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Abstract 

Identity management (IdM) solutions in web services environments are often compared on the 
levels of performance and security they provide. Selecting the appropriate IdM solution for a giv-
en system or application often requires making tradeoffs between security and performance, while 
also considering the system’s contextual and environmental requirements and constraints. This 
paper presents the results of a series of experiments targeted at analyzing the performance impact 
of adding WS-Security, a common security standard used in IdM frameworks, to SOAP-based 
web services. The goal of this work is to establish a baseline of performance data that can be used 
to explore performance/security tradeoffs in environments with complex attributes, such as re-
source or bandwidth limitations.  



 

viii | CMU/SEI-2010-TR-023 

 



 

1 | CMU/SEI-2010-TR-023 

1 Introduction 

Security and performance are two primary quality attributes that shape the architecture of any 
software-based system. These two quality attributes are often in tension [5]. This tension is ampli-
fied in systems that use XML-based web services. While using XML as the communication me-
dium for web services promotes quality attributes such as interoperability, flexibility, modifiabili-
ty, and shorter development time [11], its use to support security significantly affects 
performance—primarily due to its verbosity [4]. The standard means of adding security is to in-
crease the content of each XML message, which adds to the burden of an already heavyweight 
communication medium and magnifies the tension between security and performance. 

This paper describes a series of experiments that focus on understanding the performance impact 
of different security-level mechanisms based on WS-Security.1 The collected data represents a 
starting point for understanding tradeoffs between security and performance and forms a basis for 
making engineering and architectural decisions. Section 2 presents related work. Section 3 
presents an overview of the security mechanisms that are being examined and the experimental 
methodology. Section 4 presents the experimental results and provides some analysis. Section 5 
presents overall conclusions based on the experiment results. Finally, Section 6 presents possible 
future work to leverage the baseline established in this paper. 
  

 
1  WS-Security has been defined as  “a standard of SOAP extensions that can be used when building secure Web 

services to implement message content integrity and confidentiality” [6]. 
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2 Related Work 

There has been considerable effort to benchmark various aspects of web service performance. 
Work by Head and associates [15] primarily focuses on comparing the performance of popular 
SOAP 1.1 toolkit implementations circa 2005 and thus is out of date with the most recent SOAP 
engines. Further research led by Head [16] expands that work to compare the performance of a 
wide variety of XML parsers and updates to SOAP 1.2 but is still orthogonal to our interests in 
security. Additional protocol comparison with no security considerations is found in “Perfor-
mance of Web Services” by Jeckle and Melzer [21]. Finally, the work reported in “Comparing 
Web Service Performance” [22] demonstrates a performance comparison of two popular applica-
tion servers running web service benchmark tests. 

Early discussions of the cost of implementing security included the blog posts in “Fat protocols 
slow Web services” [23] and “Fat Protocols” [24]. The work in “Characterizing Secure Dynamic 
Web Applications Scalability” [17] takes the first step in examining the cost of security in web 
services, but restricts its scope to channel-based (SSL) security. “Comparison of performance of 
Web services, WS-Security, RMI, and RMI-SSL” [19] takes the next step by comparing two dif-
ferent methods of distributed communication (RMI and web services) and comparing the impact 
of implementing comparable security measures via WS-Security and RMI-SSL, but does not con-
sider different levels of security. 

However, there are fewer examples of research that specifically examine the performance impact 
of different levels of security in SOAP-based web service environments. Sosnoski’s work [18] 
approaches our topic by discussing different approaches to securing web services, but does not 
offer any quantitative comparison. The work by Liu, Pallickara, and Fox [20] is notable in this 
context as it focuses on the comparison of performance of different encryption algorithms and 
does a limited comparison of different security mechanisms. It differs from the work described in 
this paper due to the far more extensive set of security approaches and metrics that are considered 
in this paper. 

The work that is most closely related to the work presented in this paper is by Chen, Zic, Tang, 
and Levy [3]; this work compares different security mechanisms in detail and addresses payload 
size. The contribution of the work described in this paper is the comparison of a larger range of 
payload types and sizes, analyses of different payload complexities, the secure conversation secu-
rity mechanism, and mechanism startup costs, as well as the examination of the cost of security 
from the perspective of message size and resource usage. 
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3 Experimental Approach 

Adding security to web services has a cost that depends on the type (or types) of security mechan-
isms used. This cost can range from performance degradation, to increased message size, to addi-
tional consumption of resources, or some combination thereof.  It is commonly accepted that 
more complex security mechanisms incur greater costs due to increased overhead. However, this 
may or may not be always true because the cost incurred by security is context- and situation-
dependent. In order to make informed decisions about performance/security tradeoffs, it is neces-
sary to measure and compare these costs. 

The experiments described in this paper seek to establish a baseline of results that can be used to 
compare different security mechanisms in a web services context. With such a baseline of mea-
surements, further experiments can be designed and executed to compare the tradeoffs in more 
complex scenarios, such as contexts in which network connectivity is intermittent or where avail-
able computing resources are constrained or limited. 

3.1 Experiment Goals 

The goal of the experimentation was to find the answers to three high-level questions that address 
the cost/benefit tradeoffs of security in the context of WS-Security and SOAP-based web services. 
1. What is the cost of security with respect to roundtrip (request-response pair) time? 

