controlling the project.

- Project Planning

- Project Monitoring and Control

- Supplier Agreement Management

- Integrated Project Management +IPPD
7

- Risk Management

- Quantitative Project Management

 Engineering: Engineering process areas cover the development and maintenance

activities that are shared across engineering disciplines. The Engineering process areas

were written using general engineering terminology so that any technical discipline

involved in the product development process (e.g., software engineering or mechanical

engineering) can use them for process improvement. The Engineering process areas

also integrate the processes associated with different engineering disciplines into a single

product development process, supporting a product-oriented process improvement

strategy. Such a strategy targets essential business objectives rather than specific

technical disciplines. This approach to processes effectively avoids the tendency toward

an organizational ―stovepipe‖ mentality. The Engineering process areas apply to the

development of any product or service in the development domain (e.g., software

products, hardware products, services, or processes).

- Requirements Development

- Requirements Management

- Technical Solution

- Product Integration

- Verification

- Validation

 Support: Support process areas cover the activities that support product development

and maintenance. The Support process areas address processes that are used in the

context of performing other processes. In general, the Support process areas address

processes that are targeted toward the project and may address processes that apply

more generally to the organization. For example, Process and Product Quality Assurance

can be used with all the process areas to provide an objective evaluation of the

processes and work products described in all the process areas.

- Configuration Management

- Process and Product Quality Assurance

6
 Organizational Process Definition (OPD) has one goal that applies only when using CMMI with the IPPD group of

additions.

7
 Integrated Project Management (IPM) has one goal that applies only when using CMMI with the IPPD group of

additions.

CMU/SEI-2010-TR-025 | 7

- Measurement and Analysis

- Decision Analysis and Resolution

- Causal Analysis and Resolution

2.1.2 CMMI for Acquisition (CMMI-ACQ)

The SEI‟s CMMI for Acquisition website states the following [SEI 2010c]:

CMMI–ACQ
8
 is a CMMI model designed for use in managing a supply chain by those who

acquire, procure, or otherwise select and purchase products and services for business

purposes.

CMMI-ACQ provides guidance to acquisition organizations for initiating and managing the

acquisition of products and services that meet the needs of the customer. The model focuses

on acquirer processes and integrates bodies of knowledge that are essential for successful

acquisitions.

CMMI-ACQ provides an opportunity for acquisition organizations to

 avoid or eliminate barriers and problems in the acquisition process through improved

operational efficiencies

 initiate and manage a process for acquiring products and services, including solicitations,

supplier sourcing, supplier agreement development and award, and supplier capability

management

 utilize a common language for both acquirers and suppliers so that quality solutions are

delivered more quickly and at a lower cost with the most appropriate technology

CMMI-ACQ and CMMI-DEV have many similarities and complement each other. As CMMI-

ACQ is used by the acquirer, CMMI-DEV may be used by the supplier. The terminology,

structure, and many practices are shared by these two models.

CMMI-ACQ has 22 process areas: six are specific to acquisition practices and 16 are shared

with other CMMI models.

The six process areas that are specific to acquisition practices are

 Acquisition Requirements Development

 Solicitation and Supplier Agreement Development

 Agreement Management

 Acquisition Technical Management

 Acquisition Verification

 Acquisition Validation

Additionally, the model includes guidance on

 acquisition strategy

 typical supplier deliverables

 transition to operations and support

 integrated teams

8
 More information can be found in CMMI® for Acquisition, Version 1.2 [CMMI Product Team 2007] and at

http://www.sei.cmu.edu/cmmi/tools/acq/.

http://www.sei.cmu.edu/cmmi/tools/acq/

CMU/SEI-2010-TR-025 | 8

The 16 shared process areas include practices for project management, organizational

process management, and infrastructure and support.

CMMI models are one foundation for well-managed and -defined software development and

acquisition processes. The next section describes leading models and frameworks that define

processes and practices for software security. Such processes and practices are, in large part, in

common use by a growing body of organizations that are developing software to be more secure.

We have yet to see significant use of these processes and practices in the acquisition community.

CMU/SEI-2010-TR-025 | 9

3 Software Security Frameworks, Models, and Roadmaps

In addition to considering process models for software development and acquisition, a framework

for building assured systems needs to build upon and reflect known, accepted, common practice

for software security. There are a growing number of promising frameworks and models for

building more secure software. For example, Microsoft has defined their security development

lifecycle (SDL) and made it publicly available. In their recently released version 2, the authors of

the Building Security In Maturity Model (McGraw, Chess, and Migues) have collected and

analyzed software security practices in 30 organizations.

In this section, we summarize seven models, frameworks, and roadmaps, excerpting descriptive

information from publicly available websites and reports. This section summarizes the objectives

and content of each effort. Readers should have a broad understanding of these models and their

processes and practices to appreciate the current state of the practice in building secure software

and to aid in identifying promising research opportunities to fill gaps.

3.1 Building Security In Maturity Model (BSIMM)

The Building Security In Maturity Model (BSIMM) introduction states the following [McGraw

2010]:

The Building Security In Maturity Model (BSIMM) is designed to help an organization

understand, measure, and plan a software security initiative. The BSIMM was created

through a process of understanding and analyzing real-world data from nine leading software

security initiatives and then validated and adjusted with data from twenty-one additional

leading software security initiatives. Altogether, the BSIMM collectively represents the

wisdom and knowledge of thirty firms with active and successful software security initiatives.

Though particular methodologies differ, such as the Open Web Application Security Project

(OWASP) Comprehensive, Lightweight Application Security Process (CLASP), the Microsoft

SDL, or the Cigital Touchpoints, many initiatives share common ground. This common

ground is captured and described in the BSIMM.

BSIMM is appropriate for an organization whose overall business goals for software security

include:

 informed risk management decisions

 clarity on what is ―the right thing to do‖ for everyone involved in software security

 cost reduction through standard, repeatable processes

 increased code quality

BSIMM is not a complete ―how to‖ guide for software security, nor is it a one-size-fits-all

model. Instead, BSIMM is a collection of good practices and activities that are in use today.

A maturity model is appropriate for building more secure software (a key component of building

assured systems) because improving software security means changing the way an organization

develops software, over time. The BSIMM provides a way to assess the state of an organization,

prioritize changes, and demonstrate progress. Not all organizations need to achieve the same

security goals, but all organizations can be measured with the same yardstick.

CMU/SEI-2010-TR-025 | 10

The BSIMM is meant to be used by those who create and execute a software security initiative.

Most successful initiatives are run by a senior executive who reports to the highest levels in the

organization, such as the board of directors or the chief information officer. These executives lead

an internal group that BSIMM calls the Software Security Group (SSG), charged with directly

executing or facilitating the activities described in the BSIMM. The BSIMM is written with the

SSG and SSG leadership in mind.

Roles that are addressed in the BSIMM include:

 executive leaders, including active sponsor

 SSG (software security staff with deep coding, design, and architectural experience)

 builders, testers, and operations staff

 administrators

 line of business owners

 product managers

As an organizing structure for the body of observed practices in 30 organizations, the BSIMM

uses a Software Security Framework (SSF) (see Table 1).

Table 1: BSIMM Software Security Framework [McGraw 2010]

Governance

Goal: Transparency,

Accountability, Checks

and Balances

Intelligence

Goal: Auditability,

Stewardship,

Standardization

SSDL* Touchpoints

Goal: Quality Control

Deployment

Goal: Quality Control,

Change Management

Strategy & Metrics:

planning; assigning roles

and responsibilities;

identifying software security

goals; determining budgets;

identifying metrics and

gates

Attack Models: capture

information to think like an

attacker; threat modeling;

abuse case development

and refinement; data

classification; attack

patterns

Architecture Analysis:

capture software

architecture; apply risks

and threats; adopt an

architecture review

process; build

assessment and

remediation plan

Penetration Testing: test

for vulnerability in final

configuration; provide

input to defect

management and

mitigation

Compliance & Policy:

identify controls for

compliance; develop

contractual controls (service

level agreements) for

externally developed

software; set software

security policy; audit

against policy

Security Features &

Design: create usable

security patterns for major

security controls; building

middleware frameworks for

controls; creating and

documenting security

guidance

Code Review: use code

review tools; develop

customized rules; develop

profiles for tool use by

role; perform manual

analysis; track/measure

results

Software Environment:

operating system (OS)

and platform patching;

web application firewalls;

installation and

configuration

documentation;

application monitoring;

change management;

code signing

Training: awareness

training; new hire training;

SSG office hours; build

social network; role-based

training; provide specific

information on error root

causes; annual refresher;

on-demand; training for

vendors/external parties

Standards &

Requirements: elicit

security requirements;

determine commercial, off-

the-shelf (COTS); building

standards for major

security controls; creating

security standards; creating

a standards review board

Security Testing:

integrate security into

standard quality

assurance (QA)

processes; black box

testing; fuzz testing; risk-

driven white box testing;

apply attack models; code

coverage analysis; focus

on vulnerabilities in

construction

Configuration

Management &

Vulnerability

Management: patch and

update applications;

version control; defect

tracking and remediation;

incident handling

* Software Security Development Lifecycle

CMU/SEI-2010-TR-025 | 11

3.2 CMMI Assurance Process Reference Model

The Department of Homeland Security (DHS) Software Assurance (SwA) Processes and Practices

Working Group developed a draft process reference model (PRM) for assurance in July 2008

[DHS 2008]. This PRM recommends additions to CMMI-DEV v1.2 to address software

assurance. The “assurance thread” description
9
 includes Figure 1, which may be useful for

addressing the life-cycle phase aspect of the BASF.

Figure 1: Summary of Assurance for CMMI Efforts

The DHS SwA Processes and Practices Working Group‟s additions and updates to CMMI-DEV

v1.2 are focused at the specific practices (SP) level for the following CMMI-DEV Process Areas

(PAs):

 Process Management

 Organizational Process Focus

 Organizational Process Definition

 Organizational Training

 Project Management

 Project Planning

 Project Monitoring and Control

 Supplier Agreement Management

 Integrated Project Management

 Risk Management

 Engineering

 Requirements Development

9
 Available at https://buildsecurityin.us-cert.gov/swa/procwg.html.

https://buildsecurityin.us-cert.gov/swa/procwg.html

CMU/SEI-2010-TR-025 | 12

 Technical Solution

 Verification

 Validation

 Support

 Measurement & Analysis

3.3 Open Web Application Security Project (OWASP) Software Assurance Maturity

Model (SAMM)

The following discussion of OWASP SAMM is from Software Assurance Maturity Model

(SAMM) v1.0 [OWASP 2009].

The Software Assurance Maturity Model (SAMM) is an open framework to help organizations

formulate and implement a strategy for software security that is tailored to the specific risks

facing the organization. The resources provided by SAMM will aid in:

 Evaluating an organization‘s existing software security practices

 Building a balanced software security assurance program in well-defined iterations

 Demonstrating concrete improvements to a security assurance program

 Defining and measuring security-related activities throughout an organization

SAMM was defined with flexibility in mind such that it can be utilized by small, medium, and

large organizations using any style of development. Additionally, this model can be applied

organization-wide, for a single line-of-business, or even for an individual project. Beyond

these traits, SAMM was built on the following principles:

 An organization’s behavior changes slowly over time—A successful software security

program should be specified in small iterations that deliver tangible assurance gains

while incrementally working toward long-term goals.

 There is no single recipe that works for all organizations—A software security framework

must be flexible and allow organizations to tailor their choices based on their risk

tolerance and the way in which they build and use software.

 Guidance related to security activities must be prescriptive—All the steps in building and

assessing an assurance program should be simple, well-defined, and measurable. This

model also provides roadmap templates for common types of organizations.

The foundation of the model is built upon the core business functions of software

development with security practices tied to each [see Table 2]. The building blocks of the

model are the three maturity levels defined for each of the twelve security practices. These

define a wide variety of activities in which an organization could engage to reduce security

risks and increase software assurance. Additional details are included to measure successful

activity performance, understand the associated assurance benefits, estimate personnel and

other costs.

CMU/SEI-2010-TR-025 | 13

Table 2: OWASP SAMM Business Functions and Security Practices [OWASP 2009]

Governance

Construction Verification Deployment

Strategy & Metrics: overall

strategic direction of the

software assurance program

& instrumentation of

processes & activities to

collect metrics about an

organization‘s security

posture

Threat Assessment:

identify and characterize

potential attacks on

software to better

understand the risks and

facilitate risk management

Design Review: inspect

artifacts created from the

design process to ensure

provision of adequate

security mechanisms

and adherence to

expectations for security

Vulnerability Mgmt:

establish consistent

process for managing

internal and external

vulnerability reports to

limit exposure and gather

data to enhance the

security assurance

program

Policy & Compliance: set up

a security and compliance

control and audit framework

to achieve increased

assurance in software under

construction and in

operation

Security Requirements:

promote the inclusion of

security-related

requirements during the

software development

process to specify correct

functionality from inception

Code Review: assess

source code to aid

vulnerability discovery

and related mitigation

activities as well as

establish a baseline for

secure coding

expectations

Environment Hardening:

implement controls for the

operating environment in

which software executes

to bolster the security

posture of applications

that have been deployed

Education & Guidance:

increase security knowledge

amongst personnel in

software development

through training and

guidance on security topics

relevant to individual job

functions

Secure Architecture:

bolster the design process

with activities to promote

secure-by-default designs

and control over

technologies and

frameworks upon which

software is built

Security Testing: test

software in its runtime

environment in order to

discover vulnerabilities

and establish a minimum

standard for software

releases

Operational Enablement:

identify and capture

security-relevant

information needed by an

operator to properly

configure, deploy, and run

software

In Software Assurance Maturity Model (SAMM) v1.0, success metrics are presented for all

activities in all 12 practices for all four critical business functions. Each practice has three

objectives; each objective has 2 activities, for a total of 72 activities.

3.4 DHS SwA Measurement Work by Bartol and Moss

According to the DHS SwA Measurement Working Group [DHS 2010a]

Practical Measurement Framework for Software Assurance and Information Security
10

provides an approach for measuring the effectiveness of achieving software assurance goals

and objectives at an organizational, program, or project level. It addresses how to assess the

degree of assurance provided by software, using quantitative and qualitative methodologies

and techniques. This framework incorporates existing measurement methodologies and is

intended to help organizations and projects integrate SwA measurement into their existing

programs.

The following discussion is excerpted from the Practical Measurement Framework for Software

Assurance and Information Security [Bartol 2008].

Software assurance is interdisciplinary and relies on methods and techniques produced by

other disciplines, including project management, process improvement, quality assurance,

training, information security/information assurance, system engineering, safety, test and

evaluation, software acquisition, reliability, and dependability [as shown in Figure 2].

