

Specifications for Managed Strings,

Second Edition

Hal Burch (Software Engineering Institute)

Fred Long (University of Wales, Aberystwyth)

Raunak Rungta (Software Engineering Institute)

Robert Seacord (Software Engineering Institute)

David Svoboda (Software Engineering Institute)

May 2010

TECHNICAL REPORT

CMU/SEI-2010-TR-018
ESC-TR-2010-018

CERT
®
 Program

Unlimited distribution subject to the copyright.

http://www.cert.org

http://www.cert.org

This report was prepared for the

SEI Administrative Agent

ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the

interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally

funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2010 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS

FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF

ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED

TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS

OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE

ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR

COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for

internal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions

and derivative works.

External use. This document may be reproduced in its entirety, without modification, and freely distributed in

written or electronic form without requesting formal permission. Permission is required for any other external

and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at

permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with

Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research

and development center. The Government of the United States has a royalty-free government-purpose license to

use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,

for government purposes pursuant to the copyright license under the clause at 252.227-7013.

mailto:permission@sei.cmu.edu

i | CMU/SEI-2010-TR-018

Table of Contents

Acknowledgments iii

Abstract v

1 Introduction 1
1.1 String Manipulation Errors 1
1.2 Proposed Solution 1
1.3 The Managed String Library 2
1.4 Wide Character and Null-Terminated Byte Strings 2

2 Library 5
2.1 Use of errno 5
2.2 Runtime-Constraint Violations 5
2.3 Errors <errno.h> 5
2.4 Common Definitions <stddef.h> 6
2.5 Integer Types <stdint.h> 6
2.6 Managed String Type <string_m.h> 6
2.7 General Utilities <stdlib.h> 7

3 Library Functions 9
3.1 Utility Functions 9

3.1.1 The isnull_m Function 9
3.1.2 The isempty_m Function 9
3.1.3 Creating a Managed String 9
3.1.4 The isntbs_m Function 12
3.1.5 The iswide_m Function 12
3.1.6 The strdelete_m Function 13
3.1.7 The strlen_m Function 13
3.1.8 Extracting a Conventional String 13
3.1.9 The strdup_m Function 14

3.2 Copying Functions 15
3.2.1 Unbounded String Copy 15
3.2.2 The strncpy_m Function 16

3.3 Concatenation Functions 16

3.3.1 Unbounded Concatenation 16
3.3.2 Bounded Concatenation 17

3.4 Comparison Functions 19
3.4.1 Unbounded Comparison 19
3.4.2 Bounded String Comparison 20

3.5 Search Functions 22

3.5.1 The strtok_m Function 22
3.5.2 The cstrchr_m Function 22
3.5.3 The wstrchr_m Function 23
3.5.4 The strspn_m Function 23
3.5.5 The cstrspn_m Function 23
3.5.6 The wstrspn_m Function 24
3.5.7 The strcspn_m Function 24
3.5.8 The cstrcspn_m Function 25
3.5.9 The wstrcspn_m Function 25

3.6 Configuration Functions 26

ii | CMU/SEI-2010-TR-018

3.6.1 The setcharset_m Function 26
3.6.2 The setmaxlen_m Function 26

3.7 Functions Derived from printf 26
3.7.1 The sprintf_m Function 27
3.7.2 The vsprintf_m Function 27
3.7.3 The printf_m Function 28
3.7.4 The vprintf_m Function 28
3.7.5 The fprintf_m Function 29
3.7.6 The vfprintf_m Function 29

3.8 Functions Derived from scanf 30
3.8.1 The sscanf_m Function 30
3.8.2 The vsscanf_m Function 30
3.8.3 The scanf_m Function 31
3.8.4 The vscanf_m Function 31
3.8.5 The fscanf_m Function 32
3.8.6 The vfscanf_m Function 32

3.9 String Slices 33

3.9.1 The strslice_m Function 33
3.9.2 The strleft_m Function 33
3.9.3 The strright_m Function 34
3.9.4 The cchar_m Function 34
3.9.5 The wchar_m Function 35

References 37

iii | CMU/SEI-2010-TR-018

Acknowledgments

The authors want to thank David Keaton and Martin Sebor for their valuable contributions to this

technical report.

iv | CMU/SEI-2010-TR-018

v | CMU/SEI-2010-TR-018

Abstract

This report describes a managed string library for the C programming language. Many software

vulnerabilities in C programs result from the misuse of manipulation functions for standard C

strings. Programming errors common to string-manipulation logic include buffer overflow, trun-

cation errors, string termination errors, and improper data sanitization. The managed string library

provides mechanisms to eliminate or mitigate these problems and improve system security. The

CERT
®
 Program, which is part of the Carnegie Mellon

®
 Software Engineering Institute, provides

a proof-of-concept implementation of the managed string library on its Secure Coding web pages.

vi | CMU/SEI-2010-TR-018

1 | CMU/SEI-2010-TR-018

1 Introduction

1.1 String Manipulation Errors

Many software vulnerabilities in C programs arise through the misuse of manipulation functions

for standard C strings. String manipulation programming errors include truncation errors, termi-

nation errors, improper data sanitization, and buffer overflow through string copying.

Buffer overflow can easily occur during string copying if the fixed-length destination of the copy

is not large enough to accommodate the source string. This is a particular problem when the

source is user input, which is potentially unbounded. The usual programming practice is to allo-

cate a character array that is generally large enough. However, this fixed-length array can still be

exploited by a malicious user who supplies a carefully crafted string that overflows the array in a

way that compromises the security of the system. This is the most common exploit in fielded C

code today.

In attempting to overcome the buffer overflow problem, some programmers limit the number of

characters that are copied. This can result in strings being improperly truncated, which in turn

results in a loss of data that can lead to a different type of software vulnerability.

A special case of truncation error is a termination error. Many of the standard C string functions

rely on strings being null-terminated. However, the length of a string does not include the null

character. If just the non-null characters of a string are copied, the resulting string may not be

properly terminated. A subsequent access may run off the end of the string, corrupting data that

should not have been touched.

Finally, inadequate data sanitization can also lead to software vulnerabilities. To function proper-

ly, many applications require that data does not contain certain characters. Ensuring that the

strings used by the application do not include illegal characters can often prevent malicious users

from exploiting an application.

1.2 Proposed Solution

A secure string library should provide facilities to guard against the programming errors described

above. Furthermore, it should satisfy the following requirements:

 Operations should succeed or fail unequivocally.

 The facilities should be familiar to C programmers to facilitate both their adoption and the

conversion of existing code.

 Using the facilities should not involve any surprises. The new facilities should have seman-

tics similar to the manipulation functions for standard C strings. Again, this will help with

the conversion of legacy code.

Of course, some compromises are needed to meet these requirements. For example, it is not poss-

ible to completely preserve the existing semantics and provide protection against the program-

ming errors described above.

2 | CMU/SEI-2010-TR-018

Libraries that provide string manipulation functions can be categorized as static or dynamic. Stat-

ic libraries rely on fixed-length arrays. A static approach cannot overcome the errors described

above as easily as a dynamic approach. With a dynamic approach, strings are resized as necessary,

but a consequence is that memory can be exhausted if input is not limited. To mitigate this prob-

lem, the managed string library allows for the specification of a per-string maximum length.