2. What is the cost of security with respect to message size? 

3. What is the cost of security with respect to resource usage? 

3.2 Experiment Subjects 

This section describes the different end-to-end, message-level security mechanisms that were se-
lected to be benchmarked by the experiments. Each security mechanism under test was evaluated 
from the perspective of the three experiment questions. In addition, combinations of the mechan-
isms (e.g., integrity and confidentiality) were benchmarked to compare their performance with 
that of the individual mechanisms. Combinations of mechanisms will generally provide a more 
secure environment overall than individual mechanisms alone and are commonly used in com-
mercial and industrial security frameworks such as multifactor/multilayer authentication [12]. 

Security Mechanism #1: No Message-Level Security (No Security) 
The first mechanism under test used a plain SOAP message exchange with no security overhead. 
This established a performance baseline. 

Security Mechanism #2: Message Authentication (Password Only) 
The second mechanism involved username/hashed password authentication implemented at the 
message level. To accomplish this, authentication tokens within the SOAP message were enabled 
using WS-Security. 
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Security Mechanism #3: Message Integrity (Sign Only) 
The third mechanism involved ensuring message integrity through the use of digital signatures 
and hashing. To accomplish this, WS-Security in the message header was enabled by adding a 
digital signature to the SOAP document, using XML Signature, for both the request and the re-
sponse. 

Security Mechanism #4: Message Confidentiality (Encrypt Only) 
The fourth mechanism involved encryption to ensure message confidentiality. To accomplish this, 
WS-Security was used in the message header to encrypt the SOAP document, using XML En-
cryption, for both the request and the response. 

Security Mechanism #5: Integrity and Confidentiality (Sign Then Encrypt) 
The fifth mechanism involved a combination of two different approaches, digital signatures and 
encryption. To accomplish this, WS-Security was used in the message header first to apply a digi-
tal signature and then to encrypt the SOAP document, for both the request and the response. 

Security Mechanism #6: Integrity and Confidentiality (Encrypt Then Sign) 
The sixth mechanism reverses the order of operations in Security Mechanism #5. To accomplish 
this, WS-Security was used in the message header first to encrypt and then to apply a digital sig-
nature to the SOAP/XML document, for both the request and the response. 

Security Mechanism #7: Secure Conversation 
The seventh mechanism provides a conversation-level (as opposed to a message-level) approach 
to security. A conversation, or sequence of messages exchanged between two participants, can 
have security data abstracted to a predetermined token that is established at the beginning of the 
conversation. The token is attached to the header of each following message and specifies the me-
chanisms to be used for each message in the conversation. This approach is in contrast to mechan-
isms 2 through 6, in which all necessary security mechanism information is included in the header 
of each message. 

The implementation of the Secure Conversation mechanism for this experiment is slightly differ-
ent from the WS-SecureConversation standard. This implementation uses the sample implementa-
tion provided by Apache Rampart that leverages a SymmetricBinding construct for bootstrap-
ping—with a timestamp, a signature, and encryption as the security mechanisms [10, 1]. 

3.3 Experiment Architecture 

The test suite consisted of several experiments that focused on the performance aspects of inter-
est: roundtrip time, message size, and resource usage.  

The experiments were run on a pair of servers running Apache Tomcat with Apache Axis2 as the 
SOAP engine and Apache Rampart as the security module [14, 2, 1]. The experiments leveraged 
sample implementations of the different security mechanisms provided by Apache Rampart. 
These examples consisted of a simple echo pattern in which the client passes a “Hello World” 
string to the service and the service echoes the string back [1]. Most of the experiments modify 
the basic service in minor ways to test different aspects of the communication. These modifica-
tions are explained in detail in the following sections. To gather performance measurements, the 
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examples were modified using the Perf4J and Apache Log4J framework and inserting instances of 
the Perf4J StopWatch class [7, 8]. 

All of the test cases are based on request-response message exchanges using HTTP as the com-
munications channel. Because an actual implementation is likely to use HTTPS/SSL, this aspect is 
considered a constant and therefore was removed from these test cases. Figure 1 provides a high-
level view of the basic architecture of the testing framework. 

 

 
Figure 1: Basic Implementation Architecture of the Experiments 

For further technical details on the experiments, please consult Appendices A-E. 

3.4 Experiment Configurations 

The testing efforts looked at several ways to benchmark the impact of security on roundtrip re-
sponse time, message size, and resource usage. To analyze this impact, each experiment exercised 
one of two web services using one of two test configurations. 

3.4.1 Web Services 

“Echo” Web Service (Simple Payload Structure): This service takes an input string and returns 
the same string as the response.  

“Employee Details” Web Service (Complex Payload Structure): This service takes no input 
and returns a one-element array of employee objects. An employee object contains an employee’s 
details, such as name, e-mail address, phone number(s), and social security number. 

3.4.2 Configurations 

“Static Payload” Configuration: In this configuration, a client application executes the target 
web service 10,000 consecutive times with the default input. (The Employee Details service has 
no default input.) Both services were exercised in this configuration. 

“Dynamic Payload” Configuration: In this configuration, a client application executes the target 
web service 10,000 consecutive times with an input payload that is increased in each execution. 
This configuration is only used with the Echo service, which has a default initial payload of a 
simple “Hello World” string.2  The payload is increased with each execution by appending an ad-
 
2  The experiments with the Echo service used a “Hello World ” string, a 12-character string with a space charac-

ter at the end. There was no particular reason to use this string instead of the 11-character “Hello World” string. 
It was an arbitrary choice. 
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ditional “Hello World” string to the payload used in the previous execution. This results in a range 
of payload sizes from 12 bytes up to 100+ kilobytes over the 10,000 executions. 

