Fourth |EEE Workshop on Program Comprehension, Berlin, March 1996

The Gadfly:
An Approach to Architectural-L evel System Comprehension

Paul Clements, Robert Krut, Ed Morris, Kurt Wallnau
{clements, rk, ejm, kew}@sei.cmu.edu
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

Technology to support system comprehension tends to
reflect either a* bottom-up” or * top-down” approach. Bot-
tom-up approaches attempt to derive system models from
source code, while top-down approaches attempt to map
abstract “ domain” concepts to concrete system artifacts.
While both approaches have merit in theory, in practicethe
top-down approach has not yielded scalable, cost-effective
technology. One problem with the top-down approach is
that it isvery expensive to develop domain models, and it is
difficult to develop models that are sufficiently general to
be applied to multiple systems (and hence amortize the
development cost). This paper describes the Gadfly, an
approach for developing narrowly-focused, reusable
domain models that can be integrated and (re)used to aid
in the process of top-down system comprehension.

1. Introduction

A primary purpose of program understanding technology
is, ultimately, to assist maintainers to develop a system-
level understanding of an application so that changesto the
application can be introduced in arational, consistent way.
Unfortunately, although source code is often the most reli-
able arbiter of what a system does, it does not reflect all of
the attributes of an application necessary to develop atrue
system-level understanding: thereis moreto understanding
a system than understanding what function it computes.
System characteristics such as performance, robustness,
security, etc., must also be understood. We refer to such
characteristics as quality attributes, and quality attributes
are related more to the architecture of a system than to its
code[16].

This paper describes aknowledge-based software assis-
tant called the Gadfly. The Gadfly is intended to help
designers create applications that attain a selected set of
quality attributes!, as well as to help maintainers under-
stand how an existing application has achieved those prop-

erties. The construction and understanding guidance of the
Gadfly is at the architectural level, which deals with allo-
cation of functionality to components and inter-component
interaction, rather than the internal workings of individual
components. To motivate the architectural approach to sys-
tem comprehension based on quality attributes, the paper
makes the following points:

« Software architecture provides alevel of understanding at
which a system’s quality attributes can be best managed
and understood, because they most often depend on inter-
component relationships and cannot be discovered from
source code alone.

* Quality attributes represent coherent domains of special-
ized design knowledge that can be separately modeled
and combined in different ways to support both forward
engineering and system comprehension.

* Quality attribute knowledge is similar to the knowledge
represented by specialized design schemas and similar
concepts found in program comprehension literature, and
is amenable to knowledge representation modeling.

» Software architecture can be used both asaframework for
integrating sets of quality attribute domain models, and
as ajuncture between top-down and bottom-up strategies
for program comprehension.

Therest of the paper is structured as follows: Section 2
provides an overview of current approachesto program and
system comprehension, and describes the program under-
standing context for the Gadfly. Section 3 surveys the key
concepts of software architecture, and outlinesthe potential
role software architecture can play in both forward-engi-
neering and system comprehension activities. Section 4
describesthe Gadfly, and illustrates its use through an oper-
ational scenario. Section 5 summarizes the key contribu-
tions of the Gadfly to program comprehension, and outlines
potential next steps.

1. The Gadfly prototype addresses only the information security at-
tribute.

2. Program comprehension technology

2.1 Top-down and bottom-up approachesfor system
comprehension

Current program understanding models identify a humber
of different types of knowledge that a maintainer uses to
comprehend software, including knowledge of program-
ming, knowledge of the real-world situation represented in
the software, and knowledge of the application domain. All
of these types of knowledge are important to the main-
tainer, since they embody different abstractions and impart
different kinds of understanding of software systems.
These kinds of knowledge are used in a top-down or bot-
tom-up manner, or some opportunistic combination of
these approaches.

The bottom-up model of program comprehension sug-
gests that a model of the application is built starting with
program knowledge and works to produce higher abstrac-
tions, using strategies like "chunking”. Program knowl-
edge[1] reflects the maintainers understanding of
programming idioms, program structure, algorithms, and
flow of control and data (the programming domain), and is
typically related to a bottom-up approach.

Alternately, atop-down model of program comprehen-
sion suggests that comprehension proceeds from higher
level abstractions down to lower level program idioms,
algorithms, etc. Pennington [1] suggeststhat, in addition to
program knowledge, expert maintainers also rely on an
understanding of the real-world problem addressed by the
softwarein order comprehend a particul ar software system.
This world knowledge is referred to as a situation model,
which describes the problem domain from a higher level of
abstraction than program maodels. According to Penning-
ton, program comprehension involves employing both bot-
tom-up and top-down strategies to relate and coordinate
information from the program model with that of the situa-
tion model[2].

