

Performance Analysis of WS-Security
Mechanisms in SOAP-Based Web
Services

Marc Novakouski
Soumya Simanta
Gunnar Peterson
Ed Morris
Grace Lewis

November 2010

TECHNICAL REPORT
CMU/SEI-2010-TR-023
ESC-TR-2010-023

Research, Technology, and System Solutions
http://www.sei.cmu.edu

http://www.sei.cmu.edu

This report was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally
funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2010 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for inter-
nal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

External use. This document may be reproduced in its entirety, without modification, and freely distributed in
written or electronic form without requesting formal permission. Permission is required for any other external
and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about SEI publications, please visit the library on the SEI website (www.sei.cmu.edu/library).

mailto:permission@sei.cmu.edu
http://www.sei.cmu.edu/library

i | CMU/SEI-2010-TR-023

Table of Contents

Abstract vii

1 Introduction 1

2 Related Work 3

3 Experimental Approach 5
3.1 Experiment Goals 5
3.2 Experiment Subjects 5
3.3 Experiment Architecture 6
3.4 Experiment Configurations 7

3.4.1 Web Services 7
3.4.2 Configurations 7

3.5 Experiment Measures 8

4 Results and Analysis 9
4.1 The Cost of Security: Roundtrip Response Time 9

4.1.1 Simple vs. Complex Payload Structure 10
4.1.2 Startup Times 12
4.1.3 Rate of Cost Increase as Payload Size Increases 15
4.1.4 Convergence of Security Mechanisms 16

4.2 The Cost of Security: Message Size 18
4.3 The Cost of Security: System Resources 19

5 Summary 21

6 Future Work 23
6.1 Encryption Overhead vs. Message Overhead 23
6.2 Potential Alternative Experiment Configuration Elements 23

6.2.1 Encryption and Signing Algorithms 23
6.2.2 Message Size 23
6.2.3 Resource Limitations 23
6.2.4 Additional Security Mechanism Alternatives 24
6.2.5 REST-Style Web Services 24
6.2.6 Token by Reference 24
6.2.7 Alternative Security Framework Infrastructures 24

Appendix A Hardware Configurations 25

Appendix B Development Environment 27

Appendix C Runtime Environment 29

Appendix D Mapping of Apache Rampart Samples 31

Appendix E Employee Class 33

Glossary of Technical Terms 35

References 37

ii | CMU/SEI-2010-TR-023

iii | CMU/SEI-2010-TR-023

List of Figures

Figure 1: Basic Implementation Architecture of the Experiments 7

Figure 2: Roundtrip Time per Mechanism, Echo Service/Dynamic Payload 9

Figure 3: Sign Only versus Encrypt Only for Message Payloads up to 20kb, from Figure 2 Data 10

Figure 4: Startup Times per Mechanism/Service, Initial versus Subsequent Communications 12

Figure 5: Comparing Startup Times for Different Payload Sizes for Each Mechanism 13

Figure 6: Total Cost of Sign Only versus Encrypt Only, First 100 Messages 14

Figure 7: Total Cost of Both Sign/Encrypt Mechanisms versus Secure Conversation for Simple
Structure Payloads 14

Figure 8: Startup Behavior of each Security Mechanism with Echo Service in Static Payload
Configuration 16

Figure 9: Performance of Each Mechanism, Employee Details Service in Static Payload
Configuration 17

Figure 10: Message Overhead per Mechanism as Payload Size Increases 18

Figure 11: Secure ConversationPerformance, Default JVM Memory vs. Manually Set 25 MB–50MB
Range 20

iv | CMU/SEI-2010-TR-023

v | CMU/SEI-2010-TR-023

List of Tables

Table 1: Statistical Summary per Mechanism, Echo Service/Static Payload (ms) 9

Table 2: Statistical Summary per Mechanism, Employee Details/Static Payload (ms) 10

Table 3: Approximate Rates of Increase of Each Security Mechanism, from Figure 2 Data 15

Table 4: Convergence Points for Each Mechanism for Echo Service in
Static Payload Configuration 17

Table 5: Convergence Points for Each Mechanism for Employee Details Service in
Static Payload Configuration 17

Table 6: Message Size for Echo Service with Static Payload Configuration (Bytes) 19

Table 7: Hardware Configurations 25

Table 8: Development Environments 27

Table 9: Runtime Environment 29

Table 10: Mapping of Test Cases to Rampart Samples Used in the Experiments 31

vi | CMU/SEI-2010-TR-023

vii | CMU/SEI-2010-TR-023

Abstract

Identity management (IdM) solutions in web services environments are often compared on the
levels of performance and security they provide. Selecting the appropriate IdM solution for a giv-
en system or application often requires making tradeoffs between security and performance, while
also considering the system’s contextual and environmental requirements and constraints. This
paper presents the results of a series of experiments targeted at analyzing the performance impact
of adding WS-Security, a common security standard used in IdM frameworks, to SOAP-based
web services. The goal of this work is to establish a baseline of performance data that can be used
to explore performance/security tradeoffs in environments with complex attributes, such as re-
source or bandwidth limitations.

viii | CMU/SEI-2010-TR-023

1 | CMU/SEI-2010-TR-023

1 Introduction

Security and performance are two primary quality attributes that shape the architecture of any
software-based system. These two quality attributes are often in tension [5]. This tension is ampli-
fied in systems that use XML-based web services. While using XML as the communication me-
dium for web services promotes quality attributes such as interoperability, flexibility, modifiabili-
ty, and shorter development time [11], its use to support security significantly affects
performance—primarily due to its verbosity [4]. The standard means of adding security is to in-
crease the content of each XML message, which adds to the burden of an already heavyweight
communication medium and magnifies the tension between security and performance.

This paper describes a series of experiments that focus on understanding the performance impact
of different security-level mechanisms based on WS-Security.1 The collected data represents a
starting point for understanding tradeoffs between security and performance and forms a basis for
making engineering and architectural decisions. Section 2 presents related work. Section 3
presents an overview of the security mechanisms that are being examined and the experimental
methodology. Section 4 presents the experimental results and provides some analysis. Section 5
presents overall conclusions based on the experiment results. Finally, Section 6 presents possible
future work to leverage the baseline established in this paper.

1 WS-Security has been defined as “a standard of SOAP extensions that can be used when building secure Web

services to implement message content integrity and confidentiality” [6].

2 | CMU/SEI-2010-TR-023

3 | CMU/SEI-2010-TR-023

2 Related Work

There has been considerable effort to benchmark various aspects of web service performance.
Work by Head and associates [15] primarily focuses on comparing the performance of popular
SOAP 1.1 toolkit implementations circa 2005 and thus is out of date with the most recent SOAP
engines. Further research led by Head [16] expands that work to compare the performance of a
wide variety of XML parsers and updates to SOAP 1.2 but is still orthogonal to our interests in
security. Additional protocol comparison with no security considerations is found in “Perfor-
mance of Web Services” by Jeckle and Melzer [21]. Finally, the work reported in “Comparing
Web Service Performance” [22] demonstrates a performance comparison of two popular applica-
tion servers running web service benchmark tests.

Early discussions of the cost of implementing security included the blog posts in “Fat protocols
slow Web services” [23] and “Fat Protocols” [24]. The work in “Characterizing Secure Dynamic
Web Applications Scalability” [17] takes the first step in examining the cost of security in web
services, but restricts its scope to channel-based (SSL) security. “Comparison of performance of
Web services, WS-Security, RMI, and RMI-SSL” [19] takes the next step by comparing two dif-
ferent methods of distributed communication (RMI and web services) and comparing the impact
of implementing comparable security measures via WS-Security and RMI-SSL, but does not con-
sider different levels of security.