3.5 Experiment Measures 

Consistent with the experiment goals, each experiment analyzed three different benchmarking 
measures: 
1. roundtrip response time 
2. message size 
3. resource usage  

While we can measure roundtrip response time and message size directly, our approach to mea-
suring resource usage had to be less obvious. One approach we could have taken to analyze the 
resource usage of the different security mechanisms would be to record CPU usage and memory 
usage over the course of the execution of a test. However, CPU and memory usage are extremely 
dependent upon the resources available on a given platform. We chose instead to simply record 
those measures and observe the impact upon them (if any) of different Java Virtual Machine 
(JVM) environments.  

Our results (which will be discussed in detail later) showed that in resource-constrained environ-
ments, memory management tasks such as garbage collection can have significant performance 
impact upon the execution of even simple web services. Therefore, our approach was to identify 
the inflection point at which the memory management tasks stopped impacting the performance of 
the experiments. While exact by no measure, this approach can give a general idea of the re-
sources necessary to effectively leverage the security mechanisms under test. 
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4 Results and Analysis 

This section describes experiments we performed to test the performance implications of the secu-
rity mechanisms discussed in Section 3.2 and summarizes our results. The purpose of this analysis 
is to understand the impact of using different security mechanisms on system performance. As 
discussed in Section 3, the experiments also establish a baseline of metrics for future work on tra-
deoffs in complex environments. 

4.1 The Cost of Security: Roundtrip Response Time 

Our first focus was on the performance of each security mechanism for a roundtrip response time. 
The initial experiments confirmed our hypothesis that adding security to web services considera-
bly increases roundtrip response time. Roundtrip response time of SOAP-based web services with 
different security mechanisms can be as much as 20 times higher than that of an unsecured web 
service, as shown in Table 1. This table shows the average, median, and standard deviation 
roundtrip time in milliseconds of each mechanism in a test using the basic Echo service (simple 
payload structure) in the static payload configuration. 

Table 1: Statistical Summary per Mechanism, Echo Service/Static Payload (ms) 

  
No   
Security 

Password 
Only 

Sign Only 
 

Encrypt 
Only 

Sign ->  
Encrypt 

Encrypt -> 
Sign 

Secure  
Conversation 

Average 3 8 38 36 65 65 39 
Median 3 7 37 36 64 65 38 
Std. Dev. 0.696 1.862 2.814 2.218 3.332 3.117 3.682 

Building on these results, we looked at the performance of each security mechanism by running 
an experiment with the Echo service using the dynamic payload configuration. Figure 2 shows the 
performance measures of each mechanism in this experiment. 

 

Figure 2:  Roundtrip Time per Mechanism, Echo Service/Dynamic Payload 
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Finally, we re-ran the experiment with the Employee Details service (complex payload structure) 
in the static payload configuration to examine how the different security mechanisms handle the 
difference in payload type and size. These results are shown in Table 2. 

Table 2: Statistical Summary per Mechanism, Employee Details/Static Payload (ms) 

  
No   
Security 

Password 
Only 

Sign Only 
 

Encrypt 
Only 

Sign ->  
Encrypt 

Encrypt -> 
Sign 

Secure  
Conversation 

Average 100 106 174 157 197 190 228 
Median 100 105 173 156 196 190 237 
Std. Dev. 5.298 6.115 8.376 7.847 9.673 7.494 23.483 

The data collected from these experiments can be analyzed in a number of ways. The only overall 
conclusion is that there is no clear “winner”; however, the analysis presented in the following sec-
tions should help in making design decisions. 

4.1.1 Simple vs. Complex Payload Structure 

From the results in Table 1, and Table 2, and Figure 2, it is clear that message payload structure 
(whether a simple string or a complex object converted to an XML-based structure) can signifi-
cantly impact the performance of each security mechanism. Even though it would be logical to 
assume that the more the complex a mechanism the larger the impact on roundtrip response time, 
results from the three experiments do not support this assumption. We analyzed Sign Only versus 
Encrypt Only, the two Sign/Encrypt mechanisms, and Secure Conversation. 

It is useful to compare the performance of Sign Only to Encrypt Only for the Echo service case to 
see where they diverge, because Figure 2 suggests that they are roughly equal for some small 
message payload sizes. Figure 3 shows this comparison. 

 

Figure 3: Sign Only versus Encrypt Only for Message Payloads up to 20kb, from Figure 2 Data 
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Values in Table 1 and Table 2 indicate that Sign Only performs better than Encrypt Only for mes-
sages with simple payload structure, but Encrypt Only outperforms Sign Only for messages with 
complex payload structure. Sign Only roundtrip time increases more slowly as payload size in-
creases for the simple payload structure case (for more detail, see Section 4.1.3).  

The data in those tables also suggests that both Sign/Encrypt mechanisms have virtually identical 
performance in the simple payload structure case, but Encrypt then Sign performs better in the 
complex payload structure case. This mechanism has a lower average roundtrip time and greater 
reliability (shown as a smaller standard deviation). While no data collected provides conclusive 
explanation for this difference, one possibility is that Encrypt then Sign causes less work because 
it does not require encryption/decryption of the digital signature prior to verification. 

Finally, in the simple payload case Secure Conversation shows the best performance of all of the 
mechanisms that use encryption (see Table 1). However, when used with complex structure payl-
oads, it shows the worst performance of all mechanisms (see Table 2). In addition, for complex 
payload structures, Secure Conversation appears to have somewhat unreliable performance, exhi-
bited by the high standard deviation numbers noted in Table 2. The reason for the low reliability 
is unknown; one possibility is that the overhead for maintaining the conversation token may be 
responsible. 

