

Characterizing Technical Software

Performance Within System of Systems

Acquisitions: A Step-Wise Methodology

Bryce L. Meyer

James T. Wessel

April 2010

TECHNICAL REPORT

CMU/SEI-2010-TR-007
ESC-TR-2010-007

Acquisition Support Program
Unlimited distribution subject to the copyright.

http://www.sei.cmu.edu

http://www.sei.cmu.edu

This report was prepared for the

SEI Administrative Agent

ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the

interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally

funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2010 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS

FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF

ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED

TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS

OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE

ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR

COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for inter-

nal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions and

derivative works.

External use. This document may be reproduced in its entirety, without modification, and freely distributed in

written or electronic form without requesting formal permission. Permission is required for any other external

and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at

permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with

Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research

and development center. The Government of the United States has a royalty-free government-purpose license to

use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,

for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about SEI publications, please visit the library on the SEI website (www.sei.cmu.edu/library).

mailto:permission@sei.cmu.edu
http://www.sei.cmu.edu/library

i | CMU/SEI-2010-TR-007

Table of Contents

Acknowledgments vii

Abstract ix

1 Overview 1

2 Defining Software Performance in a SOA SoS 5
2.1 Organizational Issues in Improving Performance for SOA SoS 5
2.2 A Process for Determining SWP Using Select SOA SoS Metrics 5

3 Detailed 10-Step Method for Software Performance in a SOA SoS Environment 8
3.1 Step 1: Develop a SOA SoS Performance View 8

3.1.1 Notional System of Systems Hierarchy 8
3.1.2 Bottom-Up Decomposition: The Blade 9
3.1.3 Bottom-Up Decomposition: The Processing Unit 9
3.1.4 Bottom-Up Decomposition: The System 10
3.1.5 What about the Services in Our SOA SoS? 12

3.2 Step 2: Review Key SOA SoS Resource Limiters 13

3.2.1 Performance Factors That Affect Software Performance 13
3.2.2 The Effects of Scale 16

3.3 Step 3: Develop Sample Scenarios and Determine Respective SWP Impacts 17

3.3.1 Sample SOA SoS Scenarios and Factors 17
3.4 Step 4: Create an Initial List of SWP Metrics for Your SoS 19

3.4.1 Getting Metrics from Factors 19
3.4.2 (Optional) Values of Metrics from Requirements: The Why 21
3.4.3 Generating the Initial Metrics List 23

3.5 Step 5: Add Required Software Performance Metrics from Other Sources 24
3.5.1 Must Have List for a SOA SoS System 24
3.5.2 Other Sources 24

3.6 Step 6: Determine All Test Events and Rate Their Maturity 25

3.6.1 Dimensional Representation of SWP Factors (Test Fidelity) 25
3.6.2 Notional Levels for the Software Axis in Test Events 26
3.6.3 Notional Levels for the Hardware Axis in Test Events 26
3.6.4 Notional Levels for the Scale Axis in Test Events 28
3.6.5 (Optional) Notional Levels for the Network Axis in Test Events (if Used) 31
3.6.6 Accounting for Test Quality: Notional Levels 31
3.6.7 Putting the Coordinates Together for a Test Event (for Each Metric) 32
3.6.8 Assembling the Metrics Matrix: Events in Columns, Metrics in Rows 32

3.7 Step 7: Determine What Metrics and Events are Missing 34
3.7.1 Forming the Software Performance Technical Interchange Group 34
3.7.2 Other Parties 35

3.8 Step 8: Plan Future Tests and Mine Data from Existing Data Sets 36
3.8.1 Test Planning: Improving Test Quality and Fidelity 36
3.8.2 Test Infrastructures 36

3.9 Step 9: Tie in Architecture to the Metrics 39

3.9.1 Feedback and Traceability 39
3.9.2 What Do the Metrics Tell Me: Gap Analysis 41
3.9.3 What do the Metrics Tell Me? Regression Comparison 41

3.10 Step 10: Determine the Refresh Schedule 42

ii | CMU/SEI-2010-TR-007

3.10.1 Repetition and Currency 42

4 Summary and Conclusion 43
4.1 Summary 43
4.2 Notes and Conclusions 44

Appendix—20 Must-Have Software Performance Metrics for a SOA SoS 45

References 48

iii | CMU/SEI-2010-TR-007

List of Figures

Figure 1: Flashlights in a Dark Cavern, a Project Phase Analogy 4

Figure 2: Software Performance Process Flow – 10 Steps 7

Figure 3: Notional SOA SoS Hierarchy Layout 8

Figure 4: Single Server (Blade) Performance Measurement Points 9

Figure 5: Decomposition of the Processing Unit 10

Figure 6: Decomposition of the System 11

Figure 7: WAN Connections between Systems in the Notional SoS 12

Figure 8: A Generic Service Architecture: Service, Middleware, Blade OS 13

Figure 9: Initial Performance Shape for the SoS 15

Figure 10: Possible Scenario for Our SOA SoS 17

Figure 11: Decompose Metrics from Each Factor from Each Scenario 19

Figure 12: Decomposition of Performance-Related Metrics 20

Figure 13: Tying Factors and Their Ensuing Metrics to Requirements 22

Figure 14: The Cube of Test Event Realism for Software Performance 25

Figure 15: A Sample Lab Structure for Simulating the Hardware of a System and Processing Units 27

Figure 16: Notional Levels of Scale in Testing 28

Figure 17: A Test in a Lab at Full SoS Scale of Hundreds of Systems 30

Figure 18: A Notional SWP TIM Stakeholder Group 34

Figure 19: Mining Previous Test Results Using Cross Correlation 38

Figure 20: Example Metrics Tracing 40

iv | CMU/SEI-2010-TR-007

v | CMU/SEI-2010-TR-007

List of Tables

Table 1: An Initial Metrics List with Columns to Identify and Categorize Each Metric 23

Table 2: An Abbreviated Example of Metrics Matrix Filled in for Test Events 33

vi | CMU/SEI-2010-TR-007

vii | CMU/SEI-2010-TR-007

Acknowledgments

The authors thank Ceci Albert, Stephen Blanchette, and Lisa Marino of the Carnegie Mellon
®

Software Engineering Institute (SEI) for their guidance and review of early drafts of this report.

Their comments greatly improved the final product.

®
 Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

viii | CMU/SEI-2010-TR-007

ix | CMU/SEI-2010-TR-007

Abstract

The characterization of software performance (SWP) in complex, service-oriented architecture

(SOA)-based system of systems (SoS) environments is an emergent study area. This report focus-

es on both qualitative and quantitative ways of determining the current state of SWP in terms of

both test coverage (what has been tested) and confidence (degree of testing) for SOA-based SoS

environments. Practical tools and methodologies are offered to aid technical and programmatic

managers:

 a stepwise methodology toward SWP selection

 SWP and system architecture design considerations

 resource limiters of SWP

 SWP and test event design considerations

 organizational and process suggestions toward improved SWP management

 a matrix of measures including test fidelity and realism levels

These tools are not complete, but do offer a good starting point with the intent to encourage con-

tributions to this growing body of knowledge.

This report is intended to benefit leaders within the varied acquisition communities, Program Ex-

ecutive Offices, and Program Management Offices. It provides detailed guidance for use by tech-

nical leadership as well.

x | CMU/SEI-2010-TR-007

1 | CMU/SEI-2010-TR-007

1 Overview

The SEI, through its Acquisition Support Program, facilitated holistic improvement in a complex

service-orientated architecture(SOA)-based system of systems (SoS). The improvement took both

a technical and programmatic perspective, in the design and use of software performance (SWP)

tools and methodologies, which enabled the vital association of hardware to software perfor-

mance. Impacts include improved:

 programmatic and technical visibility into software performance earlier in the development

life cycle, providing “actionable intelligence”

 understanding of the ability of software deployed on diverse networked systems to meet soft-

ware quality characteristics

 traceability of desired program capabilities

 coordination and synchronization of organizational software performance asset investments

 identification of consequential program issues and risks

The characterization of SWP in complex, SOA-based SoS environments is an emergent study

area. Based on experiences with a real world Department of Defense (DoD) SOA SoS acquisition

environment, along with industry experience and academic research, this report documents the

Software Engineering Institute’s ongoing investigation of these questions:

 Will the performance of fielded software enable envisioned capabilities, in an end-to-end user

environment?

 What performance data should technical and program managers use as “actionable intelli-

gence” to aid decision making?

 What organizational structures and resources need to support SWP management?

We include discussions of a recommended step methodology for choosing SWP measurements,

SWP and software system architecture design, SWP resource limiters, SWP and test event design,

and continuous SWP process improvement.