1.3 The Managed String Library

The CERT
®
 Program, which is part of the Carnegie Mellon

®
 Software Engineering Institute, has

developed a proof-of-concept implementation of the managed string library in response to the

need for a string library that could improve the quality and security of newly developed C lan-

guage programs while eliminating obstacles to widespread adoption and possible standardization

[CERT 2009]. The managed string library is available on the CERT Secure Coding website,

http://www.cert.org/secure-coding/managedstring.html.

The managed string library is based on a dynamic approach where memory is allocated and real-

located as required. This approach eliminates the possibility of unbounded copies, null-

termination errors, and truncation by ensuring adequate space is always available for the resulting

string (including the terminating null character).

A runtime-constraint violation occurs when memory cannot be allocated. In this way, the ma-

naged string library accomplishes the goal of succeeding or failing unequivocally.

The managed string library also provides a mechanism for dealing with data sanitization by (op-

tionally) checking that all characters in a string belong to a predefined set of safe characters.

1.4 Wide Character and Null-Terminated Byte Strings

A number of managed string functions

 accept either a null-terminated byte string or a wide character string as input

 provide one of those string types as a return value

The managed string library works equally well with either type of string. For example, it is possi-

ble to create a managed string from a wide character string and then extract a null-terminated byte

string (or vice versa). It is also possible to copy a null-terminated byte string and then concate-

nate a wide character string. Managed string functions will handle conversions implicitly when

possible. If a conversion cannot be performed, the operation is halted and a runtime-constraint

error is reported.

Strings are maintained in the format in which they are initially provided, until such a time that a

conversion is necessary. String promotions are relatively simple: performing an operation on two

null-terminated byte strings results in a null-terminated byte string, an operation on a null-

terminated byte string and a wide character string results in a wide character string, and operations

on two wide character strings result in a wide character string. Conversions are performed as ne-

cessary in the locale defined at the time the conversion occurs.

®
 Carnegie Mellon and CERT are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

http://www.cert.org/secure-coding/managedstring.html

3 | CMU/SEI-2010-TR-018

Managed strings also support the definition of a restricted character set that identifies the set of

allowable characters for the string. When an operation requires that a null-terminated byte string

be converted to a wide character string, the restricted character set is also converted as part of the

operation.

4 | CMU/SEI-2010-TR-018

5 | CMU/SEI-2010-TR-018

2 Library

2.1 Use of errno

An implementation may set errno for the functions defined in this technical report but is not

required to do so.

2.2 Runtime-Constraint Violations

Most functions in this technical report include as part of their specifications a list of runtime-

constraints, which are requirements on the program using the library. Despite its name, a run-

time-constraint is not a kind of constraint. Implementations shall verify that the runtime-constraint

for a library function are not violated by the program.

Implementations shall check that the runtime-constraints specified for a function are met by the

program. If a runtime-constraint is violated, the implementation shall call the currently registered

constraint handler (see set_constraint_handler in Section 2.7). Multiple runtime-

constraint violations in the same call to a library function result in only one call to the constraint

handler. It is unspecified which one of the multiple runtime-constraint violations cause the hand-

ler to be called.

Sometimes the runtime-constraints section for a function states an action to be performed if a run-

time-constraint violation occurs. Such actions are performed before calling the runtime-constraint

handler. Sometimes the runtime-constraints section lists actions that are prohibited if a runtime-

constraint violation occurs. Such actions are prohibited to the function both before the handler is

called and after the handler returns.

The runtime-constraint handler may not return. If it does, the library function whose runtime-

constraint was violated shall return some indication of failure as given by the returns section in

the function’s specification.

Although runtime-constraints replace many cases of undefined behavior from ISO/IEC 9899:1999

[ISO/IEC 1999], undefined behavior can still occur. Implementations are free to detect any case

of undefined behavior and treat it as a runtime-constraint violation by calling the runtime-

constraint handler. This license comes directly from the definition of undefined behavior.

2.3 Errors <errno.h>

The header <errno.h> defines the following type, which is int:

 errno_t

6 | CMU/SEI-2010-TR-018

2.4 Common Definitions <stddef.h>

The <stddef.h> header defines the following type, which is size_t:
1

 rsize_t

2.5 Integer Types <stdint.h>

The <stdint.h> header defines the following macro, which expands to a value of type

size_t.
 2

 RSIZE_MAX

Functions that have parameters of type rsize_t consider it a runtime-constraint violation if the

values of those parameters are greater than RSIZE_MAX.

Recommended Practice

Extremely large object sizes are frequently a sign that an object’s size was calculated incorrectly.

For example, negative numbers appear as very large positive numbers when converted to an un-

signed type such as size_t. Also, some implementations do not support objects as large as the

maximum value that can be represented by type size_t.

For those reasons, it is sometimes beneficial to restrict the range of object sizes to detect pro-

gramming errors. For implementations targeting machines with large address spaces,

RSIZE_MAX should be defined as the smaller of the size of the largest object supported or

(SIZE_MAX >> 1), even if this limit is smaller than the size of some legitimate, but very

large, objects. Implementations targeting machines with small address spaces may wish to define

RSIZE_MAX as SIZE_MAX, which means that no object size is considered a runtime-constraint

violation.

2.6 Managed String Type <string_m.h>

The <string_m.h> header defines an abstract data type:

 typedef struct string_mx string_mx;

The structure referenced by this data type is private and implementation defined. All managed

strings of this type have a maximum string length that is determined when the string is created.

For functions that have parameters of type pointer to string_mx, it is a runtime-constraint vi-

olation if the maximum length of a managed string is exceeded.

Managed strings can also have a defined set of valid characters that can be used in the string. For

functions that have parameters of type pointer to string_mx, it is a runtime-constraint violation

if a managed string contains invalid characters. For functions that have parameters of type pointer

1
 See the description of the RSIZE_MAX macro in <stdint.h>.

2
 The RSIZE_MAX macro does not have to expand to a constant expression.

7 | CMU/SEI-2010-TR-018

to string_mx, it is a runtime-constraint violation if the request requires allocating more memo-

ry than is available.
3

Managed strings support both null and empty strings. An empty string is one that has zero charac-

ters. A null string is an uninitialized string or a string that has been explicitly set to null.

For computing the length of a string to determine if the maximum length is exceeded, the length

of a null-terminated byte string is the number of bytes, and the length of a wide character string is

the number of characters. Thus, promoting a multi-byte, null-terminated byte string may change

its length. Constants strings can be created by defining the structure string_mx to be constant

and then calling the const_strcreate_m function.

2.7 General Utilities <stdlib.h>

The header <stdlib.h> defines six types:

 errno_t, which is type int

 rsize_t, which is type size_t

 constraint_handler_t, which has the definition

 typedef void (*constraint_handler_t)(

 const char * restrict msg,

 void * restrict ptr,

 errno_t error);

 malloc_handler_t, which has the definition

 typedef void * (*malloc_handler_t)(

 size_t size);

 realloc_handler_t, which has the definition

 typedef void * (*realloc_handler_t)(

 void * ptr, size_t size);

 free_handler_t, which has the definition

 typedef void (*free_handler_t)(void *ptr);

3
 The library depends on malloc()and realloc()returning a null pointer to signify insufficient memory. On

some systems, particularly systems using optimistic memory allocation schemes, malloc()may return a non-

null pointer even when there is insufficient memory. On systems where there is no such mechanism to detect
out-of-memory conditions, the library will not be able to properly validate this condition.