Conclusions 
• In all cases, the best performing mechanism (aside from no security at all) was the Password 

Only mechanism. Because this mechanism provides relatively weak security, its use is usually 
not recommended. However, in situations where the need for message-level security is low 
(e.g., secured networks, SSL-based communications) Password Only may be a viable security 
mechanism that provides maximum performance. 

• There are several tradeoffs between Sign Only and Encrypt Only approaches to message-level 
security. In contexts where either will provide sufficient security and performance, the choice 
may be made based on the complexity of the message payload structure. For simple payload 
structures, a Sign Only approach provides the best performance, while for complex payload 
structures the Encrypt Only security mechanism performs the best. Also, it should be noted 
that for messages with simple payload structure and payload size under 7kb or so, both me-
chanisms will result in approximately the same performance profile. 

• In the case of messages with simple payload structure, both Sign/Encrypt mechanisms have 
the same performance. For messages with complex payload structures, Encrypt then Sign 
outperforms the Sign then Encrypt approach. Also, if a token-based session mechanism such 
as Secure Conversation is unnecessary or undesired, the Encrypt then Sign mechanism is 
probably the better approach.  

• When used with messages with simple payload structure, Secure Conversation is the top per-
former of all the encryption-enabled mechanisms we tested. However, Secure Conversation 
does not perform well with messages with complex payload structure and thus seems to be 
appropriate only when performance is not the driving quality attribute. 
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4.1.2 Startup Times 

Startup time is the amount of time that a roundtrip communication requires on the first execution 
of an experiment. This time can be relevant when lost connections need to be reestablished. Our 
test results confirmed the intuitive expectation that more complex security mechanisms require 
longer startup times (see Figure 4). One interesting phenomenon is that there are two classes of 
startup times, initial communications and all subsequent communications. Initial communica-
tions represent the first roundtrip communication that a service participates in after deployment or 
redeployment. Results show that the startup time associated with initial communications tends to 
be roughly twice as long on average than the startup time for all subsequent communications with 
that service. 

 

Figure 4:  Startup Times per Mechanism/Service, Initial versus Subsequent Communications 
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Secure Conversation is especially poor for initial communications: a 59% increase over the En-
crypt then Sign (versus a 22% increase over Encrypt then Sign in subsequent communications). 

One other notable result is the increase in roundtrip time when the Employee Details web service 
is used instead of the Echo service. One reason for the increase might be payload size.3 The base 
payload of the Echo web service is 12 bytes, while that of Employee Details is approximately 112 
bytes [26, 27]. Considering that the call to the Employee Details service has no arguments while 
the Echo service has the same input as output, the roundtrip payload size with the Employee De-
tails service is approximately 450% larger than that with the Echo (112 versus 24 bytes).  

To examine how greater payload size increases roundtrip time, we repeated the experiments using 
the Echo service with static payloads of 60 bytes (5 concatenated “Hello World” strings) and of 
120 bytes (10 concatenated “Hello World” strings). In the 60-byte test, total message payload 
over the roundtrip sequence was 120 bytes, close to the Employee Details payload, testing the 
impact of sending the same total payload. The 120-byte test evaluated the impact of the same 
payload size being transferred on the initial communication.  These tests allow us to examine if 
roundtrip or initial payload size was the reason for the roundtrip time increase observed when us-
ing the Employee Details web service.  

As shown in Figure 5, the effect of payload size on roundtrip time appears to be negligible. Some 
small increases in time resulted as payload size increased with the Echo web service, but some 
small decreases were seen as well. For each security mechanism, in addition, there is a relatively 
constant increase in roundtrip time when the Employee Details service case was used, compared 
to the Echo service. As such, the data seems to suggest that payload complexity drives perfor-
mance difference. 

 

Figure 5: Comparing Startup Times for Different Payload Sizes for Each Mechanism 
 
3  Estimates of the payload sizes are based on methods for measuring the size of Java objects that are described 

in the references cited. 
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The final observations that can be made based on the startup data have to do with total cost of 
communication. While Table 2 shows that Encrypt Only outperforms Sign Only in non-startup 
communications with complex payloads (157 versus 174ms), Figure 4 shows that startup times 
for Encrypt Only exceed those of Sign Only. Figure 6 plots the total time of the two mechanisms, 
showing that for roughly the first 46 messages Sign Only performs better than Encrypt Only. 

 
Figure 6: Total Cost of Sign Only versus Encrypt Only, First 100 Messages 

Also, for simple payloads, the total cost of both Sign/Encrypt mechanisms can be lower than that 
of the Secure Conversation mechanism despite the lower non-startup costs of Secure Conversa-
tion for some finite set of messages. Figure 7 shows this inflection point to be roughly after the 
12th message. 

 
Figure 7: Total Cost of Both Sign/Encrypt Mechanisms versus Secure Conversation for Simple Struc-

ture Payloads 
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Conclusions 
• Initial communications (the first that a service has after deployment or redeployment) will 

have roughly twice (or more) the subsequent communications cost.  

• Any security mechanism that uses encryption will experience significantly longer startup 
times than any non-encryption mechanism. 

• Each security mechanism has a significant impact on roundtrip response time of the initial 
communications a client application has with a given service. The more complex the security 
mechanism, the higher the cost incurred. (Recommendation: If possible, newly deployed web 
services should be immediately executed by some application, such as a test or dummy appli-
cation, to eliminate the post-deployment initial communications startup cost.) 

• Communications with services that handle complex structure payloads (such as XML data 
types) will have a higher startup cost than communications that deal with simple structure 
payloads. 