We also detail impacts for acquisition programs, including improved

 programmatic and technical visibility into software performance earlier in the development

life cycle, providing “actionable intelligence”

 understanding of the ability of software deployed on diverse networked systems to meet soft-

ware quality characteristics

 traceability of desired program capabilities

 coordination and synchronization of organizational software performance asset investments

 identification of consequential program issues and risks

We focus on both qualitative and quantitative ways of determining the current state of SWP in

terms of both test coverage (what has been tested) and confidence (degree of testing) for complex

2 | CMU/SEI-2010-TR-007

SOA-based SoS)environments. We offer practical tools and methodologies to aid technical and

programmatic managers:

 a stepwise methodology toward SWP selection

 SWP and system architecture design considerations

 resource limiters of SWP

 SWP and test event design considerations

 organizational and process suggestions toward improved SWP management

 a matrix of measures including test fidelity and realism levels

These tools are not complete, but do offer a good starting point with the intent to encourage con-

tributions to this growing body of knowledge.

A Scenario

We present our methodology in the context of a blade environment, although the general con-

cepts should apply across hardware instantiations. The following scenario provides a context of

SOA SoS usage for ensuing SWP discussions.

Networked SoS projects link multiple hardware platforms (e.g., a truck or plane) to perform some

defined activity together, where each platform consists of a system of processing units linked by

one or several communication networks (e.g., local area network, radio). These systems use a

SOA in which software elements provide “offers” of functionality to a “discovery engine.” Each

processor, or blade, in the processing unit runs a common middleware that encapsulates the oper-

ating system for each processor.

A coarse and simplified analogy is a series of websites on the public Internet; each one offering

information or function (i.e., a service); each providing an interface, with a standard format with

Internet Protocol (IP); and discovered using a search engine’s discovery feature. The search en-

gine is hosted in a distributed fashion on every website server to facilitate system performance

e.g., swifter discovery and system design attributes (e.g., fault tolerance). The processors of each

website are varied in type, count, and power. The websites are developed and hosted by a diversi-

ty of developers from varied organizations.

A user enters the keywords into the search engine, located on the nearest server, which provides a

graphical user interface (GUI) that allows the user to link to the websites. The more users and

more websites, the harder the search engine has to work’ the more used the connections to the

websites become, the more effort the websites’ servers must exert to provide the offered service.

In this scenario, you seek measures to determine SWP for each website, excluding the network
1

metrics themselves:

 How would you decide what measures would be required?

 What kinds of testing are needed to elucidate the performance of the service’s software and

underlying structure?

1
 For this report, sample metrics of ‘network aspects are provided only as examples, such as router/FW/radio.

Delving deeply into network metrics could encompass the better part of many books.

3 | CMU/SEI-2010-TR-007

 How do you know the state of SWP testing, and what gaps remain?

Typically, diverse test events in varied stages exist, analogous to exploring a cavern of unknown

size using intersecting flashlights (see Figure 1). Only where the flashlight beams intersect do we

have enough illumination to know the true character of a portion of the cavern. Replace the flash-

lights with test result documentation, and the analogy holds for quantifying the software perfor-

mance of a large, complex SOA SoS.

This report provides a method to better plan metrics use toward illuminating software perfor-

mance for an objective SOA SoS. Included is a set of initial SWP metric categories, along with a

method to assess the current state of testing.

4 | CMU/SEI-2010-TR-007

Figure 1: Flashlights in a Dark Cavern, a Project Phase Analogy

Unknown but
(Partially to Fully)

Defined

Test
Events^

Unknown,
Undefined

Unknown,
Undefined

Requirements X
Design Documents

Test
Events^^

Test
Events

*= Partially to Fully based
on fidelity and thoroughness

^= focused, lower fidelity

^^=Higher fidelity/scale

Late Project

Known* &
Defined*

Unknown but
(Partially to Fully)

Defined (Partially to Fully)
Known but
Undefined

Requirements X
Design DocumentsTest Events

Unknown,
Undefined

Unknown,
Undefined

* = Partially to Fully based on fidelity and thoroughness

Unknown,
Undefined

Unknown,
Undefined

Early Project

Narrow
focus

5 | CMU/SEI-2010-TR-007

2 Defining Software Performance in a SOA SoS

The SoS environment in this context included software implemented within a service context,

with common middleware, deployed on diverse systems, and networked together by a wide area

network (WAN). One objective is to better understand the software performance quality characte-

ristics, especially timing and resource consumption, under full-scale usage conditions, using rep-

resentative or complete software elements, on real or high fidelity representative hardware. To

facilitate SWP management, a roadmap needs to be developed that depicts the SWP progress

(meeting performance targets) from initial testing through final testing. The early collection of

SWP metrics (e.g., paper analysis) is informative material. It is essential that the end-state test

environment include the following:

 testing at full end-to-end scale

 use of complete software builds on production hardware (as possible)

 use of objective network and platform elements

The idea is to, as closely and early as possible, resemble the fielded operational environment. A

fundamental goal is to select software performance metrics tied to software performance characte-

ristics, which are linked to system (and ultimately system of systems’) ability to perform as re-

quired.

2.1 Organizational Issues in Improving Performance for SOA SoS

Any method to assess and improve software performance must allow for coordination and input

from diverse groups, each with its own concerns. Tests occur at many levels of fidelity, of varied

scales, using models of many types, with different stakeholder collection goals. Ideally, testing

should eventually include ways to improve performance testing for all interest groups. An overall

objective is to maximize the effectiveness and efficiencies of test events holistically, across all

interest groups. This needs to be a planned and managed effort. A formal definition of Roles and

Responsibilities is useful to avoid confusion or management gaps. In this case, it was not clear to

all who collected valued metrics that they were also responsible for publishing their data to the

common repository to allow for a more complete program-level SWP analysis.

2.2 A Process for Determining SWP Using Select SOA SoS Metrics

This process is an initial leap in assessing the current SWP state. The included 10-step process is

intended to facilitate the development of a common view. A common vocabulary for respective

performance metrics for test events is offered, accompanied by a method for linking test events

and metrics via a SWP metric matrix.

The ten steps are:

1. Develop a SOA SoS Performance View.

Develop a SOA SoS layout performance view.

2. Review Key SOA SoS Resource Limiters.

Review key resource limiters from the layout.

6 | CMU/SEI-2010-TR-007

3. Develop Sample Scenarios and Determine Respective SWP Impacts.

Develop a series of scenarios, then list the performance impacts in each step and section of

the scenario.

4. Create an Initial List of SWP Metrics for Your SoS

List the metrics that affect or quantify the impacts to software performance in each scenario,

and combine all the impacts into a common list of metrics.

5. Add Required Software Performance Metrics from Other Sources

Add required software performance metrics from other sources (e.g., sub-contractors).

6. Determine All Test Events and Rate Their Maturity

Determine all test events (including integration events) that have occurred at every level and

in each organization in the SOA SoS. Rate the fidelity of each event for each metric. Add to

the columns of the metrics list to form the “metrics matrix.”

7. Determine What Metrics and Events are Missing

Circulate and vet the metrics matrix throughout all architecture and engineering test organi-

zations in the SOA SoS, asking: What metrics or test events are missing? Update the matric-

es.

8. Plan Future Tests and Mine Data from Existing Data Sets

Use the populated and vetted metrics matrix to plan future events: What gaps exist in infra-

structure, test methods, or test plans?

9. Tie in Architecture to the Metrics

Using traceability, tie-in architecture to improve software performance of the SOA SoS.

What elements are tied to each metric?

10. Determine the Refresh Schedule

Determine how often the last nine of these ten steps will be repeated.

Figure 2 shows the 10 steps in a process flow format. This 10-Step Method follows the general

tenets of the Practical Software and Systems Measurement (PSM) Measurement Process Model of

Plan, Measure, Evaluate, and Re-plan.

7 | CMU/SEI-2010-TR-007

Figure 2: Software Performance Process Flow – 10 Steps

ROLE

Initial group
assigned to
assess
software
performance

INPUT TASK FLOW OUTPUT

Software
performance
TIM

Leadership

Step 1: Make SOS
SOA layout

performance view

Step 2: Review Key
resource limiters

from layout

Step 3: Make sample scenarios
What are sources of

performance impacts in each?

Step 4: Make
list of metrics

Step 5: Add in required
software performance

metrics from documents

Step 6: Record test events;
Rate the maturity of each

event for each metric

Step 7: Circulate results/
vetting; What metrics and

events are missing?

Step 8: Use populated (vetted)
metrics matrix to plan future

tests and mine data from
existing data sets

Step 9: Use traceability
to improve software

performance

Step 10: Determine
repetition schedule

SoS performance
scenarios

SOA SoS design
documents

SoS performance views

QAW/ATAM scenarios;
SoS use cases

SoS performance views

SoS performance
scenarios

Other metrics standards
and documents

Metrics list (first
columns of metrics

matrix)

Metrics list (first
columns of metrics

matrix)

Test reports and data

Draft metrics matrix

Draft metrics matrix Vetted metrics matrix

Vetted metrics matrix

Traceability documents

Improved test planning
and architecture/design

documents

All outputs + SWP
TIM documents

Repetition schedule of
steps 2-9

8 | CMU/SEI-2010-TR-007

3 Detailed 10-Step Method for Software Performance in a

SOA SoS Environment

3.1 Step 1: Develop a SOA SoS Performance View

The four sub-steps below outline the process for generating a SOA SoS performance view.