However, there are fewer examples of research that specifically examine the performance impact
of different levels of security in SOAP-based web service environments. Sosnoski’s work [18]
approaches our topic by discussing different approaches to securing web services, but does not
offer any quantitative comparison. The work by Liu, Pallickara, and Fox [20] is notable in this
context as it focuses on the comparison of performance of different encryption algorithms and
does a limited comparison of different security mechanisms. It differs from the work described in
this paper due to the far more extensive set of security approaches and metrics that are considered
in this paper.

The work that is most closely related to the work presented in this paper is by Chen, Zic, Tang,
and Levy [3]; this work compares different security mechanisms in detail and addresses payload
size. The contribution of the work described in this paper is the comparison of a larger range of
payload types and sizes, analyses of different payload complexities, the secure conversation secu-
rity mechanism, and mechanism startup costs, as well as the examination of the cost of security
from the perspective of message size and resource usage.

4 | CMU/SEI-2010-TR-023

5 | CMU/SEI-2010-TR-023

3 Experimental Approach

Adding security to web services has a cost that depends on the type (or types) of security mechan-
isms used. This cost can range from performance degradation, to increased message size, to addi-
tional consumption of resources, or some combination thereof. It is commonly accepted that
more complex security mechanisms incur greater costs due to increased overhead. However, this
may or may not be always true because the cost incurred by security is context- and situation-
dependent. In order to make informed decisions about performance/security tradeoffs, it is neces-
sary to measure and compare these costs.

The experiments described in this paper seek to establish a baseline of results that can be used to
compare different security mechanisms in a web services context. With such a baseline of mea-
surements, further experiments can be designed and executed to compare the tradeoffs in more
complex scenarios, such as contexts in which network connectivity is intermittent or where avail-
able computing resources are constrained or limited.

3.1 Experiment Goals

The goal of the experimentation was to find the answers to three high-level questions that address
the cost/benefit tradeoffs of security in the context of WS-Security and SOAP-based web services.
1. What is the cost of security with respect to roundtrip (request-response pair) time?

2. What is the cost of security with respect to message size?

3. What is the cost of security with respect to resource usage?

3.2 Experiment Subjects

This section describes the different end-to-end, message-level security mechanisms that were se-
lected to be benchmarked by the experiments. Each security mechanism under test was evaluated
from the perspective of the three experiment questions. In addition, combinations of the mechan-
isms (e.g., integrity and confidentiality) were benchmarked to compare their performance with
that of the individual mechanisms. Combinations of mechanisms will generally provide a more
secure environment overall than individual mechanisms alone and are commonly used in com-
mercial and industrial security frameworks such as multifactor/multilayer authentication [12].

Security Mechanism #1: No Message-Level Security (No Security)
The first mechanism under test used a plain SOAP message exchange with no security overhead.
This established a performance baseline.

Security Mechanism #2: Message Authentication (Password Only)
The second mechanism involved username/hashed password authentication implemented at the
message level. To accomplish this, authentication tokens within the SOAP message were enabled
using WS-Security.

6 | CMU/SEI-2010-TR-023

Security Mechanism #3: Message Integrity (Sign Only)
The third mechanism involved ensuring message integrity through the use of digital signatures
and hashing. To accomplish this, WS-Security in the message header was enabled by adding a
digital signature to the SOAP document, using XML Signature, for both the request and the re-
sponse.

Security Mechanism #4: Message Confidentiality (Encrypt Only)
The fourth mechanism involved encryption to ensure message confidentiality. To accomplish this,
WS-Security was used in the message header to encrypt the SOAP document, using XML En-
cryption, for both the request and the response.

Security Mechanism #5: Integrity and Confidentiality (Sign Then Encrypt)
The fifth mechanism involved a combination of two different approaches, digital signatures and
encryption. To accomplish this, WS-Security was used in the message header first to apply a digi-
tal signature and then to encrypt the SOAP document, for both the request and the response.

Security Mechanism #6: Integrity and Confidentiality (Encrypt Then Sign)
The sixth mechanism reverses the order of operations in Security Mechanism #5. To accomplish
this, WS-Security was used in the message header first to encrypt and then to apply a digital sig-
nature to the SOAP/XML document, for both the request and the response.

Security Mechanism #7: Secure Conversation
The seventh mechanism provides a conversation-level (as opposed to a message-level) approach
to security. A conversation, or sequence of messages exchanged between two participants, can
have security data abstracted to a predetermined token that is established at the beginning of the
conversation. The token is attached to the header of each following message and specifies the me-
chanisms to be used for each message in the conversation. This approach is in contrast to mechan-
isms 2 through 6, in which all necessary security mechanism information is included in the header
of each message.

The implementation of the Secure Conversation mechanism for this experiment is slightly differ-
ent from the WS-SecureConversation standard. This implementation uses the sample implementa-
tion provided by Apache Rampart that leverages a SymmetricBinding construct for bootstrap-
ping—with a timestamp, a signature, and encryption as the security mechanisms [10, 1].

3.3 Experiment Architecture

The test suite consisted of several experiments that focused on the performance aspects of inter-
est: roundtrip time, message size, and resource usage.

The experiments were run on a pair of servers running Apache Tomcat with Apache Axis2 as the
SOAP engine and Apache Rampart as the security module [14, 2, 1]. The experiments leveraged
sample implementations of the different security mechanisms provided by Apache Rampart.
These examples consisted of a simple echo pattern in which the client passes a “Hello World”
string to the service and the service echoes the string back [1]. Most of the experiments modify
the basic service in minor ways to test different aspects of the communication. These modifica-
tions are explained in detail in the following sections. To gather performance measurements, the

7 | CMU/SEI-2010-TR-023

examples were modified using the Perf4J and Apache Log4J framework and inserting instances of
the Perf4J StopWatch class [7, 8].

All of the test cases are based on request-response message exchanges using HTTP as the com-
munications channel. Because an actual implementation is likely to use HTTPS/SSL, this aspect is
considered a constant and therefore was removed from these test cases. Figure 1 provides a high-
level view of the basic architecture of the testing framework.

Figure 1: Basic Implementation Architecture of the Experiments

For further technical details on the experiments, please consult Appendices A-E.

3.4 Experiment Configurations

The testing efforts looked at several ways to benchmark the impact of security on roundtrip re-
sponse time, message size, and resource usage. To analyze this impact, each experiment exercised
one of two web services using one of two test configurations.

3.4.1 Web Services

“Echo” Web Service (Simple Payload Structure): This service takes an input string and returns
the same string as the response.

“Employee Details” Web Service (Complex Payload Structure): This service takes no input
and returns a one-element array of employee objects. An employee object contains an employee’s
details, such as name, e-mail address, phone number(s), and social security number.

3.4.2 Configurations

“Static Payload” Configuration: In this configuration, a client application executes the target
web service 10,000 consecutive times with the default input. (The Employee Details service has
no default input.) Both services were exercised in this configuration.

“Dynamic Payload” Configuration: In this configuration, a client application executes the target
web service 10,000 consecutive times with an input payload that is increased in each execution.
This configuration is only used with the Echo service, which has a default initial payload of a
simple “Hello World” string.2 The payload is increased with each execution by appending an ad-

2 The experiments with the Echo service used a “Hello World ” string, a 12-character string with a space charac-

ter at the end. There was no particular reason to use this string instead of the 11-character “Hello World” string.
It was an arbitrary choice.

8 | CMU/SEI-2010-TR-023

ditional “Hello World” string to the payload used in the previous execution. This results in a range
of payload sizes from 12 bytes up to 100+ kilobytes over the 10,000 executions.