• For short message sequences (< 50 message exchanges), the Sign Only mechanism performs 
better than the Encrypt Only mechanism, due to lower startup time. For extremely short mes-
sage sequences (< 10 message exchanges) either Sign/Encrypt mechanism performs better 
than the Secure Conversation mechanism, due to lower startup time. 

4.1.3 Rate of Cost Increase as Payload Size Increases 

The data represented by Table 3 suggests that increasing payload size causes some security me-
chanisms to experience higher roundtrip time. If true, this finding provides insight on which me-
chanisms are better suited for larger or smaller payload sizes. Table 3 presents an analysis of the 
rates for each mechanism at minimum payload size and 117kb payload size. 

Table 3: Approximate Rates of Increase of Each Security Mechanism, from Figure 2 Data  
No  
Security 

Password 
Only 

Sign 
Only 

Encrypt 
Only 

Sign -> 
Encrypt 

Encrypt 
-> Sign 

Secure  
Conversation 

Minimum (ms) 3.00 10.00 42.00 42.00 71.00 71.00 41.00 
Average @ 
117kb (ms) 29.55 47.45 108.18 163.64 216.18 212.45 130.00 

Increase (%) 884.85 374.55 157.58 289.61 204.48 199.23 217.07 

Due to the relatively high standard deviations documented in Table 1 and Table 2, it is difficult to 
calculate a rate of increase for each mechanism. We took the minimum value found during the 
dynamic payload Echo service experiment (results documented in Figure 2) and compared it to 
the average of the last 10 results from that data set (where payload is roughly 120,000 bytes or 
~117k). We used the average time to mitigate spikes due to memory management issues. This 
method is inexact for determining the rate of increase, but it provides a general approximation that 
confirms what was observed in Figure 2. Of the mechanisms with encryption, Sign Only performs 
best, Encrypt Only worst, with the Sign/Encrypt mechanisms and Secure Conversation rating be-
tween the two.  

This analysis confirms the hypothesis that the most complex algorithms have the highest rate of 
increase in roundtrip time cost as payload increases. The most interesting result is Secure Conver-
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sation, which performs well compared to the encryption-based mechanisms and confirms the early 
analyses from examining Figure 2. 

Conclusions 
• For message payloads with simple structure, the Sign Only mechanism is the best non-trivial 

security mechanism for passing data of increasing sizes.  

• For message payloads with simple structure, Secure Conversation can be a good choice for 
enabling security while ensuring good performance as payload size increases, compared to 
other mechanisms. 

4.1.4 Convergence of Security Mechanisms 

One property that may be important to examine is the speed at which a given security mechanism 
converges to its normal values. As shown in Figure 8, each mechanism needs a certain number of 
communication exchanges before it stabilizes to some predictable level of performance. 

 

Figure 8: Startup Behavior of each Security Mechanism with Echo Service in Static Payload Configura-
tion 

This stabilization behavior can be defined by calculating the mathematical convergence of the 
sequence. A sequence of real numbers is said to converge if there is some number X such that past 
some point in the sequence, all following numbers in the sequence are within some range of X 
[25]. For a given element Z of the sequence, if it is the Yth or later number in the sequence, |X – Z| 
< some value ε.  

Unfortunately, inherent noise in the data prevented the calculation of a useful value of Y for any 
value of ε smaller than 30ms, a significantly large range for data sets that show standard devia-
tions no larger than 4ms (as shown in Table 1). We removed noise from the equation by looking 
not at ranges, but at how far into the data set we have to go for each mechanism to produce a val-
ue that is less than or equal to the resulting average. While not nearly as precise a measure of con-
vergence, this approach eliminates the effect of noise and provides a general sense of the speed of 
convergence. Table 4 shows the results of this analysis on the experiment that used the Echo ser-
vice in static payload configuration. 
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Table 4: Convergence Points for Each Mechanism for Echo Service in Static Payload Configuration 

No  
Security 

Password 
Only 

Sign 
Only 

Encrypt 
Only 

Sign -> 
Encrypt 

Encrypt 
-> Sign 

Secure  
Conversation 

Convergence 
Point 22 505 883 792 570 588 769 

To contrast this, the same numbers were calculated for the Employee Details service. The results 
are presented in Table 5. 

Table 5: Convergence Points for Each Mechanism for Employee Details Service in Static Payload 
Configuration 

No  
Security 

Password 
Only 

Sign 
Only 

Encrypt 
Only 

Sign -> 
Encrypt 

Encrypt  
-> Sign 

Secure  
Conversation 

Convergence 
Point 21 138 143 98 126 148 17 

On the one hand, the numbers between Table 4 and Table 5 are similar, in that No Security takes a 
short time to reach its ultimate average while other mechanisms take much longer. This compari-
son confirms the hypothesis that adding security mechanisms is costly to roundtrip time from a 
convergence standpoint. On the other hand, the stabilization occurs much faster in the complex 
payload structure case overall (with the Employee Details service), which is not easily explained 
and is outside of the scope of this work. 

The outlier data point to note is the performance of Secure Conversation in the complex payload 
structure case. It outperforms even the No Security option. While extremely unexpected, this re-
sult can be explained by looking at the variance in this mechanism’s performance. Figure 9 is a 
graph of its performance compared to the other mechanisms for the complex payload structure 
configuration. The significant variance in the performance of Secure Conversation affects the av-
erage roundtrip response, allowing the convergence test to be met sooner than expected. 

 

Figure 9: Performance of Each Mechanism, Employee Details Service in Static Payload Configuration 

Conclusions 
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the No Security option. There may be some variance between the different mechanisms. 