10

 Bartol, Nadya. Practical Measurement Framework for Software Assurance and Information Security, Version 1.0.
Practical Software & Systems Measurement (PSM). http://www.psmsc.com/Prod_TechPapers.asp (2008).

http://www.psmsc.com/Prod_TechPapers.asp

CMU/SEI-2010-TR-025 | 14

Figure 2: Cross-Disciplinary Nature of SwA [Bartol 2008]

The Practical Measurement Framework focuses principally, though not exclusively, on the

information security viewpoint of SwA. Many of the contributing disciplines of SwA enjoy an

established process improvement and measurement body of knowledge, such as quality

assurance, project management, process improvement, and safety. SwA measurement can

leverage measurement methods and techniques that are already established in those

disciplines, and adapt them to SwA. The Practical Measurement Framework report focuses

on information assurance/information security aspects of SwA to help mature that aspect of

SwA measurement.

This framework provides an integrated measurement approach, which leverages five existing

industry approaches that use similar processes to develop and implement measurement as

follows:

 Draft National Institute of Standards and Technology (NIST) Special Publication (SP)

800-55, Revision 1, Performance Measurement Guide for Information Security

 ISO/IEC 27004 Information technology – Security techniques - Information security

management measurement

 ISO/IEC 15939, System and Software Engineering - Measurement Process, also known

as Practical Software and System Measurement (PSM)

 CMMI Measurement and Analysis Process Area

 CMMI GQ(I)M – Capability Maturity Model Integration Goal Question Indicator Measure

The Practical Measurement Framework authors selected these methodologies because of

their widespread use among the software and systems development community and the

information security community. The Framework includes a common measure specification

table which is a crosswalk of specifications, templates, forms and other means of

documenting individual measures provided by the five industry approaches listed above that

were leveraged to create the framework.

Measures are intended to help answer the following five questions:

 What are the defects in the design and code that have a potential to be exploited?

 Where are they?

 How did they get there?

 Have they been mitigated?

 How can they be avoided in the future?

CMU/SEI-2010-TR-025 | 15

A number of representative key measures for different stakeholder groups are included in the

framework to help organizations assess the state of their SwA efforts during any stage of a

project:

 Supplier – an individual or an organization that offers software and system-related

products and services to other organizations. This includes software developers, program

managers, and other staff working for an organization that develops and supplies

software to other organizations.

 Acquirer – an individual or an organization that acquires software and system-related

products and services from other organizations. This includes acquisition officials,

program managers, system integrators, system owners, information owners, operators,

designated approving authorities (DAAs), certifying authorities, independent verification

and validation (IV&V), and other individuals who are working for an organization that is

acquiring software from other organizations.

 Within each supplier and acquirer organization, the following stakeholders are

considered:

- Executive Decision Maker – a leader who has authority to make decisions and may

require quantifiable information to understand the level of risk associated with

software to support decision-making processes.

- Practitioner – an individual responsible for implementing SwA as a part of their job.

The framework describes candidate goals and information needs for each stakeholder group. The

framework then presents example supplier measures as a table, with project activity, measures,

information needs, and benefits as the columns. The rows include project activities—requirements

management (5 measures), design (3 measures), development (6 measures), test (9 measures)—

and the entire software development life cycle (SDLC) (3 measures).

Example measures for acquirers are similarly presented, intended to answer the questions

 Have SwA activities been adequately integrated into the organization‟s acquisition process?

 Have SwA considerations been integrated into the SDLC and resulting product by the

supplier?

The acquisition activities (presented as rows) are planning (2 measures), contracting (3 measures),

and implementation and acceptance (5 measures).

Ten example measures for executives are presented. These are intended to answer the question,

“Is the risk generated by software acceptable to the organization?” Some of these are

 number and percent of patches published on announced date

 time elapsed for supplier to fix defects

 number of known defects by type and impact

 cost to correct vulnerabilities in operations

 cost of fixing defects before system becomes operational

 cost of individual data breaches

 cost of SwA practices throughout the SDLC

CMU/SEI-2010-TR-025 | 16

Fifteen example measures for practitioners are presented. These are intended to answer the

question, “How well are current SwA processes and techniques mitigating software-related

risks?”

3.5 Microsoft Security Development Lifecycle (SDL)

The Microsoft Security Development Lifecycle (SDL)
11

 is an industry-leading software security

process. A Microsoft-wide initiative and a mandatory policy since 2004, the SDL has played a

critical role in embedding security and privacy in Microsoft software and culture. Combining a

holistic and practical approach, the SDL introduces security and privacy early and throughout all

phases of the development process.

The reliable delivery of more secure software requires a comprehensive process, so Microsoft

defined Secure by Design, Secure by Default, Secure in Deployment, and Communications

(SD3+C) to help determine where security efforts are needed. The guiding principles for SD3+C

are identified in the following subsections, which are excerpted from Microsoft Security

Development Lifecycle Version 5.0 [Microsoft 2010b]:

Secure by Design

 Secure architecture, design, and structure. Developers consider security issues part

of the basic architectural design of software development. They review detailed designs

for possible security issues, and they design and develop mitigations for all threats.

 Threat modeling and mitigation. Threat models are created, and threat mitigations are

present in all design and functional specifications.

 Elimination of vulnerabilities. No known security vulnerabilities that would present a

significant risk to the anticipated use of the software remain in the code after review. This

review includes the use of analysis and testing tools to eliminate classes of

vulnerabilities.

 Improvements in security. Less secure legacy protocols and code are deprecated, and,

where possible, users are provided with secure alternatives that are consistent with

industry standards.

Secure by Default

 Least privilege. All components run with the fewest possible permissions.

 Defense in depth. Components do not rely on a single threat mitigation solution that

leaves users exposed if it fails.

 Conservative default settings. The development team is aware of the attack surface for

the product and minimizes it in the default configuration.

 Avoidance of risky default changes. Applications do not make any default changes to

the operating system or security settings that reduce security for the host computer. In

some cases, such as for security products, it is acceptable for a software program to

strengthen (increase) security settings for the host computer. The most common

violations of this principle are games that either open firewall ports without informing the

user or instruct users to open firewall ports without informing users of possible risks.

11

 More information is available in The Security Development Lifecycle [Howard 2006], at the Microsoft Security
Development Lifecycle website [Microsoft 2010a], and in the document Microsoft Security Development
Lifecycle Version 5.0 [Microsoft 2010b].

CMU/SEI-2010-TR-025 | 17

 Less commonly used services off by default. If fewer than 80 percent of a program‘s

users use a feature, that feature should not be activated by default. Measuring 80 percent

usage in a product is often difficult because programs are designed for many different

personas. It can be useful to consider whether a feature addresses a core/primary use

scenario for all personas. If it does, the feature is sometimes referred to as a P1 feature.

Secure in Deployment

 Deployment guides. Prescriptive deployment guides outline how to deploy each feature

of a program securely, including providing users with information that enables them to

assess the security risk of activating non-default options (and thereby increasing the

attack surface).

 Analysis and management tools. Security analysis and management tools enable

administrators to determine and configure the optimal security level for a software

release.

 Patch deployment tools. Deployment tools aid in patch deployment.

Communications

 Security response. Development teams respond promptly to reports of security

vulnerabilities and communicate information about security updates.

 Community engagement. Development teams proactively engage with users to answer

questions about security vulnerabilities, security updates, or changes in the security

landscape.

The secure software development process model with the addition of elements of SD3+C looks

like the one shown in Figure 3.

Figure 3: Secure Software Development Process Model at Microsoft [Microsoft 2010a]

The Microsoft SDL documentation describes, in great detail, what architects, designers,

developers, and testers are required to do during each life-cycle phase.

The introduction states, “Secure software development has three elements—best practices,

process improvements, and metrics. This document focuses primarily on the first two elements,

and metrics are derived from measuring how they are applied” [Microsoft 2010b]. This infers that

there is no concrete measurement-related information in this document; measures would need to

be derived from each of the life-cycle-phase practice areas.

CMU/SEI-2010-TR-025 | 18

3.6 CERT
®
 Resilience Management Model Resilient Technical Solution Engineering

Process Area

As is the case for software security and software assurance, resilience is a property of software

and systems. Developing and acquiring resilient
12

 software and systems requires a dedicated

process focused on this property that encompasses the software and system life cycle. As

described in the CERT
®
 Resilience Management Model‟s (CERT

®
-RMM)

13
 Resilient Technical

Solution Engineering (RTSE) process area,
14

 the process defines what is required to develop

resilient software and systems and is as follows [Caralli 2010]:

 Establish a plan for addressing resiliency as part of the organization‘s (or supplier‘s)

regular development life cycle and integrate the plan into the organization‘s

corresponding development process. Plan development and execution includes

identifying and mitigating risks to the success of the project.

 Identify practice-based guidelines that apply to all phases such as threat analysis and

modeling as well as those that apply to a specific life cycle phase.

 Elicit, identify, develop, and validate assurance and resiliency requirements (using

methods for representing attacker and defender perspectives, for example). Such

processes, methods, and tools are performed alongside similar processes for functional

requirements.

 Use architectures as the basis for design that reflect a resiliency and assurance focus,

including security, sustainability, and operations controls.

 Develop assured and resilient software and systems through processes that include

secure coding of software, software defect detection and removal, and the development

of resiliency and assurance controls based on design specifications.

 Test assurance and resiliency controls for software and systems and refer issues back to

the design and development cycle for resolution.

 Conduct reviews throughout the development life cycle to ensure that resiliency (as one

aspect of assurance) is kept in the forefront and given adequate attention and

consideration.

 Perform system-specific continuity planning and integrate related service continuity plans

to ensure that software, systems, hardware, networks, telecommunications, and other

technical assets that depend on one another are sustainable.

 Perform a post-implementation review of deployed systems to ensure that resiliency (as

well as assurance) requirements are being satisfied as intended.

 In operations, monitor software and systems to determine if there is variability that could

indicate the effects of threats or vulnerabilities and to ensure that controls are functioning

properly.

 Implement configuration management and change control processes to ensure software

and systems are kept up to date to address newly discovered vulnerabilities and

12

 There is substantial overlap in the definitions of assured software (or software assurance) and resilient software (or
software resilience). Resilient software is software that continues to operate as intended (including recovering to
a known operational state) in the face of a disruptive event (satisfying business continuity requirements) so as
to satisfy its confidentiality, availability, and integrity requirements (reflecting operational and security
requirements). [Caralli 2010]

13
 See http://www.cert.org/resilience/.

14
 The RTSE document [Caralli 2010] can be downloaded from http://www.cert.org/resilience/rmm.html.

http://www.cert.org/resilience/
http://www.cert.org/resilience/rmm.html

CMU/SEI-2010-TR-025 | 19

weaknesses (particularly in vendor-acquired products and components) and to prevent

the intentional or inadvertent introduction of malicious code or other exploitable

vulnerabilities.

Table 3 lists RTSE practices.

Table 3: RTSE Practices

Goals Practices

RTSE:SG1 Establish Guidelines for Resilient

Technical Solution Development

RTSE:SG1.SP1 Identify General Guidelines

RTSE:SG1.SP2 Identify Requirements Guidelines

RTSE:SG1.SP3 Identify Architecture and Design Guidelines

RTSE:SG1.SP4 Identify Implementation Guidelines

RTSE:SG1.SP5 Identify Assembly and Integration Guidelines

RTSE:SG2 Develop Resilient Technical

Solution Development Plans

RTSE:SG2.SP1 Select and Tailor Resiliency Guidelines

RTSE:SG2.SP2 Integrate Selected Guidelines with a Defined

Software and System Development Process

RTSE:SG3 Execute the Plan RTSE:SG3.SP1 Monitor Execution of the Development Plan

RTSE:SG3.SP2 Release Resilient Technical Solutions into

Production

In addition to RTSE, the following are goals and practices in other CERT-RMM process areas

that organizations should consider when developing and acquiring software and systems that need

to meet assurance and resiliency requirements [Caralli 2010]:

 Resiliency requirements for software and system technology assets in operation,

including those that may influence quality attribute requirements in the development

process, are developed and managed in the Resiliency Requirements Development

(RRD) and Resiliency Requirements Management (RRM) process areas respectively.

 Identifying and adding newly developed and acquired software and system assets to the

organization‘s asset inventory is addressed in the Asset Definition and Management

(ADM) process area.

 The management of resiliency for technology assets as a whole, particularly for

deployed, operational assets, is addressed in the Technology Management (TM) process

area. This includes, for example, asset fail-over, backup, recovery, and restoration.

 Acquiring software and systems from external entities and ensuring that such assets

meet their resiliency requirements throughout the asset life cycle is addressed in the

External Dependencies Management process area. That said, RTSE specific goals and

practices should be used to aid in evaluating and selecting external entities that are

developing software and systems (EXD:SG3.SP3), formalizing relationships with such

external entities (EXD:SG3.SP4), and managing an external entity‘s performance when

developing software and systems (EXD:SG4).

 Monitoring for events, incidents, and vulnerabilities that may affect software and systems

in operation is addressed in the Monitoring (MON) process area.

 Service continuity plans are identified and created in the Service Continuity (SC) process

area. These plans may be inclusive of software and systems that support the services for

which planning is performed.

RTSE assumes that the organization has one or more existing, defined processes for software and

system development into which resiliency controls and activities can be integrated. If this is not

CMU/SEI-2010-TR-025 | 20

the case, the organization should not attempt to implement the goals and practices identified in

RTSE or in other CERT-RMM process areas as described above.

3.7 International Process Research Consortium (IPRC) Roadmap

From August 2004 to December 2006, the SEI‟s process program sponsored a research

consortium of 28 international thought leaders to explore process needs for today, the foreseeable

future, and the unforeseeable future. One of the emerging research themes was the relationships

between processes and product qualities, defined as “understanding if and how particular process

characteristics can affect desired product (and service) qualities such as security, usability, and

maintainability” [IPRC 2006]. As an example or “instantiation” of this research theme, Allen and

Kitchenham (two of the participating members) developed research nodes and research questions

for security as a product quality. This content helps identify research topics and gaps that could be

explored within the context of the BASF.

The descriptive material presented in Table 4 is excerpted from A Process Research Framework

[IPRC 2006].

Table 4: IPRC Research Nodes and Questions for Security as a Product Quality

Research Node Research Questions

Establishing security in the systems or software

development life cycle: Determine the extent to which

processes can be used to accurately reflect and cause

the instantiation of required security product quality

attributes for each software development life-cycle

(SDLC) phase.

How is security expressed in each phase of the

SDLC? What are appropriate expressions, from a

security perspective, of how the system is to be

used?

What processes best ensure the instantiation of

established security principles?