3.1.1 Notional System of Systems Hierarchy

There needs to be a common understanding of the hierarchy from the SWP perspective of the

SOA SoS. This hierarchy can then be used for further decomposition. Start by obtaining a high-

level view of the SoS (a common artifact to most systems) and determine at what levels of the

hierarchy are services instantiated. Each system has one or more processing units. Each

processing unit has one or more blades. Each blade can host one or more services, as in Figure 3.

Note that your SoS may differ. You might want to, for example, replace system for a rack or

LAN, and blade and processing unit for server, etc. This decomposition is notional to illustrate the

techniques in this report.

Figure 3: Notional SOA SoS Hierarchy Layout

A Notional SoS Layout

System of Systems

System

Processing Unit

Blade

Service

9 | CMU/SEI-2010-TR-007

3.1.2 Bottom-Up Decomposition: The Blade

A card or blade is a server (see Figure 4), with its own CPU or CPUs, caches, DRAM, a slot for a

flash card with flash memory, possibly its own drives, and an interface (backplane interface) that

allows it to link to other blades over a common backplane. (The backplane is a switch or bus

structure on the processing unit, at the next level up.) If we look at delays to access various com-

ponents, it is faster to reach data in process on the same CPU than it is to reach out to the L1

cache—which is faster than reaching to the L2 cache, which is faster than accessing either the on-

blade flash card or going off-card to the processing unit level via the backplane interface.

Figure 4: Single Server (Blade) Performance Measurement Points

3.1.3 Bottom-Up Decomposition: The Processing Unit

The next level up is the processing unit (see Figure 5). A processing unit is defined as the enclo-

sure that holds one or more blades, each blade in the processing unit linked by a common back-

plane. This backplane is a structure similar to a switch backplane (e.g., Ethernet), or may be simi-

lar to a bus backplane. In the processing unit, the backplane links to a specialized blade that acts

as a firewall and router used to link to the system’s LAN (e.g., fiber optic gigabit Ethernet). We

will refer to this LAN router/firewall as the processing unit’s “LAN blade.” The processing unit

has a fiber channel interface to the system’s RAID array. A specialized processing unit in the sys-

tem will provide workstation access to the processing units in the platform. For delays (think

SWP), accessing data on the same blade is faster than going between blades in the same

processing unit, or going to the fiber channel RAID adapter (which introduces fiber channel and

RAID delays), or going to the LAN router/firewall to use resources on the LAN provided by other

processing units or WAN to other systems. Thus, the system architecture directly affects SWP.

Blade Server

CPU
(single

Core/multi
-core)

L1
Cache

L2
Cache

DRAM

Local Flash Memory

Backplane
Interface

Faster Slower

Notional System of Systems Layout: On a Blade

10 | CMU/SEI-2010-TR-007

Figure 5: Decomposition of the Processing Unit

3.1.4 Bottom-Up Decomposition: The System

The system is the primary element in our SoS. The example system consists of multiple

processing units, and three units for radio interfaces to the SoS WAN, linked by a system LAN

(e.g., fiber optic gigabit Ethernet), and a RAID linked to each processing unit via a fiber channel

interface. The processing units on a system LAN can be of various compositions, types, groups

(for security purposes, for example) and usages. In this example we list a short-range radio unit

(which includes a router and firewall for the short-range WAN segments), a long-range radio

(again including router and firewall for the WAN segment), and a satellite connection (with router

and firewall capability). Systems have a router/firewall with connections to a physical fiber optic

network WAN, although our example precludes a system-to-system tether. Access is significantly

faster on the LAN because of low latency and higher bandwidth; whereas WAN connections ex-

perience more delays making access significantly slower (see Figure 6).

Notional SoS Layout: On a Processing Unit

Blade Server

Faster Slower

Blade in same
Processing Unit

Fiber Channel or similar
Interface to Shared RAID

Firewall + Router with LAN (Gigabit
Ethernet et al.) Interfaces

Processing Unit
(or Rack)

11 | CMU/SEI-2010-TR-007

Figure 6: Decomposition of the System

In the notional SoS we assume that the short-range connections are faster than the long-range

connections over the long-range radio, which are faster than those to connected systems or re-

sources over the satellite network. We also assume that an indirect connection (two short-range

radio hops) is longer in delay than a single long-range radio hop, and that an indirect long-range

or short-range indirect multi-hop connection to another system entails less delay than reaching

over the satellite network. Indirect connections involve network delays over the connection me-

dium, plus open system interconnection (OSI) delays for switching and routing for each hop. The

satellite connection must consider the satellite’s OSI switching delays in addition to the long

physical distance to the satellite and back.

Notional SoS Layout: On a System

System Firewall+ Router+
Radio Long Range

+Long Range Wireless
WAN Delays

Processing Unit

Shared
RAID

Processing
Unit

System Firewall+ Router+
Radio Short Range

+Short Range Wireless
WAN Delays

System

System Firewall+ Router+
Radio Satellite

+Satellite Link
WAN Delays

Note: The delay to the

WAN interface

processing units are the

same but performance

will need to add WAN

delays for each link

Faster Slower

12 | CMU/SEI-2010-TR-007

Figure 7: WAN Connections between Systems in the Notional SoS

3.1.5 What about the Services in Our SOA SoS?

Services, the “S” in SOA, are sets of discoverable items that perform a function or functions, de-

fined by the service offer and interface to the service. The service exists as an instance on top of a

common middleware, which in turn is loaded onto a blade (Figure 8). This middleware (which

may have variants) encapsulates the OS of the host blade (or across blades, though not covered

here) across the system of systems.

Each service instance on a blade is found by the larger SoS using a service offer that specifies

what the service does, how it does it, and how to connect to the service using an interface. The

middleware of other blades and systems then discovers the service offer, and adds the service to

the list of available services.

Notional SoS Layout: Between Systems

Short Range

Long Range

Satellite

Indirect

System SystemSystem

System

System

Faster Slower

13 | CMU/SEI-2010-TR-007

Figure 8: A Generic Service Architecture: Service, Middleware, Blade OS

Note that the service instance could be accessed from anywhere in the SOA. The middleware

hides all but the interface from the service. As in our Internet example, a user of a search engine

(service) is unaware of the physical location of the web page. The service in our notional SOA

SoS has no awareness. As a result, in many real-world SOA SoS systems with WAN concerns, a

quality of service schema using priority settings in the service interfaces is used in the middleware

and WAN routers to control traffic and usage of services.

3.2 Step 2: Review Key SOA SoS Resource Limiters

Many SWP effects are related to (1) the time it takes to retrieve data from various sources, and (2)

the use of key data resources. Additionally, performance may suffer from errors, faults, or sub-

optimally maintained system resources. This step provides a basic look at some of these factors.

3.2.1 Performance Factors That Affect Software Performance

SWP can be boiled down into two top-level factors: delay to data and critical resource utilization.

Looking at the initial shaping factors provided below for delay, timing can be orders-of-

magnitude different on the representative performance wheel, as shown in Figure 9. One approach

to optimize performance is to minimize slower interactions. The availability of slower assets tends

to promote their usage; a good software design, however, manages how often slower or key re-

sources are used.

Errors of various types, abandoned processes, threads, or service offers can consume resources.

To better manage SWP you need to understand the general types of issues inherent in the architec-

A Services Architecture

Instance of
Discovered

Service

Middleware

OS

Instance of
Discovered

Service

Independent of location
May be on:
• Same blade
• Different blade

User Resource or User

Middleware

OS

Service on
middleware of
blade (multiple

services on
each blade!)

User = Human via GUI
or another service

14 | CMU/SEI-2010-TR-007

ture. We recommend that managers answer the following questions for each level of the SoS hie-

rarchy for Step 1 (on page 8), and use the answers in Step 3 (on page 17):

 What measures are needed to quantify software performance for improvement?

 What metrics show use of critical assets at each level of the SoS, including inefficiencies?

 What errors delay or prevent availability?

The appendix (see page 44) provides a list of measures that were utilized within our experience.