Brooks suggests that, in order to comprehend a pro-
gramming problem, experts employ a top-down, hypothe-
sis driven problem solving approach[3]. In applying this
approach, Soloway and Ehrlich found that expert program-
mers employ high-level schemas (plans) that strongly
influence expectations about what a program should look
like[5]. Koenemann and Robertson demonstrated that for
experienced programmers, program comprehension
occurred primarily in atop-down manner using such sche-
mas, however, programmers resort to bottom-up strategies
when they lacked hypotheses, when hypotheses failed, or
for close scrutiny of relevant code[4]. Subjects determined
what program segments were relevant based on their
knowledge of the task domain, general programming
knowledge, and their current understanding of the pro-

gram. Letovsky suggests that program comprehension can
best be viewed as an opportunistic application of bottom-
up and top-down strategies[7].

Guindon, Curtis, and Krasner also addressed the ques-
tion of opportunistic system comprehension, but from the
standpoint of the design of highly complex systemg[6]. In
experiments requiring the design of logic to control the
functioning of lifts (elevators), the authors found that the
primary determinant of performance was the presence (or
lack) of computational techniques, called specialized
design schemas, that correspond to characteristics of the
application domain. These specialized design schemas
encode a solution template and the situations under which
the solution is appropriate. Examples of specialized design
schemas employed by the experiment subjects included
scheduling and routing, message communication, and con-
currency. Guindon, etl al., found that subjects applied these
schemas in a highly opportunistic manner, building partial
solutions at various levels of abstractions.

Clearly, program comprehension relies on the applica-
tion of aset of domain models (variously called specialized
design schemas, situation models, program models, etc.).
We expect that program comprehension relies on process-
ing anal ogous to those suggested by Guindon for design.

2.2 Approachesto building domain models

Current tool support for the application of domain knowl-
edgeto aid in program comprehension suffers from several
limitations. While a number of approaches to codifying
domain knowledge have been developed (e.g., [9][10]), to
date they have demonstrated only limited success. Nor are
tools based on source code parsing sophisticated enough to
produce domain models or recognize architectural designs
within systems.

The existing approaches to supporting the maintainer
by supplementing their domain knowledge can be classi-
fied into two broad categories:

* approaches that attempt to automatically extract the high-
level domain knowledge from source code and other sys-
tem artifacts; and,

« approaches that attempt to codify and organize the knowl-
edge of experts about specific systems.

The former approach (automatic extraction of high-
level abstractions from source code) has proven difficult.
For example, automatic recognition of algorithms is com-
plex dueto the wide variance in the manner in which a spe-
cific algorithm can be encoded, and the huge volume of
code in which the algorithm may be embedded. In addition,
this approach still requires an expert maintainer to relate
any algorithms found to domain concepts.

The latter approach (building knowledge bases from
expert input) has led to a number of interesting tools that

provide some support for software maintainers. However,
the effort necessary to create the knowledge base is
extremely high, relying on time-consuming interviews
involving system experts and often “ knowledge engineers”
who specialize in the organization of knowledge into
appropriate rules.

In addition to being expensive to develop, the com-
pleted knowledge bases are inflexible and hard to maintain
[11]. They mix information that spans multiple views or
abstractions in a system (e.g., agorithms, architecture,
requirements), domain knowledge that crosses multiple
software domains (e.g., security, fault-tolerance, distribu-
tion, performance), knowledge unique to the application
domain (e.g., banking, health informatics, command and
control), and knowledge specific to asingle system (e.g., a
specific air-traffic control system). It is hard to see how
information within the resulting knowledge bases can be
generalized to other systems within (or outside of) the
application domain. Thus, their heavy development cost
cannot be amortized across other applications.

2.3 A new approach for knowledge-based system
comprehension

In this paper, we suggest a new approach to developing
domain knowledge to support system understanding, and
describe a prototype implementation of this approach,
called the Gadfly. The Gadfly is based on these premises:

* There is a strong symmetry, largely unexploited to date,
between devel oping a system and comprehending it after
the fact. Comprehension seeks to understand the artifacts
produced during construction. Hence, the knowledge
structures that served to guide the construction tend to be
the same ones that provide the framework against which
the legacy artifacts can be understood.