What are effective processes and methods that

ensure that known causes of security vulnerabilities

are not present in each phase of the SDLC?

What processes and methods can be used to

accelerate adoption of known methods for

developing low-defect-rate (and thus more secure)

software? (state of art/state of practice gap)

What are the compelling cost/benefit arguments to

do so?

Is it possible to build and verify secure software

and systems using agile methods?

What processes can be used to ensure that

security requirements are met for systems

composed from existing components? For

extensible systems?

Establishing the relationship between process and

security as a product quality: Establish whether there is

a direct relationship between security as product quality

and the processes used to develop the product.

What is the role of process in ensuring that

software and systems are engineered such that

they continue to function correctly under malicious

attack, failure, and accidents?

Measuring and monitoring security performance:

Establish processes to accurately capture meaningful

measures that aid in determining if a system is meeting

its security requirements (and how well) during all SDLC

phases.

What are the definitions of meaningful, informative

security measures? What processes are needed to

reliably collect these?

What measures indicate that a system has met its

security requirements for each SDLC phase? What

are the processes for collecting, analyzing, and

reporting these measures?

CMU/SEI-2010-TR-025 | 21

Research Node Research Questions

What measures and evaluation processes can be

used to determine the effectiveness of different

secure software development processes?

Verification and validation of security: Enable managers

to select appropriate assessment, evaluation,

verification, and validation processes to confirm the

achievement of security requirements. Process selection

is guided by the nature and complexity of the system

being constructed and operated. Methods include the

use of scenario-based misuse/abuse cases.

How is an adequate or acceptable level of security

determined, tested, verified, and certified?

What processes are most effective for assessing,

evaluating, verifying, and certifying the security of

software and systems (including those provided by

third parties)?

What processes and methods are most likely to

reveal security issues, flaws, and vulnerabilities

during each SDLC phase? And with third party,

open source, and COTS, or other component

software?

In the case where such processes already exist

and have empirical evidence to justify their use,

what can be done to accelerate their adoption?

(state of art/state of practice gap)

What processes and methods allow for building

misuse/abuse cases that predictably provide

evidence that security product qualities are

present?

Sustaining adequate security: Enable managers to

select processes that result in establishing, sustaining,

and evolving an adequate level of security throughout

the full product life cycle.

How do we define and sustain adequate security in

the face of increasingly sophisticated attacks

(attack evolution), technology evolution, enterprise

evolution, supply chain evolution, and the like (all

sources of change that require a system to

evolve)?

Usable security: Enable users to effectively apply and

use required security mechanisms, to the extent these

are visible to the user.

What user interface processes and methods result

in users applying protection and security

mechanisms routinely, automatically, and

correctly?

What processes result in minimal to no user

involvement in security?

Using the marketplace to drive adequate security:

Establish processes resulting in a consumer/customer

marketplace that will not purchase software known to be

insecure.

What processes, market forces, and other

mechanisms can be used to require organizations

that produce software with a significant annual

volume of reported vulnerabilities to improve their

products?

As a companion discussion to software development and software security models and

frameworks, the next section of this report provides comparable information on research

frameworks for security. Ideally, the BASF needs to reflect the best thinking from all of these

domains.

CMU/SEI-2010-TR-025 | 22

4 Security Research Roadmaps, Agendas, and Frameworks

In researching this area, one of our first observations was that the terms “roadmaps,” “agendas,”

and “frameworks” were often used interchangeably. Sometimes the term “framework” was used

to refer to specific development frameworks. Other times the authors would use the term

“framework” to refer to a research agenda. The term “roadmap” was usually used to designate a

research agenda as well.

We identified a number of security research frameworks in the literature and in our own

experience that could be good candidates for BASF. After surveying these frameworks, it became

clear that some of them were geared towards specific topics, and hence not good candidates for

the framework that would serve as an umbrella for a wide variety of software assurance research

topics. We summarize the specialized frameworks briefly in section 4.1.

We then go on to discuss the broader research frameworks in more detail in section 4.2. Each of

the broader frameworks has its own organization, which is reflected in the summaries and quotes

that we provide. In some cases the broader frameworks include a conclusion provided by the

framework authors. Note that conclusions that appear in these subsections are not our conclusions,

but the conclusions of the original authors. In other cases, the authors provide a research agenda

or roadmap. As a consequence, many of these frameworks could not be compared directly to one

another.

4.1 Security Research Frameworks for Specific Topics

In the process of identifying candidate security research frameworks that could be applied to our

definition of software assurance, we came across a number of frameworks related to security, but

they often were very specific and generally related more to development than to research. In some

cases, the term “frameworks” was used synonymously with international standards. In other cases,

frameworks were used to support architectural decisions, implementation models, and coding

standards. Examples of such frameworks include the following:

 Quality Attribute Reasoning Frameworks. In Security and Survivability Reasoning

Frameworks and Architectural Design Tactics, the authors discuss security and survivability

reasoning frameworks in conjunction with architectural tactics. The authors state, “Our

approach includes a collection of „quality attribute reasoning frameworks‟ that understand

both quality attribute reasoning and how architects design for the quality attribute under

particular situations” [Ellison 2004]. An example is the use of reasoning frameworks for

inhibiting denial-of-service (DDoS) attacks.

 Architectural Frameworks for Composable Survivability and Security. This was a Defense

Advanced Research Projects Agency (DARPA) project led by Peter Neumann from 2001 to

2004. It included three tasks: distributed systems and network architectures with three

subtasks of composability, design principles, and architecture; consultation by SRI

International with related projects; and a short-term effort using a static analysis approach.

Information is available at http://www.csl.sri.com/users/neumann/chats.html.

http://www.thefreedictionary.com/ideal

CMU/SEI-2010-TR-025 | 23

 Secure Software Development through Coding Conventions and Frameworks. In this paper,

the authors state that, “If a framework is able to provide automatic sanitizing for all kinds of

commands that the specification requires, it will be an ideal security framework” [Okubo

2007]. They go on to propose specific classes as a security framework.

 A Framework for Composable Security Definition, Assurance, and Enforcement. The author

says, “My doctoral research proposes a composable security definition, assurance, and

enforcement via a model-driven framework that preserves separation of security concerns

from modeling through implementation, and provides mechanisms to compose these

concerns into the application while maintaining consistency between design models and

code” [Pavlich-Mariscal 2006].This is clearly a development framework, rather than a

research framework.

 Desperately Seeking Security Frameworks—A Roadmap for State CIOs. This white paper

discusses a variety of standards such as ISO 27001 as frameworks [NASCIO 2009]. In this

context, a framework is a standard intended to assist in auditing and compliance.

 JavaScript Hijacking—Only 1 Out of 12 Popular AJAX Frameworks Prevents It. In this

article, the authors discuss frameworks that consist of AJAX toolkits and libraries [O‟Neil

2008]. Although interesting, this is clearly a discussion of implementation-level frameworks.

4.2 Broad Security Frameworks for Research

When we narrowed the field to frameworks that support research in assured software, we found

the following candidates, although they often pointed to research agendas rather than providing a

more general research framework that could be used to support current and future research to

support building assured software.

4.2.1 ICSE 2000 Software Engineering for Security: A Roadmap by Devanbu and

Stubblebine

“Software Engineering for Security: A Roadmap” presents research issues that arise in the

interactions between software engineering and security [Devanbu 2000]. It is organized so that the

topics parallel a Waterfall life-cycle model. In each topic area, the authors survey current work in

the field and the challenges. The challenges point towards an agenda for future research. The

topics, excerpted from various sections of this report, are

Requirements and Policies

 security models and policies

- challenge: unifying security with systems engineering

- challenge: unifying security and system models

Architecture and Design of Secure Systems

 re-engineering for security

- challenge: legacy security mismatches

- challenge: separating the security ―aspect‖

Software Piracy & Protection

 adversary economics

CMU/SEI-2010-TR-025 | 24

- approaches to protection: hardware and software tokens, dynamic decryption of

code, watermarking, code partitioning

- challenge: attacker cost models

Trusting Software Components

 black box approaches, grey box approaches, cryptographic coverage verification,

tamper-resistant hardware

- challenges: more grey box approaches

Verification of Systems

 challenge: implementation-based verification methods

Secure Software Deployment

 secure configuration management

- challenge: controlled delegation

- privacy protection

Secure Computations, Not Secure Computers

Conclusions of Devanbu and Stubblebine

In “Software Engineering for Security: A Roadmap,” the authors discuss the notion that systems

are error-prone, and that a desirable goal would be to secure computations rather than systems.

They discuss notions of correctness proofs and associated use of cryptography towards securing

computations.

4.2.2 Observations on Information Security Crisis by Jussipekka Leiwo

The paper Observations on Information Security Crisis [Leiwo 1999] surveys the symptoms and

causes of the information security crisis, and sketches an outline of an approach required for

tackling the crisis. An excerpted brief outline of the main points of the paper follows.

1. Symptoms of the Crisis

 software security problems

 communication protocol security problems

 problems with cryptographic primitives

2. Causes of the Symptoms

 lack of mechanisms for evaluating security

 a gap between management and enforcement of information security

 conflicts between security and top-down system design principles

 lack of support for information security in non-traditional organizations

 lack of consensus on definitions of concepts involved

 scientific challenges in information systems security research

3. Solutions for the Causes

 research on the information security software crisis —Surprisingly, the concept of

the information security software crisis has not been subjected to much detailed

academic research.

 research on the flexibility of security safeguards—This is one of the major still-

unanswered research questions in information systems security. Flexibility

CMU/SEI-2010-TR-025 | 25

should be integrated in both security measures and mechanisms for specifying

these measures.

 comprehensive security of information systems—This requires contributions from

many scientific fields: theory of computability to justify and evaluate security

measures, computer and communications security to establish a model of

security, software engineering to adequately implement the security model,

systems analysis and design to capture the nature of security requirements, and

socio-ethical considerations to establish and enforce operational procedures and

guidelines for information security. To establish a scientific foundation for

information systems security, existing frameworks from related disciplines need

to be considered from the security point of view.
15

 Flexible safeguards and relationships need to be established between

information systems research and information systems security research.

 Mechanisms that integrate the design of security and of systems in general need

to be established.

Conclusions of Leiwo’s Paper

Leiwo has studied a fundamental problem of system vulnerability. According to the author,

the cause of the problem lies in the weak scientific foundation for information systems

security and relatively primitive system security design methods. Security violations suggest a

lack of understanding of security concepts among both researchers and practitioners.

Fundamentally different definitions originating from different subsets of the information

systems community make it difficult to deal with information systems security in a

comprehensive way. To overcome these problems, generic research frameworks are needed

to support information systems security. Otherwise, research will remain fragmented and

inconsistent, and security measures will continue to prevent both normal and innovative

system operations.

4.2.3 Engineering Secure Complex Software Systems and Services by ERCIM

The Security and Trust Management Working Group of The European Research Consortium for

Informatics and Mathematics (ERCIM) and the European Commission‟s Directorate General

Information Society Unit F5 “Security” jointly organized a strategic seminar called Engineering

Secure Complex Software Systems and Services [ERCIM 2008].

The seminar objective was to link academic and industrial expertise in secure software

engineering with industry best practices. The specific objectives of the seminar were to

 present the best practices applied in industry and to discuss key R&D initiatives

 encourage dialogue and collaboration between research scientists and industrial players

 identify future research challenges, in particular in the context of the evolution towards the

future of the internet

More than 60 stakeholders from industry and academia attended the seminar. Brief highlights

from the three panels follow, which were taken and edited slightly from the complete report that is

available at ERCIM‟s website [ERCIM 2008].

15

 Author‘s emphasis retained.

CMU/SEI-2010-TR-025 | 26

1. Industrial Best Practices and Perspectives

 Best practices

Major industrial players in private and public organizations have great interest in

cooperating in this field by sharing and promoting pragmatic approaches and

proven software assurance practices. Automated support for best practice

enforcement and the ability to reason about the business impact of security are

key issues that need to be addressed to manage security related efforts in an

economically feasible way.

 Novel IT frameworks, models and tools during all phases of the software lifecycle

Software security should be an integral part of every phase of the software

lifecycle. The existence of common IT development and execution frameworks

enforces the use of best practices and fosters collaborative work towards further

improvement in achieving higher levels of secure software. Industry requires

tools that encapsulate specialized knowledge by translating underlying

theoretical foundations into concrete secure software development practices.

 Creating the business case for security

IT security has to compete with several other industry investment priorities. With

squeezing IT budgets and ever-shorter times to market, managers need to

assess how much to spend on IT security. Understanding the value that

investments on secure software can add through the product value chain is vital

for business and IT managers making decisions on security expenditures.

Specifically, managers need to understand how much risk their company is ready

to take for a given threat and manage that risk accordingly.

 Dealing with assurance, measurability and testing

Understanding the value of security and assessing and managing risks implies

putting in place an appropriate set of ―controls‖ at different levels. Such a control

framework would allow prevention of vulnerabilities and monitoring of

compliance. That requires, however, an appropriate set of independent

measurement and testing procedures for all phases of the software lifecycle as

well as metrics for collecting data, auditing performance and, ultimately,

proving/ensuring security by measuring it.

 Dealing with increasing levels of complexity of software systems

Complexity is rapidly increasing when moving from the secure engineering of

isolated application components to that of ―systems of systems,‖ with functionality

often different from what their underlying components were designed for.

Moreover, they increasingly rely on real-time dynamic composition involving

third-party software components and services. Under these circumstances,

achieving secure systems and secure software products is a huge challenge and

key business success factor.

 Promoting education and awareness

Security-conscious and well-educated software architects and developers are

needed, along with more investment in education and training. The importance of

secure software needs to be stressed among managers, software architects,

programmers and users.

2. Research Advances and Perspectives

The second panel of the seminar focused on promising research directions for engineering

secure complex software systems.

 Security requirements engineering

CMU/SEI-2010-TR-025 | 27

Security weaknesses originate in incomplete or conflicting software security

requirements. Specific expertise, methods and tools should be devoted to security

requirements engineering. For example, a step-by-step refinement procedure and

automated tools would help security requirements engineers to improve the process from

requirements elicitation to analysis and to track them during the subsequent software

development steps.

 Models for Secure Software Engineering

The software development process needs several models to deal with domain specific

aspects and to identify the correct security solutions. These models often have to be

combined and refined in a way that ensures that the overall security of the final product is

kept. Composability is a major security challenge related to systems scalability and

complexity. Another challenge, from a security viewpoint, is dynamic change of systems

and code and dynamic evolution of system functionalities. The high cost of applying

formal methods is an impediment to their larger industrial deployment. Therefore, one of

the research directions with major impact would be to embed formal methods in

automated development tools in a transparent way for the user. Finally, methods for

measuring the trustworthiness of the software systems is yet another area of importance

for industry where major research efforts are necessary.

