

Results of SEI Independent Research

and Development Projects

Len Bass, Dionisio de Niz, Jörgen Hansson, John Hudak, Peter H. Feiler, Don Firesmith, Mark Klein,

Kostas Kontogiannis, Grace A. Lewis, Marin Litoiu, Daniel Plakosh, Stefan Schuster, Lui Sha,

Dennis B. Smith, & Kurt Wallnau

July 2008

TECHNICAL REPORT

CMU/SEI-2008-TR-017
ESC-TR-2008-017

Unlimited distribution subject to the copyright.

http://www.sei.cmu.edu

This report was prepared for the

SEI Administrative Agent

ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the

interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally

funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2008 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS

FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF

ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED

TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS

OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE

ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR

COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for

internal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions

and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for

external and commercial use should be directed to permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with

Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research

and development center. The Government of the United States has a royalty-free government-purpose license to

use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,

for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our website

(http://www.sei.cmu.edu/publications/pubweb.html).

I | CMU/SEI-2008-TR-017

Table of Contents

Abstract v

1 Introduction 1
1.1 Purpose of the SEI Independent Research and Development Program 1
1.2 Overview of IRAD Projects 1

2 Improving Architectural Design Through Organizational Considerations 2
Len Bass 2
2.1 Purpose 2
2.2 Background 2
2.3 Approach 4
2.4 Collaborations 4
2.5 Evaluation Criteria 4
2.6 Results 4
2.7 References 7

3 Performance Challenges of Modern Hardware Architectures for Real-Time Systems 8
Dionisio de Niz, Jörgen Hansson, John Hudak, and Peter H. Feiler 8
3.1 Purpose 8
3.2 Background 8
3.3 Approach 11
3.4 Collaborations 13
3.5 Evaluation Criteria 14
3.6 Results 14
3.7 Publications and Presentations 15
3.8 References 15

4 A Research Agenda for Service-Oriented Architecture 17
Grace A. Lewis (Lead), Kostas Kontogiannis, Marin Litoiu, Stefan Schuster, and

Dennis B. Smith 17
4.1 Purpose 17
4.2 Background 17
4.3 Approach 18
4.4 Collaborations 18
4.5 Results 18
4.6 Publications and Presentations 25
4.7 References 26

5 A Software System Engineering Approach for Fault Containment 28
Peter H. Feiler, Dionisio de Niz, Jörgen Hansson, Lui Sha, and Don Firesmith 28
5.1 Purpose 28
5.2 Approach 30
5.3 Collaborations 31
5.4 Evaluation Criteria 31
5.5 Results 32
5.6 Publications and Presentations 34
5.7 References 34

II | CMU/SEI-2008-TR-017

6 Using the Vickrey-Clarke-Groves Auction Mechanism for Enhanced Bandwidth Allocation
in Tactical Data Networks 37
Mark Klein, Daniel Plakosh, and Kurt Wallnau 37
6.1 Purpose of this Research 37
6.2 Background 37
6.3 Computational Mechanism Design 38
6.4 Approach 38
6.5 Auctioning Bandwidth Allocation on Tactical Networks 39
6.6 Assessing the Auction 41
6.7 Contribution of this Work 42
6.8 Conclusions 43
6.9 References 44

III | CMU/SEI-2008-TR-017

List of Figures

Figure 2-1: The Relationship Between Module Dependency and Team Coordination 4

Figure 2-2: Factors Impacting Coordination 5

Figure 3-1: Speedup to Cache Allocation Function 13

Figure 3-2: Two Task QRAM Cache Assignment 13

Figure 4-1: Overview of the SOA Problem and Solution Space 19

Figure 4-2: Expanded View of the SOA Problem and Solution Space 20

Figure 4-3: Mapping Between Phases, Activities, and Indicators 21

Figure 4-4: SOA Research Taxonomy 22

Figure 6-1: Tactical Display With Fused Track Data 40

Figure 6-2: Studying the Runtime Effects of the Auction 42

IV | CMU/SEI-2008-TR-017

List of Tables

Table 2-1: Topics of Coordination from One Development Project 5

Table 2-2: Styles of Coordination and Type of Tool Used for Each Style 6

V | CMU/SEI-2008-TR-017

Abstract

The Software Engineering Institute (SEI) annually undertakes several independent research and

development (IRAD) projects. These projects serve to (1) support feasibility studies investigating

whether further work by the SEI would be of potential benefit and (2) support further exploratory

work to determine whether there is sufficient value in eventually funding the feasibility study

work as an SEI initiative. Projects are chosen based on their potential to mature and/or transition

software engineering practices, develop information that will help in deciding whether further

work is worth funding, and set new directions for SEI work. This report describes the IRAD

projects that were conducted during fiscal year 2007 (October 2006 through September 2007).