» Systems are comprehended, at least in part, from the van-
tage of codifiable domains of knowledge. The Gadfly rec-
ognizes that more than one kind of domain applies to a
system. For example, to build a secure command-and-
control system requires knowledge about command-and-
control systems aswell as methods for achieving security
in computer systems. These domains may be orthogonal
in many ways; in any case, knowledge about them can be
separately modeled and combined in different ways to
reveal different aspects of a system under investigation.
Just as domain knowledge can be partitioned into differ-
ent kinds of expertise (e.g., security, fault-tolerance, com-
mand-and-control), so, too, it can be partitioned and
mapped to systemsin terms of different views or kinds of
understanding (e.g., code, architecture and problem state-
ment views). Thus, system comprehension involves
understanding a system, through various abstractions, in
terms of different kinds of domain knowledge.

* The architecture of system is an abstraction that is partic-
ularly fruitful as a basis for system comprehension, and
the concepts of software architecture can provide afoun-
dation for structuring the investigation of a system, and
for integrating supportive domain knowledge.

The Gadfly is a system that guides its user through an
analysis of a system, based on separate knowledge bases
dealing with the application domain and relevant system
quality attributes. The prototype Gadfly was built to render
analytical assistance with secure command-and-control
systems; hence, it was armed with one knowledge base
about kinds of command-and-control systems, and a sec-
ond knowledge base about computer security.

3. Software architecture and comprehension

Software architecture refers to a view of a system that
focuses on the nature and interactions of the major compo-
nents. While not a new concept— the fundamental notion
dates back at least to 1968 when Dijkstra pointed out that
carefully structuring a system imparts useful propertiesand
should be considered in addition to just computing the right
answer [13]—software architecture as a topic of study is

enjoying aflurry of interest. See, for example, [14].

A software architecture represents the integration of
application domain concepts with system design expertise
to ensure that the application will meet (or, in the case of
program understanding, how it has met) its requirements.
System design expertise is used to make (or understand)
design trade-offs, e.g., performance vs. modifiability or
security vs. ease of use. These and other quality attributes
are manifested at the architectural level of systems, and
cannot be discerned or analyzed from individual system
components.

More generaly, an architecture represents a body of
knowledge with multiple uses for both the designer and
maintainer:

* Architecture enables communication and can be used to
convey the decisions of designers to maintainers.

* Architecture represents atransferable abstraction of asys-
tem that can be applied to other systems exhibiting simi-
lar requirements. Domain-specific software architectures
describe the features of afamily of systems[15].

* Architecture suggests a recipe book for designers and
maintainersto assist them in selecting and identifying the
design idiomsthat guide the organization of modules and
subsystems into complete systems.

* Architecture simplifies system construction and guides
program understanding by acting as a framework that
constrains the manner in which components interact with
their environment, receive and relinquish control, man-
age data, communicate, and share resources.

» Architecture enables a system to satisfy its quality
attributes. For example, modifiability depends exten-
sively on the system’s modularization, which reflects the
encapsulation strategies, performance depends largely
upon the volume and complexity of inter-component
communication and coordination, etc.

* Architectural constructs areinstitutionalized in the devel-
opment and maintenance organization’s team structure,
work assignments, management units, etc. Therefore,
crucial information about the social context of a system,
vital for understanding, is embodied in its architecture.

Most research in software architecture has tended to
focus on forward engineering. Architecture description
languages (ADLs) continue to be an active area of research
[12]. The key challenge for ADLS is to express the
unchanging characteristics of a system in addition to
describing allowable variation. Closely related to work on
ADLs is research on automated composition of systems
from architectura models [17][18]. Architecture-level
composers tend to view system building as an exercise in
constraining the variability of an underlying design until no
variation remains and the result is an executable system.

In contrast, relatively little research has been under-
taken to understand how software architecture can be used
to aid in system comprehension. The software architecture
analysis method (SAAM) [16] is an architecture compre-
hension technique that designers can use to validate that
design decisions support selected quality attributes. SAAM
isessentially aguideto architecture-level comprehension if
quality attributes. However, SAAM is focused mostly on
the methodology for comprehension; thereisless emphasis
on codifying design heuristics associated with any particu-
lar quality attribute.

The Gadfly draws upon advances in both areas of soft-
ware architecture research (forward engineering and com-
prehension) by recognizing that the kinds of knowledge
needed to compose a system are, by and large, the same
kinds of knowledge needed to comprehend an existing sys-
tem. The kinds of analysis a designer subjects a hypotheti-
cal design are similar to the anaysis of operational
(fielded) designs, whether the intention is to perform a
design trade-off for a particular quality attribute (forward
engineering), or to discover the presence of a quality
attribute (system comprehension).