8 | CMU/SEI-2010-TR-018

9 | CMU/SEI-2010-TR-018

3 Library Functions

3.1 Utility Functions

3.1.1 The isnull_m Function

Synopsis

 #include <string_m.h>

 errno_t isnull_m(const string_mx * s, _Bool *nullstr);

Runtime-Constraints

s shall reference a valid managed string. nullstr shall not be a null pointer.

Description

The isnull_m function tests whether the managed string s is null and delivers this result in the

parameter referenced by nullstr, given the managed string s.

Returns

The isnull_m function returns 0 if no runtime-constraints were violated. Otherwise, a nonzero

value is returned.

3.1.2 The isempty_m Function

Synopsis

#include <string_m.h>

errno_t isempty_m(const string_mx * s, _Bool *emptystr);

Runtime-Constraints

s shall reference a valid managed string. emptystr shall not be a null pointer.

Description

The isempty_m function tests whether the managed string s is empty and delivers this result in

the parameter referenced by emptystr, given the managed string s.

Returns

The isempty_m function returns 0 if no runtime-constraints were violated. Otherwise, a nonze-

ro value is returned.

3.1.3 Creating a Managed String

3.1.3.1 The strcreate_m Function

Synopsis

#include <string_m.h>

errno_t strcreate_m(string_mx **s,

const char *cstr,

const size_t maxsize,

const char *charset);

10 | CMU/SEI-2010-TR-018

Runtime-Constraints

s shall not be a null pointer. charset shall not be an empty string (denoted by ""). Invalid cha-

racters are not present in the C string passed to the function.

Description

The strcreate_m function creates a managed string, referenced by s, given a conventional

string cstr (which may be null or empty). maxsize specifies the maximum length of the

string in characters. If maxsize is 0, the system-defined maximum size is used. charset re-

stricts the set of allowable characters to those in the null-terminated byte string cstr (which may

be empty). If charset is a null pointer, no restricted character set is defined. If specified, dupli-

cated characters in a charset are ignored. Characters in the charset may be provided in any

order. The \0 character cannot be specified as part of charset.

Returns

The strcreate_m function returns 0 if no runtime-constraints were violated. Otherwise, a

nonzero value is returned.

3.1.3.2 The wstrcreate_m Function

Synopsis

#include <string_m.h>

errno_t wstrcreate_m(string_mx **s,

 const wchar_t *cstr,

 const size_t maxsize,

 const wchar_t *charset);

Runtime-Constraints

s shall not be a null pointer. charset shall not be an empty string (denoted by L""). Invalid

characters are not present in the C string passed to the function.

Description

The wstrcreate_m function creates a managed string, referenced by s, given a wide character

string cstr (which may be null or empty). maxsize specifies the maximum size of the string

in characters. If maxsize is zero, the system-defined maximum length is used. charset

restricts the set of allowable characters to those in the wide character string cstr (which may be

empty). If charset is a null pointer, no restricted character set is defined. Characters in the

charset may be provided in any order. The \0 character cannot be specified as part of

charset.

Returns

The wstrcreate_m function returns 0 if no runtime-constraints were violated. Otherwise, a

nonzero value is returned.

3.1.3.3 The const_strcreate_m function

Synopsis

#include <string_m.h>

11 | CMU/SEI-2010-TR-018

errno_t const_strcreate_m(const string_mx **str,

 const char *cstr,

 const size_t maxsize,

 const char *charset);

Runtime-Constraints

str shall not be a null pointer. charset shall not be an empty string (denoted by ""). Memory

allocation for the string should succeed. Invalid characters are not present in the C string passed to

the function.

Description

The const_strcreate_m function creates a constant managed string, given a conventional

constant C string cstr (which may be null or empty). maxsize specifies the maximum size of

the string in characters. If maxsize is 0, the system-defined maximum length is used. char-

set restricts the set of allowable characters to those in the null-terminated byte string cstr

(which may be empty). If charset is a null pointer, no restricted character set is defined. If

specified, duplicated characters in a charset are ignored. Characters in the charset may be

provided in any order. The \0 character cannot be specified as part of charset. The pointer to a

constant string structure is returned to the caller by storing it in the parameter passed to the func-

tion.

This function acts as a wrapper function to the strcreate_m function. It passes all the argu-

ments to the strcreate_m function to create a managed string. The pointer of that managed

string is returned to the user as a pointer to the constant managed string.

Returns

The const_strcreate_m function returns 0 if no runtime-constraints were violated. Other-

wise, a nonzero value is returned.

3.1.3.4 The const_wstrcreate_m function

Synopsis

#include <string_m.h>

errno_t const_wstrcreate_m(string_mx **str,

 const wchar_t *wcstr,

 const size_t maxsize,

 const wchar_t *charset);

Runtime-Constraints

str shall not be a null pointer. charset shall not be an empty string (denoted by L""). Memo-

ry allocation for the string should succeed. Invalid characters are not present in the C string passed

to the function.

Description

The const_wstrcreate_m function creates a constant managed string, referenced by str,

given a wide character string wcstr (which may be null or empty). maxsize specifies the

maximum size of the string in characters. If maxsize is zero, the system-defined maximum

12 | CMU/SEI-2010-TR-018

length is used. charset restricts the set of allowable characters to those in the wide character

string wcstr (which may be empty). If charset is a null pointer, no restricted character set is

defined. Characters in the charset may be provided in any order. The \0 character cannot be

specified as part of charset.

Returns

The const_wstrcreate_m function returns 0 if no runtime-constraints were violated. Oth-

erwise, a nonzero value is returned.

3.1.4 The isntbs_m Function

Synopsis

#include <string_m.h>

errno_t isntbs_m(const string_mx * s,

 _Bool *ntbstr);

Runtime-Constraints

s shall reference a valid managed string. ntbstr shall not be a null pointer.

Description

The isntbs_m function tests whether the managed string s is a null-terminated byte string and

delivers this result in the parameter referenced by ntbstr, given the managed string s.

Returns

The isntbs_m function returns 0 if no runtime-constraints were violated. Otherwise, a nonzero

value is returned.

3.1.5 The iswide_m Function

Synopsis

#include <string_m.h>

errno_t iswide_m(const string_mx * s,

 _Bool *widestr);

Runtime-Constraints

s shall reference a valid managed string. widestr shall not be a null pointer.

Description

The iswide_m function tests whether the managed string s is a wide character string and deliv-

ers this result in the parameter referenced by widestr, given the managed string s.

Returns

The iswide_m function returns 0 if no runtime-constraints were violated. Otherwise, a nonzero

value is returned.

13 | CMU/SEI-2010-TR-018

3.1.6 The strdelete_m Function

Synopsis

#include <string_m.h>

errno_t strdelete_m(string_mx **s);

Runtime-Constraints

s shall not be a null pointer. **s shall reference a valid managed string.