 Language-based security

Language-based security is regarded as the backbone of secure software engineering.

Language-based security techniques and specific type systems move the burden of

ensuring the security of the final code from the application programmer to the

programming environment developers. A promising research area is developing

techniques for proving complex properties of cryptographic algorithms as well as provably

correct implementations.

 Advances in security verification and validation

Several rigorous techniques have been developed for checking system specifications,

such as model checking and theorem proving. However, there are still several limitations

that must be addressed for their wider deployment in industry. Relevant research issues

include addressing their scalability and coping with the ever-increasing complexity of

software-intensive systems. More research effort is needed to make security verification

and validation tools usable in practice.

 Advances in risk assessment for systems of systems

Risk is a crucial notion in security and its role in the design of complex systems of

systems needs to be further investigated. Embedding risk in an explicit manner in all the

steps of the software development lifecycle could help to reduce the cost and make the

improvements in software engineering more concrete.

3. The Way Forward

The last panel considered the findings from the two first panels and introduced additional

issues related to: (a) enabling methodologies and tools for building secure complex systems

and services; (b) software liability aspects; and (c) standardization, education, and other

relevant issues for the field.

 Enabling methodologies and tools for building secure complex software systems

Security engineering and software engineering methodologies and platforms should be

integrated. The general (wrong) perception is that software engineering is dealing with

construction of correct software, while security engineering is dealing with the

deployment of software. Industry also needs usable and efficient methodologies and tools

CMU/SEI-2010-TR-025 | 28

that automate the security of software code. It is urgent to undertake further work for

bridging the gap between fundamental theories and pragmatic approaches for industry to

use. Software is often built on top of legacy systems and/or is outsourced. This calls for

tools for verifying the security properties and performance of legacy systems and/or third

party software. Composability is a big challenge. Even if a software system is built from

individually trusted components, the overall system may not be trusted.

 Software liability

Software companies in general and those companies in particular offering packaged

software services or Service Oriented Architecture (SOA)-based applications and

services are not liable for the damages they may cause due to software vulnerabilities of

their products. As liability may change with time, it is important for companies to adopt

best practices quickly. A prerequisite for solving software liability is solving the

composability problem.

 Standardization, education and other relevant issues

Currently there is a lack of sufficient standards in software security. In some cases, clear

specifications are available at a certain level of abstraction, but implementations of

standards are often not completely in line with these specifications. Robust tools for

testing and validating such implementations are necessary. Often there is a gap between

the methodologies that secure software engineers are taught in Universities and the

knowledge they need when working in industry. More cooperation is required between

industry and academia in order to produce curricula dealing with both foundational

knowledge principles and industrial reality.

4. Concluding Remarks of the ERCIM Meeting

The participation of both industry and academia representatives at the event shows the

importance of the topics addressed. Industry is motivated to adopt best practices in software

security engineering, and the scientific community has methodologies and tools to offer.

Targeting specific priorities identified in the report would help to close the gap between

theoretical and practical work. Security and software engineering also need to be integrated

into a coherent framework.
16

 As systems complexity increases, easy-to-use software tools

need to be developed through research and industrial partnerships. In order to ease this

process, industry and academia should share expertise and adopt the same language and

terminology.

Raising current levels of education and awareness in the field is another emerging theme.

New forms of IT infrastructures such as cloud computing bring new challenges for secure

software as well as new opportunities.

4.2.4 CERT Research Roadmap

In 2009 and 2010, under the leadership of Archie Andrews, CERT developed an internal research

roadmap of potential topics of interest. The roadmap was built with input from a number of

external seminar speakers as well as in-house sources. A research advisory group provided review

and comments. Since the roadmap was an internal working paper, it did not have a concluding

section. A summary of the topics and brief descriptions from the research roadmap follow:

1. Measures, Situational Awareness, and Response

 Metric Repository. Understand what quantitative measures of effectiveness

should be collected to provide a global perspective.

16

 Author‘s emphasis retained.

CMU/SEI-2010-TR-025 | 29

 Cybersecurity Metrics. Identify the critical measurements that describe, for an

organization, if their security posture is at an adequate or acceptable level.

 Trend Analysis. Develop the approaches for gaining awareness of various types

of message traffic across the Internet and sufficient understanding to measure

vulnerabilities and attack mechanisms.

 Cyber Situational Intelligence and Response. Identify tools and techniques that

provide greater awareness of the state of an IT environment resulting in a timely

response to security factors.

 Intelligence Awareness and Assessment. Broaden the approach beyond reactive

(attacks and countermeasures), technical (bytes, network interfaces, and

protocols), and procedural (policies and standards) to understand cyber security

implications of ―front page news;‖ assess the cyber security dimension of

geopolitical and economic trends.

 Active Cyber Defense. Investigate attribution, trace back, decision criteria for

reaction (cut off or monitor attack)

 Governance. Identify what should be said in the board room and how to deliver

the message to get required results.

2. Systems and Software Engineering

 Engineering Resilient Systems. Address secure software engineering, including

requirements engineering, architecture and design of secure systems, and large

systems of systems.

 Containment. Monitor and detect a component‘s behavior in such a manner as to

contain and isolate the effect of aberrant behavior while still being able to recover

from a false assumption of bad behavior.

 Composable Systems. Understand the parameters required to address the

security characteristics of modules and assemblages of modules that can be

composed into systems in such a manner that the security characteristics of the

composed systems are understood.

 Best Secure System Engineering Practices. Define those systems engineering

principles and practices necessary to build secure systems.

 Architecting Secure Systems. Define the necessary and appropriate design

artifacts, quality attributes, and appropriate tradeoff considerations that describe

how security properties are positioned, how they relate to the overall system/IT

architecture, and how security quality attributes are measured.

 Secure Software Engineering. Improve the way software and hardware are

developed to reduce vulnerabilities from software and hardware flaws to include

technology life-cycle assurance mechanisms, advanced engineering disciplines,

standards and certification regimes, and best practices.

 Operating Legacy Systems. Understand how to provide secure systems that run

the latest applications in a safe environment; requires preserving existing

properties in a malevolent environment.

3. Security of Cooperating Objects

 Security of Cooperating Objects. Understand and address the security

requirements inherent in the emerging computing model of semi-autonomous

heterogeneous cooperating entities creating a shared, unpredictable state.

CMU/SEI-2010-TR-025 | 30

 Secured Concurrent Processing. Understand how to ensure security in a multi-

processor/multi-process environment where computing components must

manage shared tasks and shared trust.

4. Control Systems

 Designing Secure Control Systems. Improve the security of process control

systems and associated information networks to include secure control systems

architectures and necessary protocols to address standards for control system

security.

 Control System CERT/CC. Provide an incident tracking and response capability

for control systems users and vendors.

5. Security Modeling, Simulation, and Testing

 Testbed. Develop a security testbed, using the latest technologies such as

authentication and access control techniques, etc.

 Modeling and Testing. Identify or develop scalable simulator tools and test beds

to understand the security state of currently deployed technologies, as well as

the readiness of technologies about to be deployed in the field.

6. Special Topics

 Transition CERT Developments to Adoption. Develop effective transition

mechanisms for getting all that we have done and all that we plan to do more

effectively adopted, and be willing to stick with these until we have some true

measures of successful use (or not) in the field.

 Intrinsic Internet Infrastructure Protocols Security. Improve security in

foundational protocols and others on which the information infrastructure is built.

 Forensics. Identify, track, and bring cybercriminals to justice.

 Trust and Privacy. Identify ways to ensure that IT systems protect the privacy

rights of individuals using IT systems while maintaining overall system security.

 Data Capture History. Determine how to create a history of collection, change,

and deletion at the appropriate level of granularity to produce an auditable

sequence of assignable events.

 Identity Management. Ensure access to resources based on the identity of the

requestor.

 Temporal Coherence. Associate uniform time value with data in order to properly

order event sequence.

 Mobile Security. Develop security considerations for a mobile workforce and

operations to include devices, operating procedures, operational security, and

planning for recovering potentially distributed information.

 Electronic Balloting. Understand and address the issues surrounding an

electronic voting and tabulating process.

 Security in Social Computing. Assess the potential security and privacy problems

associated with social interactions in a networked environment.

 Security Implications of Climate Change and Environmental Sustainability.

Evaluate the potential impact of looming climate changes on presently accepted

practices.

CMU/SEI-2010-TR-025 | 31

4.2.5 Knowledge Transfer Network Roadmap

The Cyber Security Knowledge Transfer Network (KTN) held an invitation-only meeting in

March 2009, attended by a number of international experts in software security. During the

meeting a vision was laid out for “software and systems which are resilient and sustainable by

design” [Jones 2009]. As with some of the other reports, there are no specific conclusions, but

rather a roadmap pointing the way forward. The vision described in the KTN report that

documents the meeting results is [Jones 2009]

The development and procurement of software and systems which are resilient and

sustainable by design, where requirements such as security and privacy are, as a matter of

course, defined at project initiation and implemented and assured throughout in risk-based,

whole-life processes.

To support the vision, a roadmap was laid out in 5 areas. Some of these areas point towards

future research, whereas others are focused on coordination and communications:

1. Environmental shaping

 Any strategy must deal with the motivations and incentives that lead people to

implement or ignore good engineering practices. These are described in points

below.

 Define cost-effective business models. If engineering good practices are to be

adopted there must be a clear business benefit.

 Establish procurement strategy, procedures and requirements. Consideration

should be given to how procurement strategy and requirements can shape the

behavior of suppliers.

 Manage supply chain risk. Related to procurement, is the ongoing assessment of

products and service delivered throughout the supply chain, ensuring that ‗non-

explicit security requirements‘ are derived and met by vendors and suppliers.

 Establish legislative and regulatory framework. This would involve the

development of a framework which formalizes the requirement to be diligent in

the development of software, systems and services.

 Nurture consumer demand. This involves tackling awareness amongst

consumers and buyers of software and services so that they ask the right

questions of suppliers and develop a company‘s competitive advantage by

addressing customer needs.

2. Information exchange and concept development

 Developers and designers need to be equipped with the concepts that will

underpin their analysis, assessment and planning. This underpinning knowledge

will also form the logic on which tools and technical services are developed.

 Establish mechanisms for information exchange, encouraging transparency,

open standards and innovation through combining the latest in digital media

publication together with national and international communities of interest.

 Develop a dynamic library of threats, vulnerabilities, attack patterns and risk

models. Risk driven engineering practices will only be effective when addressing

the latest threats and vulnerabilities.

 Establish semantics for ‗non-functional‘ requirements engineering. It is still not

clear that there is a common understanding about how nonfunctional

CMU/SEI-2010-TR-025 | 32

requirements may be expressed or captured, let alone how they might be

enacted by an engineer or designer.

 Determine whole-life development processes. While some organizations have

developed their own ‗best practice,‘ more work needs to be done on acceptance

of what constitutes good practice and what might become a standard.

 Determine measurable assurance and validation approaches. Many security

products and services are still offered on the basis of unsubstantiated claims.

Further fundamental research in assurance in security and other metrics needs

to be conducted.

3. Technical facilitation

There is no doubt that the management, monitoring, modeling, testing, verification and

validation of complex software and systems needs technical facilitation:

 Utilize secure coding languages. Some commonly used languages (e.g. C, php)

allow, or even encourage, programming practices that introduce security

vulnerabilities.

 Develop modeling and analytical tools for planning and assessment. During

development and design of systems, modeling capability will support functions

such as predictive analysis and what-if planning.

 Establish trusted libraries of ‗reusable code‘ and components. Reusable stocks of

‗application blocks‘ and components which have been through significant testing

and assurance may help generate trust and improve quality.

 Define interoperability standards for functionality and testing. In support of the

development of technical standards for functionality and testing, much more work

needs to be done in interoperability standards.

 Develop analysis and testing tools for deployed systems and systems of

systems. The development of tools is particularly challenging yet necessary.

4. Professionalization

The professionalization process is an important contributor to institutionalizing ways of

working, maintaining standards and spreading good practice.

 Establish the role of ‗independent architect‘. Make use of the services of an

independent architect throughout the procurement and implementation process

to provide independent advice and support.

 Develop national and international standards. The role of standards in spreading

good practice and assurance is key.

 Design curricula for universities and colleges. Awareness, education and training

were given a high priority throughout the Paris meeting with many citing the need

to capture, document and share curricula.

 Update engineering accreditation core competencies. Review core

competencies, perhaps even including an ethical dimension concerning software

and application standards and fitness for purpose.

 Ensure professional bodies nurture good practice. Levels of certification,

continuing professional development and agenda setting could be facilitated by

professional bodies.

CMU/SEI-2010-TR-025 | 33

5. Communications strategy

A communications strategy layered across each of the lines of development above is

essential for their full support and to generate the desired impact. The following describe a

communications planning framework that can used to support delivery of the vision.

 Determine desired behaviors and attitudes of audiences. Through the

development of concepts, good practice and standards, explicit statements of

desired attitudes and behaviors should be developed.

 Select and analyze audiences. A clear understanding of what drives, motivates

and interests each audience is necessary if communication is to be successful.

 Determine the message. Messages should be developed for each audience and

shaped to resonate with their intended audience.

 Establish interactive communication channels. Channels where people interact

are likely to generate more engagement than one-way documents, websites and

posters.

 Monitor and evaluate communications strategy. Purposeful communications

requires monitoring and evaluation if it is going to continue to be relevant and

effective.

4.2.6 DHS Cyber Security Research Roadmap

In 2009, DHS published a research roadmap, identifying the following current hard problems in

information security research [DHS 2009]:

1. Scalable trustworthy systems (including system architectures and requisite development

methodology)

2. Enterprise-level metrics (including measures of overall system trustworthiness)

3. System evaluation life cycle (including approaches for sufficient assurance)

4. Combatting insider threats

5. Combatting malware and botnets

6. Global-scale identity management

7. Survivability of time-critical systems

8. Situational understanding and attack attribution

9. Provenance (relating to information, systems, and hardware)

10. Privacy-aware security

11. Usable security

4.2.7 Cyber Security Research and Development Agenda

Doug Maughan defines a cyber security research agenda in the “Inside Risks” column of the

January 2010 Communications of the ACM. This agenda draws upon the DHS cyber security

research agenda to highlight the following ten areas, taken from the article [Maughan 2010]:

1. Software Assurance: poorly written software is at the root of all of our security problems;

2. Metrics: we cannot measure our systems, thus we cannot manage them;

3. Usable Security: information security technologies have not been deployed because

they are not easily usable;

CMU/SEI-2010-TR-025 | 34

4. Identity Management: the ability to know who you are communicating with will help

eliminate many of today‘s online problems, including attribution;

5. Malware: today‘s problems continue because of a lack of dealing with malicious software

and its perpetrators;

6. Insider Threat: one of the biggest threats to all sectors that has not been adequately

addressed;

7. Hardware Security: today‘s computing systems can be improved with new thinking about

the next generation of hardware built from the start with security in mind;

8. Data Provenance: data has the most value, yet we have no mechanisms to know what

has happened to data from its inception;

9. Trustworthy Systems: current systems are unable to provide assurances of correct

operation to include resiliency; and

10. Cyber Economics: we do not understand the economics behind cybersecurity for either

the good guy or the bad guy.