4. The Gadfly

The Gadfly prototypeis aknowledge-based software assis-
tant (KBSA)? that supports the development and compre-

2. In general, aKBSA is an application that uses deductive reasoning
to provide expert assistance to humans engaged in knowledge-intensive
activities.

hension of command, control and communications (C3)

systems. These functions are supported in this way:

* Development: portions of command centersS can be semi-
automatically composed from components and a generic
command center architecture.

» Comprehension: specific command center designs can be
evaluated from an information security perspective.

* Integrated composition and comprehension: comprehen-
sion services may be invoked from composition services
to provide guidance in the composition process.

We first describe the knowledge and computational
models used by the composition function of Gadfly, since
these models are used (though extended) by the compre-
hension function. We then describe the overall Gadfly
architecture and how the composition and comprehension
functions interact. Finally, we annotate a sample session
using the Gadfly for system comprehension purposes.

4.1 The Gadfly computational model

The composition function of the Gadfly is built upon a
domain model—a model which describes, in this case, the
structure and operational context of command centers. The
command center domain model isrepresented in RLF [20],
which employsastructured-inheritance network (similar to
Brachman’s KL-ONE [21]) and a speciaized forward-
chaining rule-based inferencing system. The domain model
includes descriptions of command center tasks (e.g., Situa-
tion monitoring and threat assessment), links between these
tasks and architectural components in a command center
(e.g., geographic information system) and links from archi-
tecture components to specific technologies (eg.,
Delorme mapping system).

is a

> is a
ASCII _injector binary_injector

Figure 1: Composer Fragment (Hypothetical)

The composer allows command center designers to
interactively develop portions of command centersthrough
a refinement process. navigating among, and converging
decision points in a domain model. These decision points
represent various alternatives in the design and implemen-

3. A specific (headquarter) function within a C3 system.

tation of a family of command centers described by this
domain model. The composition process is strongly analo-
gous to various hardware composition systems devel oped
inthe 1980°'s[19].

To illustrate the knowledge and computational models
of the composer, consider the simplified fragment of the
command center domain model illustrated in Figure 1. This
fragment represents asmall portion of the generic architec-
ture encoded within the domain model. It asserts that the
message processing component of the architecture has
exactly oneinter-process communication (IPC) system and
zero or more components for injecting test messages into
the IPC subsystem. Further, there are exactly two kinds of
injectors: oneinjects ASCII-encoded messages, one injects
binary-encoded messages.

The composer works by navigating through such net-
work models, asking questions pertinent to the current
“focus’ (the semantic network concept it is examining) of
the composer, and acting upon these answers. At the point
when the focus of the composer is at the message process-
ing system, for example, the designer might be asked
whether atest message injector is desired, and, if so, how
many and of what ki nd.* Similar guestions might be asked
about the IPC subsystem, for example if the model
described specific products that could provide this func-
tionality. As the designer answers questions, the composer
emits an instantiation of the generic model (a refinement)
to record the decisions made by the designer and any con-
seguences of these decisions; in some casesit can also emit
build scripts for automatically constructing prototype sys-
tems.

We refer to the semantic network (asillustrated in Fig-
ure 1) as encoding structural knowledge. Extra-structural
knowledge is also encoded in the model as different types
of rules that are linked to the structural model. Rules are
used to capture domain knowledge not easily encoded in a
semantic network, and are used to propagate design deci-
sions through the network. For example, the decision to
select a binary injector might be made automatically if an
earlier design decision determined that the class of mes-
sages processed by the command center included binary
messages, this, in turn, could have been deduced (and prop-
agated) from a still-earlier decision regarding the mission
of the command center (also modeled in the domain
model).

We devel oped a proof-of-concept composer based upon
the model just described. However, we discovered that
application domain knowledge aone was an insufficient
foundation for the composer. While the domain maodel

4. The following questions can be deduced from the structure of the
model. Other questions, derived from extra-structural knowledge, might
also be asked.

described alternative components and compositions, it pro-
vided little engineering guidance on how to select among
these alternatives. Frequently, such decisions could be
made on the basis of desired quality attributes. To help
designers make such decisions, knowledge about these
quality attributesand how they can be achieved by different
design decisions must also be consulted. The Gadfly proto-
typeisan extension of the original composer that augments
the application-specific domain model (C3) with quality
attribute domain knowledge.

4.2 The Gadfly architecture

The initial customer for the Gadfly was concerned with
evaluating systems (proposed and existing) from an infor-
mation security perspective. They had already developed a
domain model of information security principlesto aid in
analysis and evaluation efforts, but found the model diffi-
cult to employ because it lacked an application-specific
context. This problem was the complement to limitations
of the composer prototype, which had an application con-
text but lacked quality attribute models.