0
100
200
300
400
500

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

21
1

22
1

23
1

24
1

25
1

26
1

27
1

28
1

29
1

Time 
(ms)

Message Number

No Security Password Sign Only Encrypt Only

Sign > Encrypt Encrypt > Sign Secure ConvSign-> Encrypt Encrypt-> Sign



 

18 | CMU/SEI-2010-TR-023 

However the startup costs associated with each mechanism (Section 4.1.2) overwhelm the ef-
fects of any observable differences in convergence rate. 

• There is strong evidence of significant noise or some other effect that prevents Secure Con-
versation from converging at a predictable rate relative to the other mechanisms. 

• Overall, it is difficult to take the results on rate of convergence as a strong recommendation 
about a security mechanism, due to an inability to measure the values precisely; therefore this 
generalized data should be used sparingly. If used at all, convergence rate should be consi-
dered only in simple payload structure cases. In complex payload structure contexts, this data 
suggests that it has even less influence.  

4.2 The Cost of Security: Message Size 

The second focus of the experimentation was message size. Our hypothesis was that adding secu-
rity to messages will increase their size. Further, if adding security does increase message size, we 
wanted to determine how much of an increase to predict for each mechanism. 

We extracted message sizes associated with each security mechanism from roundtrip response 
times. We assessed the impact of security as message payload size increases using the Echo ser-
vice in a dynamic payload configuration (with payloads increasing to 100kb). As Figure 10 
shows, security mechanisms that do not use encryption, such as Sign Only, add a constant amount 
of size (overhead) to the message, but encryption-enabled mechanisms add message overhead at a 
linear rate with payload size increase. 

 

Figure 10:  Message Overhead per Mechanism as Payload Size Increases 

In addition to identifying a trend across increasing payload sizes, it is instructive to compare the 
base overhead sizes of each mechanism. This information is presented in Table 6 for the simplest 
case. 
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Table 6: Message Size for Echo Service with Static Payload Configuration (Bytes)4 
No  
Security 

Password 
Only 

Sign  
Only 

Encrypt  
Only 

Sign ->  
Encrypt 

Encrypt -> 
Sign 

Raw Payload Size 11 11 11 11 11 11 
Request Size 522 1396 3956 2480 7511 7385 
Response Size 479 479 4627 2677 8181 8053 

In Table 6, the raw payload size data in is the message, and the request size is the message placed 
in a SOAP envelope. Putting the message in the SOAP envelope has a significant size cost that 
increases as security mechanisms are added. Further, the increased request size correlates with the 
response time for a mechanism, showing that cost increases with complexity. One additional re-
sult worth noting from this experiment is that Encrypt Only outperforms Sign Only, where the 
message with request size is 4kb or less. 

Conclusions 
• As with roundtrip response time, the Password Only security mechanism adds the least mes-

sage overhead. Also, as with roundtrip response time, this mechanism is not recommended 
except in environments that have low message-level security requirements.  

• Where it is important to limit message overhead while using a non-trivial security mechan-
ism, Encrypt Only offers the best performance up to payload sizes of roughly 4k. Past this 
size, Sign Only should be used to avoid the steadily increasing costs of using encryption.  

4.3 The Cost of Security: System Resources 

The third focus of the experiments was the cost of security in terms of system resources. Our hy-
pothesis was that security mechanisms would require substantial system resources to perform ef-
fectively. The goal was to examine the resource requirements of the security mechanisms in order 
to provide guidance on how to select computing resources for a given security framework. 

One observation made early during the experimentation is that security carries a significant re-
source cost. Even using simple services, we found performance degradation due to memory man-
agement issues for all but the most basic message payloads. We addressed the problems for the 
most part by tuning the JVM with a more effective garbage collection algorithm and with in-
creased memory allocation [9]. 

The results show that Secure Conversation is more sensitive to the amount of available resources 
than the other mechanisms. Figure 11 compares the impact of increasing the allocated memory to 
the test application for this mechanism. Realizing the maximum potential roundtrip time perfor-
mance of Secure Conversation may depend upon the resources available to the infrastructure. 

 

 
4  This data was not available for the Secure Conversation mechanism. Future work will gather this data. 
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Figure 11:  Secure ConversationPerformance, Default JVM Memory vs. Manually Set 25 MB–50MB 
Range 

Conclusions 
• Security mechanisms such as Sign Only and Encrypt Only (e.g., XML Signature and XML 

Encryption) require significant resources to perform at peak levels. Services and applications 
intended to implement these mechanisms as security services will likely require more than the 
default memory allocated to them by a standard Sun Hotspot JVM [13]. In order to meet these 
resource needs, developers should identify expected message payload sizes and structure 
complexities early in the design process and tune the services to perform optimally on the 
available hardware. 

• Secure Conversation and similar mechanisms will likely require more resources than non-
session-based mechanisms in order to perform at peak levels. Implementations of these me-
chanisms should be tuned aggressively to ensure that the necessary resources are available to 
ensure the expected performance. 
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5 Summary 

There is no simple answer to the critical question of whether the cost of web service security is 
acceptable or too high. The exact cost of security on the runtime performance of a SOAP-based 
web service will depend on many factors. A good understanding of the quality expectations in a 
specific environment, as well as of the cost of security relative to the costs of service execution, 
network latency, and overhead can be determining factors. Variables such as JVM heap memory, 
garbage collection algorithm, and network bandwidth contribute to roundtrip response time. Our 
work shows that there is a sufficient range of alternative security mechanisms to perform an effec-
tive tradeoff analysis, once the driving use cases in a specific context have been analyzed.  