1 | CMU/SEI-2008-TR-017

1 Introduction

1.1 PURPOSE OF THE SEI INDEPENDENT RESEARCH AND DEVELOPMENT

PROGRAM

SEI independent research and development (IRAD) funds are used in two ways: (1) to support

feasibility studies investigating whether further work by the SEI would be of potential benefit and

(2) to support further exploratory work to determine whether there is sufficient value in eventually

funding the feasibility study work as an SEI initiative. It is anticipated that each year there will be

three or four feasibility studies and that one or two of these studies will be further funded to lay

the foundation for the work possibly becoming an initiative.

Feasibility studies are evaluated against the following criteria:

 Mission criticality: To what extent is there a potentially dramatic increase in maturing and/or

transitioning software engineering practices if work on the proposed topic yields positive re-

sults? What will the impact be on the Department of Defense (DoD)?

 Sufficiency of study results: To what extent will information developed by the study help in

deciding whether further work is worth funding?

 New directions: To what extent does the work set new directions as contrasted with building

on current work? Ideally, the SEI seeks a mix of studies that build on current work and stu-

dies that set new directions.

1.2 OVERVIEW OF IRAD PROJECTS

The following research projects were undertaken in FY 2007:

 Improving Architectural Design Through Organizational Considerations (Len Bass)

 Performance Challenges of Modern Hardware Architectures for Real-Time Systems (Dionisio

de Niz, Jörgen Hansson, John Hudak, and Peter H. Feiler)

 A Research Agenda for Service-Oriented Architecture (Grace A. Lewis [Lead], Kostas Kon-

togiannis, Marin Litoiu, Stefan Schuster, and Dennis B. Smith)

 A Software System Engineering Approach for Fault Containment (Peter H. Feiler, Jörgen

Hansson, Dionisio de Niz, Lui Sha, and Don Firesmith)

 Using the Vickrey-Clarke-Groves Auction Mechanism for

Enhanced Bandwidth Allocation in Tactical Data Networks (Mark Klein, Daniel Plakosh, and

Kurt Wallnau)

These projects are summarized in this technical report.

2 | CMU/SEI-2008-TR-017

2 Improving Architectural Design Through Organizational

Considerations

Len Bass

2.1 PURPOSE

Architectural design decisions and organizational coordination mechanisms must be aligned in

order for development to proceed smoothly. Our goal is to make the factors of this alignment pre-

cise and to use this understanding to provide guidance to designers and managers. The guidance

for designers will be of the form: ―in this type of organizational environment with this type of

organization coordination mechanisms, these are the decisions that may be problematic.‖ The

guidance for managers will be of the form: ―these are the types of coordination mechanisms that

should be in place to support these particular architectural decisions.‖ We also expect to develop

indicators that managers can use to provide early indications of potential organizational or archi-

tectural misalignment.

2.2 BACKGROUND

It is well known that architectures for both software and systems become deeply ―embedded‖ in

the organizations that design and build software-intensive systems (e.g., [Conway 1968]). Archi-

tectures determine key characteristics of organizations, such as work assignments, and have im-

plications for communication patterns, habitual ways that people select and filter information, and

organizational problem-solving strategies. Changing the architecture, even in seemingly simple

ways, can cause serious misalignments between the architecture and the organization, leading in

some cases to complete failure of the firm [Henderson 1990]. Organizations are notoriously diffi-

cult to change, and we do not yet have any tools for understanding the kinds of changes we are

imposing on them when we perform architectural design. We don’t know how to assess the risks,

nor do we know how to address the risks once they are identified.

Suppose, for example, that the designer of an architecture is considering two alternative designs.

The designer knows that design one requires the developers of a particular component to access

expertise from a separate organization, requiring extensive long-distance communication. Design

two requires the same developers to access expertise from a co-located site. Everything else being

equal, design two is preferable because it will reduce organizational risk by lowering the commu-

nication overhead required to solve any problem that arises. Organization structure, existing

communication patterns, location of people and resources, shared work history, and potentially

other factors not yet identified will influence the risk, time required, component quality, and de-

velopment efficiency of the design and construction of software components. Organizational fac-

tors should be considered as design decisions are made, just as performance or reliability factors

are considered.