15 | CMU/SEI-2010-TR-007

Figure 9: Initial Performance Shape for the SoS

Initial Shaping of Performance

Notional Representation

Medium Gray = No data

Light Gray = Simulated Data

Dark Gray = Live Data

Counter clock-wise, faster to slower

Designers should manage access to slower methods when possible

DRAM

RAID

(HDs)

FLASH

Blade

System on

Same
Platform

System on

Different
Platform

System

Over GiG
(Direct)

System

Over GiG
(Indirect)Processor

~1 micro-

second

~ 100 microseconds

~1 millisecond

~ 100

microseconds

~ 5

milliseconds

>1 second

>1 second

0.1 to 1 second

Human

Interactions

1 second

to minutes

<1 microsecond

16 | CMU/SEI-2010-TR-007

3.2.2 The Effects of Scale

The work of each blade and system will increase based upon the total number of systems in the

SoS. Each increase in scale increases resource needs per Service hosting blade, memory consump-

tion at various levels, time to discover the increased numbers of service offers, WAN utilization,

etc. Hierarchy decisions in software architecture can determine scalability, such as how to

 disseminate data to various systems in the SoS

 discover services and aggregate discovery

 allocate resource location and network addresses

 balance processing versus network usage

The appendix (page 45) has sample metrics that can be used to determine how scale will affect the

SoS’s software performance.

17 | CMU/SEI-2010-TR-007

3.3 Step 3: Develop Sample Scenarios and Determine Respective SWP

Impacts

In this step sample scenarios are used to determine performance impacts or factors.

Note: The outputs from an SEI Quality Attribute Workshop (QAW) or Architecture Tradeoff

Analysis Method (ATAM) effort, targeted at software performance, could also aid in arriving at a

list of scenarios for this step [Barbacci 2003].

3.3.1 Sample SOA SoS Scenarios and Factors

A group should be assembled to develop scenarios similar to the sample scenario that appears in

Figure 10. In each step, determine which components at each level—and which interactions be-

tween components (both called “factors”)—will affect software performance.

Figure 10: Possible Scenario for Our SOA SoS

For example, examining just the delays involved in this scenario where User 1 uses a service to

request data from User 2 and User 2’s response, we have at least:

 User 1’s human delay
2

 GUI delay for User 1’s interface

 On Blade A:

 service call to middleware

2
 There are various causes of performance issues and you will want to find where in your architecture ‘snags’ can

occur. To improve performance you might need to either perform software tasks while waiting for human re-

sponse or limit the need to ask user for responses.

User 1 Requests Data from User 2

Where is software performance

affected (delayed)?

User 1 on

Blade A on PU1
User 2 on Blade B

on PU2
Start End

Instance of
Discovered

Service

Middleware

OS

System 1 System 2

Instance of
Discovered

Service

Middleware

OS

Over Air

18 | CMU/SEI-2010-TR-007

 middleware to OS

 delays between Blade 1 and Processing Unit 1’s LAN blade

 processing on PU 1’s LAN blade

 LAN latency to short-range Router/FW/Radio 1

 delays on short-range Router /FW /Radio 1

 latency over the air to System 2’s short-range router/FW/radio

 delays on short-range Router/FW/Radio 2

 LAN latency from short-range Router/FW/Radio 2 to PU2’s LAN blade

 processing on PU2’s LAN blade

 delays between PU2’s LAN blade and Blade B

 On Blade B:

 OS to middleware

 middleware to service call

 GUI delays

 User 2’s human delays

The group can derive more factors then these. Each of these factors will be tied to the metrics that

determine the successful accomplishment of the scenario, as defined in system of system-level

requirements. List these factors, and the associated scenarios that generated them.

19 | CMU/SEI-2010-TR-007

3.4 Step 4: Create an Initial List of SWP Metrics for Your SoS

Utilizing use case scenarios and a respective list of performance factors, we are now in a position

to generate a common list of software performance metrics.

3.4.1 Getting Metrics from Factors

What are software performance metrics? They are measurable items that inform the ability of the

SoS software as deployed on systems to meet software quality characteristics and SoS require-

ments, especially timing and resource consumption. A metric is attributable to one or more factors

that affect the performance of scenarios. One metric may affect several factors in many scenarios.

Software performance metrics may be tied to system-level requirements for system performance.

System-level test scenarios, if they exist and are defined in requirements, might also define SoS-

level performance. Further, existing standardized sets of software performance metrics from other

projects or papers, such as this one, may also exist. All these together can be used to define a

rough list of software performance metrics.

Figure 11: Decompose Metrics from Each Factor from Each Scenario

Factors in Scenario
GUI Delay

Service Calls to Middleware
Middleware to OS

Performance against
Metrics

Memory availability

Processing load

Total count of service calls to
middleware on blade

Total count of service
instances on blade

Service call size and payload

20 | CMU/SEI-2010-TR-007

The SoS and SOA decomposition above can be used to brainstorm performance metrics. From the

software perspective, which measurements at each layer could be used to predict or affect soft-

ware performance or the scalability of the system? How are the factors in the scenario measured?

For example, you might consider how many calls are made to the middleware on each blade for

each test scenario and condition—this relates to the performance of User 1’s use of service to

middleware of Blade A of CPU 1 in Figure 11.

You can also ask, how many times does a service use each type of memory, or reach off-system to

touch other systems’ memory? This question incorporates factors such as delays between Blade 1

and Processing Unit 1’s LAN blade. It also indicates which service components can be re-hosted

to swap slow off-system calls for faster LAN calls to the RAID, or other on-system processing

units.

A question-and-answer round of this type with a knowledgeable and diverse team of architects or

engineers can produce a list of performance metrics.

Figure 12: Decomposition of Performance-Related Metrics

Given a list derived by Steps 1-3 above, and the rounds of questions-and-answers above, you can

derive more specific metrics by decomposing system-level metrics into software performance

metrics. Which metrics should be broken up into easier to measure or more software related sub-

metrics? For each metric found, record the reason the metric is needed and a rough idea of how it

might be collected. Make a note of a few keywords that can be used for metadata tagging any data

that contains the metric. Also consider noting a short name—preferably using a standard naming

convention—that can be used in data fields. It is helpful to number each metric. Some metrics can

be rolled up into metric families.

Engineering Metrics

Memory Availability

Memory
Level/Scenario

Memory in
Orphan Threads

Count of
Other Users

21 | CMU/SEI-2010-TR-007

3.4.2 (Optional) Values of Metrics from Requirements: The Why

If requirements include system performance metrics (this is not always the case), it is useful to

find the ensuing values of software performance metrics as part of the decomposition process

above (see Figure 13). Performing this optional step will make Step 9 in the process much less

time consuming. These values typically are maximum allowable values for timing and utilization

and minimum allowable values for quality. Use a question-and-answer round as in Section 3.4.1

to allocate the minimum and maximum values of metrics if there is knowledge of expected beha-

vior.

An example might be that in our sample scenario in Figure 10, a requirements document may

state that User A must be able to complete the scenario in 20 seconds. If memory utilization is too

high (greater than 90%), processor utilization on blade A is too high (above 90%), and the like for

each factor, then the task will take too long to perform because the blade cannot update the GUI

on the screen fast enough. This occurs similarly for quality type requirements, for example, “the

system must remain functional 99.9999% of the time.” It is recommended an analysis occur to

determine which metrics in a factor are the key limiters. For example: if a blade is at greater than

100% utilization, or if the LAN is at 100% utilization, the system is unavailable to other com-

mands. The worst case scenario will dictate the value for the SoS in most cases. If known, indi-

cate these requirements and source documents in the Why? column of the Metrics List in Table 1.

22 | CMU/SEI-2010-TR-007

Figure 13: Tying Factors and Their Ensuing Metrics to Requirements

Factors in Scenario
GUI Delay

Service Calls to Middleware
Middleware to OS

Performance against Metrics

Memory availability

Processing load

Total count of service calls to
middleware on blade

Total count of service instances on blade

Service call size and payload

Requirements to Specifications (or Quality Attributes)

Requirement ZZZ
Time to <complete Scenario>

must be under XX seconds

Requirement AAA
System must be available XX

time

Requirement YYY
Data must be presented to

user in XX seconds

Satisfies?

23 | CMU/SEI-2010-TR-007

3.4.3 Generating the Initial Metrics List

Once the list of metrics is combined and duplicates are removed, add a tag that describes the need that generat-

ed the metric (Need Type) and add the high-level category used above (“Engineering metrics” as in Figure 12).

Each metric constitutes a row. If further decomposition is used, a dotted-number schema may be used to insert

secondary metrics in the rows of the list.

Table 1: An Initial Metrics List with Columns to Identify and Categorize Each Metric

Short

Name

Metric Title Why? Keywords

(for Tagging)

How? Need

Type

High-

Level

Type

1 Bcalls_

Count

Blade-to-blade calls

(tagged by service,

by process, by user,

by

case/scenario/time

Limiting calls from blade

to blade reduces time

(due to bus use)

Blade, calls, count,

service, process

Bus monitoring

via processing

unit against

process monitor

Efficiency Engineer

2 HDCalls

_

Count

Service traffic count

to Drives

Which services, appli-

cations, clients of appli-

cations are hitting the

drives often. The more

often RAM is used in

lieu of the drives, the

quicker the app will run.

User, service, raid,

calls

Process-

message snap-

shots and parse

(or logging

parse) for

OS+bus capture

(log parse)

Efficiency Engineer

This initial Metrics List is now ready to be expanded using other sources.