Description

The strdelete_m function deletes the managed string referenced by **s (which may be null

or empty). s is set to a null pointer.

Returns

The strdelete_m function returns 0 if no runtime-constraints were violated. Otherwise, a non-

zero value is returned.

3.1.7 The strlen_m Function

Synopsis

#include <string_m.h>

errno_t strlen_m(const string_mx * s, rsize_t *size);

Runtime-Constraints

s shall reference a valid managed string. size shall not be a null pointer.

Description

The strlen_m function computes the length of the constant managed string s and stores the

result into the variable referenced by size. If the managed string is either null or empty, the

length is computed as 0. For a null-terminated byte string, the length is the number of bytes. For

a wide character string, the length is the number of characters.

Returns

The strlen_m function returns 0 if no runtime-constraints were violated. Otherwise, a nonzero

value is returned.

3.1.8 Extracting a Conventional String

3.1.8.1 The cgetstr_m Function

Synopsis

#include <string_m.h>

errno_t cgetstr_m(const string_mx *s, const char **string);

Runtime-Constraints

s shall reference a valid managed string. string shall not be a null pointer. *string must be

a null pointer.

14 | CMU/SEI-2010-TR-018

Description

The cgetstr_m function allocates storage for, and returns a pointer to, a null-terminated byte

string represented by the managed string s and referenced by string. The caller is responsible

for freeing *string when the null-terminated byte string is no longer required.

Example

 if (retValue = cgetstr_m(str1, &cstr)) {

 fprintf(stderr, "error %d from cgetstr_m.\n", retValue);

 } else {

 printf("(%s)\n", cstr);

 free(cstr); // free duplicate string

 }

Returns

The cgetstr_m function returns 0 if no runtime-constraints were violated. Otherwise, a nonzero

value is returned. If there is a runtime-constraint violation, *string is set to a null pointer.

3.1.8.2 The wgetstr_m Function

Synopsis

#include <string_m.h>

errno_t wgetstr_m(const string_mx * s,

const wchar_t **wcstr);

Runtime-Constraints

s shall reference a valid managed string. wcstr shall not be a null pointer. *wcstr must be a

null pointer.

Description

The wgetstr_m function delivers a wide character string into the variable referenced by

wcstr, given the managed string s. The caller is responsible for freeing *wcstr when the wide

character string is no longer required.

Returns

The wgetstr_m function returns 0 if no runtime-constraints were violated. Otherwise, a nonzero

value is returned. If there is a runtime-constraint violation, *wcstr is set to a null pointer.

3.1.9 The strdup_m Function

Synopsis

#include <string_m.h>

errno_t strdup_m(string_mx **s1, const string_mx * s2);

Runtime-Constraints

s1 shall not be a null pointer. s2 shall reference a valid managed string.

Description

The strdup_m function creates a duplicate of the managed string s2 and stores it in s1. The

duplicate shall have the same set of valid characters and maximum length.

15 | CMU/SEI-2010-TR-018

Returns

The strdup_m function returns 0 if no runtime-constraints were violated. Otherwise, a nonzero

value is returned.

3.2 Copying Functions

3.2.1 Unbounded String Copy

3.2.1.1 The strcpy_m Function

Synopsis

#include <string_m.h>

errno_t strcpy_m(string_mx *s1, const string_mx * s2);

Runtime-Constraints

s1 and s2 shall reference valid managed strings.

Description

The strcpy_m function copies the managed string s2 into the managed string s1. Note that the

set of valid characters and maximum length are not copied as these are attributes of s1.
4

Returns

The strcpy_m function returns 0 if no runtime-constraints were violated. Otherwise, a nonzero

value is returned.

3.2.1.2 The cstrcpy_m Function

Synopsis

#include <string_m.h>

errno_t cstrcpy_m(string_mx *s1, const char *cstr);

Runtime-Constraints

s1 shall reference a valid managed string.

Description

The cstrcpy_m function copies the string cstr into the managed string s1.

Returns

The cstrcpy_m function returns 0 if no runtime-constraints were violated. Otherwise, a nonzero

value is returned.

3.2.1.3 The wstrcpy_m Function

Synopsis

#include <string_m.h>

errno_t wstrcpy_m(string_mx *s1, const wchar_t *wcstr);

4
 If s2 contains characters that are not in the set of valid characters or exceeds the maximum length defined for

s1, a runtime-constraint violation occurs as described in Section 2.6.

16 | CMU/SEI-2010-TR-018

Runtime-Constraints

s1 shall reference a valid managed string.

Description

The wstrcpy_m function copies the string wcstr into the managed string s1.

Returns

The wstrcpy_m function returns 0 if no runtime-constraints were violated. Otherwise, a nonzero

value is returned.

3.2.2 The strncpy_m Function

Synopsis

#include <string_m.h>

errno_t strncpy_m (string_mx *s1,

const string_mx * s2,

rsize_t n);

Runtime-Constraints

s1 and s2 shall reference valid managed strings.

Description

The strncpy_m function copies not more than n characters from the managed string s2 to the

managed string s1. If s2 does not contain n characters, the entire string is copied. If s2 contains

more than n characters, s1 is set to the string containing the first n characters.

Returns

The strncpy_m function returns 0 if no runtime-constraints were violated. Otherwise, a nonzero

value is returned.

3.3 Concatenation Functions

3.3.1 Unbounded Concatenation

3.3.1.1 The strcat_m Function

Synopsis

#include <string_m.h>

errno_t strcat_m(string_mx *s1, const string_mx * s2);

Runtime-Constraints

s1 and s2 shall reference valid managed strings.

Description

The strcat_m function concatenates the managed string s2 onto the end of the managed string

s1.

17 | CMU/SEI-2010-TR-018

Returns

The strcat_m function returns 0 if no runtime-constraints were violated. Otherwise, a nonzero

value is returned.

3.3.1.2 The cstrcat_m Function

Synopsis

#include <string_m.h>

errno_t cstrcat_m(string_mx *s, const char *cstr);

Runtime-Constraints

s shall reference a valid managed string.

Description

The cstrcat_m function concatenates the null-terminated byte string cstr onto the end of the

managed string s. If cstr is a null pointer, this function returns without modifying s.

Returns

The cstrcat_m function returns 0 if no runtime-constraints were violated. Otherwise, a nonzero

value is returned.

3.3.1.3 The wstrcat_m Function

Synopsis

#include <string_m.h>

errno_t wstrcat_m(string_mx *s, const wchar_t *wcstr);

Runtime-Constraints

s shall reference a valid managed string. wcstr shall not be a null pointer.

Description

The wstrcat_m function concatenates the wide character string wcstr onto the end of the ma-

naged string s. If wcstr is a null pointer, this function returns without modifying s.

Returns

The wstrcat_m function returns 0 if no runtime-constraints were violated. Otherwise, a nonzero

value is returned.

3.3.2 Bounded Concatenation

3.3.2.1 The strncat_m Function

Synopsis

#include <string_m.h>

errno_t strncat_m (string_mx *s1,

const string_mx * s2,

rsize_t n);

18 | CMU/SEI-2010-TR-018

Runtime-Constraints

s1 and s2 shall reference valid managed strings.