It is also well known that a system’s software architecture is a central artifact in the development

of software-intensive systems. It is a primary determinant of the system’s quality attributes. It is

the bridge between business goals served by a system and that system’s implementation. The SEI

3 | CMU/SEI-2008-TR-017

has invested considerable effort in understanding the principles of design and analysis of software

architecture. However, people must effectively collaborate to realize the benefits of software ar-

chitecture. Conversely, organizational inhibitors to collaboration can be inimical to realizing the

potential benefits of software architecture. Therefore understanding the relationship between types

of organizations and types of architectures is vital to realizing the benefits of software architec-

ture.

The purpose of this project was to investigate the relationship between organizational characteris-

tics and software architecture. If two people work together on the same component, they must

communicate about all aspects of the component. If they work on different components, they must

communicate about the ways in which their respective components interact. The two situations

may require different types and bandwidths of communication. Depending on the fashion in

which two components interact, there may be a requirement for high or low bandwidth communi-

cation. The communication bandwidth among people is affected by many different elements such

as co-location, organizational structure, processes used, technological support, and knowledge of

where different types of expertise reside in an organization. In the modern world, most large sys-

tems are constructed across multiple sites, usually involving multiple distinct organizations. Un-

derstanding the organizational characteristics that are essential to effectively building a system

with a particular architecture will provide fundamental knowledge that can be exploited to more

effectively manage and design large software systems.

If the relationship between organizational characteristics and software architecture were well un-

derstood, it would have application in architecture evaluation and architecture design, and in as-

sessing the readiness of an organization for architecture-centric development. During an architec-

ture evaluation, discovering a misalignment between architectural decisions and organizational

structure amounts to discovering a risk to the development effort. During an architecture design,

discovering a misalignment between proposed architectural decisions and proposed organizational

structure allows for the correction of the misalignment or at least for a clearly understood allow-

ance of the misalignment in the project management. There might be a tradeoff, for example, be-

tween optimizing the performance of a system and optimizing it for the organizational structure of

the developing organizations. One question the SEI Software Architecture Technology initiative

frequently hears is, ―How ready is organization X for architecture-based development?‖ Being

able to analyze the structure of organization X with respect to common architecture usages is one

aspect of being able to answer this question. A fundamental understanding of the relationship be-

tween organizational characteristics and software architectures could allow us to go beyond as-

sessing readiness in general, and determine the range of architectures an existing organization

could build.

A complicating element of the understanding of organizational characteristics is that they evolve

over time, and desirable characteristics may change, depending on the current stage of project

development. During the initial stages of a project, one might see, for example, particular patterns

of communication among the groups working on the infrastructure. During later stages one might

see communication among application developers and infrastructure developers.

During this research project, we have examined the factors that impact coordination among distri-

buted teams. We have discovered that, in one project, over 50% of the coordination topics were

4 | CMU/SEI-2008-TR-017

architectural in nature. We have discovered examples where organizational factors impact coordi-

nation about architectural decisions and examples where process factors impact coordination. We

have also analyzed the types of tools that are used to perform the coordination in different cir-

cumstances.

2.3 APPROACH

The approach we used in this project was empirical. We analyzed data gathered from several de-

velopment projects. The data included coordination data as well as data gathered from normal

development activities, such as configuration management logs.

2.4 COLLABORATIONS

The SEI participant in this study was Len Bass. Collaborators included Prof. James Herbsleb of

the School of Computer Science at Carnegie Mellon and one of his graduate students. An addi-

tional collaborator was Matthew Bass of Siemens Corporate Research. Matthew Bass’s participa-

tion was funded by Siemens.

2.5 EVALUATION CRITERIA

Some results of this investigation were peer reviewed and accepted for presentation at an interna-

tional conference [Cataldo 2007b]. Other results are being written and will be submitted for peer

review.

2.6 RESULTS

We investigated the portion of the life cycle after an initial architecture has been defined. This

includes development and post release maintenance. Figure 2-1 shows the situation we investi-

gated: Distinct development teams are working on modules that have dependencies between them.

These dependencies generate a need for coordination among the development teams over the por-

tions of their respective modules that have dependencies with other modules.

Figure 2-1: The Relationship Between Module Dependency and Team Coordination

Dependency

Coordination

Module
A

Team A

Module
B

Team B

5 | CMU/SEI-2008-TR-017

One question that occurs in this situation is: what do the teams coordinate about? Table 2-1

shows that more than 50% of the threads of coordination concern architecture or design issues

leading to an architectural decision.

Table 2-1: Topics of Coordination from One Development Project

Task Number of Threads Percentage

Requirements specification 6 3.8%

overall architecture 30 18.9%

project management 6 3.8%

integration test 1 0.6%

process definition and management 14 8.8%

central infrastructure 11 6.9%

detailed design involving multiple teams—i.e., about

architectural issues
58 36.5%

specification of unit tests 9 5.7%

coding 14 8.8%

unit testing 4 2.5%

maintenance of related artifacts 6 3.8%

Figure 2-2 shows the coordination being impacted by several important factors. These factors in-

clude the organizational structure and the processes being followed. The coordination occurs uti-

lizing one or more different media types.