24 | CMU/SEI-2010-TR-007

3.5 Step 5: Add Required Software Performance Metrics from Other Sources

For a project that is underway, requirements and test planning documents should already exist. A

subset of the metrics listed in these documents can be useful for inclusion in the software perfor-

mance metrics list. In addition to these, other sources may be used as well, such as quality docu-

ments, other SEI tool related data, or Six Sigma sources.

3.5.1 Must Have List for a SOA SoS System

The example list of metrics in the appendix (page 45) is derived from other SOA SoS efforts, and

provides core SWP metrics that have been useful in finding and diagnosing software performance

issues. It is not an all-inclusive list, but these twenty must-have metrics should be included to fur-

ther expand your list.

3.5.2 Other Sources

The SEI technical report Quality Attribute Workshops (QAWs), Third Edition [Barbacci 2003]

describes Quality Attribute Workshops, which can be used in addition to scenarios to arrive at

metrics.

25 | CMU/SEI-2010-TR-007

3.6 Step 6: Determine All Test Events and Rate Their Maturity

In this step, the metrics list derived from previous steps is expanded by a column to show cover-

age to date of the metrics from previous test events. The level of coverage is loosely assessed us-

ing a series of tags for the realism and fidelity of each test’s measurement of each software per-

formance metric in the list. Once these tags are added for each event, the metrics list becomes the

metrics matrix.

3.6.1 Dimensional Representation of SWP Factors (Test Fidelity)

Every test event has a level of fidelity, at the metric level, when compared to the final fielded SoS.

This fidelity can be visualized as coordinates in a cube. For example, as shown in Figure 14, the

further a test coordinate is to the far top right corner, the more representative that test event is for

a metric in question. Software is presented on the y axis, hardware (processing hardware in par-

ticular) on the x axis, and the scale of the test on the z axis. In order to define the meaning of these

coordinates, each level for each axis will need to be defined. Note that the cube can be extended to

a hyper-cube by defining axes for each WAN.

Figure 14: The Cube of Test Event Realism for Software Performance

Cube of ‘Realism’ (Omitting Network*)

Hardware

S
o
ft

w
a
re

A

* One could extend to ‘Network’ for a 4th Dimension

26 | CMU/SEI-2010-TR-007

3.6.2 Notional Levels for the Software Axis in Test Events

On the software axis, notional levels might be laid out as follows:

 Mod = Modeled

Uses software to emulate algorithms and simplified functions of most elements

 Sim = Simulated

Uses software that acts (interfaces) as the service or package would act

 Proto = Prototype

Uses very early software prototypes, some services coded with minimal functions, some

stubbed

 EB = Early Build

Includes nearly all services, with a major portion of key functions, in actual code that has

passed early testing

 LB = Later Build

Full functioning services in code that has passed some levels of testing, some components

have been fielded

 Mat = Mature

Complete and fielded code (services), revised and matured though use, that has all functions

required for its release

3.6.3 Notional Levels for the Hardware Axis in Test Events

Likewise, the hardware (here, hardware that is related to processing) might be laid out as follows:

 Sim = Simulated

No actual hardware; emulators used to represent all hardware

 EP = Early Prototype

Some prototype blades, some emulated components

 LP = Late Prototype

Prototype elements for all major hardware components, some elements have passed early test-

ing

 IP = Initial Production

LRIP production level elements for at least blades, processing units, router/radios, has passed

functional testing

 FP = Full Production

Field tested complete hardware that meets requirements for the version

Figure 15 shows an example of the lab structure for simulating the processing hardware in our

notional SoS.

27 | CMU/SEI-2010-TR-007

Figure 15: A Sample Lab Structure for Simulating the Hardware of a System and Processing Units

Lab Infrastructure 1 [Sim]

NTS Time Source

Long Range
Radio Network
SIm Router +

Server

Satellite Radio
Network SIm

Router + Server

Short Range
Radio Network
SIm Router +

Server

RAID

Sim

RtrFW(LRR)
RtrFW(SatR)
RtrFW(SRR)

Data Collector

Network
Simulation

Effects Server
and Collector

Centralized
Test

Coordination

Centralized
Test Data
Collection

System 1.GroupA.SetB

28 | CMU/SEI-2010-TR-007

3.6.4 Notional Levels for the Scale Axis in Test Events

Scale becomes very important in SOA SoS due to the simple fact that as scale increases, and as-

suming each system provides a number of services and uses a number of provided services, then

the increase in scale will cause an increase in each individual system’s workload. This increase is

due to a variety of factors centering on information distribution and use, offers of services, and

discovery. To assess scales we then have the following (see Figure 16).

Figure 16: Notional Levels of Scale in Testing

 SB = Single Blade

Test on a single blade or blade simulator

 MB = Multiple Blade

Tests using multiple blades or blade simulators, up to a whole processing unit

 PU = Processing Unit

Tests run on a single processing unit containing multiple blades or simulated blades

 MPU = Multiple Processing Unit

Multiple processing units without some system components

 SS = Single System

One complete system, actual or simulated, with processing units, WAN routers/radios, and

LAN

SB

SS

PUMB MPU

LS

PS

System

System

System

FS (Full Scale)

29 | CMU/SEI-2010-TR-007

 LS = Limited Multiple System

A few systems, well below full SoS scales, with some WAN or simulated WAN

 PS = Partial (SoS) Scale

Enough systems to form a significant fraction of the SoS and its WAN

 FS = Full (SoS) Scale

Testing using actual, or simulated, systems and network at full SoS scales

You could also use a percentage here (i.e., relative to full scale), for example, a scaled-up simula-

tion lab such as in Figure 17.

30 | CMU/SEI-2010-TR-007

Figure 17: A Test in a Lab at Full SoS Scale of Hundreds of Systems

2 3 4 5 6 7

Lab Infrastructure 2 [?,Sim,FS]

System 1.GroupA.SetB

2 3 4 5 6 7

NTS Time Source

Centralized
Test

Coordination

Centralized
Test Data
Collection

Group A of Set B

Group B of Set B

Long Range Radio
Network SIm

Router + Server

Satellite Radio
Network SIm

Router + Server

Short Range Radio
Network SIm

Router + Server

Network
Simulation Effects

Server and
Collector

RAID Sim

RtrFW(LRR)

RtrFW(SatR)

RtrFW(SRR)

Data Collector

31 | CMU/SEI-2010-TR-007

3.6.5 (Optional) Notional Levels for the Network Axis in Test Events (if Used)

While the focus of this report is software performance, network fidelity for a test event can also

be a factor. There are actually three networks in our notional model:

 switch backplane that connects the blades together into the processing unit

 LAN that connects the processing units together to form the system

 WAN that connects the systems into the system of systems

The first network may be assessed at the processing unit level testing on the hardware scale, its

metrics align with the hardware scale of testing. Likewise the LAN may be considered in system

hardware level testing and its network metrics are included at that level. In other words, add LAN

utilization to the metrics list and account for its fidelity on the hardware axis.

The reason to parse the switch backplane and the LAN into the existing cube is that they are

“wired” networks in this example and can be accounted for in fidelity in the hardware scale. One

needs a switch backplane, real or simulated, to reach the processing unit level. One needs a sys-

tem LAN to reach the system level on the hardware axis. That said, it may be useful to assign

them to an axis. Extending to the more failure-prone wireless links, ideally you would need an

axis to account for each wireless network, using a scale similar to this one:

 None= No connections

 BB= Black box inputs

 DR= Connections via some direct wiring/fiber between systems

 WTR=Fiber/wiring using an intermediary router/switch set to simulate spectrum subnets

 Sim= Wiring/fiber through a network simulation system to apply network effects including

degradation and latency

 LF= Some radios, or early prototypes, used to link systems in a controlled environment or

controlled range

 F= Full set of radios/prototypes at a controlled environment or controlled range

 FR= Full set of radios using final configurations in a near-real set of network conditions

3.6.6 Accounting for Test Quality: Notional Levels

The next step in assessing our current state is to see how each metric was collected (if it was col-

lected) in our test events. Ideally, data should be trended for time, tagged for scenario and test

conditions, and correlated to related metrics. Factors in the detail of the collection of the metric

will affect how useful the data will be to evaluating the performance indicated by the metric:

 realism varies by metric inside each test event due to the available test assets and test time-

frames

 tests targeted at reducing one set of risks may collect data on other related areas as a side ef-

fect

 review of full test artifacts can be mined for “off-target” collections

32 | CMU/SEI-2010-TR-007

 off-target metric collections may be at a lower fidelity level then metrics that are included in

the risk target of the test

To account for these factors we will need a quality tag to append to our event’s cube coordinates

for each metric derived or collected from the event.