The purpose of the Gadfly prototype was to demon-
strate the re-use of security expertise for designing new
systems, and for evaluating existing systems, from a secu-
rity perspective. The Gadfly architecture reflects the inte-
gration of application-domain knowledge with different
kinds of highly-specialized design knowledge; it also
reflects our contention that there is a symmetry between
system design and system comprehension, and that asingle
technology can accommodate both kinds of activities.

Similarly to the C3 domain model, the information
security domain model was encoded in a structural model
augmented with extra-structural rules. The structural
model encodes information such as:

« athreat model, which describes arange of potential secu-
rity threats that confront systems, e.g., disruption, decep-
tion and disclosure; each threat is the root of its own
taxonomy (e.g, there are many kinds of disruption);

* asecurity service model, which describes basic classes of
countermeasures for meeting various threats, e.g., hard-
ware redundancy, cryptographic checksum, password
protection; and,

* a security mechanism model, which describes and links
various “approved” mechanisms that may be useful for
implementing all or part of one or more security services.

Extra-structural rules encode procedural knowledge,
referred to as strategiesin [8], for applying this knowledge
in specific contexts. These strategies include the kinds of
information that security analysts will seek regarding the
operational and maintenance context of asystem, aswell as
concrete analysis processes, such as mathematical models
for deriving the seriousness of athreat (for example, bal-

ancing factors such asthe potential gain for theintruder, the
damage incurred by the system, the risk of detection to the
intruder, and the cost of detecting the intruder).

Designer/
Security Analyst

i elicitor Information
C3 Domain | elicitor] Seourity
Domain
A QA
A —I_structured
3@) A& knowledge
- 12— rule-based

instdntiate knowledge

cycle
harvester

==

parts lists, security)
prototypes,... recommendations

Figure 2: Structure of the Gadfly

The Gadfly architecture is illustrated in Figure 2. The
eicitor (the top-most box in Figure 2) is the function that
manages the dial ogue between the Gadfly and the designer.
To conduct this dialogue the dlicitor needs to modulate
between C3 domain knowledge and information security
domain knowledge. The €licitor “walks’ the structural
models, asking questions depending upon rules and facts
associated with various concepts in the structural model,
emitting instantiations of concepts where appropriate, and
shifting focus to new nodes in the structural model. Links
between concepts instantiated from the C3 domain model
and information security domain model represent the
assignment of security conceptsto the application architec-
ture®. The process continues in cyclic fashion (fire the
rules, ask questions, shift focus in the network) until the
session is complete (no more nodes to visit or questions to
ask).

The Gadfly can be used for system composition, in
which case security knowledge can be consulted as a
means of determining, for example, which components to
select for agiven system. Alternatively, Gadfly can be used
when for constructing a cognitive model of security con-
cepts within an existing system. Moreover, it is not even

5. The prototype did not go so far asto create these links, since the op-
erational concept of the composer was that instantiated networks were
transient, and existed only so long as needed by the harvester. The links
exist conceptually, and areillustrated in the annotated report generated by
Gadfly (Section 4.3 of this paper). The generalization noted hereis easily
achieved, however.

strictly necessary that the system description be encoded in
a domain model to use the Gadfly in thisway. If an archi-
tectural model did not exist for a system, the execution of
the Gadfly would result not in an assignment of security
concepts to an architectural description, but rather in a
framework for investigating the system from asecurity per-
spective. That is, the questions asked by the élicitor and the
instantiated security model generated from the dialogue
would provide a basis for further investigation of the sys-
tem using whatever system artifacts are available (code,
design notes, or the devel opersthemselves). In effect, then,
the Gadfly helps maintainers by allowing them to re-use
highly specialized system comprehension strategies [8].

4.3 Annotated output from a Gadfly session

The ten-page report that forms the basis of the following
annotations was generated from a session in which an ana-
lyst was using the Gadfly to investigate the security prop-
erties of the message processing component of the
command center architecture.® There are six sections of the
Gadfly-generated report (not counting a prologue which
provides context information on the report itself), each
illustrated in turn in Figures 3a through 3f.”

The message processing component is itself an aggre-
gate concept comprised of several kinds of components,
including: message translators and validators, interprocess
communication components, message generation compo-
nents, human-machine interface components, etc. In the
following scenario, specific off-the-shelf components that
implement these functions had already been selected. Thus,
the scenario reflects a comprehension task: the analyst is
attempting to infer security properties of a design where
several key decisions have already been made.

Figure 3a reflects a security prioritization scheme for
the particular system under investigation. Thisinformation
represents requirements and design assumptions for the
command center: comprehension of more detailed security
properties (and the relationship of these properties to other
aspects of the command center design) isnot possible with-
out thiskind of information.