4.3 Assessment of Security Research Frameworks

Although the security research frameworks in the literature were interesting, they tended to

describe gaps in current practices and methods rather than provide a framework that would serve

as an umbrella for existing research work as well as support gap analysis. We also found that

some of these research frameworks were quite broad, including hardware, physical security, and

operations. Other topics, while important to security in general, were not quite on target for

building assured systems.

CMU/SEI-2010-TR-025 | 35

5 Indicators of Method Maturity and the MSwA2010 Body of

Knowledge (BoK)

In parallel with our work on identifying a framework for building assured systems, we were

developing a body of knowledge (BoK) to support a Master of Software Assurance Reference

Curriculum (MSwA2010) [Mead 2010]. MSwA2010 was a year-long effort to identify a body of

knowledge for software assurance that would support a Master of Software Assurance Reference

Curriculum and, ultimately, Master of Software Assurance degree programs. The participants who

developed MSwA2010, in addition to the coauthors of this report, included other SEI staff

members and faculty members from Embry-Riddle Aeronautical University, Stevens Institute of

Technology, and Monmouth University. The MSwA2010 report contains a discussion of

prerequisites, outcomes, body of knowledge, curriculum architecture, and course descriptions,

among other things.

The process of developing the MSwA2010 curriculum included an extensive study of SDLC

practices used to build assured software and identification of associated references through

literature searches and also based on the expertise of the curriculum authors. The practices were

classified into practice categories, and from there we developed knowledge units, which became

elements of the BoK. We also did an informal coverage analysis to ensure that all practice

categories were covered by at least one knowledge unit. In some cases, we excluded practice areas

that were out of scope, such as privacy. Although we did not achieve complete traceability, the

coverage exercise gave us confidence that our BoK had not excluded important practice areas for

building assured systems. The level of effort invested in the development of the BoK suggested to

us that that we might be able to use the MSwA2010 body of knowledge (BoK) as our initial

Building Assured Systems Framework.

We studied the available models, roadmaps, and frameworks in Sections 2 through 4 of this

document, and in fact the models in Sections 2 and 3 informed the curriculum effort. Although we

did not do a formal tradeoff analysis, the study of the material in the literature and our deep

knowledge of the MSwA2010 BoK and its development process reinforced our decision to use it

as the initial foundation for the BASF. A formal tradeoff analysis could be done as part of our

future work in this area, although we think it is unlikely that the outcome will be different.

To test the hypothesis that the MSwA2010 BoK might serve as the foundation for the BASF, we

assigned the following maturity levels to each element of the MSwA2010 BoK. We developed

these maturity levels to support our work in software security engineering (refer to Software

Security Engineering [Allen 2008]). The association of BoK elements and maturity levels was

accomplished by evaluating the extent to which relevant sources, practices, curricula, and

courseware exist for a particular BoK element and the extent to which the authors have observed

the element in practice in organizations.

Maturity Levels

 L1—The area provides guidance for how to think about a topic for which there is no proven

or widely accepted approach. The intent of the area is to raise awareness and aid the reader

CMU/SEI-2010-TR-025 | 36

in thinking about the problem and candidate solutions. The area may also describe promising

research results that may have been demonstrated in a constrained setting.

 L2—The area describes practices that are in early pilot use and are demonstrating some

successful results.

 L3—The area describes practices that have been successfully deployed (mature) but are in

limited use in industry or government organizations. They may be more broadly deployed in

a particular market sector.

 L4—The area describes practices that have been successfully deployed and are in

widespread use. Readers can start using these practices today with confidence. Experience

reports and case studies are typically available.

Maturity Levels Assigned to the MSwA2010 BoK

This section contains the MSwA2010 BoK, which includes expected graduate outcomes, with

maturity levels and education levels assigned.

Outcomes

We expect each graduate to have achieved outcomes after completing a master‟s degree based on

the MSwA2010 reference curriculum. The outcomes are defined in each section of the

MSwA2010 BoK.

MSwA2010 BoK with Outcomes and Maturity Levels

We found that the current maturity of the material being proposed for delivery in MSwA2010

varied. For example, a student would be expected to learn material at all maturity levels. If the

practice was not very mature, we would still expect the student to be able to master it and use it in

an appropriate manner after completing an MSwA program. The following content comes from

the Master of Software Assurance Reference Curriculum report [Mead 2010].

1. Assurance Across Life Cycles

Outcome: Graduates will have the ability to incorporate assurance technologies and methods

into life-cycle processes and development models for new or evolutionary system

development, and for system or service acquisition.

1.1. Software Life-Cycle Processes

1.1.1. New development [L4]

Processes associated with the full development of a software system

1.1.2. Integration, assembly, and deployment [L4]

Processes concerned with the final phases of the development of a new or

modified software system

1.1.3. Operation and evolution [L4]

Processes that guide the operation of the software product and its change

over time

1.1.4. Acquisition, supply, and service [L3]

CMU/SEI-2010-TR-025 | 37

Processes that support acquisition, supply, or service of a software system

1.2. Software Assurance Processes and Practices

1.2.1. Process and practice assessment [L3]

Methods, procedures, and tools used to assess assurance processes and

practices

1.2.2. Software assurance integration into SDLC phases [L2/3]

Integration of assurance practices into typical life-cycle phases (for

example, requirements engineering, architecture and design, coding, test,

evolution, acquisition, and retirement)

2. Risk Management

Outcome: Graduates will have the ability to perform risk analysis and tradeoff assessment

and to prioritize security measures.

2.1. Risk Management Concepts

2.1.1. Types and classification [L4]

Different classes of risks (for example, business, project, technical)

2.1.2. Probability, impact, severity [L4]

Basic elements of risk analysis

2.1.3. Models, processes, metrics [L4] [L3—metrics]

Models, process, and metrics used in risk management

2.2. Risk Management Process

2.2.1. Identification [L4]

Identification and classification of risks associated with a project

2.2.2. Analysis [L4]

Analysis of the likelihood, impact, and severity of each identified risk

2.2.3. Planning [L4]

Risk management plan covering risk avoidance and mitigation

2.2.4. Monitoring and management [L4]

Assessment and monitoring of risk occurrence and management of risk

mitigation

2.3. Software Assurance Risk Management

2.3.1. Vulnerability and threat identification [L3]

Application of risk analysis techniques to vulnerability and threat risks

2.3.2. Analysis of software assurance risks [L3]

Analysis of risks for both new and existing systems

2.3.3. Software assurance risk mitigation [L3]

Plan for and mitigation of software assurance risks

2.3.4. Assessment of Software Assurance Processes and Practices [L2/3]

CMU/SEI-2010-TR-025 | 38

As part of risk avoidance and mitigation, assessment of the identification

and use of appropriate software assurance processes and practices

3. Assurance Assessment

Outcome: Graduates will have the ability to analyze and validate the effectiveness of

assurance operations and create auditable evidence of security measures.

3.1. Assurance Assessment Concepts

3.1.1. Baseline level of assurance; allowable tolerances, if quantitative [L1]

Establishment and specification of the required or desired level of

assurance for a specific software application, set of applications, or a

software-reliant system (and tolerance for same)

3.1.2. Assessment methods [L2/3]

Validation of security requirements

Risk analysis

Threat analysis

Vulnerability assessments and scans [L4]

Assurance evidence

Knowledge of how various methods (such as those above) can be used to

determine if the software or system being assessed is sufficiently secure

within tolerances

3.2. Measurement for Assessing Assurance

3.2.1. Product and process measures by life-cycle phase [L1/2]

Definition and development of key product and process measurements that

can be used to validate the required level of software assurance

appropriate to a given life-cycle phase

3.2.2. Other performance indicators that test for the baseline as defined in 3.1.1, by

life-cycle phase [L1/2]

Definition and development of additional performance indicators that can

be used to validate the required level of software assurance appropriate to

a given life-cycle phase

3.2.3. Measurement processes and frameworks [L2/3]

Knowledge of range of software assurance measurement processes and

frameworks and how these might be used to accomplish software

assurance integration into SDLC phases

3.2.4. Business survivability and operational continuity [L2]

Definition and development of performance indicators that can specifically

address the software/system‘s ability to meet business survivability and

operational continuity requirements, to the extent the software affects these

3.3. Assurance Assessment Process (collect and report measures that demonstrate the

baseline as defined in 3.1.1.)

CMU/SEI-2010-TR-025 | 39

3.3.1. Comparison of selected measurements to the established baseline [L3]

Analysis of key product and process measures and performance indicators

to determine if they are within tolerance when compared to the defined

baseline

3.3.2. Identification of out-of-tolerance variances [L3]

Identification of measures that are out of tolerance when compared to the

defined baselines and ability to develop actions to reduce the variance

4. Assurance Management

Outcome: Graduates will have the ability to make a business case for software assurance,

lead assurance efforts, understand standards, comply with regulations, plan for business

continuity, and keep current in security technologies.

4.1. Making the Business Case for Assurance

4.1.1. Valuation and cost/benefit models, cost and loss avoidance, return on

investment [L3]

Application of financially-based approaches, methods, models, and tools to

develop and communicate compelling cost/benefit arguments in support of

deploying software assurance practices

4.1.2. Risk analysis [L3]

Knowledge of how risk analysis can be used to develop cost/benefit

arguments in support of deploying software assurance practices

4.1.3. Compliance justification [L3]

Knowledge of how compliance with laws, regulations, standards, and

policies can be used to develop cost/benefit arguments in support of

deploying software assurance practices

4.1.4. Business impact/needs analysis [L3]

Knowledge of how business impact and needs analysis can be used to

develop cost/benefit arguments in support of deploying software assurance

practices, specifically in support of business continuity and survivability

4.2. Managing Assurance

4.2.1. Project management across the life cycle [L3]

Knowledge of how to lead software and system assurance efforts as an

extension of normal software development (and acquisition) project

management skills

4.2.2. Integration of other knowledge units [L2/3]

Identification, analysis, and selection of software assurance practices from

any knowledge units that are relevant for a specific software development

or acquisition project

4.3. Compliance Considerations for Assurance

4.3.1. Laws and regulations [L3]

CMU/SEI-2010-TR-025 | 40

Knowledge of the extent to which selected laws and regulations are

relevant for a specific software development or acquisition project, and how

compliance might be demonstrated

4.3.2. Standards [L3]

Knowledge of the extent to which selected standards are relevant for a

specific software development or acquisition project, and how compliance

might be demonstrated

4.3.3. Policies [L2/3]

Knowledge of how to develop, deploy, and use organizational policies to

accelerate the adoption of software assurance practices, and how

compliance might be demonstrated

5. System Security Assurance

Outcome: Graduates will have the ability to incorporate effective security technologies and

methods into new and existing systems.

5.1. For Newly Developed and Acquired Software for Diverse Systems

5.1.1. Security and safety aspects of computer-intensive critical infrastructure [l2]

Knowledge of safety and security risks associated with critical

infrastructure systems such as found, for example, in banking and finance,

energy production and distribution, telecommunications, and transportation

systems

5.1.2. Potential attack methods [L3]

Knowledge of the variety of methods by which attackers can damage

software or data associated with that software by exploiting weaknesses in

the system design or implementation

5.1.3. Analysis of threats to software [L3]

Analysis of the threats to which software is most likely to be vulnerable in

specific operating environments and domains

5.1.4. Methods of defense [L3]

Familiarity with appropriate countermeasures such as layers, access

controls, privileges, intrusion detection, encryption, and code review

checklists

5.2. For Diverse Operational (Existing) Systems

5.2.1. Historic and potential operational attack methods [L4]

Knowledge of and ability to duplicate the attacks that have been used to

interfere with an application‘s or system‘s operations

5.2.2. Analysis of threats to operational environments [L3]

Analysis of the threats to which software is most likely to be vulnerable in

specific operating environments and domains

5.2.3. Designing of and plan for access control, privileges, and authentication [L3]

CMU/SEI-2010-TR-025 | 41

Design of and plan for access control and authentication

5.2.4. Security methods for physical and personnel environments [L4]

Knowledge of how physical access restrictions, guards, background

checks, and personnel monitoring can address risks

5.3. Ethics and Integrity in Creation, Acquisition, and Operation of Software Systems

5.3.1. Overview of ethics, code of ethics, and legal constraints [L4]

Knowledge of how people who are knowledgeable about attack and

prevention methods are obligated to use their abilities, both legally and

ethically, referencing the Software Engineering Code of Ethical and

Professional Conduct [ACM 2009]

5.3.2. Computer attack case studies [L3]

Knowledge of the legal and ethical considerations involved in analyzing a

variety of historical events and investigations

6. System Functionality Assurance

Outcome: Graduates will have the ability to verify new and existing software system

functionality for conformance to requirements and to help reveal malicious content.

6.1. Assurance Technology

6.1.1. Technology evaluation [L3]

Evaluation of capabilities and limitations of technical environments,

languages, and tools with respect to creating assured software functionality

and security

6.1.2. Technology improvement [L3]

Recommendation of improvements in technology as necessary within

project constraints

6.2. Assured Software Development

6.2.1. Development methods [L2/3]

Rigorous methods for system requirements, specification, architecture,

design, implementation, verification, and testing to develop assured

software

6.2.2. Quality attributes [L3—depends on the property]

Software quality attributes and how to achieve them

6.2.3. Maintenance methods [L3]

Assurance aspects of software maintenance and evolution

6.3. Assured software analytics

6.3.1. Systems analysis [L2 architectures; L3/4 networks, databases (identity

management, access control)]

Analysis of system architectures, networks, and databases for assurance

properties

CMU/SEI-2010-TR-025 | 42

6.3.2. Structural analysis [L3]

Structuring the logic of existing software to improve understandability and

modifiability

6.3.3. Functional analysis [L2/3]

Reverse engineering of existing software to determine functionality and

security properties

6.3.4. Analysis of methods and tools [L3]

Capabilities and limitations of methods and tools for software analysis

6.3.5. Testing for assurance [L3]

Evaluation of testing methods, plans, and results for assuring software

6.3.6. Assurance evidence [L2]

Development of auditable assurance evidence

6.4. Assurance in acquisition

6.4.1. Assurance of acquired software [L2]

Assurance of software acquired through supply chains,
17

 vendors, and

open sources, including developing requirements and assuring delivered

functionality and security

6.4.2. Assurance of software services [L3]

Development of service level agreements for functionality and security with

service providers and monitoring compliance

7. System Operational Assurance

Outcome: Graduates will have the ability to monitor and assess system operational security

and respond to new threats.