Figure 2-2: Factors Impacting Coordination

During the course of the investigation we identified different incidents that resulted in significant

coordination and significant development delay. Several of these incidents could be attributed to

the division of responsibilities among different organizational entities and to the schedule as it

impacted these different entities. Several of these incidents could be attributed to processes being

used for the development, again as it impacted the different teams involved in the incidents.

6 | CMU/SEI-2008-TR-017

Table 2-2 shows the styles of coordination and the type of tool used for each style within the

projects that were monitored. The percentages in particular cases may add up to greater than

100% because threads may initiate use of one media and be continued using another.

Table 2-2: Styles of Coordination and Type of Tool Used for Each Style

Teleconference E-mail Discussion Forum

Occurrence Occurrence Occurrence

Topic Category # % # % # %

Information seek 0 0 0 0 7 7

Information post 1 1 709 39.6 22 21

Information seek–reply 31 28 299 16.7 41 39

Task negotiate 112 100 146 8.2 8 8

Task seek action 10 9 209 11.7 6 6

Task seek decision 0 0 0 0 3 3

Task notify status 112 100 278 15.5 0 0

Task notify decision 0 0 14 0.8 1 1

Problem–solution exchange 5 4 137 7.7 11 10

Problem–solution negotiate 5 4 7 0.4 2 2

Design negotiate 19 17 38 2.1 10 9

Design notify decision 3 3 30 1.7 6 6

Design seek decision 1 1 0 0 9 8

Observe that negotiation is dominated by both e-mail and teleconference yet the action portion of

the negotiation—as opposed to questions about status or decisions—more frequently uses e-mail

than either teleconference or discussion forums.

2.6.1 Additional Work

These results indicate that architectural decisions are a major topic of coordination and that fac-

tors of process and organizational structure as mediated by coordination tools help determine the

requirement for coordination and the amount of coordination necessary in particular cases.

In related work, the collaborators on this project examined predictors that could be useful for pre-

dicting the necessity of coordination. This related work determined that examining the files that

are changed together during a development or maintenance activity provide a good predictor for

the amount of coordination that occurs [Cataldo 2007a]. Files that change together is a measure

that is not available until development is well under way. Future work is focusing on determining

a predictor that is available from the architecture rather than from development artifacts.

7 | CMU/SEI-2008-TR-017

2.7 REFERENCES

[Cataldo 2007a]

M. Cataldo. ―Dependencies in Geographically Distributed Software Development: Overcoming

the Limits of Modularity.‖ PhD diss., Carnegie Mellon University, 2007.

[Cataldo 2007b]

M. Cataldo, M. Bass, J. Herbsleb, & L. Bass. ―On Coordination Mechanisms in Global Software

Development.‖ Proceedings of the 2007 International Conference on Global Software Engineer-

ing, IEEE Press, 2007.

[Conway 1968]

M. E. Conway. ―How Do Committees Invent?‖ Datamation 14, 4 (1968): 28-31.

[Henderson 1990]

R. M. Henderson & K. B. Clark. ―Architectural Innovation: The Reconfiguration of Existing

Product Technologies and the Failure of Established Firms.‖ Administrative Science Quarterly

35, 1 (1990): 9-30.

8 | CMU/SEI-2008-TR-017

3 Performance Challenges of Modern Hardware

Architectures for Real-Time Systems

Dionisio de Niz, Jörgen Hansson, John Hudak, and Peter H. Feiler

3.1 PURPOSE

Real-time and embedded systems increasingly deploy more advanced, albeit standard, hardware

CPU architectures, which provide significant performance enhancements in running tasks com-

pared with past CPU architectures. Among the most important advances are the speed of CPUs

and the use of multiple levels of cache to compensate for the slower main memory technology.

However, using caching technology in embedded systems has always been problematic. The main

problem arises from unpredictable execution time, because of the dynamic nature of caches. Over-

ly conservative estimates of resource usage result in an underutilized system and overly optimistic

estimates result in decreased performance and can ultimately cause the system to be overloaded

and, thus, fail to satisfy temporal constraints. The advancement of CPU caching and pipelining

render existing path-based techniques for determining CPU resource usage inappropriate in prac-

tice given the difference in actual resource usage as opposed to derived worst-case estimates as-

suming non-pipelined and non-cached CPU architectures. The state of the cache, and content of

the pipeline due to preemptions, affect the actual execution time of a task. Thus, techniques for

benchmarking a task running in isolation cannot be adopted as these are most often misleading, or

provide unsatisfactory accuracy and confidence. In other words, because we are not able to predict

whether or not a memory word will be in cache, the execution of the instruction that uses this

word is equally unpredictable. For this reason a common practice in the development of embed-

ded systems is to disable the cache to make sure we know where the memory words are and how

long it would take to access them.