Thisis an important feature of the Gadfly: it addresses
information that is best specified (or found) in architec-
tural-level specifications, i.e., issues of system and compo-
nent context and inter-component relationships. Since this
information is not likely to be found in code, this aspect of
Gadfly reflects the reuse of a system comprehension strat-
egy: the application of the strategy produces a framework

6. The report corresponds to “security recommendations’ depicted in
Figure 2.

7. The content of thereport has been edited slightly for formatting pur-
poses.

for investigating security properties of the command center
in question.
Figure 3b summarizes the specific threats to which this

You specified the followi ng sets of
threat consequences as being the nost
i nportant to counter:

di sruption via incapacitation
di sruption via corruption
disruption via falsification
di scl osure via intrusion

di sclosure via interception
di scl osure via exposure

* ok X % ok o*

Figure 3a: Threat Context and Prioritization

command center must respond. As was stated about the
threat context and prioritization information depicted in
Figure 3a, this information reflects design context; how-
ever (as will be illustrated) this information provides a
basis for concept assignment of specific security threats to
specific components in the command center architecture.

Figure 3c summarizes aspects of a command center that

Specific threats npbst concerned about:

*di scl osure: intrusion penetration

*di scl osure: interception scavengi ng
*deception: falsification insertion
*deception: falsification substitution
*di sruption: corruption tanper nalicious
*di scl osure: intrusion cryptoanal ysis
(etc.)

Figure 3b: Known Threats

might be associated with system-level documentation, but
seldom with software-level documentation: the physical
environment in which the software will execute. Thisinfor-
mation, too, is crucia for comprehending the security
aspects of the software.

You speci fied the conponent woul d operate
in the follow ng environment/context:

The factor: has the attribute(s):

conponent _i nf o:
source code avail able to: nobody
out si de net connection: satellite
physi cal site:
networ k conponents in: unsecure area
conponent housed in: secure area
spot checks by guards: not perforned
(etc.).

Figure 3c: Physical System Context

Armed with this context information (Figures 3a-c), the
Gadfly can proceed with the task of assigning security con-
cepts to elements of the command center. Further, the Gad-
fly can infer new threats not explicitly specified by the
analyst. Figure 3d is an excerpt of the security concepts
directly assigned to command center components.8 Figure
3eisan excerpt of thethreatsinferred from the system con-
text. These inferences result from sometimes subtle inter-
actions between environmental context, threat priority and
component attributes. These inferred threats are then
assigned to the appropriate components.

Threats for conponent: DEC Message_Q
deception->fal sification->substitution
di sruption->corruption->
mal | i ci ous_| ogi c_corruption
di scl osure->i nterception->w re_tappi ng
(etc.)
Threats for conmponent PRI SM MIV:
deception->fal sification->substitution
di scl osure->i ntercepti on->penetration
(etc.)
Threats for conponent ASCI | _PRI SM M5G_GEN:
deception->fal sification->insertion
(etc.)

Figure 3d: Threat (Concept) Assignment

Finally, the Gadfly isableto derive a set of security ser-
vices that should be present in a system if it isto meet the
assigned threats. Asin Figures 3d and 3e, the Gadfly isable
to make adirect assignment of security concepts (services,
in this case) to components: it is also able to infer the need
for additional services. For brevity, only the former isillus-
trated in Figure 3f.

As noted earlier, the information security domain
model underlying the Gadfly also maps security services
(Figure 3f) to approved security mechanisms (e.g., soft-
ware components). As a result, the kinds of mechanisms
needed in the architecture to achieve a specific set of qual-
ity attribute objectives (security in this case) have been
identified; the identify of these mechanisms can be used as
abasisfor amore fine-grained pattern matching within the
code (e.g., search for cryptographic or password servicesin
code).

5. Conclusions

5.1 Gadfly Contributions

The Gadfly is a knowledge-based assistant for helping
designers create command centers, and for hel ping security

8. DEC_Message Q, PRISM_MTYV, etc., are the names of specific
off-the-shelf components used to implement this instantiation of the com-
mand center architecture.

Si nce:
conmponent _i nf o:
conponent on network machi ne:
out si de of buil ding
and you are worried about disclosure
infer new threat:
di scl osur e- >exposur e->| ogi c_t appi ng

Si nce:
conponent _i nf o:
conponent on network machi ne:
out si de of buil ding
and you are worried about disclosure
infer new threat:
di scl osur e->i ntrusion->
reverse_engi neer
(etc.)