7.1. Operational Procedures

7.1.1. Business objectives [L3]

Role of business objectives and strategic planning in system assurance

7.1.2. Assurance procedures [L3]

Creation of security policies and procedures for system operations

7.1.3. Assurance training [L4]

Selection of training for users and system administrative personnel in

secure system operations

7.2. Operational Monitoring

7.2.1. Monitoring technology [L4]

Capabilities and limitations of monitoring technologies, and installation and

configuration or acquisition of monitors and controls for systems, services,

and personnel

17

 For more information about software security supply chain risk, download the SEI report Evaluating and
Mitigating Software Supply Chain Security Risks [Ellison 2010].

CMU/SEI-2010-TR-025 | 43

7.2.2. Operational evaluation [L4]

Evaluation of operational monitoring results with respect to system and

service functionality and security

7.2.3. Operational maintenance [L3]

Maintenance and evolution of operational systems while preserving

assured functionality and security

7.2.4. Malware analysis [L2/3]

Evaluation of malicious content and application of countermeasures

7.3. System Control

7.3.1. Responses to adverse events [L3/4]

Plan for and execution of effective responses to operational system

accidents, failures, and intrusions

7.3.2. Business survivability [L3]

Maintenance of business survivability and continuity of operations in

adverse environments (See also Outcome 3, Assurance Assessment.)

The next section of this report identifies the relationship between the MSwA2010 BoK and

current research work-in-progress as described in the 2009 CERT Annual Research Report [CERT

2010]. The purpose of this exercise is to determine if the MSwA2010 BoK can serve as a useful

framework for structuring and describing security-related research activities.

CMU/SEI-2010-TR-025 | 44

6 Mapping of CERT Research to the MSwA2010 BoK

We next mapped major existing CERT research projects described in the 2009 CERT Research

Annual Report [CERT 2010] to the MSwA2010 BoK to see whether BoK areas corresponded to

each research project. This was needed to help us decide whether the MSwA2010 BoK would be

adequate as the foundation for the BASF. All major research projects mapped to BoK areas—see

Table 5. In this table, the first column is the name of the project from the research report. The

second column is the name(s) of the author(s) of the project description in the research report. The

authors are usually the principal investigators of that research project. The third column indicates

the BoK areas that are relevant to the research. The fourth column indicates whether there is a

direct or indirect relationship between the research project and the BoK.

Some projects had a clear and direct relationship to the BoK areas. These projects were typically

in the area of software development and acquisition. Other projects could not be directly related to

the BoK, but in all cases there was an indirect relationship. Projects that did not directly relate to

the BoK were often advanced analysis projects, such as Finding Malicious Activity in Bulk DNS

Data. This mapping gave us confidence that the BoK areas could be used as our initial framework.

In some cases, as noted, the relationship between the CERT projects and the BoK was indirect,

but as a framework, the BoK held up.

Table 5: 2009 CERT Research Annual Report Major Projects

Project Name Author Corresponding MSwA2010

BoK Areas

Related Directly to

MSwA2010 Topics

(Mostly Software

Development &

acquisition)

Applying Function

Extraction (FX)

Techniques to Reverse

Engineer Virtual Machines

Mark Pleszkoch,

Stacy Prowell,

Cory F. Cohen,

and Jeffrey S.

Havrilla

6.3 Assured Software

Analytics, 6.3.3 Functional

analysis (reverse

engineering)

Yes

A Probabilistic Population

Study of the Conficker-C

Botnet

Rhiannon Weaver 3.2 Measurement for

Assessing Assurance

(modeling and

measurement), 5.1.2

Potential attack methods

No

Finding Malicious Activity

in Bulk DNS Data

Ed Stoner 7.2 Operational Monitoring,

7.2.4 Malware analysis

No

Function Extraction for

Malicious Code Analysis

Kirk Sayre, Mark

Pleszkoch,

Timothy Daly,

Richard Linger,

and Stacey Prowell

7.2.4 Malware analysis Yes

CMU/SEI-2010-TR-025 | 45

Project Name Author Corresponding MSwA2010

BoK Areas

Related Directly to

MSwA2010 Topics

(Mostly Software

Development &

acquisition)

Function Hashing for

Malicious Code Analysis

Cory F. Cohen and

Jeffrey S. Havrilla

5.1.2 Potential attack

methods, 5.2.1 Historic and

potential operational attack

methods, 6.3 Assured

Software Analytics, 6.3.3

Functional analysis (reverse

engineering), 7.2

Operational Monitoring,

7.2.4 Malware analysis

Yes

Catching IPv6 Tunneled in

IPv4

Evan Wright 6.3.1 Systems analysis

(network analysis), 7.2.4

Malware Analysis (protocols,

analysis)

No

Modeling Insider Theft of

Intellectual Property

Andrew Moore,

Dawn Cappelli,

and Randy

Trzeciak

2.1 Risk Management

Concepts, 2.2 Risk

Management Process,

2.3.1 Vulnerability and threat

identification, 3.1.2

Assessment Methods (threat

and vulnerability analysis),

5. System Security

Assurance, 5.1.2 Potential

attack methods, 5.1.3

Analysis of threats to

software, 5.2 For Diverse

Operational (Existing)

Systems, 5.3.2 Computer

attack case studies

Yes

Metrics for Evaluating

Network Sensor

Placement

Soumyo D. Moitra

and Evan Wright

3.2.4 Business survivability

and operational continuity

(operational measurement),

7.2.1 Monitoring technology,

7.2.2 Operational evaluation

No

Rayon: A Unified

Framework for Data

Visualization

Philip Groce 7.2.1 Monitoring

technology, 7.2.2

Operational evaluation

No

Source Code Analysis

Laboratory

Robert Seacord,

David Svoboda,

and Philip Miller

6.2, 6.2.1, 6.3.1 (Secure

coding, analysis)

Yes

SQUARE: Requirements

Engineering for Improved

System Security

Nancy R. Mead

and Justin Zahn

1. Software Life-Cycle

Processes,1.1.1 New

development, 1.1.4

Acquisition, supply, and

service, 2.2 Risk

Management Process, 2.3

Software Assurance Risk

Management, 6.2 Assured

Software Development,

6.2.1 Development Methods

Yes

We did not have enough information about the additional newer research projects described in the

2009 CERT Research Annual Report, nor were they far enough along to assess whether the

projects related directly or indirectly to software development and acquisition. However, we did

assign MSwA2010 BoK areas to those projects—see Table 6.

CMU/SEI-2010-TR-025 | 46

Table 6: 2009 CERT Research Annual Report Short Projects

Project Name Authors Corresponding MSwA2010

BoK Areas

Advanced Technology for Test and

Evaluation of Embedded Systems

Timothy Daly and Richard

Linger

6.2.1 Development methods

(test), 6.3.4 Analysis of methods

and tools, 6.3.5 Testing for

assurance

Automatic Generation of Hidden Markov

Models for the Detection of Polymorphic

and Metamorphic Malware

Mark Pleszkoch, Cory F.

Cohen, and Timothy Daly

5.1.2 Potential attack methods,

5.1.3 Analysis of threats to

software, 7.2.4 Malware analysis

Baselining Port-Specific Scanning

Behavior

Rhiannon Weaver 7.2.1 Monitoring technology,

7.2.2 Operational evaluation

Building Assured Systems Framework

(BASF)

Nancy R. Mead and Julia

Allen

1.2.2 Software assurance

integration into SDLC phases,

2.3.4 Assessment of software

assurance processes and

practices, 4.2.2 Integration of

other knowledge units

Control System Security and Critical

Infrastructure Survivability

Howard F. Lipson 5.1.1 Security and safety aspects

of computer-intensive critical

infrastructure

Cyber Assurance Christopher Alberts,

Robert J. Ellison, and

Carol Woody

3.1.2 Assessment methods, 4.1

Making the Business Case for

Assurance

Cyber Security Risk Assessment in the

Bulk Electric System

Samuel A. Merrell and

James F. Stevens

3.1.2 Assessment methods, 5.1.1

Security and safety aspects of

computer-intensive critical

infrastructure

Influencing National Capability

Development in Cyber Security through

Incentives

Bradford Willke and

Samuel A. Merrell

4.1 Making the Business Case for

Assurance

Measuring Operational Resilience Julia Allen 3.2.4 Business survivability and

operational continuity, all of 7

System Operational Assurance

Measuring Software Security Julia Allen 3.2 Measurement for Assessing

Assurance, 3.3 Assurance

Assessment Process

SiLK: Improvements and Plans Mark Thomas and

Michael Duggan

6.3.1 Systems analysis, 7.2.1

monitoring technology, 7.2.2

Operational evaluation

The Smart Grid Maturity Model James F. Stevens and

David W. White

1.1.3 Operation and evolution,

1.1.4 Acquisition, supply, and

service, 1.2 Software Assurance

Processes and Practices, 3.2

Measurement for Assessing

Assurance, 3.3 Assurance

Assessment Process, 4.1.4

Business impact/needs analysis,

4.3 Compliance Considerations

for Assurance, 6.4 Assurance in

Acquisition, all of 7 System

Operational Assurance

Once this mapping was complete, we felt comfortable with the selection of the MSwA2010 BoK

as the initial BASF. While the mapping was not perfect, in that certain research work was related

CMU/SEI-2010-TR-025 | 47

only indirectly to the BoK, we felt comfortable using it. The BoK reflected our collective

understanding of what was needed to build assured systems, so in effect we had come full circle.

CMU/SEI-2010-TR-025 | 48

7 BASF Description

For the BASF, therefore, we will use the MSwA2010 BoK areas. However, in order to use it as a

framework, we will not need to retain the MSwA2010 outcomes or brief descriptions shown in

Section 5. This is because the outcomes and brief descriptions relate to the use of the BoK areas in

the curriculum and are not germane to the use of the topic areas as an umbrella for our research.

On the other hand, we developed the maturity levels specifically for the BASF and used them

retrospectively in the curriculum, so the maturity levels are retained. In fact, we will use the

maturity levels as an initial litmus test for whether research is needed in a specific area.

Presumably we want to focus our research on topic areas that are less mature.

1. Assurance Across Life Cycles

1.1. Software Life-Cycle Processes

1.1.1. New development [L4]

1.1.2. Integration, assembly, and deployment [L4]

1.1.3. Operation and evolution [L4]

1.1.4. Acquisition, supply, and service [L3]

1.2. Software Assurance Processes and Practices

1.2.1. Process and practice assessment [L3]

1.2.2. Software assurance integration into SDLC phases [L2/3]

2. Risk Management

2.1. Risk Management Concepts

2.1.1. Types and classification [L4]

2.1.2. Probability, impact, severity [L4]

2.1.3. Models, processes, metrics [L4] [L3—metrics]

2.2. Risk Management Process

2.2.1. Identification [L4]

2.2.2. Analysis [L4]

2.2.3. Planning [L4]

2.2.4. Monitoring and management [L4]

2.3. Software Assurance Risk Management

2.3.1. Vulnerability and threat identification [L3]

2.3.2. Analysis of software assurance risks [L3]

2.3.3. Software assurance risk mitigation [L3]

2.3.4. Assessment of Software Assurance Processes and Practices [L2/3]

CMU/SEI-2010-TR-025 | 49

3. Assurance Assessment

3.1. Assurance Assessment Concepts

3.1.1. Baseline level of assurance; allowable tolerances, if quantitative [L1]

3.1.2. Assessment methods [L2/3]

3.2. Measurement for Assessing Assurance

3.2.1. Product and process measures by life-cycle phase [L1/2]

3.2.2. Other performance indicators that test for the baseline as defined in 3.1.1, by life-

cycle phase [L1/2]

3.2.3. Measurement processes and frameworks [L2/3]

3.2.4. Business survivability and operational continuity [L2]

3.3. Assurance Assessment Process (collect and report measures that demonstrate the

baseline as defined in 3.1.1.)

3.3.1. Comparison of selected measurements to the established baseline [L3]

3.3.2. Identification of out-of-tolerance variances [L3]

4. Assurance Management

4.1. Making the Business Case for Assurance

4.1.1. Valuation and cost/benefit models, cost and loss avoidance, return on investment

[L3]

4.1.2. Risk analysis [L3]

4.1.3. Compliance justification [L3]

4.1.4. Business impact/needs analysis [L3]

4.2. Managing Assurance

4.2.1. Project management across the life cycle [L3]

4.2.2. Integration of other knowledge units [L2/3]

4.3. Compliance Considerations for Assurance

4.3.1. Laws and regulations [L3]

4.3.2. Standards [L3]

4.3.3. Policies [L2/3]

5. System Security Assurance

5.1. For Newly Developed and Acquired Software for Diverse Systems

5.1.1. Security and safety aspects of computer-intensive critical infrastructure [L2]

5.1.2. Potential attack methods [L3]

5.1.3. Analysis of threats to software [L3]

5.1.4. Methods of defense [L3]

5.2. For Diverse Operational (Existing) Systems

5.2.1. Historic and potential operational attack methods [L4]

CMU/SEI-2010-TR-025 | 50

5.2.2. Analysis of threats to operational environments [L3]

5.2.3. Designing of and plan for access control, privileges, and authentication [L3]

5.2.4. Security methods for physical and personnel environments [L4]

5.3. Ethics and Integrity in Creation, Acquisition, and Operation of Software Systems

5.3.1. Overview of ethics, code of ethics, and legal constraints [L4]

5.3.2. Computer attack case studies [L3]

6. System Functionality Assurance

6.1. Assurance Technology

6.1.1. Technology evaluation [L3]

6.1.2. Technology improvement [L3]

6.2. Assured Software Development

6.2.1. Development methods [L2/3]

6.2.2. Quality attributes [L3—depends on the property]

6.2.3. Maintenance methods [L3]

6.3. Assured Software Analytics

6.3.1. Systems analysis [L2 architectures; L3/4 networks, databases (identity

management, access control)]

6.3.2. Structural analysis [L3]

6.3.3. Functional analysis [L2/3]

6.3.4. Analysis of methods and tools [L3]

6.3.5. Testing for assurance [L3]

6.3.6. Assurance evidence [L2]

6.4. Assurance in Acquisition

6.4.1. Assurance of acquired software [L2]

6.4.2. Assurance of software services [L3]

7. System Operational Assurance

7.1. Operational Procedures

7.1.1. Business objectives [L3]

7.1.2. Assurance procedures [L3]

7.1.3. Assurance training [L4]

7.2. Operational Monitoring

7.2.1. Monitoring technology [L4]

7.2.2. Operational evaluation [L4]

7.2.3. Operational maintenance [L3]

7.2.4. Malware analysis [L2/3]

7.3. System Control

CMU/SEI-2010-TR-025 | 51

7.3.1. Responses to adverse events [L3/4]

7.3.2. Business survivability [L3]

After we completed the mapping of the current CERT research projects to the MSwA2010 BoK

and selected it as the initial BASF, our next task was to see whether we could successfully use the

BASF to perform gap analysis.