3.5 Experiment Measures

Consistent with the experiment goals, each experiment analyzed three different benchmarking
measures:
1. roundtrip response time
2. message size
3. resource usage

While we can measure roundtrip response time and message size directly, our approach to mea-
suring resource usage had to be less obvious. One approach we could have taken to analyze the
resource usage of the different security mechanisms would be to record CPU usage and memory
usage over the course of the execution of a test. However, CPU and memory usage are extremely
dependent upon the resources available on a given platform. We chose instead to simply record
those measures and observe the impact upon them (if any) of different Java Virtual Machine
(JVM) environments.

Our results (which will be discussed in detail later) showed that in resource-constrained environ-
ments, memory management tasks such as garbage collection can have significant performance
impact upon the execution of even simple web services. Therefore, our approach was to identify
the inflection point at which the memory management tasks stopped impacting the performance of
the experiments. While exact by no measure, this approach can give a general idea of the re-
sources necessary to effectively leverage the security mechanisms under test.

9 | CMU/SEI-2010-TR-023

4 Results and Analysis

This section describes experiments we performed to test the performance implications of the secu-
rity mechanisms discussed in Section 3.2 and summarizes our results. The purpose of this analysis
is to understand the impact of using different security mechanisms on system performance. As
discussed in Section 3, the experiments also establish a baseline of metrics for future work on tra-
deoffs in complex environments.

4.1 The Cost of Security: Roundtrip Response Time

Our first focus was on the performance of each security mechanism for a roundtrip response time.
The initial experiments confirmed our hypothesis that adding security to web services considera-
bly increases roundtrip response time. Roundtrip response time of SOAP-based web services with
different security mechanisms can be as much as 20 times higher than that of an unsecured web
service, as shown in Table 1. This table shows the average, median, and standard deviation
roundtrip time in milliseconds of each mechanism in a test using the basic Echo service (simple
payload structure) in the static payload configuration.

Table 1: Statistical Summary per Mechanism, Echo Service/Static Payload (ms)

No
Security

Password
Only

Sign Only

Encrypt
Only

Sign ->
Encrypt

Encrypt ->
Sign

Secure
Conversation

Average 3 8 38 36 65 65 39
Median 3 7 37 36 64 65 38
Std. Dev. 0.696 1.862 2.814 2.218 3.332 3.117 3.682

Building on these results, we looked at the performance of each security mechanism by running
an experiment with the Echo service using the dynamic payload configuration. Figure 2 shows the
performance measures of each mechanism in this experiment.

Figure 2: Roundtrip Time per Mechanism, Echo Service/Dynamic Payload

0

100

200

300

400

12
38

88
77

64
11

64
0

15
51

6
19

39
2

23
26

8
27

14
4

31
02

0
34

89
6

38
77

2
42

64
8

46
52

4
50

40
0

54
27

6
58

15
2

62
02

8
65

90
4

69
78

0
73

65
6

77
53

2
81

40
8

85
28

4
89

16
0

93
03

6
96

91
2

10
07

88
10

46
64

10
85

40
11

24
16

11
62

92

Time
(ms)

Message Payload Size (bytes)

No Security Password Only Sign Only Encrypt Only

Sign > Encrypt Encrypt > Sign WS-SecConvSign-> Encrypt Encrypt-> Sign

10 | CMU/SEI-2010-TR-023

Finally, we re-ran the experiment with the Employee Details service (complex payload structure)
in the static payload configuration to examine how the different security mechanisms handle the
difference in payload type and size. These results are shown in Table 2.

Table 2: Statistical Summary per Mechanism, Employee Details/Static Payload (ms)

No
Security

Password
Only

Sign Only

Encrypt
Only

Sign ->
Encrypt

Encrypt ->
Sign

Secure
Conversation

Average 100 106 174 157 197 190 228
Median 100 105 173 156 196 190 237
Std. Dev. 5.298 6.115 8.376 7.847 9.673 7.494 23.483

The data collected from these experiments can be analyzed in a number of ways. The only overall
conclusion is that there is no clear “winner”; however, the analysis presented in the following sec-
tions should help in making design decisions.

4.1.1 Simple vs. Complex Payload Structure

From the results in Table 1, and Table 2, and Figure 2, it is clear that message payload structure
(whether a simple string or a complex object converted to an XML-based structure) can signifi-
cantly impact the performance of each security mechanism. Even though it would be logical to
assume that the more the complex a mechanism the larger the impact on roundtrip response time,
results from the three experiments do not support this assumption. We analyzed Sign Only versus
Encrypt Only, the two Sign/Encrypt mechanisms, and Secure Conversation.

It is useful to compare the performance of Sign Only to Encrypt Only for the Echo service case to
see where they diverge, because Figure 2 suggests that they are roughly equal for some small
message payload sizes. Figure 3 shows this comparison.

Figure 3: Sign Only versus Encrypt Only for Message Payloads up to 20kb, from Figure 2 Data

Analysis of this data suggests that for messages up to approximately 7kb in payload size with
simple payload structure, Encrypt Only performs as well as Sign Only. However, past the 7kb
payload size point Sign Only provides superior performance.

0

20

40

60

80

100

120

24 94
8

18
72

27
96

37
20

46
44

55
68

64
92

74
16

83
40

92
64

10
18

8
11

11
2

12
03

6
12

96
0

13
88

4
14

80
8

15
73

2
16

65
6

17
58

0
18

50
4

19
42

8
20

35
2

21
27

6
22

20
0

23
12

4

Time
(ms)

Message Payload Size (bytes)

Sign Only Encrypt Only

11 | CMU/SEI-2010-TR-023

Values in Table 1 and Table 2 indicate that Sign Only performs better than Encrypt Only for mes-
sages with simple payload structure, but Encrypt Only outperforms Sign Only for messages with
complex payload structure. Sign Only roundtrip time increases more slowly as payload size in-
creases for the simple payload structure case (for more detail, see Section 4.1.3).

The data in those tables also suggests that both Sign/Encrypt mechanisms have virtually identical
performance in the simple payload structure case, but Encrypt then Sign performs better in the
complex payload structure case. This mechanism has a lower average roundtrip time and greater
reliability (shown as a smaller standard deviation). While no data collected provides conclusive
explanation for this difference, one possibility is that Encrypt then Sign causes less work because
it does not require encryption/decryption of the digital signature prior to verification.

Finally, in the simple payload case Secure Conversation shows the best performance of all of the
mechanisms that use encryption (see Table 1). However, when used with complex structure payl-
oads, it shows the worst performance of all mechanisms (see Table 2). In addition, for complex
payload structures, Secure Conversation appears to have somewhat unreliable performance, exhi-
bited by the high standard deviation numbers noted in Table 2. The reason for the low reliability
is unknown; one possibility is that the overhead for maintaining the conversation token may be
responsible.

Conclusions
• In all cases, the best performing mechanism (aside from no security at all) was the Password

Only mechanism. Because this mechanism provides relatively weak security, its use is usually
not recommended. However, in situations where the need for message-level security is low
(e.g., secured networks, SSL-based communications) Password Only may be a viable security
mechanism that provides maximum performance.

• There are several tradeoffs between Sign Only and Encrypt Only approaches to message-level
security. In contexts where either will provide sufficient security and performance, the choice
may be made based on the complexity of the message payload structure. For simple payload
structures, a Sign Only approach provides the best performance, while for complex payload
structures the Encrypt Only security mechanism performs the best. Also, it should be noted
that for messages with simple payload structure and payload size under 7kb or so, both me-
chanisms will result in approximately the same performance profile.