Selecting the appropriate mechanisms for web service security involves weighing the security 
benefits of individual mechanisms against their costs. Whether measured in terms of roundtrip 
response time, message size, or resource usage, security mechanisms have a considerable impact 
on the performance of SOAP-based web services. Our experiments reveal that adding security to 
web services considerably increases roundtrip response time and message size and that more 
complicated security mechanisms require greater system resources. The experiments also estab-
lish a baseline from which to explore different security framework contexts and establish general 
guidelines for selecting appropriate mechanisms.  
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6 Future Work 

There are many opportunities for further investigation. These include high-level questions raised 
by the initial experimental results, as well as the effect of additional configuration parameters on 
the overall performance of secure web services. In this section, we briefly describe the following 
possible future work in those areas. 

6.1 Encryption Overhead vs. Message Overhead 

Overhead associated with an encryption increases with payload size. In contrast, message over-
head stays constant when a message has been authenticated or digitally signed. Further investiga-
tion could reveal why this difference occurs. It would also be useful to find whether there is an 
optimal point at which the overhead associated with encrypting a large message outweighs the 
message overhead associated with splitting the message into smaller chunks and sending each 
chunk individually. 

6.2 Potential Alternative Experiment Configuration Elements 

Possible configuration elements that could be analyzed in further experiments include algorithm 
variation (for encryption and digital signing), simulation of constrained environments, alternative 
security mechanisms, and alternative security framework infrastructures. 

6.2.1 Encryption and Signing Algorithms 

The existing experiment setup can be leveraged as a baseline and expanded to include measure-
ment of the performance impact of combinations of the following encryption and signing algo-
rithms: 
• Suite B algorithms  

• AES-128 

• SHA-1 

• 1024 bit RSA  

• For SSL ciphers - 3DES  

6.2.2 Message Size 

Security testing can be expanded to include measurement of the performance impact of larger 
files (1MB+) in order to understand the impact of moving large files such as media (pictures, vid-
eo, etc.) or programs. 

6.2.3 Resource Limitations 

Security testing can be expanded to include measurement of the performance impact of the vari-
ous security implementation alternatives in a resource-constrained environment. 
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6.2.3.1 Network Bandwidth 

One possible experiment is the simulation of an unreliable network environment to measure the 
performance impact of various security implementation alternatives under conditions such as low-
bandwidth connection, unexpected connection loss, and unexpected packet loss. Possible software 
that could be used to support these tests includes NistNet [26] and WanEm [27]. 

6.2.3.2 CPU Speed / Available Memory 

Another possible experiment is the simulation of a reduced-hardware environment from the 
standpoint of CPU and memory.  

6.2.3.3 JVM Settings 

Tuning the JVM environment includes increasing heap size and modifying the garbage collection 
algorithm to reduce the impact of the garbage collector as message size increases. Refinements 
like these would be helpful to in determining minimum recommended settings for different me-
chanism and payload combinations. Additional experimentation can also be performed to see if 
any other JVM settings impact performance. 

6.2.4 Additional Security Mechanism Alternatives 

6.2.4.1 Partial Encryption 

This alternative includes encrypting part of the message, such as the XML content, but not all of 
it. 

6.2.4.2 Secure Session Token 

This alternative implements the WS-SecureConveration standard and adds a Security Context 
Token (SCT) to the message. 

6.2.4.3 Double Encryption 

This alternative performs encryption twice on a message to provide additional security. 

6.2.5 REST-Style Web Services 

This alternative examines how REST may be used to improve performance in certain cases [22]. 

6.2.6 Token by Reference 

For constrained devices, token-by-reference (as in SAML) may offer an improvement over pass-
ing tokens by value. 

6.2.7 Alternative Security Framework Infrastructures 

The experiments in this report use the Axis2 SOAP engine with the Rampart module for provid-
ing WS-* security implementations [2, 1]. Alternative SOAP engines such as the IBM WebSphere 
SOAP engine can be tested to see if there is possible impact by the engine on different security 
implementations [28]. 
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Appendix A Hardware Configurations 

Table 7: Hardware Configurations 

Property Service Provider Hardware Value Service Consumer Hardware Value 
Host Name pcbls.sei.cmu.edu pcblt.sei.cmu.edu 
Operating System Ubuntu Linux 2.6.28-15-generic SMP 
CPU 2 X Intel Pentium 3.6GHz 2 X Intel Pentium 3.8GHz 
Memory (RAM) 2GB 
Hard Disk 142GB 
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Appendix B Development Environment 

Table 8: Development Environments 

 Sun Java SDK 1.6 Apache Ant Apache Maven 
Responsibility Java is used as the key pro-

gramming language to code 
all the experiments. 

Apache Ant is a tool for build-
ing Java programs. It is used 
to run the Rampart samples. 

Apache Maven is a build tool 
for a Java project. It is re-
quired to build Rampart from 
sources.  

Version  Sun Java JDK 1.6 Binary 
distribution 

Apache Ant version 1.7.1 Maven version: 2.0.8 

Source  
Modifications 

None None None 

Configuration 
Modification 

None None None 
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Appendix C Runtime Environment  

Table 9: Runtime Environment  

 Sun Java SDK 1.6 Apache Tomcat 6.0.20 Apache Axis2 Apache Rampart Log4J 

Responsibility The Java virtual machine is 
the runtime platform for 
execution of all the 
experiments.  

Apache Tomcat is used as 
the application server that 
hosts the SOAP engine. 

Apache Axis2 is the SOAP 
engine used by both the 
clients and the services.  

Apache Rampart 1.4/1.5 
implements the WS-security 
specification and can be 
deployed as a module to 
Axis2.  

Apache Log4J is used as 
the logging framework for 
services as well as the 
clients.  