CMU/SEI-2010-TR-025 | 52

8 Gap Analysis for Identification of Promising Research

Areas

Once we mapped the current CERT research projects to the MSwA2010 BoK (see Section 6) we

performed an initial gap analysis to identify some promising research areas for CERT. For those

areas not represented at all in the current CERT research projects, we checked the maturity level

and assessed whether this work was being covered elsewhere. For example, Software Life-Cycle

Processes (BoK area 1.1) is fairly mature and is being addressed by the SEI‟s process

management program, among others. Therefore, we did not identify it as a gap area for CERT

research. In other cases, there has been a fair amount of research work, but more is needed;

Assured Software Development (BoK area 6.2) is an example. With this in mind, here is our

initial list of gap areas:

 3.1.1 Baseline level of assurance; allowable tolerances, if quantitative [L1]

This relates to the gap in measurement work discussed below.

 3.2.1 Product and process measures by life-cycle phase [L1/2]

 3.2.2 Other performance indicators that test for the baseline, by life-cycle phase [L1/2]

We have started to do some measurement work, but more is needed.

 4.1 Making the Business Case for Assurance

Methods for making the business case exist, such as calculating cost/benefit, but the data to

support it is lacking.

 6.2 Assured Software Development

We are doing some work in this area, but more is needed.

 6.3 Assured Software Analytics

We are doing some work in this area, but more is needed.

 6.4 Assurance in Acquisition

We are doing some work in this area, but more is needed.

There are some areas of research that do not fit the BASF neatly. The BASF is not intended to

exclude these areas, but we recognize that some important research work does not fit the

MSwA2010 topics directly. For example, our recent software assurance curriculum work is

needed research, but it does not map directly to the MSwA2010 topics. As another example, some

of our advanced work in intrusion detection and network analysis also does not map directly to

these topics. This may suggest the need for follow-on work to broaden the BASF to provide a

framework for a wider range of research activities.

CMU/SEI-2010-TR-025 | 53

9 Conclusion and Future Plans

We began developing a framework for building assured systems by first considering customer

pain points. We examined a number of existing life-cycle process models, security models, and

security research frameworks. We then proposed that the MSwA2010 BoK areas could provide

the bulk of the BASF. In order to test this hypothesis, we assigned maturity levels to each of the

knowledge areas. We then mapped the CERT research projects to the BoK areas. We used the

results of this mapping to perform a gap analysis to identify areas where additional research

would be needed. The benefit of this approach is that it establishes a desirable linkage between

software assurance research and the associated educational curriculum research. Advances in

specific software assurance research areas could suggest changes to the MSwA2010 BoK. In turn,

new BoK areas in the curriculum could suggest fruitful paths for additional software assurance

research.

The original customer pain points that we set out to address are

1. How do I decide which security methods fit into a specific life-cycle activity?

2. How do I know if a specific security method is sufficiently mature for me to use on my

projects?

3. When should I take a chance on a security research approach that has not been widely used?

We also wanted to address a more generic problem, one that we had seen in our own work and

elsewhere, that various research projects in building assured systems appear unrelated to one

another; we and other research entities consequently do not have a good way to prioritize and

select new research.

The BASF helps to address some, but not all, of the customer pain points. It is helpful in

addressing the first and second questions, but is limited in its usefulness in addressing the third

question. Since the BASF naturally covers the development life cycle, mapping a particular

method to the appropriate knowledge area(s) will help to answer the first question. In this report

we have provided such a mapping for our research projects. It should be relatively easy to perform

such a mapping for methods under consideration for use. For the second question, using

knowledge area maturity levels in conjunction with examining a specific method will provide

information up front so that a user can decide whether the method is sufficiently mature. The third

question is a bit harder to answer and requires more work on the part of the user. A cost/benefit

analysis or risk assessment will help to answer the question of whether it is worth taking a chance

on an approach that has not been widely used. Also, the user would have the benefit of looking at

a range of approaches for a particular activity, and assessing whether a less mature approach

provides significant benefit relative to a more mature approach.

From a research perspective, researchers could periodically consider rating the maturity levels of

their methods. This would assist users in deciding which methods to use. It would also be helpful

if researchers could collect and/or provide available cost/benefit data and encourage users to assist

in such data collection. All too often users decide on a particular method but do not collect

enough information to determine whether the benefit justified the cost. At the same time, the

CMU/SEI-2010-TR-025 | 54

smaller projects that researchers conduct on their own do not usually result in enough cost/benefit

data to be sufficiently compelling.

We believe that the BASF provides an umbrella for CERT‟s research work in building assured

systems and that it can be used to show how the various research efforts fit together. A future

formal tradeoff analysis of the research roadmaps and frameworks studied in the literature with

the current BASF would reinforce this. The BASF could then be extended to cover a broader

research scope, providing a more natural fit for some of our advanced research work in intrusion

detection and various types of analysis (e.g., network, protocol, data) as well as software

assurance curriculum research. The gap analysis that we have done could be used to help select,

and to some extent prioritize, new research. For example, if research is proposed for an area

where there are a number of mature approaches, it would be helpful to understand why that

research would be considered a good investment, compared to areas where there are no mature

approaches. Since there is a lot of research aimed at building assured systems, we anticipate that

this framework would need regular review and revision in order to stay current.

CMU/SEI-2010-TR-025 | 55

CMU/SEI-2010-TR-025 | 56

Appendix

Software Assurance Definitions

The following are software assurance definitions we reviewed while developing the BASF.

The following is the U.S. Department of Defense‟s (DoD) definition of systems assurance taken

from “A DoD-Oriented Introduction to the NDIA‟s System Assurance Guidebook” [Popick

2010]:

The justified measures of confidence that a system functions as intended and is free of

exploitable vulnerabilities, either intentionally or unintentionally designed or inserted as part of

the system at any time during the life cycle. [1]

[1] NDIA – Systems Assurance Committee. Engineering for System Assurance. Oct. 2008

www.acq.osd.mil/sse/docs/SA-Guidebook-v1-Oct2008.pdf

The following definition is taken from the NDIA conference paper “Engineering Improvement in

Software Assurance: A Landscape Framework” [Brownsword 2009]:

Environment of use

Actual environment of use (not just the expected environment of use)

Means evaluating robustness against unexpected use, threats, and changes in the

environment‖

The following is from the SEI webinar Engineering Improvement in Software Assurance: A

Landscape Framework [Brownsword 2010]:

Software assurance: a justified level of confidence that software-reliant systems function as

intended within their operational environment

The following is the Committee on National Security Systems (CNSS) definition [CNSS 2010]

Used in the DHS SwA website [DHS 2010b] and Software Security Engineering book [Allen

2008]:

Software assurance (SwA) is the level of confidence that software is free from

vulnerabilities, either intentionally designed into the software or accidentally inserted at any

time during its life cycle, and that the software functions in the intended manner (from CNSS

4009 IA Glossary - see Wikipedia for definitions and descriptions).

The following is the SAFECode Software Assurance Definition [SAFECode 2008]:

Confidence that software, hardware and services are free from intentional and unintentional

vulnerabilities and that the software functions as intended.

http://www.acq.osd.mil/sse/docs/SA-Guidebook-v1-Oct2008.pdf
http://en.wikipedia.org/wiki/Buzzword

CMU/SEI-2010-TR-025 | 57

The following excerpt is from the Software Security Assurance State-of-the-Art Report (SOAR)

[Goertzel 2007].

 2.1 Definition 1: Software Assurance

Until recently, the term software assurance was most commonly relating two software

properties: quality (i.e., ―software assurance‖ as the short form of ―software quality

assurance‖), and reliability (along with reliability‘s most stringent quality—safety). Only in the

past 5 years or so has the term software assurance been adopted to express the idea of the

assured security of software (comparable to the assured security of information that is

expressed by the term ―information assurance‖).

The discipline of software assurance can be defined in many ways. The most common

definitions complement each other but differ slightly in terms of emphasis and approach to

the problem of assuring the security of software.

In all cases, all definitions of software assurance convey the thought that software assurance

must provide a reasonable level of justifiable confidence that the software will function

correctly and predictably in a manner consistent with its documented requirements.

Additionally, the function of software cannot be compromised either through direct attack or

through sabotage by maliciously implanted code to be considered assured. Some definitions

of software assurance characterize that assurance in terms of the software‘s trustworthiness

or ―high-confidence.‖

Several leading definitions of software assurance are discussed below.

Instead of choosing a single definition of software assurance for this report, we synthesized

them into a definition that most closely reflects software security assurance as we wanted it

to be understood in the context of this report—Software security assurance: The basis for

gaining justifiable confidence that software will consistently exhibit all properties required to

ensure that the software, in operation, will continue to operate dependably despite the

presence of sponsored (intentional) faults. In practical terms, such software must be able to

resist most attacks, tolerate as many as possible of those attacks it cannot resist, and contain

the damage and recover to a normal level of operation as soon as possible after any attacks

it is unable to resist or tolerate.

2.1.1 CNSS Definition

The ability to establish confidence in the security as well as the predictability of software is

the focus of the Committee on National Security Systems (CNSS) definitions of software

assurance in its National Information Assurance Glossary. [8] The glossary defines software

assurance as—

The level of confidence that software is free from vulnerabilities, regardless of whether

they are intentionally designed into the software or accidentally inserted later in its life

cycle, and that the software functions in the intended manner.

This understanding of software assurance is consistent with the use of the term in connection

with information, i.e., information assurance (IA). By adding the term software assurance to

its IA glossary, CNSS has acknowledged that software is directly relevant to the ability to

achieve information assurance.

The CNSS definition is purely descriptive: it describes what software must be to achieve the

level of confidence at which its desired characteristics—lack of vulnerabilities and predictable

execution—can be said to be assured. The definition does not attempt to prescribe the

means by which that assurance can, should, or must be achieved.

CMU/SEI-2010-TR-025 | 58

2.1.2 DoD Definition

The Department of Defense‘s (DoD) Software Assurance Initiative‘s definition is identical in

meaning to that of the CNSS, although more succinct—

The level of confidence that software functions as intended and is free of vulnerabilities,

either intentionally or unintentionally designed or inserted as part of the software. [9]

2.1.3 NASA Definition

The National Aeronautics and Space Administration (NASA) defines software assurance as—

The planned and systematic set of activities that ensure that software processes and

products conform to requirements, standards, and procedures.

The ―planned and systematic set of activities‖ envisioned by NASA include—

 Requirements specification

 Testing

 Validation

 Reporting.

The application of these functions ―during a software development life cycle is called software

assurance.‖ [10]

The NASA software assurance definition predates the CNSS definition but similarly reflects

the primary concern of its community—in this case, safety. Unlike the CNSS definition,

NASA‘s definition is both descriptive and prescriptive in its emphasis on the importance of a

―planned and systematic set of activities.‖ Furthermore, NASA‘s definition states that

assurance must be achieved not only for the software itself but also the processes by which it

is developed, operated, and maintained. To be assured, both software and processes must

―conform to requirements, standards, and procedures.‖

2.1.3 DHS Definition

Like CNSS, the Department of Homeland Security (DHS) definition of software assurance

emphasizes the properties that must be present in the software for it to be considered

―assured,‖ i.e.—

 Trustworthiness, which DHS defines, like CNSS, in terms of the absence of

exploitable vulnerabilities whether maliciously or unintentionally inserted

 Predictable execution, which ―provides justifiable confidence that the software,

when executed, will function as intended. [11]

Like NASA, DHS‘s definition explicitly states that ―a planned and systematic set of

multidisciplinary activities‖ must be applied to ensure the conformance of both software and

processes to ―requirements, standards, and procedures.‖ [12]

2.1.4 NIST Definition

The National Institute of Standards and Technology (NIST) defines software assurance in the

same terms as NASA, whereas the required properties to be achieved are those included in

the DHS definition: trustworthiness and predictable execution. NIST essentially fuses the

NASA and DHS definitions into a single definition, thereby clarifying the cause-and-effect

relationship between ―the planned and systematic set of activities‖ and the expectation that

such activities will achieve software that is trustworthy and predictable in its execution. [13]

CMU/SEI-2010-TR-025 | 59

2.2 Definition 2: Secure Software

DHS‘s Security in the Software Life Cycle defines secure software in terms that have

attempted to incorporate concepts from all of the software assurance definitions discussed in

Section 2.1 as well as reflect both narrow-focused and holistic views of what constitutes

secure software. The document attempts to provide a ―consensus‖ definition that has, in fact,

been vetted across the software security assurance community [or at least that part that

participates in meetings of the DHS Software Assurance Working Groups (WG) and

DoD/DHS Software Assurance Forums]. According to Security in the Software Life Cycle—

Secure software cannot be intentionally subverted or forced to fail. It is, in short,

software that remains correct and predictable in spite of intentional efforts to

compromise that dependability.

Security in the Software Life Cycle elaborates on this definition—

Secure software is designed, implemented, configured, and supported in ways that

enable it to:

 Continue operating correctly in the presence of most attacks by either resisting

the exploitation of faults or other weaknesses in the software by the attacker, or

tolerating the errors and failures that result from such exploits

 Isolate, contain, and limit the damage resulting from any failures caused by

attack-triggered faults that the software was unable to resist or tolerate, and

recover as quickly as possible from those failures.

The document then enumerates the different security properties that characterize secure

software and clearly associates the means by which software has been developed with its

security:

Secure software has been developed such that—

 Exploitable faults and other weaknesses are avoided by well-intentioned

developers.

 The likelihood is greatly reduced or eliminated that malicious developers can

intentionally implant exploitable faults and weaknesses or malicious logic into the

software.

 The software will be attack-resistant or attack-tolerant, and attack-resilient.

 The interactions among components within the software-intensive system, and

between the system and external entities, do not contain exploitable

weaknesses.

CMU/SEI-2010-TR-025 | 60

References

URLs are valid as of the publication date of this document.

[Allen 2008]

Allen, Julia H.; Barnum, Sean; Ellison, Robert J.; McGraw, Gary; & Mead, Nancy R. Software

Security Engineering: A Guide for Project Managers. Addison-Wesley Professional, 2008.