Researchers on multiple projects have been working on the predictability of memory access time

using caches and other types of on-chip memory, such as scratchpad memory. These projects ig-

nore two important characteristics of embedded systems: the simplicity of the control flow and the

periodic nature of real-time tasks. In this paper we present a scheme to take advantage of both

factors. We use memory traces to profile the memory access behavior of tasks, relying on the fact

that most control and real-time tasks have small variations in the control flow. We also take into

account the periodicity of the tasks to evaluate the total speed up of the system when allocating

cache. We then combine these two aspects in a near-optimal static cache allocation to obtain most

of the benefit of the cache without introducing unpredictable memory access behavior.

3.2 BACKGROUND

Cache allocation algorithms present in modern processors have two basic deficiencies when used

in real-time systems: first, they optimize the average memory access time, disregarding the worst-

case access time; and, second, they focus on a single executing thread.

Existing cache memory was designed to optimize the execution of general-purpose programs.

Improvements in execution time in this type of programs have focused on the average case, given

9 | CMU/SEI-2008-TR-017

that it has a good impact on user perception. In addition, these optimization techniques do not rely

on any program information beyond the profiling of its immediate memory access patterns. For

real-time systems, the main concern related to execution time is guaranteeing that such an execu-

tion ends before a well-defined deadline. In this case a real-time program is a program that ex-

ecutes periodically with a fixed period in general, and with a fairly stable memory access pattern

due to the narrow focus of its functionality. This functionality is related to a concrete interaction

with its environment, such as avoiding the skidding of the wheels in an ABS system or the inflat-

ing of an airbag when a crash is sensed. To verify that such programs finish their periodic execu-

tion before their deadlines, priorities are assigned based on the generalized rate-monotonic theory

[Sha 1994]. This theory uses the worst-case execution time along with the period to verify that a

program will always finish before its deadline. The fact that this theory uses the worst-case execu-

tion time makes the design of the cache behavior ill-fitted for real-time systems. This is because

caching algorithms will load data into cache based on what was accessed in the past. More fre-

quently than not, the loaded data will access the execution of the following instructions, produc-

ing good reductions in memory access time. However, with some small frequency this strategy

causes large access delays because the data loaded is not the correct one and hence, the right one

needs to be loaded. This sporadic high-cost access is dominated by the frequent gains in the aver-

age memory access time. However, for the worst-case access time, in fact, the worst of the high

cost access times dominate. As a result, the caching strategy produces the opposite result for the

worst-case execution time than the one achieved for the average case. Furthermore, determining

the worst-case execution time becomes more difficult because producing the worst-case memory

access time is harder with regular caching algorithms. This is one of the main reasons embedded

system designers, in general, disable the cache of the processors they use to gain more predictable

execution time.

The second problem with general-purpose caching algorithms is that they are designed with a sin-

gle thread in mind. This implies that they do not consider that the past memory access behavior

can change completely when a new thread is brought into the processor. The presence of multiple

threads in the processor introduces new and larger cache misses.

A core concern in real-time systems is determining the worst-case execution time (WCET) of a

program in order to verify if enough CPU cycles are available to complete periodic execution be-

fore a deadline. Deriving the WCET of a task is done by analyzing its execution paths and compu-

ting the execution time of each path based on the summation of execution times of the instructions

involved in the path. The WCET of the task is thus its longest execution, assuming that a task is

not utilizing caching and interleaving, which would reduce the actual execution time significantly,

and thus enhance the performance. (Note that the cache hit ratio is normally 0.8-0.96.) However,

the use of cache modifies the execution time of the various paths differently depending on the

memory access pattern of the current execution that defines what memory is in cache at that mo-

ment. This effect can make the execution time reduction due to cache difficult to predict, affecting

the predictability of the WCET.

There are several ways to increase the predictability of caches, such as controlling preemption,

partitioning the cache, and locking objects to the cache. Controlling preemption by the use of

preemption points reduces the number of possible task execution interleavings. It also allows for

10 | CMU/SEI-2008-TR-017

analyzing the data locality and access patterns in the non-preemptive sections of the code, more

accurately predicting the performance advantage of caching, and using a specific replacement

strategy. This is based on the observation that when a task is preempted, its cache behavior in

general changes as cache entries loaded by the preempted task are replaced by the preempting

task.