Description

The strncat_m function appends not more than n characters from the managed string s2 to

the end of the managed string s1. If s2 is a null pointer, strncat_m returns without modifying

s1.

Returns

The strncat_m function returns 0 if no runtime-constraints were violated. Otherwise, a nonzero

value is returned.

3.3.2.2 The cstrncat_m Function

Synopsis

#include <string_m.h>

errno_t cstrncat_m (string_mx *s,

const char *cstr,

rsize_t n);

Runtime-Constraints

s shall reference a valid managed string.

Description

The cstrncat_m function appends not more than n bytes from the null-terminated byte string

cstr to the end of the managed string s. If cstr is null, cstrncat_m returns without mod-

ifying s. The cstrncat_m function guarantees that the resulting string s is properly termi-

nated.

Returns

The cstrncat_m function returns 0 if no runtime-constraints were violated. Otherwise, a non-

zero value is returned.

3.3.2.3 The wstrncat_m Function

Synopsis

#include <string_m.h>

errno_t wstrncat_m (string_mx *s,

const wchar_t *wcstr,

rsize_t n);

Runtime-Constraints

s shall reference a valid managed string.

Description

The wstrncat_m function appends not more than n characters from the wide character string

wcstr to the end of the managed string s. If wcstr is a null pointer, the wstrncat_m func-

19 | CMU/SEI-2010-TR-018

tion returns without modifying s. The wstrncat_m function guarantees that the resulting string

s is properly terminated.

Returns

The wstrncat_m function returns 0 if no runtime-constraints were violated. Otherwise, a non-

zero value is returned.

3.4 Comparison Functions

The sign of a nonzero value delivered by the comparison functions strcmp_m and strncmp_m

is determined by the sign of the difference between the values of the first pair of characters (both

interpreted as unsigned char but promoted to int) that differ in the objects being compared.

For the purpose of comparison, a null string is less than any other string, including an empty

string. Null strings are equal, and empty strings are equal.

The set of valid characters defined for each string is not a factor in the evaluation; however, it is

held as an invariant that each managed string contains only characters identified as valid for that

string.

3.4.1 Unbounded Comparison

3.4.1.1 The strcmp_m Function

Synopsis

#include <string_m.h>

errno_t strcmp_m (const string_mx * s1,

const string_mx * s2,

int *cmp);

Runtime-Constraints

s1 and s2 shall reference valid managed strings. cmp shall not be a null pointer.

Description

The strcmp_m function compares the constant managed string s1 to the constant managed

string s2 and sets cmp to an integer value greater than, equal to, or less than 0 accordingly as s1

is greater than, equal to, or less than s2.

Returns

The strcmp_m function returns 0 if no runtime-constraints were violated. Otherwise, a nonzero

value is returned.

3.4.1.2 The cstrcmp_m Function

Synopsis

#include <string_m.h>

errno_t cstrcmp_m (const string_mx * s1,

const char *cstr,

int *cmp);

20 | CMU/SEI-2010-TR-018

Runtime-Constraints

s1 shall reference a valid managed string. cmp shall not be a null pointer.

Description

The cstrcmp_m function compares the managed string s1 to the null-terminated byte string

cstr and sets cmp to an integer value greater than, equal to, or less than 0 accordingly as s1 is

greater than, equal to, or less than cstr.

Returns

The cstrcmp_m function returns 0 if no runtime-constraints were violated. Otherwise, a nonzero

value is returned.

3.4.1.3 The wstrcmp_m Function

Synopsis

#include <string_m.h>

errno_t wstrcmp_m (const string_mx * s1,

const wchar_t *wstr,

int *cmp);

Runtime-Constraints

s1 shall reference a valid managed string. cmp shall not be a null pointer.

Description

The wstrcmp_m function compares the managed string s1 to the wide character string wstr

and sets cmp to an integer value greater than, equal to, or less than 0 accordingly as s1 is greater

than, equal to, or less than wstr.

Returns

The wstrcmp_m function returns 0 if no runtime-constraints were violated. Otherwise, a nonze-

ro value is returned.

3.4.2 Bounded String Comparison

3.4.2.1 The strncmp_m Function

Synopsis

#include <string_m.h>

errno_t strncmp_m (const string_mx * s1,

const string_mx * s2,rsize_t n,

int *cmp);

Runtime-Constraints

s1 and s2 shall reference valid managed strings. cmp shall not be a null pointer.

Description

The strncmp_m function compares not more than n characters (characters that follow a null

character are not compared) from the managed string s1 to the managed string s2 and sets cmp

21 | CMU/SEI-2010-TR-018

to an integer value greater than, equal to, or less than 0 accordingly as s1 is greater than, equal

to, or less than s2. If n is equal to 0, the strncmp_m function sets cmp to the integer value 0,

regardless of the contents of the string.

Returns

The strncmp_m function returns 0 if no runtime-constraints were violated. Otherwise, a nonze-

ro value is returned.

3.4.2.2 The cstrncmp_m Function

Synopsis

#include <string_m.h>

errno_t cstrncmp_m (const string_mx * s1,

const char *cstr, rsize_t n,

int *cmp);

Runtime-Constraints

s1 shall reference a valid managed string. cmp shall not be a null pointer.

Description

The cstrncmp_m function compares not more than n bytes (bytes that follow a null character

are not compared) from the managed string s1 to the null-terminated byte string cstr and sets

cmp to an integer value greater than, equal to, or less than 0 accordingly as s1 is greater than,

equal to, or less than cstr. If n is equal to 0, the cstrncmp_m function sets cmp to the integer

value 0, regardless of the contents of the string.

Returns

The cstrncmp_m function returns 0 if no runtime-constraints were violated. Otherwise, a non-

zero value is returned.

3.4.2.3 The wstrncmp_m Function

Synopsis

#include <string_m.h>

errno_t wstrncmp_m (const string_mx * s1,

const wchar_t *wstr, rsize_t n,

int *cmp);

Runtime-Constraints

s1 shall reference a valid managed string. cmp shall not be a null pointer.

Description

The wstrncmp_m function compares not more than n characters (characters that follow a null

character are not compared) from managed string s1 to the wide character string wstr and sets

cmp to an integer value greater than, equal to, or less than 0 accordingly as s1 is greater than,

equal to, or less than wstr. If n is equal to 0, the wstrncmp_m function sets cmp to the in-

teger value 0 regardless of the contents of the string.

22 | CMU/SEI-2010-TR-018

Returns

The wstrncmp_m function returns 0 if no runtime-constraints were violated. Otherwise, a non-

zero value is returned.

3.5 Search Functions

3.5.1 The strtok_m Function

Synopsis

#include <string_m.h>

errno_t strtok_m(string_mx *token,

 string_mx *str,

 const string_mx * delim,

 string_mx *ptr);

Runtime-Constraints

token, str, delim, and ptr shall reference valid managed strings.

Description

The strtok_m function scans the managed string str. The substring of str, up to but not

including the first occurrence of any of the characters contained in the managed string

delim, is returned as the managed string token. The remainder of the managed string str,

after but not including the first character found from delim, is returned as the managed string

ptr. If str does not contain any characters in delim (or if delim is either empty or null),

token shall be set to str, and ptr will be set to the null string.