• In the case of messages with simple payload structure, both Sign/Encrypt mechanisms have
the same performance. For messages with complex payload structures, Encrypt then Sign
outperforms the Sign then Encrypt approach. Also, if a token-based session mechanism such
as Secure Conversation is unnecessary or undesired, the Encrypt then Sign mechanism is
probably the better approach.

• When used with messages with simple payload structure, Secure Conversation is the top per-
former of all the encryption-enabled mechanisms we tested. However, Secure Conversation
does not perform well with messages with complex payload structure and thus seems to be
appropriate only when performance is not the driving quality attribute.

12 | CMU/SEI-2010-TR-023

4.1.2 Startup Times

Startup time is the amount of time that a roundtrip communication requires on the first execution
of an experiment. This time can be relevant when lost connections need to be reestablished. Our
test results confirmed the intuitive expectation that more complex security mechanisms require
longer startup times (see Figure 4). One interesting phenomenon is that there are two classes of
startup times, initial communications and all subsequent communications. Initial communica-
tions represent the first roundtrip communication that a service participates in after deployment or
redeployment. Results show that the startup time associated with initial communications tends to
be roughly twice as long on average than the startup time for all subsequent communications with
that service.

Figure 4: Startup Times per Mechanism/Service, Initial versus Subsequent Communications

The data in Figure 4 for Sign Only startup time matches to some extent data for its non-startup
roundtrip time relative to performance for each mechanism in Table 1, Table 2, and Figure 2. The
differences observed between startup and non-startup times are that
• Startup time for Sign Only shows significantly better performance than any mechanism with

encryption, with Echo or Employee Details service (see Figure 4).

• Non-startup time for Sign Only, Encrypt Only, and Secure Conversation is similar with Echo
service (see Table 1).

• Non-startup time for Sign Only has worse performance than Encrypt Only, though better than
Secure Conversation by a significant margin, with Employee Details service (see Table 2).

Encrypt Only startup time is similar to both Sign/Encrypt options, a result that does not correlate
to its non-startup performance. This result is unexpected and cannot be explained by our data or
analysis. Perhaps the time required to initially access the shared keys is significant.

Startup time performance of Secure Conversation correlates best with the non-startup roundtrip
time performance results presented in Table 2, where it was the worst performer. Startup time for

0

1000

2000

3000

4000

5000

6000

7000

8000

Time
(ms) Echo WS/Normal

Echo WS/Initial

Employee WS/Normal

Employee WS/Initial

Employee WS/Subsequent

Echo WS/Subsequent

13 | CMU/SEI-2010-TR-023

Secure Conversation is especially poor for initial communications: a 59% increase over the En-
crypt then Sign (versus a 22% increase over Encrypt then Sign in subsequent communications).

One other notable result is the increase in roundtrip time when the Employee Details web service
is used instead of the Echo service. One reason for the increase might be payload size.3 The base
payload of the Echo web service is 12 bytes, while that of Employee Details is approximately 112
bytes [26, 27]. Considering that the call to the Employee Details service has no arguments while
the Echo service has the same input as output, the roundtrip payload size with the Employee De-
tails service is approximately 450% larger than that with the Echo (112 versus 24 bytes).

To examine how greater payload size increases roundtrip time, we repeated the experiments using
the Echo service with static payloads of 60 bytes (5 concatenated “Hello World” strings) and of
120 bytes (10 concatenated “Hello World” strings). In the 60-byte test, total message payload
over the roundtrip sequence was 120 bytes, close to the Employee Details payload, testing the
impact of sending the same total payload. The 120-byte test evaluated the impact of the same
payload size being transferred on the initial communication. These tests allow us to examine if
roundtrip or initial payload size was the reason for the roundtrip time increase observed when us-
ing the Employee Details web service.

As shown in Figure 5, the effect of payload size on roundtrip time appears to be negligible. Some
small increases in time resulted as payload size increased with the Echo web service, but some
small decreases were seen as well. For each security mechanism, in addition, there is a relatively
constant increase in roundtrip time when the Employee Details service case was used, compared
to the Echo service. As such, the data seems to suggest that payload complexity drives perfor-
mance difference.

Figure 5: Comparing Startup Times for Different Payload Sizes for Each Mechanism

3 Estimates of the payload sizes are based on methods for measuring the size of Java objects that are described

in the references cited.

0

500

1000

1500

2000

2500

3000

Time
(ms)

Echo WS/12 byte payload Echo WS/60 byte payload Echo WS/120 byte payload Employee WS/112 byte payload

14 | CMU/SEI-2010-TR-023

The final observations that can be made based on the startup data have to do with total cost of
communication. While Table 2 shows that Encrypt Only outperforms Sign Only in non-startup
communications with complex payloads (157 versus 174ms), Figure 4 shows that startup times
for Encrypt Only exceed those of Sign Only. Figure 6 plots the total time of the two mechanisms,
showing that for roughly the first 46 messages Sign Only performs better than Encrypt Only.

Figure 6: Total Cost of Sign Only versus Encrypt Only, First 100 Messages

Also, for simple payloads, the total cost of both Sign/Encrypt mechanisms can be lower than that
of the Secure Conversation mechanism despite the lower non-startup costs of Secure Conversa-
tion for some finite set of messages. Figure 7 shows this inflection point to be roughly after the
12th message.

Figure 7: Total Cost of Both Sign/Encrypt Mechanisms versus Secure Conversation for Simple Struc-

ture Payloads

0

5000

10000

15000

20000

25000
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Time
(ms)

Message Number

Sign Only Encrypt Only

0

1000

2000

3000

4000

5000

6000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Time
(ms)

Mesasge Number

Sign > Encrypt Encrypt > Sign Secure ConvSign-> Encrypt Encrypt-> Sign

15 | CMU/SEI-2010-TR-023

Conclusions
• Initial communications (the first that a service has after deployment or redeployment) will

have roughly twice (or more) the subsequent communications cost.

• Any security mechanism that uses encryption will experience significantly longer startup
times than any non-encryption mechanism.

• Each security mechanism has a significant impact on roundtrip response time of the initial
communications a client application has with a given service. The more complex the security
mechanism, the higher the cost incurred. (Recommendation: If possible, newly deployed web
services should be immediately executed by some application, such as a test or dummy appli-
cation, to eliminate the post-deployment initial communications startup cost.)

• Communications with services that handle complex structure payloads (such as XML data
types) will have a higher startup cost than communications that deal with simple structure
payloads.

• For short message sequences (< 50 message exchanges), the Sign Only mechanism performs
better than the Encrypt Only mechanism, due to lower startup time. For extremely short mes-
sage sequences (< 10 message exchanges) either Sign/Encrypt mechanism performs better
than the Secure Conversation mechanism, due to lower startup time.

4.1.3 Rate of Cost Increase as Payload Size Increases

The data represented by Table 3 suggests that increasing payload size causes some security me-
chanisms to experience higher roundtrip time. If true, this finding provides insight on which me-
chanisms are better suited for larger or smaller payload sizes. Table 3 presents an analysis of the
rates for each mechanism at minimum payload size and 117kb payload size.

Table 3: Approximate Rates of Increase of Each Security Mechanism, from Figure 2 Data
No
Security

Password
Only

Sign
Only

Encrypt
Only

Sign ->
Encrypt

Encrypt
-> Sign

Secure
Conversation

Minimum (ms) 3.00 10.00 42.00 42.00 71.00 71.00 41.00
Average @
117kb (ms) 29.55 47.45 108.18 163.64 216.18 212.45 130.00

Increase (%) 884.85 374.55 157.58 289.61 204.48 199.23 217.07

Due to the relatively high standard deviations documented in Table 1 and Table 2, it is difficult to
calculate a rate of increase for each mechanism. We took the minimum value found during the
dynamic payload Echo service experiment (results documented in Figure 2) and compared it to
the average of the last 10 results from that data set (where payload is roughly 120,000 bytes or
~117k). We used the average time to mitigate spikes due to memory management issues. This
method is inexact for determining the rate of increase, but it provides a general approximation that
confirms what was observed in Figure 2. Of the mechanisms with encryption, Sign Only performs
best, Encrypt Only worst, with the Sign/Encrypt mechanisms and Secure Conversation rating be-
tween the two.