Locking selected memory objects to the cache eliminates any uncertainty of the memory access

cost, but requires that the cost of preloading the cache with the selected objects be included in the

resource analysis. Locking the objects ensures access via the cache, and removes the effect of the

replacement strategy for these objects. Regular objects still subject for replacement may be af-

fected as there might be a more significant turnover of objects as the effective space available for

regular objects is reduced by the amount of space required for the local objects. The optimization

game that one plays is to minimize the number of total replacements for regular objects and, thus,

maximize predictability for safety-critical tasks. This is controlled by the static/dynamic number

of objects that we lock, a determination of which objects to lock to the cache, and the length of the

locking time.

By partitioning a cache for different application tasks, we can isolate tasks and reduce the impact

of other tasks in systems, as each partition operates independently. This has the advantage that

previously developed techniques for determining the cache effects of running tasks in isolation

can be adopted, but this time assuming a task only has a fraction of the cache capacity. Efficient

partitioning involves determining the size of the partitions and mapping tasks to the various parti-

tions. The cost of isolating tasks by partitioning includes a reduction in effective cache size, most

likely causing an overall decreasing hit ratio from a task perspective, and an increasing amount of

time spent across partitions for selecting replacement candidates.

In embedded systems another type of memory as fast as cache has been gaining popularity, i.e.,

scratchpad memory. This type of memory is directly mapped into the memory address space. It is

the responsibility of the programmer/compiler to localize in such memory the objects that would

be accessed most frequently. This access scheme contrasts with cache, where the hardware is in

charge of loading the most frequently accessed objects into the cache and redirecting their access

to it. However, this automatic loading scheme is difficult to predict at design time and, hence,

makes the execution time of a program difficult to predict as well. Given the importance of pre-

dictability of execution time in real-time systems the unpredictability of caches is a liability that

leads the designers to disable it in numerous occasions.

As a result of the unpredictability of cache memory, scratchpad memory is the most common

form of fast memory (SRAM) in embedded CPUs today [Brash 2002, Adieletta 2002, Motorola

1992, Texas 1997, Motorola 2000]. For this reason the research community has focused on this

type of memory.

Multiple research efforts have explored the area of cache allocation for real-time systems. Here

we mention just a couple that are close to our research. Avissar and Barua developed a scheme to

optimally allocate global and stack variables to scratchpad statically [Avissar 2002]. They use

profiling tools to gather information about the access frequency of the variables and transform the

allocation problem into a 0/1 integer linear program for which they use Matlab, a commercially

available software tool for numerical analysis, to solve it. Their approach, however, is not capable

of handling linked data structures.

11 | CMU/SEI-2008-TR-017

Dominguez, et al., developed a method to dynamically move linked data structures from heap into

scratchpad [Dominguez 2005]. Their method avoids scanning and changing pointers in the data

structures by ensuring that such pointers are only de-referenced when they are in the scratchpad

and they are always placed on the same scratchpad location. They divide the program into regions

with a single point of entrance regarding the control flow and insert in such points load-

ing/unloading instructions.

Even though multiple research efforts have targeted the use of cache and scratchpad memory in

embedded systems they mainly focus on a task-by-task approach. As a result, their optimization

techniques have not been evaluated for system-wide impact. In particular, our approach utilizes

the known periods of the tasks and their profiled access patterns to determine the most frequently

accessed memory regions and allocation into cache (or scratchpad memory).

3.3 APPROACH

In this section we present our scheme for allocating cache memory to real-time task sets. This

allocation is based on partitions where each task is given a fixed cache partition that improves the

overall worst-case execution time of the task set. While this model was developed for caches it

can also be applied to scratchpad memory by adjusting the parameters.

We extend the traditional Liu and Layland task model to include the demand of memory band-

width where caches play a big role [Liu 1973]. In our task model, a task either accesses memory

that was accessed in the past (repeat access) or memory that was not touched before. The amount

of time a task accesses a specific segment of memory is captured as the fraction of the cycles

needed to execute all the instructions of the task (if all the instructions where in the cache). This

gives us a model as follows:

C

D
SLRGT i

iiii ,,,,

where T is the period of the task and each triplet Gi=(Ri,Li,Si,Di/C) is the memory access in a

segment of code from the set that constitutes the full task code. In each segment the parameters

are as follows: Ri is the window of memory that is of repeated access (in bytes); Li is the window

of memory of linear access (in bytes); Si is the amount of memory of random access that a read-

ahead access would not be able to capture; Di is the duration of the phase, i.e., the number of

cycles needed to execute the instructions that access this memory segment; and C is the number of

cycles needed to complete the whole activation of the task. Note that this form of a task shows all

possible memory access patterns. However, for each memory segment it would be only one of Ri,

Li, or Si and would have a non-zero value while the other would be zero.