Returns

The strtok_m function returns 0 if there was no runtime-constraint violation. Otherwise, a

nonzero value is returned.

3.5.2 The cstrchr_m Function

Synopsis

#include <string_m.h>

errno_t cstrchr_m(const string_mx * str,

char c,

 rsize_t *index);

Runtime-Constraints

str shall reference valid managed strings.

Description

The cstrchr_m function scans the managed string str for the first occurrence of c. The

parameter index is set to the first occurrence of character c in the string str. If c is not found in

str, the index references to ~0.

23 | CMU/SEI-2010-TR-018

Returns

The cstrchr_m function returns 0 if there was no runtime-constraint violation. Otherwise, a

nonzero value is returned.

3.5.3 The wstrchr_m Function

Synopsis

#include <string_m.h>

errno_t wstrchr_m(const string_mx * str,

wchar_t wc,

 rsize_t *index);

Runtime-Constraints

str shall reference valid managed strings.

Description

The wstrchr_m function scans the managed string str for the first occurrence of wc. The

parameter index is set to the first occurrence of wide character c in the string str. If c is not

found in str, the index references to ~0.

Returns

The wstrchr_m function returns 0 if there was no runtime-constraint violation. Otherwise, a

nonzero value is returned.

3.5.4 The strspn_m Function

Synopsis

#include <string_m.h>

errno_t strspn_m(string_mx *str, string_mx *accept,

rsize_t *len);

Runtime-Constraints

str and accept shall reference a valid managed string. len shall not be a null pointer.

Description

The strspn_m function computes the length of the maximum initial segment of the managed

string str, which consists entirely of characters from the managed string accept. The

strspn_m function sets *len to this length. If the managed string str is null or empty, *len

is set to 0.

Returns

The strspn_m function returns 0 if there was no runtime-constraint violation. Otherwise, a

nonzero value is returned.

3.5.5 The cstrspn_m Function

Synopsis

#include <string_m.h>

24 | CMU/SEI-2010-TR-018

errno_t cstrspn_m(string_mx *str, const char *accept,

rsize_t *len);

Runtime-Constraints

str and accept shall reference a valid managed string. len shall not be a null pointer.

Description

The cstrspn_m function computes the length of the maximum initial segment of the managed

string str, which consists entirely of characters from the string accept. The cstrspn_m

function sets *len to this length. If the managed string str is null or empty, *len is set to 0.

Returns

The cstrspn_m function returns 0 if there was no runtime-constraint violation. Otherwise, a

nonzero value is returned.

3.5.6 The wstrspn_m Function

Synopsis

#include <string_m.h>

errno_t wstrspn_m(string_mx *str, const wchar_t *accept,

rsize_t *len);

Runtime-Constraints

str and accept shall reference a valid managed string. len shall not be a null pointer.

Description

The wstrspn_m function computes the length of the maximum initial segment of the managed

string str, which consists entirely of characters from the string accept. The wstrspn_m

function sets *len to this length. If the managed string str is null or empty, *len is set to 0.

Returns

The wstrspn_m function returns 0 if there was no runtime-constraint violation. Otherwise, a

nonzero value is returned.

3.5.7 The strcspn_m Function

Synopsis

#include <string_m.h>

errno_t strcspn_m(string_mx *str, string_mx *reject,

rsize_t *len);

Runtime-Constraints

str and reject shall reference valid managed strings. len shall not be a null pointer.

Description

The strcspn_m function computes the length of the maximum initial segment of the managed

string str , which consists entirely of characters not from the managed string reject. The

strcspn_m function sets *len to this length. If the managed string str is null or empty,

25 | CMU/SEI-2010-TR-018

*len is set to 0. If the managed string reject is null or empty, *len is set to the length of

str.

Returns

The strcspn_m function returns 0 if there was no runtime-constraint violation. Otherwise, a

nonzero value is returned.

3.5.8 The cstrcspn_m Function

Synopsis

#include <string_m.h>

errno_t cstrcspn_m(string_mx *str, const char *reject,

rsize_t *len);

Runtime-Constraints

str and reject shall reference valid managed strings. len shall not be a null pointer.

Description

The cstrcspn_m function computes the length of the maximum initial segment of the ma-

naged string str , which consists entirely of characters not from the managed string reject.

The cstrcspn_m function sets *len to this length. If the managed string str is null or emp-

ty, *len is set to 0. If the managed string reject is null or empty, *len is set to the length of

str.

Returns

The cstrcspn_m function returns 0 if there was no runtime-constraint violation. Otherwise, a

nonzero value is returned.

3.5.9 The wstrcspn_m Function

Synopsis

#include <string_m.h>

errno_t wstrcspn_m(string_mx *str, const wchar_t *reject,

rsize_t *len);

Runtime-Constraints

str and reject shall reference valid managed strings. len shall not be a null pointer.

Description

The wstrcspn_m function computes the length of the maximum initial segment of the ma-

naged string str , which consists entirely of characters not from the managed string reject.

The wstrcspn_m function sets *len to this length. If the managed string str is null or emp-

ty, *len is set to 0. If the managed string reject is null or empty, *len is set to the length of

str.

26 | CMU/SEI-2010-TR-018

Returns

The wstrcspn_m function returns 0 if there was no runtime-constraint violation. Otherwise, a

nonzero value is returned.

3.6 Configuration Functions

3.6.1 The setcharset_m Function

Synopsis

#include <string_m.h>

errno_t setcharset_m(string_mx *s,

 const string_mx * charset);

Runtime-Constraints

s shall reference a valid managed string.

Description

The setcharset_m function sets the subset of allowable characters to those in the managed

string charset, which may be null or empty. If charset is a null pointer or the managed

string represented by charset is null, a restricted subset of valid characters is not enforced. If

the managed string charset is empty, then only empty or null strings can be created.

Returns

The setcharset_m function returns 0 if no runtime-constraints were violated. Otherwise, a

nonzero value is returned.

3.6.2 The setmaxlen_m Function

Synopsis

#include <string_m.h>

errno_t setmaxlen_m(string_mx *s, rsize_t maxlen);

Runtime-Constraints

s shall reference a valid managed string.

Description

The setmaxlen_m function sets the maximum length of the managed string s. If maxlen is 0,

the system-defined maximum length is used.

Returns

The setmaxlen_m function returns 0 if no runtime-constraints were violated. Otherwise, a

nonzero value is returned..

3.7 Functions Derived from printf

These functions are the managed string equivalents to the printf-derived functions in C.

27 | CMU/SEI-2010-TR-018

The %s format specification refers to a managed string, rather than a null-terminated byte string or

wide character string. The format specification %ls indicates that the managed string should be

output as a wide character string. The format specification %hs indicates that the managed string

should be output as a null-terminated byte string. All printf-derived functions will output a

null-terminated byte string if (1) any specified output stream is byte oriented and (2) the format

string and all argument strings are null-terminated byte strings; otherwise the output will be a

wide character string.

Applying a byte output function to a wide-oriented stream or applying a wide character output

function to a byte-oriented stream will result in a runtime-constraint error.