Figure 3e: Inferred Threats

analysts comprehend the security properties of existing
(and perhaps evolving) command center systems. The Gad-
fly makes three separate but related contributions to pro-
gram understanding: a focus on architecture-level
specifications, a partitioning of domain models into sepa-
rately-modeled and individually-selectable knowledge
bases, and a demonstration of the symmetry between sys-
tem design and system comprehension.
A primary service for disclosure->
corrupti on->tanper _mal i ci ous
for DEC Message_Q conponent
i s data_redundancy

A primary service for deception->
falsification->substitution

for DEC Message_Q conponent
is password

(etc.)

A primary service for disclosure->
i ntrusion->reverse_engi neering

for ASCI|_PRI SM MSG_GEN
is access_control

(etc.)

Figure 3f: Service Assignment and Inference

Architecture is the appropriate locus for specifying and
comprehending system-wide properties. Continuing with
security as an example, a component that is susceptible to
logic tampering may represent a vulnerability in one sys-
tem, but if it is enclosed within a more secure component
(in inter-component rel ationship) or within a secure operat-
ing environment (a system boundary relationship), then it
will not beavulnerability. Thus, the property of vulnerabil-
ity needs to be assigned to a specification of the system at

a level that spans individual components: namely, the
architecture level.

The second contribution of Gadfly—separable domain
models—is as much an economic contribution as it is a
technical one. The idea of developing separable, reusable
domain modelsis not new—it isafounding principle of the
Knowledge Sharing Initiative, which is developing tech-
niques for creating “shareable ontologies’ [22]. The eco-
nomic and technical justifications for shareable ontologies
are strong: cost amortization, community standards, evolu-
tionary refinement of shared models, etc.

While we are not suggesting that the information secu-
rity model is a shareable ontology—it lacks some of the
characteristics specified by [22] that would make it
one—we do claim it plays the role of shareable ontology
within the Gadfly system. That is, constraining Gadfly
domain models (currently, information security and C3) in
various ways makes it possible to develop domain models
that are focused on, for example, comprehension strategies
and concept assignment to architectural components (as
opposed to lines of code).

Thus, it is not hard to envision generalizations of the
Gadfly that would allow designers to consult construction
or comprehension strategies focused on fault-tolerance,
distribution, real-time performance, or other quality
attributes of systems. The development of specialized
domain (comprehension strategy) models is more econom-
ically feasible than developing one-of-a-kind, system-spe-
cific mixed-content domain models that do not easily
transfer to new applications.

Finaly, the Gadfly demonstrates that the same kinds of
human expertise needed to design systems are also needed
to comprehend systems. Although design requires a syn-
thesis of many kinds of expertise, system comprehension
can be (and in practice often is) narrowly focused to the
search for specific kinds of properties. The Gadfly demon-
strated how one technology framework could re-use
knowledge for both constructive (forward-engineering)
and de-constructive (reverse-engineering) activities.

5.2 FutureDirection

Although the Gadfly architecture admits the possibility of
integrating arbitrarily many domain modelsto support con-
struction and comprehension of systems, the current sys-
tem requiresthat the elicitor have knowledge of the specific
knowledge-bases being employed. Ideadly, the elicitor
would be able to independent of domain models. However,
while it might be ssimple to implement this feature, it is
equally important not to subject designers to “information
overload.” Some way of pruning or focusing the dialogue
will be important, and this will be more difficult to accom-
plish. Similarly, modeling and managing the interaction

between domain models (e.g., distribution and fault toler-
ance) will also be difficult, as these interactions imply
trade-off reasoning that may be difficult to formalize.

A more practical extension of the Gadfly would be the
development of domain models covering other kinds of
quality attributes. While some work has been done to for-
malize static quality attributes such as modifiability, it
would beinteresting to seeif thiswork could be formalized
in such away that it could be used by the Gadfly. Similarly,
design heuristics for narrow ranges of issues such as real-
time and fault tolerance could also be devel oped.

Acknowledgments. Special credit to: Mark Simos
(Organnon Motives), who originated the Gadfly concept in
themid 1980's; PaulaMatuszek (L oral), whose expertisein
reasoning systems made the latest Gadfly possible; and
Brian Koehler (US. Government) for his security expertise.
The SEI is sponsored by the US Department of Defense.

References

1 Pennington, N. Comprehension strategiesin program-
ming. In G. M. Olson, S. Sheppard, and E. Soloway (edi-
tors.) Empirical Studies of Programmers: Second
Workshop. Norwood N.J. Ablex Publishing Co. 1987. pp
100-112.