The processor partition is characterized by the parameters: ,, , where is the cache

memory size of this partition, is the read-ahead capacity of the cache, and is the access time

(in cycles) of the memory access per byte.

12 | CMU/SEI-2008-TR-017

With this specification the mapping from one task to a partition gives us a slowdown i for

each phase i due to memory access formulas follows:

C

D
S

LR i
i

ii
i

Assuming tasks that are periodic where the code executed in each period is the same then the

slowdown rate
1
 per period per phase is:

T

i
i

. And the total slowdown rate of the task is:

i i . With this slowdown rate it is possible to perform an optimization of the cache al-

location across all tasks to gain the maximum speed-up in the system.

We have adopted QRAM (Quality of Service Resource Allocation Model) as our allocation

scheme [Rajkumar 1998, Chen 1999]. It optimizes the resource allocation based on its payoff. In

other words, given multiple demands it allocates resources to the highest-paying demands. In the

case of cache, the resource is the cache and the demands are the memory locations being accessed.

The payoff of allocating one memory location (or window of locations) to the cache is the speed-

up experienced by avoiding accessing the location in main memory. The demand in this case can

be bundled as windows of memory segments that can be allocated to the cache. For each of these

windows we then calculate the payoff as the access time we save per byte allocated to cache (that

can be seen as a payoff or speedup rate). The windows are then put in an allocation vector in de-

creasing order of payoff so that the first window in the vector is the highest paying allocation

possible. Thus, QRAM traverses the vector in order to allocate each window to the cache until it

runs out of cache. The order of the vector is fundamental for the optimization of QRAM because

it ensures that when QRAM allocates resources, and possibly exceeds them, the demands that are

not covered always pay less than the ones allocated.

We calculate the allocation payoff, denoted i (slope), for each memory segment of the task as

follows:

iii

i
i

SLR
. The payoff vector for each task is derived as i , where

if i > j then i<j.

QRAM then builds a speedup graph for each task as shown in Figure 3-1.

1 Calculating i as if no cache were assigned, i.e., = 0.

13 | CMU/SEI-2008-TR-017

Figure 3-1: Speedup to Cache Allocation Function

In the case of multiple tasks, instead of having a single vector , we have a collection of vectors

I, one vector for each task i. In this case QRAM keeps an index per vector that points to the next

demand in the vector and selects, from all the next demands, the highest paying one (again highest

speedup). Once this demand is chosen then its index is incremented. This way we are able to se-

lect the highest paying demand across multiple tasks. The iteration is repeated until all the cache

is assigned. A sample assignment of two tasks is presented in Figure 3-2. In this figure the as-

signment sequence is presented as a label for each segment in the task.

Figure 3-2: Two Task QRAM Cache Assignment

Discovering memory access patterns from executable code can be a complex task. A useful alter-

native to this approach is using memory access traces that can be gathered from processor simula-

tors. Using memory access traces it is possible to evaluate the access frequency of each byte of

code in the total trace. We denote this frequency the memory access density (MAD), which can

then be used to gather the payoff of statically allocating each of the memory addresses to cache.

This payoff in fact represents the speedup that accessing cache represents as compared with ac-

cessing to main memory. From the individual MAD per byte it is possible to group together con-

tiguous memory locations into a window that in fact represents the memory windows as well as

the payoff slope i.

3.4 COLLABORATIONS

We have had fruitful discussions with Bill Milam at Ford.

14 | CMU/SEI-2008-TR-017

3.5 EVALUATION CRITERIA

The evaluation criteria for this project were to

 develop a framework to improve the predictability of the timing behavior of real-time sys-

tems in the presence of caches

 implement a prototype for our scheme that can provide us with evidence of the effectiveness

of our scheme

 conduct experiments with realistic cases that give us an indication of the degree of effective-

ness of our result

3.6 RESULTS

Embedded systems practitioners rarely use cache because of the unpredictability it brings to the

execution time. For this reason they usually disable the cache. However, as the speed gap between

processor and memory is enlarged, the use of cache becomes very difficult to avoid. As a result,

new techniques to use cache memory, while avoiding unpredictable execution time, have

emerged. In this project we presented a near-optimal static allocation algorithm for cache memory

(and other on-chip memory) that optimizes the speedup for memory. In particular, our algorithm

can be used with memory access density (or the frequency of use of memory bytes) to represent

the number of misses to the cache that can be saved if a particular memory location is allocated to

cache. The multiplicity of tasks that embedded real-time systems have was also included in the

algorithm by adding the periodicity of the tasks to the memory access density to get the final

speedup. To perform the optimal allocation the Quality of Service Resource Allocation Model