This analysis confirms the hypothesis that the most complex algorithms have the highest rate of
increase in roundtrip time cost as payload increases. The most interesting result is Secure Conver-

16 | CMU/SEI-2010-TR-023

sation, which performs well compared to the encryption-based mechanisms and confirms the early
analyses from examining Figure 2.

Conclusions
• For message payloads with simple structure, the Sign Only mechanism is the best non-trivial

security mechanism for passing data of increasing sizes.

• For message payloads with simple structure, Secure Conversation can be a good choice for
enabling security while ensuring good performance as payload size increases, compared to
other mechanisms.

4.1.4 Convergence of Security Mechanisms

One property that may be important to examine is the speed at which a given security mechanism
converges to its normal values. As shown in Figure 8, each mechanism needs a certain number of
communication exchanges before it stabilizes to some predictable level of performance.

Figure 8: Startup Behavior of each Security Mechanism with Echo Service in Static Payload Configura-
tion

This stabilization behavior can be defined by calculating the mathematical convergence of the
sequence. A sequence of real numbers is said to converge if there is some number X such that past
some point in the sequence, all following numbers in the sequence are within some range of X
[25]. For a given element Z of the sequence, if it is the Yth or later number in the sequence, |X – Z|
< some value ε.

Unfortunately, inherent noise in the data prevented the calculation of a useful value of Y for any
value of ε smaller than 30ms, a significantly large range for data sets that show standard devia-
tions no larger than 4ms (as shown in Table 1). We removed noise from the equation by looking
not at ranges, but at how far into the data set we have to go for each mechanism to produce a val-
ue that is less than or equal to the resulting average. While not nearly as precise a measure of con-
vergence, this approach eliminates the effect of noise and provides a general sense of the speed of
convergence. Table 4 shows the results of this analysis on the experiment that used the Echo ser-
vice in static payload configuration.

0

50

100

150

200

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

21
1

22
1

23
1

24
1

25
1

26
1

27
1

28
1

29
1

Time
(ms)

Message Number

No Security Password Sign Only Encrypt Only

Sign > Encrypt Encrypt > Sign Secure ConvSign-> Encrypt Encrypt-> Sign

17 | CMU/SEI-2010-TR-023

Table 4: Convergence Points for Each Mechanism for Echo Service in Static Payload Configuration

No
Security

Password
Only

Sign
Only

Encrypt
Only

Sign ->
Encrypt

Encrypt
-> Sign

Secure
Conversation

Convergence
Point 22 505 883 792 570 588 769

To contrast this, the same numbers were calculated for the Employee Details service. The results
are presented in Table 5.

Table 5: Convergence Points for Each Mechanism for Employee Details Service in Static Payload
Configuration

No
Security

Password
Only

Sign
Only

Encrypt
Only

Sign ->
Encrypt

Encrypt
-> Sign

Secure
Conversation

Convergence
Point 21 138 143 98 126 148 17

On the one hand, the numbers between Table 4 and Table 5 are similar, in that No Security takes a
short time to reach its ultimate average while other mechanisms take much longer. This compari-
son confirms the hypothesis that adding security mechanisms is costly to roundtrip time from a
convergence standpoint. On the other hand, the stabilization occurs much faster in the complex
payload structure case overall (with the Employee Details service), which is not easily explained
and is outside of the scope of this work.

The outlier data point to note is the performance of Secure Conversation in the complex payload
structure case. It outperforms even the No Security option. While extremely unexpected, this re-
sult can be explained by looking at the variance in this mechanism’s performance. Figure 9 is a
graph of its performance compared to the other mechanisms for the complex payload structure
configuration. The significant variance in the performance of Secure Conversation affects the av-
erage roundtrip response, allowing the convergence test to be met sooner than expected.

Figure 9: Performance of Each Mechanism, Employee Details Service in Static Payload Configuration

Conclusions
• The only appreciable difference in convergence rate between the security mechanisms is with

the No Security option. There may be some variance between the different mechanisms.

0
100
200
300
400
500

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

21
1

22
1

23
1

24
1

25
1

26
1

27
1

28
1

29
1

Time
(ms)

Message Number

No Security Password Sign Only Encrypt Only

Sign > Encrypt Encrypt > Sign Secure ConvSign-> Encrypt Encrypt-> Sign

18 | CMU/SEI-2010-TR-023

However the startup costs associated with each mechanism (Section 4.1.2) overwhelm the ef-
fects of any observable differences in convergence rate.

• There is strong evidence of significant noise or some other effect that prevents Secure Con-
versation from converging at a predictable rate relative to the other mechanisms.

• Overall, it is difficult to take the results on rate of convergence as a strong recommendation
about a security mechanism, due to an inability to measure the values precisely; therefore this
generalized data should be used sparingly. If used at all, convergence rate should be consi-
dered only in simple payload structure cases. In complex payload structure contexts, this data
suggests that it has even less influence.

4.2 The Cost of Security: Message Size

The second focus of the experimentation was message size. Our hypothesis was that adding secu-
rity to messages will increase their size. Further, if adding security does increase message size, we
wanted to determine how much of an increase to predict for each mechanism.

We extracted message sizes associated with each security mechanism from roundtrip response
times. We assessed the impact of security as message payload size increases using the Echo ser-
vice in a dynamic payload configuration (with payloads increasing to 100kb). As Figure 10
shows, security mechanisms that do not use encryption, such as Sign Only, add a constant amount
of size (overhead) to the message, but encryption-enabled mechanisms add message overhead at a
linear rate with payload size increase.

Figure 10: Message Overhead per Mechanism as Payload Size Increases

In addition to identifying a trend across increasing payload sizes, it is instructive to compare the
base overhead sizes of each mechanism. This information is presented in Table 6 for the simplest
case.

0
10000
20000
30000
40000
50000
60000

12
41

52
82

92
12

43
2

16
57

2
20

71
2

24
85

2
28

99
2

33
13

2
37

27
2

41
41

2
45

55
2

49
69

2
53

83
2

57
97

2
62

11
2

66
25

2
70

39
2

74
53

2
78

67
2

82
81

2
86

95
2

91
09

2
95

23
2

99
37

2
10

35
12

10
76

52
11

17
92

11
59

32

Se
cu

ri
ty

 O
ve

rh
ea

d
(b

yt
es

)

Message Payload Size (bytes)

No Security Password Only Sign Only Encrypt Only Sign > Encrypt Encrypt > SignSign-> Encrypt Encrypt-> Sign

19 | CMU/SEI-2010-TR-023

Table 6: Message Size for Echo Service with Static Payload Configuration (Bytes)4
No
Security

Password
Only

Sign
Only

Encrypt
Only

Sign ->
Encrypt

Encrypt ->
Sign

Raw Payload Size 11 11 11 11 11 11
Request Size 522 1396 3956 2480 7511 7385
Response Size 479 479 4627 2677 8181 8053

In Table 6, the raw payload size data in is the message, and the request size is the message placed
in a SOAP envelope. Putting the message in the SOAP envelope has a significant size cost that
increases as security mechanisms are added. Further, the increased request size correlates with the
response time for a mechanism, showing that cost increases with complexity. One additional re-
sult worth noting from this experiment is that Encrypt Only outperforms Sign Only, where the
message with request size is 4kb or less.