The %n format specification is not recognized.

3.7.1 The sprintf_m Function

Synopsis

#include <string_m.h>

errno_t sprintf_m(string_mx *buf, const string_mx * fmt,

int *count, ...);

Runtime-Constraints

buf and fmt shall reference valid managed strings. The managed string fmt shall be a valid

format compatible with the arguments after fmt.

Description

The sprintf_m function formats its parameters after the third parameter into a string accord-

ing to the format contained in the managed string fmt and stores the result in the managed string

buf.

If not a null pointer, *count is set to the number of characters written in buf, not including the

terminating null character.

Returns

The sprintf_m function returns 0 if no runtime-constraints were violated. Otherwise, a nonze-

ro value is returned.

3.7.2 The vsprintf_m Function

Synopsis

#include <string_m.h>

errno_t vsprintf_m(string_mx *buf,

 const string_mx * fmt,

int *count,

va_list args);

Runtime-Constraints

buf and fmt shall reference a valid managed string. fmt shall not be a null pointer. The ma-

naged string fmt shall be a valid format compatible with the arguments args.

28 | CMU/SEI-2010-TR-018

Description

The vsprintf_m function formats its parameters args into a string according to the format

contained in the managed string fmt and stores the result in the managed string buf.

If not a null pointer, *count is set to the number of characters written in buf, not including the

terminating null character.

Returns

The vsprintf_m function returns 0 if no runtime-constraints were violated. Otherwise, a non-

zero value is returned.

3.7.3 The printf_m Function

Synopsis

#include <string_m.h>

errno_t printf_m(const string_mx * fmt, int *count, ...);

Runtime-Constraints

fmt shall reference a valid managed string. fmt shall not be a null pointer. The managed string

fmt shall be a valid format compatible with the arguments after fmt.

Description

The printf_m function formats its parameters after the second parameter into a string accord-

ing to the format contained in the managed string fmt and outputs the result to standard output.

If not a null pointer, *count is set to the number of characters transmitted.

Returns

The printf_m function returns 0 if no runtime-constraints were violated. Otherwise, a nonzero

value is returned.

3.7.4 The vprintf_m Function

Synopsis

#include <string_m.h>

errno_t vprintf_m(const string_mx * fmt, int *count,

va_list args);

Runtime-Constraints

fmt shall reference a valid managed string. fmt shall not be a null pointer. The managed string

fmt shall be a valid format compatible with the arguments args.

Description

The vprintf_m function formats its parameters args into a string according to the format

contained in the managed string fmt and outputs the result to standard output.

If not a null pointer, *count is set to the number of characters transmitted.

29 | CMU/SEI-2010-TR-018

Returns

The vprintf_m function returns 0 if no runtime-constraints were violated. Otherwise, a nonze-

ro value is returned.

3.7.5 The fprintf_m Function

Synopsis

#include <string_m.h>

errno_t fprintf_m(FILE *file, const string_mx * fmt, int

*count, ...);

Runtime-Constraints

fmt shall reference a valid managed string. fmt shall not be a null pointer. The managed string

fmt shall be a valid format compatible with the arguments after fmt. file shall not be a null

pointer.

If not a null pointer, *count is set to the number of characters transmitted.

Description

The fprintf_m function formats its parameters after the third parameter into a string accord-

ing to the format contained in the managed string fmt and outputs the result to file.

Returns

The fprintf_m function returns 0 if no runtime-constraints were violated. Otherwise, a nonze-

ro value is returned.

3.7.6 The vfprintf_m Function

Synopsis

#include <string_m.h>

errno_t vfprintf_m(FILE *file, const string_mx * fmt,

int *count, va_list args);

Runtime-Constraints

fmt shall reference a valid managed string. fmt shall not be a null pointer. The managed string

fmt shall be a valid format compatible with the arguments args. file shall not be a null poin-

ter.

Description

The vfprintf_m function formats its parameters args into a string according to the format

contained in the managed string fmt and outputs the result to file.

If not a null pointer, *count is set to the number of characters transmitted.

Returns

The vfprintf_m function returns 0 if no runtime-constraints were violated. Otherwise, a non-

zero value is returned.

30 | CMU/SEI-2010-TR-018

3.8 Functions Derived from scanf

These functions are the managed string equivalents to the scanf-derived functions in C. Ma-

naged string format strings differ from standard C format strings primarily in that they are

represented as managed strings. The %s specification refers to a managed string rather than a null-

terminated byte string or wide character string. The use of char* or wchar_t* pointers in the

varargs list will result in a runtime-constraint if detected. The managed string read by %s is

created as a null-terminated byte string if the input string is a null-terminated byte string or the

input stream has byte orientation; otherwise a wide character string is created. The format specifi-

cation %ls indicates that the managed string should be created as a wide character string. The

format specification %hs indicates that the managed string should be created as a null-terminated

byte string.

Applying a byte input function to a wide-oriented stream or applying a wide character input func-

tion to a byte-oriented stream will result in a runtime-constraint error.

3.8.1 The sscanf_m Function

Synopsis

#include <string_m.h>

errno_t sscanf_m(string_m buf, const string_mx * fmt,

int *count, ...);

Runtime-Constraints

buf and fmt shall reference a valid managed string. fmt shall not be a null pointer. The ma-

naged string fmt shall be a valid format compatible with the arguments after fmt.

Description

The sscanf_m function processes the managed string buf according to the format contained in

the managed string fmt and stores the results using the arguments after count.

If not a null pointer, *count is set to the number of input items assigned, which can be fewer

than provided for, or even zero, in the event of an early matching failure.

Returns

The sscanf_m function returns 0 if no runtime-constraints were violated. Otherwise, a nonzero

value is returned.

3.8.2 The vsscanf_m Function

Synopsis

#include <string_m.h>

errno_t vsscanf_m(string_mx *buf,

const string_mx * fmt,

int *count,

va_list args);

31 | CMU/SEI-2010-TR-018

Runtime-Constraints

buf and fmt shall reference a valid managed string. fmt shall not be a null pointer. The ma-

naged string fmt shall be a valid format compatible with the arguments args.

Description

The vsscanf_m function processes the managed string buf according to the format contained

in the managed string fmt and stores the results using the arguments in args.

If not a null pointer, *count is set to the number of input items assigned, which can be fewer

than provided for, or even zero, in the event of an early matching failure.

Returns

The vsscanf_m function returns 0 if no runtime-constraints were violated. Otherwise, a nonze-

ro value is returned.

3.8.3 The scanf_m Function

Synopsis

#include <string_m.h>

errno_t scanf_m(const string_mx * fmt, int *count, ...);

Runtime-Constraints

fmt shall reference a valid managed string. fmt shall not be a null pointer. The managed string

fmt shall be a valid format compatible with the arguments after count.

Description

The scanf_m function processes input from standard input according to the format contained in

the managed string fmt and stores the results using the arguments after count.

If not null, *count is set to the number of input items assigned, which can be fewer than pro-

vided for, or even zero, in the event of an early matching failure.

Returns

The scanf_m function returns 0 if no runtime-constraints were violated. Otherwise, a nonzero

value is returned.