Here are a few categories for this quality tag:

 SS=Sparsely collected, non-trended, not tagged

 TNTS=Trended for some scenarios/cases but not tagged

 TNTA=Trended for all scenarios/cases but not tagged

 TTA=Trended and tagged for all test cases/scenarios

Each metric will be annotated for each event with the three previous dimensions for the event. For

example, if Event A is Proto/Sim, EP/LP, LS in our visualization cube, for one metric it may be

Proto/Sim, EP/LP, LS TTA. Another metric can be represented as Proto/Sim, EP/LP, LS, SS.

3.6.7 Putting the Coordinates Together for a Test Event (for Each Metric)

While the combined tag for each test event will be largely common for all metrics, there will be

differences for some metrics in the same test. For example, the middleware was completely coded

in prototype, but some services are simulated only as black boxes with interfaces to the middle-

ware. As a result the middleware metrics will have a software dimension of Prototype, but the

metrics relating to the services may have only “Mod” for the software dimension. Metrics be-

tween the services and the software would then have “Mod/Proto.”

3.6.8 Assembling the Metrics Matrix: Events in Columns, Metrics in Rows

Add a column for each test event for which data can be found. In the column heading, add a link

to the test folder containing the test data and reports. Note the title and dates of each event. While

the combined coordinates in the Cube of Realism for each test event will be largely common for

most metrics, there will be some variation in the test quality tag. Determine how much of the base

event applies to each metric, then determine how well the data for each metric was collected using

the test quality tag. Record the combined coordinates and tag in the cell corresponding to the

Event column and each metric (in rows). If known, record where, in each test event report or data

set, the metric was collected and described. Table 2 depicts a partial matrix; some columns are

hidden for brevity (Why, How, and Keywords).

33 | CMU/SEI-2010-TR-007

Table 2: An Abbreviated Example of Metrics Matrix Filled in for Test Events

Short Name

(Used for Tagging)

Metric Title Test Event A:

April 6-10, 2088

Test Event B:

May 6-20, 2088

1 BCalls_Count Blade to blade calls (tagged by

service, by process, by user, by

case/scenario/time

N/A [Sim,LP,LS] [SS]

C.3.2, Report B

2 HDCalls_Count Service traffic count to Drives [Proto/Sim, EP/LP,LS]

[TTA]

Sec.2.3.2, Report A

[Sim,LP,LS] [TTA]

C.3.3, Report B

3 CSWan_Count Client calls over WAN by client,

process, service, platform

[Proto/Sim, EP/LP,LS]

[SS]

Sec.4.3.2, Report A

[Sim,LP,LS] [TTA]

C.3.4, Report B

Add in Links to the folder

containing the actual data

and test plan and report

documents if possible

34 | CMU/SEI-2010-TR-007

3.7 Step 7: Determine What Metrics and Events are Missing

Having a metrics matrix from one group alone is not enough. The primary purpose of the matrix

is to determine, qualitatively, the coverage of key software performance metrics. The group that

arrives at this matrix, however, is often only one voice in the larger SoS organizational structure.

Therefore the matrix must be vetted with other groups in the organization to

 assure that no key metric of the software performance of the SoS has been missed

 assure that no test event is missed

 begin a cross-organizational dialog on software performance

It is useful to form a continuing group to vet the matrix, communicate test ideas, assist in planning

future testing to fill in gaps that were uncovered in the matrix, and provide recommend methods

to improve software performance. The focus is to provide non-adversarial, peer-to-peer communi-

cation, not overt direction.

3.7.1 Forming the Software Performance Technical Interchange Group

Charter a software performance Technical Interchange Group (TIG) with select members from the

middle to upper middle rungs of the architecture, engineering, and test groups as shown in Figure

18.

Figure 18: A Notional SWP TIM Stakeholder Group

A sample charter for this group may contain the following goals:

 Review alignment of the software measurement system to address current strategic software

performance goals.

35 | CMU/SEI-2010-TR-007

 Ratify a set of software performance measures and measurement plan to understand the state

of software performance at the system and enterprise levels.

 Improve effectiveness and efficiency of measurement infrastructure to accommodate mea-

surement plan tasks (e.g., data collection, analysis, presentation).

 Improve the understanding and use of software performance measures.

 Improve communication of software performance information to stakeholders and leadership.

Success of this group would be evidenced by the

 enhanced instantiation of software performance measures identified as leading indicators of

software performance and risk

 process of managing the software performance from the technical interchange meetings is

transferred to testing activities

The most important deliverable, however, is a complete, metrics matrix, continuously updated

that is utilized within the design processes.

As stated in Section 1, the matrix is not a quantitative audit, but is, instead, a method to determine

the current state of software performance, and a way to improve performance by improving cov-

erage and fidelity in the matrix.

3.7.2 Other Parties

After the metrics matrix is vetted with the TIG, it is important to allow software architecture and

engineering group members a chance to view the matrix. Focus on the middle rungs in each or-

ganization. Requirements groups may be able to assist with traceability (see later steps) and help

with the Why? column. Sponsors of the effort should have an opportunity to review the matrix,

since they must know the results of their patronage. These other parties can fill in gaps that may

be missing and assist with later steps to improve test planning and architecture and design.

36 | CMU/SEI-2010-TR-007

3.8 Step 8: Plan Future Tests and Mine Data from Existing Data Sets

In addition to providing a tool to plan future events, creating and vetting the metrics matrix also

provides a good opportunity to look for improvements in test infrastructures and processes.

3.8.1 Test Planning: Improving Test Quality and Fidelity

Metrics that have strong architectural and requirements ties, but have few correlated test events in

the metrics matrix (or that have events below desired fidelity or scale) are opportunities to im-

prove the design of tests in planning or underway. Determine in the Cube of Realism where the

desired state exists. We can improve on one axis or any number of axes to improve the under-

standing of the performance via the metric. For example, if the current state of a metric is [Pro-

to/Sim, EP/LP,LS] [SS], we could include planning in an upcoming event to

 specifically collect the desired metric

 trend it for time, and tag it to source scenario (in essence improving the test quality tag as

defined above)

 seek to use ether all prototypes or early build software

 use all limited production hardware, and/or keep the same limited multiple system scale or

improve to a partial SoS scale

It would also be advisable to see if any test events that have no rating in this metric’s row could

be mined for data at the desired level. Look at the raw data from a test event that is at the

[Sim,LP,PS] scale for a similar metric and determine if the desired metric can be derived by

processing the raw data. To mature the metric, insert better methods of metric collection into test

events as they increase in fidelity and scale.

3.8.2 Test Infrastructures

It is beneficial to use gaps in the matrix or poorly collected metrics ([SS] tagged) to improve test-

ing infrastructure for software performance metrics. The following two areas can be useful:

Collection Apparatus and Systems

Looking at the How column in the matrix for metrics and looking at the commonality between

these methods is one approach to review systems in use—or that need to be in use--in test labs.

Look to see if a test organization consistently produces high-quality tagged metrics and then de-

termine what methods and apparatus they used to achieve the quality collections. In many cases,

the same techniques can be flowed across the diverse testing organizations to improve the infra-

structure for other SoS areas. Some areas that are common to software performance metrics can

provide a starting point:

 Obtain a snapshot from operating systems on blades and other hardware.

Many operating systems have administration tools that can be captured repeatedly at set in-

tervals (a common time stamp for all test elements and all systems), including process counts,

thread counts, error counts, memory utilization, and processor utilization by process. A cap-

ture of this display to a text file that can be parsed and tagged with time, then scenarios (by

37 | CMU/SEI-2010-TR-007

step) and the “blade/PU/system,” can be mined for many software performance metrics. A

common data collection server set and network time stamp system are key here.

 Obtain a snapshot from networked devices using SNMP/MIB/SYSLOG/NetFlow.

Interface utilization for processing unit blade-to-blade traffic, LAN utilization, WAN utiliza-

tion, network flows by IP address, again tagged by blade processing unit. System, time, and

scenarios (by step) are valuable for determining access to slower means over faster means

(i.e., staying on-blade versus going off-blade). Correlate these to running processes and mem-

ory utilization. Again, a test server and test lab network structure are required in some cases

to obtain data as described.

 Store raw and processed data centrally.

Raw data and processed data should be stored in an area accessible to all testing organiza-

tions, if allowed by security. This approach allows other groups to reuse data from previously

conducted tests and determine the fidelity and quality of data for their key metrics. Collabora-

tion tools and searchable databases are helpful.

Cross Correlation and Data Mining

Improving the quality tag is a result of planning for better and later use of raw test data. Test data

needs to be trended and tagged with metadata to allow later mining, especially if multiple parties

or contractors are involved for each system, component, or service. Planning for this mining using

the keywords from the metrics matrix can provide payoffs. In some cases, the existing metrics

matrix could be fleshed out better by mining previously collected data from events. For example,

mining or correlating, with time, a previous test run’s raw data to collect data for a metric in the

matrix not previously collected. Tagging future data and storing it in a commonly accessible loca-

tion will enable future mining of runs from planned tests. See the example in Figure 19.