Conclusions
• As with roundtrip response time, the Password Only security mechanism adds the least mes-

sage overhead. Also, as with roundtrip response time, this mechanism is not recommended
except in environments that have low message-level security requirements.

• Where it is important to limit message overhead while using a non-trivial security mechan-
ism, Encrypt Only offers the best performance up to payload sizes of roughly 4k. Past this
size, Sign Only should be used to avoid the steadily increasing costs of using encryption.

4.3 The Cost of Security: System Resources

The third focus of the experiments was the cost of security in terms of system resources. Our hy-
pothesis was that security mechanisms would require substantial system resources to perform ef-
fectively. The goal was to examine the resource requirements of the security mechanisms in order
to provide guidance on how to select computing resources for a given security framework.

One observation made early during the experimentation is that security carries a significant re-
source cost. Even using simple services, we found performance degradation due to memory man-
agement issues for all but the most basic message payloads. We addressed the problems for the
most part by tuning the JVM with a more effective garbage collection algorithm and with in-
creased memory allocation [9].

The results show that Secure Conversation is more sensitive to the amount of available resources
than the other mechanisms. Figure 11 compares the impact of increasing the allocated memory to
the test application for this mechanism. Realizing the maximum potential roundtrip time perfor-
mance of Secure Conversation may depend upon the resources available to the infrastructure.

4 This data was not available for the Secure Conversation mechanism. Future work will gather this data.

20 | CMU/SEI-2010-TR-023

Figure 11: Secure ConversationPerformance, Default JVM Memory vs. Manually Set 25 MB–50MB
Range

Conclusions
• Security mechanisms such as Sign Only and Encrypt Only (e.g., XML Signature and XML

Encryption) require significant resources to perform at peak levels. Services and applications
intended to implement these mechanisms as security services will likely require more than the
default memory allocated to them by a standard Sun Hotspot JVM [13]. In order to meet these
resource needs, developers should identify expected message payload sizes and structure
complexities early in the design process and tune the services to perform optimally on the
available hardware.

• Secure Conversation and similar mechanisms will likely require more resources than non-
session-based mechanisms in order to perform at peak levels. Implementations of these me-
chanisms should be tuned aggressively to ensure that the necessary resources are available to
ensure the expected performance.

0
100
200
300
400
500
600

12
75

12
15

01
2

22
51

2
30

01
2

37
51

2
45

01
2

52
51

2
60

01
2

67
51

2
75

01
2

82
51

2
90

01
2

97
51

2
10

50
12

11
25

12

Time
(ms)

Message Payload Size (bytes)

Secure Conv Secure Conv with added memory

21 | CMU/SEI-2010-TR-023

5 Summary

There is no simple answer to the critical question of whether the cost of web service security is
acceptable or too high. The exact cost of security on the runtime performance of a SOAP-based
web service will depend on many factors. A good understanding of the quality expectations in a
specific environment, as well as of the cost of security relative to the costs of service execution,
network latency, and overhead can be determining factors. Variables such as JVM heap memory,
garbage collection algorithm, and network bandwidth contribute to roundtrip response time. Our
work shows that there is a sufficient range of alternative security mechanisms to perform an effec-
tive tradeoff analysis, once the driving use cases in a specific context have been analyzed.

Selecting the appropriate mechanisms for web service security involves weighing the security
benefits of individual mechanisms against their costs. Whether measured in terms of roundtrip
response time, message size, or resource usage, security mechanisms have a considerable impact
on the performance of SOAP-based web services. Our experiments reveal that adding security to
web services considerably increases roundtrip response time and message size and that more
complicated security mechanisms require greater system resources. The experiments also estab-
lish a baseline from which to explore different security framework contexts and establish general
guidelines for selecting appropriate mechanisms.

22 | CMU/SEI-2010-TR-023

23 | CMU/SEI-2010-TR-023

6 Future Work

There are many opportunities for further investigation. These include high-level questions raised
by the initial experimental results, as well as the effect of additional configuration parameters on
the overall performance of secure web services. In this section, we briefly describe the following
possible future work in those areas.

6.1 Encryption Overhead vs. Message Overhead

Overhead associated with an encryption increases with payload size. In contrast, message over-
head stays constant when a message has been authenticated or digitally signed. Further investiga-
tion could reveal why this difference occurs. It would also be useful to find whether there is an
optimal point at which the overhead associated with encrypting a large message outweighs the
message overhead associated with splitting the message into smaller chunks and sending each
chunk individually.

6.2 Potential Alternative Experiment Configuration Elements

Possible configuration elements that could be analyzed in further experiments include algorithm
variation (for encryption and digital signing), simulation of constrained environments, alternative
security mechanisms, and alternative security framework infrastructures.

6.2.1 Encryption and Signing Algorithms

The existing experiment setup can be leveraged as a baseline and expanded to include measure-
ment of the performance impact of combinations of the following encryption and signing algo-
rithms:
• Suite B algorithms

• AES-128

• SHA-1

• 1024 bit RSA

• For SSL ciphers - 3DES

6.2.2 Message Size

Security testing can be expanded to include measurement of the performance impact of larger
files (1MB+) in order to understand the impact of moving large files such as media (pictures, vid-
eo, etc.) or programs.

6.2.3 Resource Limitations

Security testing can be expanded to include measurement of the performance impact of the vari-
ous security implementation alternatives in a resource-constrained environment.

24 | CMU/SEI-2010-TR-023

6.2.3.1 Network Bandwidth

One possible experiment is the simulation of an unreliable network environment to measure the
performance impact of various security implementation alternatives under conditions such as low-
bandwidth connection, unexpected connection loss, and unexpected packet loss. Possible software
that could be used to support these tests includes NistNet [26] and WanEm [27].

6.2.3.2 CPU Speed / Available Memory

Another possible experiment is the simulation of a reduced-hardware environment from the
standpoint of CPU and memory.

6.2.3.3 JVM Settings

Tuning the JVM environment includes increasing heap size and modifying the garbage collection
algorithm to reduce the impact of the garbage collector as message size increases. Refinements
like these would be helpful to in determining minimum recommended settings for different me-
chanism and payload combinations. Additional experimentation can also be performed to see if
any other JVM settings impact performance.

6.2.4 Additional Security Mechanism Alternatives

6.2.4.1 Partial Encryption

This alternative includes encrypting part of the message, such as the XML content, but not all of
it.

6.2.4.2 Secure Session Token

This alternative implements the WS-SecureConveration standard and adds a Security Context
Token (SCT) to the message.

6.2.4.3 Double Encryption

This alternative performs encryption twice on a message to provide additional security.

6.2.5 REST-Style Web Services

This alternative examines how REST may be used to improve performance in certain cases [22].

6.2.6 Token by Reference

For constrained devices, token-by-reference (as in SAML) may offer an improvement over pass-
ing tokens by value.

6.2.7 Alternative Security Framework Infrastructures

The experiments in this report use the Axis2 SOAP engine with the Rampart module for provid-
ing WS-* security implementations [2, 1]. Alternative SOAP engines such as the IBM WebSphere
SOAP engine can be tested to see if there is possible impact by the engine on different security
implementations [28].