3.8.4 The vscanf_m Function

Synopsis

#include <string_m.h>

errno_t vscanf_m(const string_mx * fmt, int *count,

va_list args);

Runtime-Constraints

fmt shall reference a valid managed string. fmt shall not be a null pointer. The managed string

fmt shall be a valid format compatible with the arguments args.

32 | CMU/SEI-2010-TR-018

Description

The vscanf_m function processes input from standard input according to the format contained

in the managed string fmt and stores the results using the arguments in args.

If not null, *count is set to the number of input items assigned, which can be fewer than pro-

vided for, or even zero, in the event of an early matching failure.

Returns

The vscanf_m function returns 0 if no runtime-constraints were violated. Otherwise, a nonzero

value is returned.

3.8.5 The fscanf_m Function

Synopsis

#include <string_m.h>

errno_t fscanf_m(FILE *file, const string_mx *fmt,

int *count, ...);

Runtime-Constraints

fmt shall reference a valid managed string. fmt shall not be a null pointer. The managed string

fmt shall be a valid format compatible with the arguments after count. file shall not be a

null pointer.

Description

The fscanf_m function processes input from file according to the format contained in the

managed string fmt and stores the results using the arguments after count.

If not a null pointer, *count is set to the number of input items assigned, which can be fewer

than provided for, or even zero, in the event of an early matching failure.

Returns

The fscanf_m function returns 0 if no runtime-constraints were violated. Otherwise, a nonzero

value is returned.

3.8.6 The vfscanf_m Function

Synopsis

#include <string_m.h>

errno_t vfscanf_m(FILE *file, const string_mx *fmt,

int *count, va_list args);

Runtime-Constraints

fmt shall reference a valid managed string. fmt shall not be a null pointer. The managed string

fmt shall be a valid format compatible with the arguments after count. file shall not be a

null pointer.

33 | CMU/SEI-2010-TR-018

Description

The vfscanf_m function processes input from file according to the format contained in the

managed string fmt and stores the results using the arguments after count.

If not a null pointer, *count is set to the number of input items assigned, which can be fewer

than provided for, or even zero, in the event of an early matching failure.

Returns

The vfscanf_m function returns 0 if no runtime-constraints were violated. Otherwise, a nonzero

value is returned.

3.9 String Slices

3.9.1 The strslice_m Function

Synopsis

#include <string_m.h>

errno_t strslice_m(string_m s1,

const string_mx * s2,

rsize_t offset, rsize_t len);

Runtime-Constraints

s1 and s2 shall reference valid managed strings. There shall be sufficient memory to store the

result.

Description

The strslice_m function takes up to len characters from s2, starting at the offset charac-

ter in the string, and stores the result in s1. If there are insufficient characters to copy len cha-

racters, all available characters are copied. If offset is greater than the number of characters in

s2, s1 is set to the null string. If offset is equal to the number of characters in s2 or len is 0,

s1 is set to the empty string.

Returns

The strslice_m function returns 0 if no runtime-constraints were violated. Otherwise, a non-

zero value is returned.

3.9.2 The strleft_m Function

Synopsis

#include <string_m.h>

errno_t strleft_m(string_mx *s1,

const string_mx * s2,

rsize_t len);

Runtime-Constraints

s1 and s2 shall reference valid managed strings. There shall be sufficient memory to store the

result.

34 | CMU/SEI-2010-TR-018

Description

The strleft_m function copies up to len characters from the start of the managed string s2

to the managed string s1. If s2 does not have len characters, the entire string is copied. If s2

is a null string, s1 is set to the null string.

Returns

The strleft_m function returns 0 if no runtime-constraints were violated. Otherwise, a nonze-

ro value is returned.

3.9.3 The strright_m Function

Synopsis

#include <string_m.h>

errno_t strright_m(string_mx *s1,

const string_mx * s2,

rsize_t len);

Runtime-Constraints

s1 and s2 shall reference valid managed strings. There shall be sufficient memory to store the

result.

Description

The strright_m function copies up to the last len characters from the managed string s2 to

the managed string s1. If s2 does not have len characters, the entire string is copied. If s2 is a

null string, s1 is set to the null string.

Returns

The strright_m function returns 0 if no runtime-constraints were violated. Otherwise, a non-

zero value is returned.

3.9.4 The cchar_m Function

Synopsis

#include <string_m.h>

errno_t cchar_m(const string_mx * s,

rsize_t offset,

char *c);

Runtime-Constraints

s shall reference a valid managed string. c shall not be a null pointer. offset shall be less than

the length of the managed string s. The character to be returned in c shall be representable as a

char.

Description

The cchar_m function sets c to the offset character (the first character having an offset

of 0) in the managed string s.

35 | CMU/SEI-2010-TR-018

Returns

The cchar_m function returns 0 if no runtime-constraints were violated. Otherwise, a nonzero

value is returned.

3.9.5 The wchar_m Function

Synopsis

#include <string_m.h>

errno_t wchar_m(const string_mx * s,

rsize_t offset,

wchar_t *wc);

Runtime-Constraints

s1 shall reference a valid managed string. wc shall not be a null pointer. offset shall be less

than the length of the managed string s1.

Description

The wchar_m function sets wc to the offset character (the first character having an offset

of 0) in the managed string s.

Returns

The wchar_m function returns 0 if no runtime-constraints were violated. Otherwise, a nonzero

value is returned.

36 | CMU/SEI-2010-TR-018

37 | CMU/SEI-2010-TR-018

References

URLs are valid as of the publication date of this document.

[CERT 2009]

CERT. Managed String Library. http://www.cert.org/secure-coding/managedstring.html (2009).

[ISO/IEC 1999]

International Organization for Standardization, International Electrotechnical Commission.

ISO/IEC 9899:1999, Programming Languages—C. http://www.open-std.org/JTC1/SC22/WG14

/www/docs/n1124.pdf (May 6, 2005).

http://www.cert.org/secure-coding/managedstring.html
http://www.open-std.org/JTC1/SC22/WG14

38 | CMU/SEI-2010-TR-018

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

May 2010

3. REPORT TYPE AND DATES

COVERED

Final

4. TITLE AND SUBTITLE

Specifications for Managed Strings,

Second Edition

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Hal Burch, Fred Long, Raunak Rungta, Robert Seacord, David Svoboda

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2010-TR-018

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

ESC-TR-2010-018

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This report describes a managed string library for the C programming language. Many software vulnerabilities in C programs result from

the misuse of manipulation functions for standard C strings. Programming errors common to string-manipulation logic include buffer

overflow, truncation errors, string termination errors, and improper data sanitization. The managed string library provides mechanisms to

eliminate or mitigate these problems and improve system security. The CERT® Program, which is part of the Carnegie Mellon® Software

Engineering Institute, provides a proof-of-concept implementation of the managed string library on its Secure Coding web pages.

14. SUBJECT TERMS

string library, software security, C programming, runtime-constraint handling

15. NUMBER OF PAGES

46

16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

20. LIMITATION OF

ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

	Specifications for Managed Strings, Second Edition
	Table of Contents
	Acknowledgments
	Abstract
	1 Introduction
	2 Library
	3 Library Functions
	References