2. Pennington, N., Grabowski, B., The Tasks of Program-
ming. In Psychology of Programming, J.M. Hoc, Green,
T., Samurcay, R., and Gilmore, D., editors, Academic
Press 1990, ISBN 0-12-350772-3.

3. Brooks, R., Towards a Theory of the Comprehension of
Computer Programs, in International Journal of Man-
Machine Studies, vol. 18, pp. 543-554.

4, Koenemann, J., Robertson, S., “ Expert Problem Solving
Strategies for Program Comprehension,” in Proceedings
of Computer Human Interaction (CHI’ 91), New Orleans,
LA, April 1991, pp. 125-130.

5. Soloway, E. & Ehrlich, K. “Empirical studies of pro-
gramming knowledge” | EEE Transactions on Software
Engineering, SE-10(5), September, 1984.

6. Guindon, R., Curtis, B., Krasner, H., A Model of Cogni-
tive Processes in Software Design: An Analysis of
Breakdownsin Early Design Activities by Individuals,
Microel ectronics and Computer Technology Corporation
(MCC) technical report STP-283-87, August 1987.

7. Letovsky, S., Cognitive Processes in Program Compre-
hension, in Empirical Studies of Programmers, Soloway,
E., lyengar, S. eds., pp. 58-79, 1986, Ablex publishers,
Norwood, NJ.

8. von Mayrhauser, A. & Vans, A.M. “Comprehension pro-
cesses during large-scale maintenance” in Proceedings of
the 16th International Conference on Software Engineer-
ing. Sorrento, Italy, May 16-21, 1994. |[EEE Computer
Society Press. Los Alamitos, CA. 1994. pp. 39-48.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

10.

20.

21.

22.

Lutz, E. “The Knowledge Base Maintenance Assistant”
in Proceedings of the Eight Knowledge-Based Software
Engineering Conference, Chicago, Illinois, September
20-23, 1993. IEEE Computer Society Press, Los Alami-
tos, CA., 1993. pp. 86-95.

Layzell, P, Freeman, M., and Benedusi, P. “Improving
reverse-engineering through the use of multiple knowl-
edge sources.” Software Maintenance: Research and
Practice. Vol. 7, 1995. pp. 279-299.

Yen, J. and Hsiao-L e, J. “ An approach to enhancing the
maintainability of expert systems.” in Proceedings of the
Conference on Software Maintenance 1990. IEEE Com-
puter Society Press. Los Alamitos, CA. 1990. pp. 150-
160

Clements, Paul, “A Survey of Architecture Description
Languages,” to appear in Proceedings of the 8th Interna-
tional Workshop on Software Specification and Design,
Paderborn, DE, 1996.

Dijkstra, E., W., “The structure of the ‘T.H.E."” multipro-
gramming system,” CACM, vol. 11, no. 5, pp. 453-457,
1968.

| EEE Transactions on Software Engineering, special
issue on software architecture, April, 1995.

Hayes-Roth. “ Architecture-Based Acquisition and
Development of Software: Guidelines and Recommen-
dations from the ARPA Domain-Specific Software
Architecture (DSSA) program,” http://www.sei.cmu.ed-
uarpaldssa/DSSAexp.html, 14 January, 1994.

Abowd, G., Bass, L., Kazman, R., Webb, M., “SAAM:
A Method for Analyzing the Properties of Software
Architecture,” in proceedings of the 16th International
Conference on Software Engineering, Sorrento, Italy, pp.
81-90, May 1994.

Parnas, D., “On the design and development of program
families,” |EEE Transactions on Software Engineering,
vol. SE-2, no. 1, pp. 1-9, 1976.

Moriconi, M., Qian, X., Riemenschneider, R., “Correct
Architecture Refinement,” | EEE Transactions on Soft-
ware Engineering, vol 21, no. 4, April 1995.

Searls, D., Norton, L., “Logic-Based Configuration with
a Semantic Network,” in The Journal of Logic Program-
ming, Vol. 8, 1990, pp. 53-73.

Wallnau, K., Solderitsch, J., Simos, M., “ Construction
of knowledge-based components and applicationsin
Ada,” in proceedings of AIDA-88, Fourth Annual Con-
ference on Artificial Intelligence and Ada, pp. 3/1-21.

Brachman, R., Schmolze, J., “An overview of the KL-
ONE knowledge representation system,” Cognitive Sci-
ence, Vol. 9, No. 2, pp. 171-216.

Neches, R., Fikes, R., Finin, T., Patil, R., Senator, T.,
Swartout, W., “Enabling Technology for Knowledge
Sharing,” AAAI, Fall 1991.