38 | CMU/SEI-2010-TR-007

Figure 19: Mining Previous Test Results Using Cross Correlation

Scenario X, Step X

Time

C
P

U
 U

ti
l.
 %

BladeA,PU1,System1

BladeB,PU1,System1

BladeC, PU1,System1

Time

M
id

d
le

w
a
re

C
a

lls BladeA,PU1,System1

BladeB,PU1,System1

BladeC, PU1,System1

Time

C
a

c
h

e
 H

it
s

BladeA,PU1,System1

BladeB,PU1,System1

BladeC, PU1,System1

Time

C
P

U
 U

til
.
%

BladeA, PU2,System2

BladeB, PU2,System2

BladeC, PU2,System2

Time

M
id

d
le

w
a
re

C
a

lls BladeA, PU2,System2

BladeB, PU2,System2

BladeC, PU2,System2

Time

C
a

c
h

e
 H

its

BladeA, PU2,System2

BladeB, PU2,System2

BladeC, PU2,System2

Other correlations
• Regression comparisons?

• Gap analysis; compare w/desired
performance

Tie to architecture (design, various levels)

System Architecture; Software Architecture

Which cross correlations have a payoff?

39 | CMU/SEI-2010-TR-007

3.9 Step 9: Tie in Architecture to the Metrics

Assuming a software performance metric can be traced up the design to architecture and require-

ments, the resulting metric data can be used to improve the SoS’s overall software performance.

Architecture decisions—reflected in design, embodying specifications—determine the perfor-

mance of metrics against factors; this performance must satisfy requirements at software, system,

and SoS levels, as shown in Figure 20. If traceable, two methods can be used to add assessment to

architecture: gap analysis (current results versus desired results) and regression comparisons

(comparison of current results to previous results).
3

3.9.1 Feedback and Traceability

With a vetted metrics matrix, it is useful to tie each metric to architecture.

 Use the ties in the Why? column to improve performance.

 There are likely no orphan metrics if they tie to a scenario that is reflective of the SoS design;

they are just more complex to trace to the architecture.

 Repeated columns of higher fidelity and realistic events improve confidence that the metric is

covered and performance is quantified.

 Architecture elements (and design elements) that are tied to performance will generate confi-

dence with successive events.

If not indicated in the metrics matrix, using a tactic such as an Ishikawa diagram or other causality

tool can link a metric, or its source scenario, to software designs and architecture decisions, and to

system level requirements. Using the optional item in Step 4 above, decomposition of system re-

quirements to software performance requirements can also aid in traceability. If no metrics for

software performance yet exist in the project, reversing the steps in 2, 3, and 4 can produce rec-

ommended requirements for the SoS.

3
 See also the Requirements Management (REQM) Process Area in the CMMI and CMMI-ACQ (available online

at http://www.sei.cmu.edu/cmmi).

http://www.sei.cmu.edu/cmmi

40 | CMU/SEI-2010-TR-007

Figure 20: Example Metrics Tracing

Factors in Scenario
GUI Delay

Service Calls to Middleware
Middleware to OS

Performance against Metrics

Memory availability

Processing load

Total count of service calls to
middleware on blade

Total count of service instances on blade

Service call size and payload

Requirements to Specifications (or Quality Attributes)

Requirement ZZZ
Time to <complete Scenario>

must be under XX seconds

Requirement AAA
System must be available XX

time

Requirement YYY
Data must be presented to

user in XX seconds

Satisfies?

Architecture to Design

GUI Architecture
GUI Proxy

GUI Instantiation
GUI Interface to Middleware

Middleware Architecture
GUI Interface to Middleware

Service Instantiation
Service Processing Budget

OS Interfaces

OS/Unit Architecture
Threading

Graphics Subsystem

Determine

D
e

te
rm

in
e

s?

41 | CMU/SEI-2010-TR-007

3.9.2 What Do the Metrics Tell Me: Gap Analysis

With the current state and sources of metric data, with test qualities, you can look at the characte-

ristics of the measured data itself and compare these to the desired state (traced from require-

ments) for each metric. For example, testing of memory availability for the most difficult scena-

rios, at the worst time interval in each scenario, for the most used blade, may indicate 98%

utilization at a system count of 50% of full SoS scale. If the requirement for the SoS is that no

blade shall exceed 75% when deployed (at full scale), then it is likely that at full scale it will ex-

ceed the 75% maximum processor utilization per blade metric. To achieve the desired state (75%)

you can potentially reallocate services, determine using other metrics if orphan threads are being

created and not killed, re-examine processing in service components, and so forth. Having the

matrix enables you to see what other metrics were also collected in an event (“orphan count at

time” being one of them), and combine results to indicate architecture or design strategies to reach

desired state. Combining results across tests for the same metric in different scenarios again can

illuminate strategies to improve performance.

3.9.3 What do the Metrics Tell Me? Regression Comparison

Regression comparison, which compares the same test scenarios between events of increasing

fidelity and complexity or after major software integration events, can indicate if software per-

formance is improving. Scale increases often increase utilization of many resources, increasing

the values of metrics for LAN and WAN utilization, calls to services, time to discover services,

processor utilization on service hosting blades, middleware use, and the like. Fidelity improve-

ments also provide deeper insight. Inefficiencies in code will be revealed as testing increases in

scale and fidelity, and the revelations will have more value with metric collection quality. It may

also occur that as software increases in complexity between builds, the software will likewise ac-

quire more sources of either errors or resource utilization. Regression comparison of performance

metrics between current and previous builds will illustrate any added errors or sources of utiliza-

tion. Issues can indicate the need to alter planned test events in addition to changes in design.

42 | CMU/SEI-2010-TR-007

3.10 Step 10: Determine the Refresh Schedule

Since the first step of this process is system definition, it is only necessary to refresh the last nine

steps at most. The initial effort will consume the most time, but continuous repetition using the

software performance TIG as a conduit will keep the metric matrix current. Adding scenarios in

each repletion, reviewing decomposition of system requirements to software performance re-

quirements, and reviewing which groups need to be included in the software performance TIG are

key to improving SoS software performance.

3.10.1 Repetition and Currency

Keep the metrics matrix current by refreshing it at least at these points (though it will remain dur-

able once well vetted):

 program restructure or refocus

 change in SoS elements related to software performance

 added baseline elements or new requirements.

 after major test efforts (updates to columns).

 metrics added due to scenario development from QAW efforts or other architecture improve-

ment efforts.

Populate the matrix to similar projects and efforts; it can be the kernel for another project’s soft-

ware performance metrics list.

43 | CMU/SEI-2010-TR-007

4 Summary and Conclusion

The method presented in this report is qualitative, designed to begin the effort of determining

software performance for a service-oriented architecture embodied in a system of systems. The

primary artifact, the metrics matrix, is a living document, coordinated across the SoS organization

using technical interchange meetings and other methods. The matrix can show which events have

occurred, indicate if and how well they assessed each software performance metric, and identify

gaps that can be filled in further testing events. Tying requirements to the desired values of each

metric can demonstrate improvement. Tracing metrics to architecture and design can improve

software performance.

4.1 Summary

Understanding software performance for a SOA SoS system is complex and managers need to

 understand the system and its performance-affecting levels

 derive a metrics list from scenarios and other sources

 tie in test events to create the metrics matrix

 identify a way to circulate the matrix by understanding the organization

 distribute the matrix and metrics testing results to architecture

 keep the matrix current (otherwise status will be unknown)

These needs can be systematically remediated, at least in part, through the use of the 10-step

process in this report:

1. Develop a SOA SoS Performance View.

Develop a SOA SoS layout performance view.

2. Review Key SOA SoS Resource Limiters.

Review key resource limiters from the layout.

3. Develop Sample Scenarios and Determine Respective SWP Impacts.

Develop a series of scenarios, then list the performance impacts in each step and section of

the scenario.

4. Create an Initial List of SWP Metrics for Your SoS

List the metrics that affect or quantify the impacts to software performance in each scenario,

and combine all the impacts into a common list of metrics.

5. Add Required Software Performance Metrics from Other Sources

Add required software performance metrics from other sources (e.g., sub-contractors).

6. Determine All Test Events and Rate Their Maturity

Determine all test events (including integration events) that have occurred at every level and

in each organization in the SOA SoS. Rate the fidelity of each event for each metric. Add to

the columns of the metrics list to form the “metrics matrix.”

7. Determine What Metrics and Events are Missing

Circulate and vet the metrics matrix throughout all architecture and engineering test organi-

44 | CMU/SEI-2010-TR-007

zations in the SOA SoS, asking: What metrics or test events are missing? Update the matric-

es.

8. Plan Future Tests and Mine Data from Existing Data Sets

Use the populated and vetted metrics matrix to plan future events. Identify any gaps exist in

infrastructure, test methods, or test plans.

9. Tie in Architecture to the Metrics

Using traceability, tie-in architecture to improve software performance of the SOA SoS.

What elements are tied to each metric?