[Babylon 2009]

Babylon, Ltd. Definition of Framework. http://dictionary.babylon.com/framework/ (2009).

[Bartol 2008]

Bartol, Nadya. Practical Measurement Framework for Software Assurance and Information

Security, Version 1.0. Practical Software & Systems Measurement (PSM).

http://www.psmsc.com/Prod_TechPapers.asp (2008).

[Brownsword 2009]

Brownsword, Lisa; Woody, Carol; Alberts, Christopher; & Moore, Andrew. “Achieving

Acquisition Excellence Via Effective Systems Engineering.”12
th

 Annual Systems Engineering

Conference, NDIA, October 26-29, 2009, San Diego, CA.

[Brownsword 2010]

Brownsword, Lisa & Woody, Carol. Engineering Improvement in Software Assurance: A

Landscape Framework (SEI Webinar). Software Engineering Institute, Carnegie Mellon

University, May 2010.

http://www.sei.cmu.edu/library/abstracts/presentations/20100513webinar.cfm

[Caralli 2010]

Caralli, Richard A.; Allen, Julia H.; Curtis, Pamela D.; White, David W., & Young, Lisa R.

CERT
®

 Resilience Management Model, Version 1.0: Resilient Technical Solution Engineering

(RTSE). Software Engineering Institute, Carnegie Mellon University, 2010.

http://www.cert.org/resilience/rmm.html

[CERT 2010]

CERT. 2009 CERT Research Annual Report. Software Engineering Institute, Carnegie Mellon

University. http://www.cert.org/research/2009research-report.pdf (2010).

[CMMI Product Team 2006]

CMMI Product Team. CMMI
®

 for Development, Version 1.2 (CMU/SEI-2006-TR-008). Software

Engineering Institute, Carnegie Mellon University, 2006.

http://www.sei.cmu.edu/library/abstracts/reports/06tr008.cfm

[CMMI Product Team 2007]

CMMI Product Team. CMMI
®

 for Acquisition, Version 1.2 (CMU/SEI-2007-TR-017).

Software Engineering Institute, Carnegie Mellon University, 2007.

http://www.sei.cmu.edu/library/abstracts/reports/07tr017.cfm

http://dictionary.babylon.com/framework/
http://www.cert.org/research/2009research-report.pdf
http://www.psmsc.com/Prod_TechPapers.asp
http://www.sei.cmu.edu/library/abstracts/presentations/20100513webinar.cfm
http://www.cert.org/resilience/rmm.html
http://www.sei.cmu.edu/library/abstracts/reports/06tr008.cfm
http://www.sei.cmu.edu/library/abstracts/reports/07tr017.cfm

CMU/SEI-2010-TR-025 | 61

[CNSS 2010]

Committee on National Security Systems (CNSS). National Information Assurance (IA)

Glossary: CNSS Instruction No. 4009. http://www.cnss.gov/Assets/pdf/cnssi_4009.pdf (April

2010).

[Devanbu 2000]

Devanbu, Premkumar T. & Stubblebine, Stuart. “Software Engineering for Security: A

Roadmap.” ICSE 2000, 22nd International Conference on Software Engineering, Future of

Software Engineering Track. Limerick, Ireland, June 2000.

[DHS 2008]

Department of Homeland Security (DHS) Software Assurance (SwA) Processes and Practices

Working Group. Process Reference Model for Assurance Mapping to CMMI-DEV V1.2.

https://buildsecurityin.us-cert.gov/swa/procwg.html (2008).

[DHS 2009]

Department of Homeland Security (DHS). A Roadmap for Cybersecurity Research.

http://www.cyber.st.dhs.gov/docs/DHS-Cybersecurity-Roadmap.pdf (November 2009).

[DHS 2010a]

Department of Homeland Security (DHS) Software Assurance (SwA). Measurement Working

Group. https://buildsecurityin.us-cert.gov/swa/measwg.html (2010).

[DHS 2010b]

Department of Homeland Security (DHS) Software Assurance (SwA). Software Assurance

Community Resources and Information Clearinghouse. https://buildsecurityin.us-cert.gov/swa/

(2010).

[Ellison 2004]

Ellison, Robert J.; Moore, Andrew P.; Bass, Andrew P.; Klein, Mark H.; & Bachmann, Andrew P.

Security and Survivability Reasoning Frameworks and Architectural Design Tactics (CMU/SEI-

2004-TN-022). Software Engineering Institute, Carnegie Mellon University, 2004.

http://www.sei.cmu.edu/library/abstracts/reports/04tn022.cfm

[ERCIM 2008]

European Research Consortium for Informatics and Mathematics (ERCIM) & European

Commission. Strategic Seminar: Engineering Secure Complex Software Systems and Services.

Brussels, Belgium, October 16, 2008.

http://www.ercim.eu/activity/strategic-seminar

[Goertzel 2007]

Goertzel, Karen Mercedes; Winograd, Theodore; McKinley, Holly Lynne; Oh, Lyndon; Colon,

Michael; McGibbon, Thomas; Fedchak, Elaine; & Vienneau, Robert. Software Security

Assurance State-of-the-Art Report (SOAR). Joint endeavor by IATAC (Information Assurance

Technology Analysis Center) with DACS (Data and Analysis Center for Software).

http://iac.dtic.mil/iatac/download/security.pdf (July 2007).

http://www.cnss.gov/Assets/pdf/cnssi_4009.pdf
https://buildsecurityin.us-cert.gov/swa/
http://iac.dtic.mil/iatac/download/security.pdf
https://buildsecurityin.us-cert.gov/swa/procwg.html
http://www.cyber.st.dhs.gov/docs/DHS-Cybersecurity-Roadmap.pdf
https://buildsecurityin.us-cert.gov/swa/measwg.html
http://www.sei.cmu.edu/library/abstracts/reports/04tn022.cfm
http://www.ercim.eu/activity/strategic-seminar

CMU/SEI-2010-TR-025 | 62

[Howard 2006]

Howard, Michael & Lipner, Steve. The Security Development Lifecycle. Microsoft Press, 2006.

[IPRC 2006]

International Process Research Consortium; Forrester, Eileen, ed. A Process Research

Framework. Software Engineering Institute, Carnegie Mellon University, 2006.

[Jones 2009]

Jones, Nigel A. Building In… Information Security, Privacy and Assurance—A High-Level

Roadmap. Cyber Security Knowledge Transfer Network. http://www.ktn.qinetiq-

tim.net/content/files/events/2009-04-23_building-in-security-assurance-privacy.pdf (2009).

[Leiwo 1999]
Leiwo, Jussipekka. “Observations on Information Security Crisis” (Computer Science and

Information Systems Reports Technical Reports TR-21). Proceedings of the 22
nd

 Information

Systems Research Seminar in Scandinavia (IRIS22): ―Enterprise Architectures for Virtual

Organizations,‖ Volume 2, ed. Kakola, Timo K., 313–324. Keuruu, Finland: August, 1999.

[Lipner 2005]

Lipner, Steve & Howard, Michael. The Trustworthy Computing Security Development Lifecycle.

http://msdn.microsoft.com/en-us/library/ms995349.aspx (2005).

[Maughan 2010]

Maughan, Douglas. “The Need for a National Cybersecurity Research and Development

Agenda.” Communications of the ACM 32, 2 (January 2010).

http://www.csl.sri.com/users/neumann/insiderisks08.html#220

[McGraw 2008]

McGraw, Gary & Chess, Brian. “Software [In]security: A Software Security Framework:

Working Towards a Realistic Maturity Model.” InformIT. (October 15, 2008):

http://www.informit.com/articles/article.aspx?p=1271382

[McGraw 2010]

McGraw, Gary; Chess, Brian; & Migues, Sammy. Building Security In Maturity Model BSIMM

v2.0. http://www.bsimm2.com/ (Accessed July 2010).

[Mead 2010]

Mead, Nancy R.; Allen, Julia H.; Ardis, Mark; Hilburn, Thomas B.; Kornecki, Andrew J.; Linger,

Rick; & McDonald, James. Software Assurance Curriculum Project Volume I: Master of Software

Assurance Reference Curriculum (CMU/SEI-2010-TR-005, ESC-TR-2010-005). Software

Engineering Institute, Carnegie Mellon University, 2010.

http://www.sei.cmu.edu/library/abstracts/reports/10tr005.cfm

[Microsoft 2010a]

Microsoft. Microsoft Security Development Lifecycle.

http://www.microsoft.com/security/sdl/about/process.aspx (2010).

http://www.ktn.qinetiq-tim.net/content/files/events/2009-04-23_building-in-security-assurance-privacy.pdf
http://www.ktn.qinetiq-tim.net/content/files/events/2009-04-23_building-in-security-assurance-privacy.pdf
http://www.bsimm2.com/
http://msdn.microsoft.com/en-us/library/ms995349.aspx
http://www.csl.sri.com/users/neumann/insiderisks08.html#220
http://www.informit.com/articles/article.aspx?p=1271382
http://www.sei.cmu.edu/library/abstracts/reports/10tr005.cfm
http://www.microsoft.com/security/sdl/about/process.aspx

CMU/SEI-2010-TR-025 | 63

[Microsoft 2010b]

Microsoft. Microsoft Security Development Lifecycle Version 5.0.

http://download.microsoft.com/download/F/2/0/F205C451-C59C-4DC7-8377-

9535D0A208EC/Microsoft%20SDL_Version%205.0.docx (Updated March 31, 2010).

[NASCIO 2009]

National Association of State Chief Information Officers (NASCIO). Desperately Seeking

Security Frameworks – A Roadmap for State CIOs. NASCIO, 2009.

http://www.nascio.org/publications/documents/NASCIO-SecurityFrameworks.pdf

[Okubo 2007]

Okubo, Takao & Tanaka, Hidehiko. “Secure Software Development through Coding Conventions

and Frameworks.” Second International Conference on Availability, Reliability and Security

(ARES‟07). Fujitsu Laboratories Ltd., Institute of Information Security, 2007.

[O’Neil 2008]

Tsipenyuk O‟Neil, Yekaterina; Chess, Brian; & West, Jacob. “JavaScript Hijacking: Only 1 Out

12 Popular AJAX Frameworks Prevents It.” AjaxWorld Magazine (November 14, 2008).

http://ajax.sys-con.com/node/747965

[OWASP 2009]

Open Web Application Security Project (OWASP). Software Assurance Maturity Model (SAMM)

v1.0. http://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model (2009).

[Pavlich-Mariscal 2006]

Pavlich-Mariscal, J. A.; Demurjian, S. A.; & Michel, L. D. A Framework for Composable

Security Definition, Assurance, and Enforcement. Springer Berlin/Heidelberg, 2006.

[Popick 2010]

Popick, Paul; Devine, Terence E.; & Moorthy, Rama. “A DoD-Oriented Introduction to the

NDIA‟s System Assurance Guidebook.” CrossTalk 23, 2 (Mar/April 2010).

http://www.stsc.hill.af.mil/crosstalk/2010/03/1003PopickDevineMoorthy.html

[SAFECode 2008]

Software Assurance Forum for Excellence in Code (SAFECode). Software Assurance: An

Overview of Current Industry Best Practices.

http://www.safecode.org/publications/SAFECode_BestPractices0208.pdf (February 2008).

[SAFECode 2010]

Software Assurance Forum for Excellence in Code (SAFECode). SAFECode.

http://www.safecode.org (2010).

[SEI 2010a]

Software Engineering Institute (SEI). Capability Model Integration (CMMI). Software

Engineering Institute, Carnegie Mellon University. http://www.sei.cmu.edu/cmmi/ (2010).

http://download.microsoft.com/download/F/2/0/F205C451-C59C-4DC7-8377-9535D0A208EC/Microsoft%20SDL_Version%205.0.docx
http://download.microsoft.com/download/F/2/0/F205C451-C59C-4DC7-8377-9535D0A208EC/Microsoft%20SDL_Version%205.0.docx
http://www.safecode.org/publications/SAFECode_BestPractices0208.pdf
mailto:permission@sei.cmu.edu
http://www.sei.cmu.edu/cmmi/
http://www.nascio.org/publications/documents/NASCIO-SecurityFrameworks.pdf
http://ajax.sys-con.com/node/747965
http://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model
http://www.stsc.hill.af.mil/crosstalk/2010/03/1003PopickDevineMoorthy.html

CMU/SEI-2010-TR-025 | 64

[SEI 2010b]

Software Engineering Institute (SEI). CMMI for Development (CMMI-DEV). Software

Engineering Institute, Carnegie Mellon University.

http://www.sei.cmu.edu/cmmi/tools/dev/index.cfm (2010).

[SEI 2010c]

Software Engineering Institute (SEI). CMMI for Acquisition. Software Engineering Institute,

Carnegie Mellon University. http://www.sei.cmu.edu/cmmi/tools/acq/index.cfm (2010).

http://www.sei.cmu.edu/cmmi/tools/dev/index.cfm
http://www.sei.cmu.edu/cmmi/tools/acq/index.cfm

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington
Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to
the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

September 2010

3. REPORT TYPE AND DATES

COVERED

Final

4. TITLE AND SUBTITLE

Building Assured Systems Framework

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Nancy R. Mead, Julia H. Allen

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2010-TR-025

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

ESC-TR-2010-025

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Researchers at the CERT® Program, part of Carnegie Mellon University’s Software Engineering Institute, need a framework to organize

research and practice areas focused on building assured systems. The Building Assured Systems Framework (BASF) addresses the

customer and researcher challenges of selecting security methods and research approaches for building assured systems. After

reviewing existing life-cycle process models, security models, and security research frameworks, the authors used the Master of

Software Assurance Reference Curriculum knowledge areas as the BASF. The authors mapped all major CERT research areas to the

BASF, proving that the BASF is useful for organizing building assured systems research. The authors also performed a gap analysis to

identify promising CERT research areas. The BASF is a useful structure for planning and communicating about CERT research. The

BASF will also be useful to CERT sponsors to track current research and development efforts in building assured systems.

14. SUBJECT TERMS

Assured Systems Development, Software Assurance, Framework

15. NUMBER OF PAGES

81

16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

20. LIMITATION OF

ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

	Building Assured Systems Framework
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Executive Summary
	Abstract
	1 The Problem
	2 Process Models for Software Development and Acquisition
	3 Software Security Frameworks, Models, and Roadmaps
	4 Security Research Roadmaps, Agendas, and Frameworks
	5 Indicators of Method Maturity and the MSwA2010 Body of Knowledge (BoK)
	6
Mapping of CERT Research to the MSwA2010 BoK
	7
 BASF Description
	8 Gap Analysis for Identification of Promising Research Areas
	9 Conclusion and Future Plans
	Appendix
	References