25 | CMU/SEI-2010-TR-023

Appendix A Hardware Configurations

Table 7: Hardware Configurations

Property Service Provider Hardware Value Service Consumer Hardware Value
Host Name pcbls.sei.cmu.edu pcblt.sei.cmu.edu
Operating System Ubuntu Linux 2.6.28-15-generic SMP
CPU 2 X Intel Pentium 3.6GHz 2 X Intel Pentium 3.8GHz
Memory (RAM) 2GB
Hard Disk 142GB

26 | CMU/SEI-2010-TR-023

27 | CMU/SEI-2010-TR-023

Appendix B Development Environment

Table 8: Development Environments

 Sun Java SDK 1.6 Apache Ant Apache Maven
Responsibility Java is used as the key pro-

gramming language to code
all the experiments.

Apache Ant is a tool for build-
ing Java programs. It is used
to run the Rampart samples.

Apache Maven is a build tool
for a Java project. It is re-
quired to build Rampart from
sources.

Version Sun Java JDK 1.6 Binary
distribution

Apache Ant version 1.7.1 Maven version: 2.0.8

Source
Modifications

None None None

Configuration
Modification

None None None

28 | CMU/SEI-2010-TR-023

29 | C
M

U
/S

EI-2010-TR
-023

Appendix C Runtime Environment

Table 9: Runtime Environment

 Sun Java SDK 1.6 Apache Tomcat 6.0.20 Apache Axis2 Apache Rampart Log4J

Responsibility The Java virtual machine is
the runtime platform for
execution of all the
experiments.

Apache Tomcat is used as
the application server that
hosts the SOAP engine.

Apache Axis2 is the SOAP
engine used by both the
clients and the services.

Apache Rampart 1.4/1.5
implements the WS-security
specification and can be
deployed as a module to
Axis2.

Apache Log4J is used as
the logging framework for
services as well as the
clients.

Version Binary distribution

Java(TM) SE Runtime
Environment (build
1.6.0_16-b01)

Java HotSpot(TM) Client
VM (build 14.2-b01, mixed
mode, sharing)

Apache Tomcat 6.0.20

Binary distribution

Apache Axis2 1.4.1 (Binary
distribution) and 1.5.1 for
different tests

Rampart 1.4.1 & 1.5 (binary
and source distribution)

Log4J-1.2.15 (binary
distribution)

Source
Modifications

None None None Rampart 1.4/1.5 sources
were modified in order to
measure the time taken by
various components of
Rampart. Rampart (version
1.4) was built from sources
using the Maven build tool.
Only one Rampart module
(rampart-core-1.4.jar) was
built from sources; 1.5 was
directly used from the
distribution.

None

30 | C
M

U
/S

EI-2010-TR
-023

 Sun Java SDK 1.6 Apache Tomcat 6.0.20 Apache Axis2 Apache Rampart Log4J

Configuration
Modification

None $TOMCAT_HOME/bin/cata
lina.sh was modified to
enable a new garbage
collection algorithm.

JAVA_OPTS="$JAVA_OPTS
-
XX:+UseConcMarkSweepG
C"

$AXIS2_HOME/WEB-
INF/classes
/log4.properites was
modified to enable logging
at various levels. The
server_axis2.log file
was generated inside
$TOMCAT_HOME/logs/ser
ver_axis2.log.

• Rampart libraries and
modules were
deployed.

• Rampart libs were
deployed to
$AXIS2_HOME/WEB-
INF/lib.

• Rampart and Rahas
modules were
deployed to
$AXIS2_HOME/WEB-
INF/modules.

Services for the samples
(.aar) were deployed to
$AXIS2_HOMEWEB-
INF/services.

Rampart logging was
enabled and disabled
using
$AXIS2_HOME/WEB-
INF/classes
/log4j.properites.

log4j.category.org.ap
ache.rampart=FATAL

Service side:
$AXIS2_HOME/WEB-
INF/classes
/log4.properites

Client side:
log4j.properties
should be the CLASSPATH.

To take performance measurements, the samples were modified using the Perf4J and Apache Log4J framework, inserting instances of the StopWatch
class.

31 | CMU/SEI-2010-TR-023

Appendix D Mapping of Apache Rampart Samples

The experiments exercised all seven security mechanisms discussed in Section 3.2. The imple-
mentation of each security mechanism leveraged modified versions of the sample implementa-
tions provided with the default Apache Rampart installations.

The following table provides the correlation of the Apache Rampart samples to the security im-
plementation that was leveraged. The default implementation of the Apache Rampart samples
implements a message transfer using an Echo service with a basic “Hello World” string payload.
For some of the experiments, the default implementation was modified to use an Employee De-
tails service that transfers an array of Employee objects as the payload (see Appendix E).

Table 10: Mapping of Test Cases to Rampart Samples Used in the Experiments

Test
Case

Security Mechanism Alternative Rampart Sample
Number5

1 No Security Sample.01 (Basic*)

2 Password Only—Message Authentication with Username and Password Sample.02 (Basic)

3 Sign Only—Message Integrity (Digital Signature) Sample.04 (Basic)

4 Encrypt Only—Message Confidentiality (Encryption) Sample.05 (Basic)

5 Sign then Encrypt—Multi-Layered Message Security (Digital Signature ->
Encryption)

Sample.06 (Basic)

6 Encrypt then Sign—Multi-Layered Message Security (Encryption -> Digital
Signature)

Sample.07 (Basic)

7 Secure Conversation (X509 token indicating Timestamp, Digital Signature,
and Encryption)

Sample.04 (Policy)

5 Apache Rampart comes with two types of samples: Basic and Policy. Basic samples leverage different security

mechanism atomically while Policy samples use WS-Security Policy Language to configure a communication
session.

32 | CMU/SEI-2010-TR-023

33 | CMU/SEI-2010-TR-023

Appendix E Employee Class

For reference, the following is an excerpt from the Java Employee Class used by the Employee
Details service that was discussed in Appendix D. The definition of the get and set methods is not
included because they are the expected typical default implementations. While a real implementa-
tion would use data types more appropriate for each data attribute, this implementation uses string
as the type for each attribute in order to make the object as comparable as possible to the simple
“Hello World” string payload used with the Echo service.

When an object of this class is created, instead of using dummy data, each attribute was simply
initialized to “Hello World,” again to ensure that the object is as comparable as possible to the
payload used with the Echo service.

Import java.util.Date;

Public class Employee {

private String name;

private String empNumber;

private String email;

private String position;

private String dateOfBirth;

private String SSN;

private String homeAddress;

private String phoneNumber;

/* Typical Get and Set methods follow*/

…

}

34 | CMU/SEI-2010-TR-023

35 | CMU/SEI-2010-TR-023

Glossary of Technical Terms

Axis2 Apache Axis2, a SOAP engine (i.e., a software module that manages the com-
munication of web service messages in SOAP format)

Rampart Apache Rampart, a software module that works on a SOAP engine (specifically
Apache Axis2) to automatically manage WS-Security standards on the services
running on the SOAP engine.

WS-SecureConversation An OASIS web service standard that creates a session token for a set of com-
munications between web services and associates a user-defined set of security
standards to that token. The token can be transferred in each message instead of
the security standard specifics, reducing security overhead.

WS-Security An OASIS web service standard for managing security of web service communi-
cations

36 | CMU/SEI-2010-TR-023

37 | CMU/SEI-2010-TR-023

References

URLs are valid as of the publication date of this document.

[1] Apache Software Foundation. (2010, February 1). Apache Rampart—Axis 2 Security Mod-
ule [Online]. Available: http://ws.apache.org/rampart/

[2] Apache Software Foundation. (2010, November 15). Welcome to Apache Axis2/Java [On-
line]. Available: http://ws.apache.org/axis2/

[3] S. Chen, J. Zic, K. Tang, and D. Levy. “Performance Evaluation and Modeling of Web
Services Security,” in Proc. 2007 IEEE International Conference on Web Services, Salt
Lake City, UT (USA), 2007, pp. 431-438.