10. Determine the Refresh Schedule

Determine how often the last nine of these ten steps will be repeated.

4.2 Notes and Conclusions

SOA SoS projects are often under pressure to prove how well the design of the various SoS com-

ponents will perform, even in very early program stages. This 10-step process and the ensuing

metrics matrix can provide the means to obtain SWP management improvement, even in the ab-

sence of full-scale testing. It is a qualitative method to better understand the state of SWP, and an

indicator toward improving the design of future test events. It provides a quick link to sources,

and most importantly, its recommendations can begin a cross-organizational dialog inside the SoS

organization at the key working levels. SoS organizational diversity is a challenge along with arc-

hitectural complexity; the use of this process and toolset can assist managers in overcoming these

challenges to achieve desired technical performance.

45 | CMU/SEI-2010-TR-007

Appendix—20 Must-Have Software Performance Metrics for a SOA SoS

Short Name Metric Title Why? How?

1 Bcalls_Count Blade-to-blade calls (by service, by

process) by client, by system.

Limiting calls from blade-to-blade

reduces time (due to backplane use)

Backplane monitoring via processing

unit against process monitor

2 HDCalls_Count Client /service/application traffic

(+ count) to drives

Which services, applications, clients of applica-

tions are hitting the RAID or flash often. The

more often RAM is used in lieu of the drives, the

quicker the application will run.

Process-message snapshots and parse

(or logging parse) for OS+bus capture

(log parse)

3 CSWan_Count Client calls over WAN by client, process,

service, platform

WAN has a high time cost. The fewer calls over

the WAN (i.e., ad hoc network) the quicker an

application will run.

Process-message snapshots and parse

4 Error_Count Error logging and count for blade and

processing unit

Which combinations of services and clients+

apps under which conditions cause issues at the

system and application level. SYSLOG, SNMP,

OS Capture.

Instrumentation of code w/process to

service to above metrics + log parser+

statistical analysis

5 IO_count Count of uses of off-blade, and off-

processing unit resources

Used to derive proxy and other efficiencies. Can

software (per application/client/proxy) consoli-

date requests to the drives? Can it minimize

access to off-processing unit devices? Can re-

questors minimize requests to a service on a

blade?

Repeated capture from OS (blade) and

MIB/SNMP from processing unit LAN

router

46 | CMU/SEI-2010-TR-007

Short Name Metric Title Why? How?

6 Inst_count Instances/client/situation,

instances/service/situation

Check for process clean up, avoid hung

processes, minimize instances

Process-message snapshots and parse

7 IBPrior_Compliance Prioritization intra-blade vs. time Check against system (end to end) QoS. Is the

software controlling itself against the processing

priority.

Repeated capture from OS against

process/service identification data

8 P_Count Process count/blade /system over time Check for process clean up, avoid hung

processes, minimize instances.

Repeated capture from OS

9 Z_count Zombie count/Instances over time Check for process clean up, avoid hung

processes which can consume resources and

create instability.

Repeated capture from OS

Short Name Metric title Why? How?

10 CPU_Util CPU utilization (by client, service, applica-

tion) over time

Prevent overutilization, prevent resource hog-

ging/application

Repeated capture from OS

11 HDPart_Ut Partition/disk usage over

time/scenario/factor

Avoid overfilling partitions (which can slow or

stop a system). Determine which situations

stress disks.

Repeated capture from OS

12 LAN_Util System LAN utilization Prevent overuse of LAN on system, watch for

processes that could be done in blade in lieu of

over LAN.

SNMP MIB from Routers

13 RAM_Util RAM utilization (by client, service, applica-

tion) over time

prevent overutilization, prevent resource hog-

ging/application.

Repeated capture from OS

14 Orphan_Thread_Count Count of threads and orphan threads Count of threads and orphan threads at each

level trended.

Repeated capture from OS via instru-

mentation

15 Software Scenario_delay

(and utilization by time

unit)

Software level scenarios (timing, resource

utilization, effectiveness)

Combines the above metrics to determine if the

Software will meet requirements.

Simulation to full scale test using metrics

above

47 | CMU/SEI-2010-TR-007

Short Name Metric Title Why? How?

16 System_Scenario_Delay

(and utilization by time)

System level scenario (timing, resource

utilization, effectiveness

Combines the above metrics to determine if the

system will meet requirements.

Simulation to full scale operational test

using metrics above.

17 MiddlewareCall_Count Calls to middleware over interfaces vs. time

vs. scenario

The more often a process can complete internal-

ly (or consolidate calls to middleware) the quicker

it will run.

Process-message snapshots and parse

18 Time_Scenario Timing (sequence or scenario based) Ability to meet Requirements at the System and

Software Level.

Task time keeping

19 SpecInT_Level

(or similar processing unit

metric)

SpecINT2000s vs. application vs.

processing unit/processing unit

Match resource budget in performance. SpecINT measurement tools.

20 WAN_Util WAN utilization (note: software perspective

usage, not network perspective)

Software overuse of network (minimize over

WAN calls, minimize software sending large

requests, etc.).

Network utilization monitors (SNMP MIB

from network radios/routers)

48 | CMU/SEI-2010-TR-007

References

URLs are valid as of the publication date of this document.

[Barbacci 2003]

Barbacci, Mario R.; Ellison, Robert J.; Lattanze, Anthony J.; Stafford, Judith A.; Weinstock,

Charles B.; & Wood, William G. Quality Attribute Workshops (QAWs), Third Edition (CMU/SEI-

2003-TR-016). Software Engineering Institute, Carnegie Mellon University, 2003.

www.sei.cmu.edu/library/abstracts/reports/03tr016.cfm

[Clements 2001]

Clements, Paul; Kazman, Rick; & Klein, Mark. Evaluating Software Architectures: Methods and

Case Studies. Addison-Wesley, 2001 (ISBN: 0-201-70482-X).

http://www.sei.cmu.edu/library/abstracts/books/020170482X.cfm

http://www.sei.cmu.edu/library/abstracts/reports/03tr016.cfm
http://www.sei.cmu.edu/library/abstracts/books/020170482X.cfm

49 | CMU/SEI-2010-TR-007

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

April 2010

3. REPORT TYPE AND DATES

COVERED

Final

4. TITLE AND SUBTITLE

Characterizing Technical Software Performance Within System of Systems Acquisitions: A

Step-Wise Methodology

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Bryce L. Meyer & James T. Wessel

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2010-TR-007

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

ESC-TR-2010-007

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)
THE CHARACTERIZATION OF SOFTWARE PERFORMANCE (SWP) IN COMPLEX, SERVICE-ORIENTED ARCHITECTURE (SOA)-BASED SYSTEM OF SYSTEMS

(SOS) ENVIRONMENTS IS AN EMERGENT STUDY AREA. THIS REPORT FOCUSES ON BOTH QUALITATIVE AND QUANTITATIVE WAYS OF DETERMINING

THE CURRENT STATE OF SWP IN TERMS OF BOTH TEST COVERAGE (WHAT HAS BEEN TESTED) AND CONFIDENCE (DEGREE OF TESTING) FOR SOA-
BASED SOS ENVIRONMENTS. PRACTICAL TOOLS AND METHODOLOGIES ARE OFFERED TO AID TECHNICAL AND PROGRAMMATIC MANAGERS:

 A STEPWISE METHODOLOGY TOWARD SWP SELECTION

 SWP AND SYSTEM ARCHITECTURE DESIGN CONSIDERATIONS

 RESOURCE LIMITERS OF SWP

 SWP AND TEST EVENT DESIGN CONSIDERATIONS

 ORGANIZATIONAL AND PROCESS SUGGESTIONS TOWARD IMPROVED SWP MANAGEMENT

 A MATRIX OF MEASURES INCLUDING TEST FIDELITY AND REALISM LEVELS
THESE TOOLS ARE NOT COMPLETE, BUT DO OFFER A GOOD STARTING POINT WITH THE INTENT TO ENCOURAGE CONTRIBUTIONS TO THIS GROWING

BODY OF KNOWLEDGE.
THIS REPORT IS INTENDED TO BENEFIT LEADERS WITHIN THE VARIED ACQUISITION COMMUNITIES, PROGRAM EXECUTIVE OFFICES, AND PROGRAM

MANAGEMENT OFFICES. IT PROVIDES DETAILED GUIDANCE FOR USE BY TECHNICAL LEADERSHIP AS WELL.

14. SUBJECT TERMS

Software performance, SWP, SOA, service-oriented architecture, system of systems, SoS, ac-

quisition

15. NUMBER OF PAGES

64

16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

20. LIMITATION OF

ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

	Characterizing Technical Software Performance Within System of Systems Acquisitions: A Step-Wise Methodology
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	1 Overview
	2 Defining Software Performance in a SOA SoS
	3 Detailed 10-Step Method for Software Performance in a SOA SoS Environment
	4 Summary and Conclusion
	Appendix—20 Must-Have Software Performance Metrics for a SOA SoS
	References