Version  Binary distribution 

Java(TM) SE Runtime 
Environment (build 
1.6.0_16-b01) 

Java HotSpot(TM) Client 
VM (build 14.2-b01, mixed 
mode, sharing) 

Apache Tomcat 6.0.20 

Binary distribution 

Apache Axis2 1.4.1 (Binary 
distribution) and 1.5.1 for 
different tests 

Rampart 1.4.1 & 1.5  (binary 
and source distribution) 

Log4J-1.2.15 (binary 
distribution) 

Source 
Modifications 

None None None Rampart 1.4/1.5 sources 
were modified in order to 
measure the time taken by 
various components of 
Rampart. Rampart (version 
1.4) was built from sources 
using the Maven build tool. 
Only one Rampart module 
(rampart-core-1.4.jar) was 
built from sources; 1.5 was 
directly used from the 
distribution. 

None 
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 Sun Java SDK 1.6 Apache Tomcat 6.0.20 Apache Axis2 Apache Rampart Log4J 

Configuration 
Modification 

None $TOMCAT_HOME/bin/cata
lina.sh was modified to 
enable a new garbage 
collection algorithm.  

JAVA_OPTS="$JAVA_OPTS 
-
XX:+UseConcMarkSweepG
C" 

$AXIS2_HOME/WEB-
INF/classes 
/log4.properites was 
modified to enable logging 
at various levels. The 
server_axis2.log file 
was generated inside 
$TOMCAT_HOME/logs/ser
ver_axis2.log. 

• Rampart libraries and 
modules were 
deployed. 

• Rampart libs were 
deployed to 
$AXIS2_HOME/WEB-
INF/lib. 

• Rampart and Rahas 
modules were 
deployed to 
$AXIS2_HOME/WEB-
INF/modules. 

Services for the samples 
(.aar) were deployed to 
$AXIS2_HOMEWEB-
INF/services. 

Rampart logging was 
enabled and disabled 
using 
$AXIS2_HOME/WEB-
INF/classes 
/log4j.properites. 

 
log4j.category.org.ap
ache.rampart=FATAL 

Service side: 
$AXIS2_HOME/WEB-
INF/classes 
/log4.properites 

Client side: 
log4j.properties 
should be the CLASSPATH. 

To take performance measurements, the samples were modified using the Perf4J and Apache Log4J framework, inserting instances of the StopWatch 
class. 
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Appendix D Mapping of Apache Rampart Samples 

The experiments exercised all seven security mechanisms discussed in Section 3.2. The imple-
mentation of each security mechanism leveraged modified versions of the sample implementa-
tions provided with the default Apache Rampart installations.  

The following table provides the correlation of the Apache Rampart samples to the security im-
plementation that was leveraged. The default implementation of the Apache Rampart samples 
implements a message transfer using an Echo service with a basic “Hello World” string payload. 
For some of the experiments, the default implementation was modified to use an Employee De-
tails service that transfers an array of Employee objects as the payload (see Appendix E). 

Table 10: Mapping of Test Cases to Rampart Samples Used in the Experiments 

Test 
Case  

Security Mechanism Alternative Rampart Sample 
Number5 

1 No Security Sample.01 (Basic*) 

2 Password Only—Message Authentication with Username and Password Sample.02 (Basic) 

3 Sign Only—Message Integrity (Digital Signature) Sample.04 (Basic) 

4 Encrypt Only—Message Confidentiality (Encryption) Sample.05 (Basic) 

5 Sign then Encrypt—Multi-Layered Message Security (Digital Signature -> 
Encryption) 

Sample.06 (Basic) 

6 Encrypt then Sign—Multi-Layered Message Security (Encryption -> Digital 
Signature) 

Sample.07 (Basic) 

7 Secure Conversation (X509 token indicating Timestamp, Digital Signature, 
and Encryption) 

Sample.04 (Policy) 

 

  

 
5  Apache Rampart comes with two types of samples: Basic and Policy. Basic samples leverage different security 

mechanism atomically while Policy samples use WS-Security Policy Language to configure a communication 
session. 
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Appendix E Employee Class 

For reference, the following is an excerpt from the Java Employee Class used by the Employee 
Details service that was discussed in Appendix D. The definition of the get and set methods is not 
included because they are the expected typical default implementations. While a real implementa-
tion would use data types more appropriate for each data attribute, this implementation uses string 
as the type for each attribute in order to make the object as comparable as possible to the simple 
“Hello World” string payload used with the Echo service.  

When an object of this class is created, instead of using dummy data, each attribute was simply 
initialized to “Hello World,” again to ensure that the object is as comparable as possible to the 
payload used with the Echo service. 

Import java.util.Date; 

Public class Employee { 

private String name; 

private String empNumber; 

private String email; 

private String position; 

private String dateOfBirth; 

private String SSN; 

private String homeAddress; 

private String phoneNumber; 

/* Typical Get and Set methods follow*/ 

… 

} 
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Glossary of Technical Terms 

Axis2 Apache Axis2, a SOAP engine (i.e., a software module that manages the com-
munication of web service messages in SOAP format) 

Rampart Apache Rampart, a software module that works on a SOAP engine (specifically 
Apache Axis2) to automatically manage WS-Security standards on the services 
running on the SOAP engine. 

WS-SecureConversation An OASIS web service standard that creates a session token for a set of com-
munications between web services and associates a user-defined set of security 
standards to that token. The token can be transferred in each message instead of 
the security standard specifics, reducing security overhead. 

WS-Security An OASIS web service standard for managing security of web service communi-
cations 
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