[4] D. Sosnoski. (2009, July 7). Java Web services: The high cost of (WS-)Security. IBM deve-
loperWorks. [Online]. Available: http://www.ibm.com/developerworks/java/library/j-
jws6/index.html

[5] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Boston, MA:
Addison-Wesley Professional, 2003.

[6] OASIS Consortium. (2006, November 28). Index of /wss/v1.1 [Online]. Available:
http://docs.oasis-open.org/wss/v1.1/

[7] Perf4J team. (2010, March 23). Overview [Online]. Available: http://perf4j.codehaus.org/

[8] Apache Software Foundation. (2010, March 30). Log4j: Logging Services [Online]. Avail-
able: http://logging.apache.org/log4j/1.2/

[9] SUN Microsystems. (2010). Java SE Documentation [Online]. Available:
http://java.sun.com/javase/6/docs/technotes/guides/vm/cms-6.html

[10] WS-SecureConversation 1.3, OASIS Standard, March 1, 2007 [Online]. Available:
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.3/ws-secureconversation.pdf

[11] P. Bianco, R. Kotrmanski, and P. Merson. (2007). Evaluating a Service-Oriented Architec-
ture. Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA. [Online].
Available: http://www.sei.cmu.edu/library/abstracts/reports/07tr015.cfm

[12] Sandeep Ramesh Patil. (2009, March 10). Multi-security mechanisms with multifactor au-
thentications. IBM developerWorks. [Online]. Available:
http://www.ibm.com/developerworks/aix/library/au-security_auth/index.html

http://ws.apache.org/rampart/
http://ws.apache.org/axis2/
http://www.ibm.com/developerworks/java/library/j-jws6/index.html
http://www.ibm.com/developerworks/java/library/j-jws6/index.html
http://www.ibm.com/developerworks/java/library/j-jws6/index.html
http://docs.oasis-open.org/wss/v1.1/
http://perf4j.codehaus.org/
http://logging.apache.org/log4j/1.2/
http://java.sun.com/javase/6/docs/technotes/guides/vm/cms-6.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.3/ws-secureconversation.pdf
http://www.sei.cmu.edu/library/abstracts/reports/07tr015.cfm
http://www.ibm.com/developerworks/aix/library/au-security_auth/index.html

38 | CMU/SEI-2010-TR-023

[13] SUN/ORACLE corporation. (2010, March 29). SUN Java Hotspot Virtual Machine [On-
line]. http://java.sun.com/javase/technologies/hotspot/

[14] Apache Software Foundation. (2010, November 1). Apache Tomcat [Online]. Available:
http://tomcat.apache.org/

[15] M. Head, M. Govindaraju, A. Slominski, P. Liu, N. Abu-Ghazaleh, R. van Engelen, K.
Chiu, and M. Lewis. “A Benchmark Suite for SOAP-based Communication in Grid Web
Services”, in Proc. 2005 ACMIEEE conference on Supercomputing, p. 19.

[16] M. Head, M. Govindaraju, R. van Engelen, and W. Zhang. “Benchmarking XML Proces-
sors for Applications in Grid Web Services”, in Proc. 2006 ACM/IEEE SCJ06 Conference,
http://doi.ieeecomputersociety.org/10.1109/SC.2006.14

[17] J. Guitart, V. Beltran, D. Carrera, J. Torres, and E. Ayguadέ. “Characterizing Secure Dy-
namic Web Applications Scalability,” in Proc. 19th IEEE International Parallel and Dis-
tributed Processing Symposium, Denver, CO (USA), 2005, p. 108a.

[18] D. Sosnoski. (2010, June 2). Cleaning up SOAP Web Services [Online].
http://www.sosnoski.com/presents/cleansoap/

[19] M. Juric, I. Rozman, B. Brumen, M. Colnaric, and M. Hericko. (2006, May). Comparison
of performance of Web services, WS-Security, RMI, and RMI-SSL. The Journal of Sys-
tems and Software [Online], 79(4).

[20] H. Liu, S. Pallickara, and G. Fox. “Performance of Web Services Security”, in Proc. 13th
Annual Mardi Gras Conference, Baton Rouge, LA (USA), 2005, pp. 72-78.

[21] M. Jeckle and I. Melzer. (2004, February 21). Performance of Web Services. [Online]
Available: http://www.mathematik.uni-ulm.de/sai/ws03/webserv/PerfWS.pdf

[22] Microsoft Corporation. Comparing Web Service Performance [Online]. Available:
http://msdn.microsoft.com/en-us/netframework/cc302396.aspx

[23] S. Vaughan-Nichols. (2002, January 7). Fat protocols slow Web services [Online] Availa-
ble: http://www.zdnet.com/news/fat-protocols-slow-web-services/298876

[24] L. Dodds. (2002, January 16). Fat Protocols. XML-Deviant [Online].
http://www.xml.com/pub/a/2002/01/16/deviant.html

[25] Wikipedia. (2010, October 29). Limit of a Sequence [Online]. Available:
http://en.wikipedia.org/wiki/Convergent_sequence

[26] National Institute of Standards and Technology. NistNet [Online]. Available:
http://snad.ncsl.nist.gov/nistnet/

http://java.sun.com/javase/technologies/hotspot/
http://tomcat.apache.org/
http://doi.ieeecomputersociety.org/10.1109/SC.2006.14
http://www.sosnoski.com/presents/cleansoap/
http://www.mathematik.uni-ulm.de/sai/ws03/webserv/PerfWS.pdf
http://msdn.microsoft.com/en-us/netframework/cc302396.aspx
http://www.zdnet.com/news/fat-protocols-slow-web-services/298876
http://www.xml.com/pub/a/2002/01/16/deviant.html
http://en.wikipedia.org/wiki/Convergent_sequence
http://snad.ncsl.nist.gov/nistnet/

39 | CMU/SEI-2010-TR-023

[27] TATA Consultancy Services. (2009, April 10). Wide Area Network emulator [Online].
Available: http://wanem.sourceforge.net/

[28] IBM. WebSphere Application Server [Online]. Available: http://www-
01.ibm.com/software/webservers/appserv/was/

http://wanem.sourceforge.net/
http://www-01.ibm.com/software/webservers/appserv/was/
http://www-01.ibm.com/software/webservers/appserv/was/

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

November 2010

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

Performance Analysis of WS-Security Mechanisms in SOAP-Based Web Services

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Marc Novakouski, Soumya Simanta, Gunnar Peterson, Ed Morris, Grace Lewis

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2010-TR-023

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ESC-TR-2010-023

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Identity management (IdM) solutions in web services environments are often compared on the levels of performance and security they
provide. Selecting the appropriate IdM solution for a given system or application often requires making tradeoffs between security and
performance, while also considering the system’s contextual and environmental requirements and constraints. This paper presents the
results of a series of experiments targeted at analyzing the performance impact of adding WS-Security, a common security standard
used in IdM frameworks, to SOAP-based web services. The goal of this work is to establish a baseline of performance data that can be
used to explore performance/security tradeoffs in environments with complex attributes, such as resource or bandwidth limitations.

14. SUBJECT TERMS

Identity management, IdM, WS-Security, SOAP-based web services

15. NUMBER OF PAGES

50

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

	Performance Analysis of WS-Security Mechanisms in SOAP-Based Web Services
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	2 Related Work
	3 Experimental Approach
	4 Results and Analysis
	5 Summary
	6 Future Work
	Appendix A Hardware Configurations
	Appendix B Development Environment
	Appendix C Runtime Environment
	Appendix D Mapping of Apache Rampart Samples
	Appendix E Employee Class
	Glossary of Technical Terms
	References