(QRAM) was used to perform the allocation across tasks. We have performed a series of experi-

ments to evaluate our model and have shown the cases in which our model is more effective and

in which they are not as effective. In particular, we have confirmed that when applications focus

on a single execution ―stage‖ (accessing a single memory window repeatedly), which is typical

for embedded real-time systems, our technique is most effective. In contrast, our technique be-

comes less effective for programs with multiple stages. Finally, we have derived a worst-case pat-

tern that showed us the worst-case over-allocation that must be conducted to gain comparable

speed between a common cache replacement algorithm, least recently used (LRU), and static allo-

cation algorithms. This pattern has shown us the specific benefits gained with the static allocation

algorithms against dynamic algorithms when using them in embedded real-time systems.

In summary, in this context, our contribution is four-fold. First, we have shown how to use memo-

ry access density to evaluate the speedup that can be gained in a static allocation. Second, we have

demonstrated how to use the QRAM allocation algorithm to add the periodicity of real-time tasks

to the allocation scheme in a near-optimal fashion. Third, we have provided experiments that con-

firm the utility of our scheme. Further, we have described the worst-case pattern that would result

in the upper bound of the worst-case execution under a dynamic replacement algorithm LRU.

15 | CMU/SEI-2008-TR-017

3.7 PUBLICATIONS AND PRESENTATIONS

Dio De Niz, Peter Feiler, Jörgen Hansson, & John Hudak. ―Near-Optimal Cache Partitioning for

Real-Time Systems,‖ technical report. Software Engineering Institute, Carnegie Mellon Universi-

ty, 2008 (forthcoming).

3.8 REFERENCES

[Adieletta 2002]

M. Adieletta, M. Rosenbluth, D. Bernstein, G. Wolrich, & H. Wilkinson. ―The Next Generation

of Intel IXP Network Processors.‖ Intel Technology Journal 6, 3 (August 2002).

http://developer.intel.com/technology/itj/2002/volume06issue03/

[Avissar 2002]

Oren Avissar & Rajeev Barua. ―An Optimal Memory Allocation Scheme for Scratch-Pad-Based

Embedded System.‖ ACM Transactions on Embedded Computing Systems 1:1 (November 2002):

6-26.

[Brash 2002]

David Brash. ―The ARM Architecture Version 6 (ARMv6).‖ ARM Ltd., January 2002. White

Paper.

[Chen 1999]

Chen Lee, John Lehoczky, Ragunathan (Raj) Rajkumar, & Dan Siewiorek. ―On Quality of Ser-

vice Optimization with Discrete QoS Options.‖ IEEE Real-Time Applications and Systems Sym-

posium, 1999.

[Dominguez 2005]

Angel Dominguez, Sumesh Udayakumaran, & Rajeev Barua. ―Heap Data Allocation to Scratch-

Pad Memory in Embedded Systems.‖ Journal of Embedded Computing 1, 4 (December 2005):

521-540.

[Edler 2003]

J. Edler & M. D. Hill. ―Dinero IV.‖ 2003. http://www.cs.wisc.edu/~markhill/DineroIV/

[Liu 1973]

C. L. Liu & J. W Layland ―Scheduling Algorithms for Multiprogramming in a Hard Real-Time

Environment.‖ JACM 20, 1 (1973): 40-61.

[Motorola 1998]

M-CORE – MMC2001 Reference Manual. Motorola Corporation, 1998. (A 32-bit processor).

http://www.ec66.com/market/sheet/MMC2001RM.pdf

[Motorola 2000]

―CPU12 Reference Manual. Motorola Corporation (A 16-bit processor).‖ 2000.

http://www.freescale.com/files/microcontrollers/doc/ref_manual/CPU12RM.pdf

http://developer.intel.com/technology/itj/2002/volume06issue03/
http://www.cs.wisc.edu/~markhill/DineroIV/

16 | CMU/SEI-2008-TR-017

[Rajkumar 1998]

Ragunathan (Raj) Rajkumar, Chen Lee, John P. Lehoczky, & Daniel P. Siewiorek. ―Practical So-

lutions for QoS-Based Resource Allocation Problems.‖ IEEE Real-Time Systems Symposium,

1998.

[Sha 1994]

Lui Sha, Ragunatha Rajkumar, & Shirish S. Sathaye. ―Generalized Rate-Monotonic Scheduling:

A Framework for Developing Real-Time Systems.‖ Proceedings of the IEEE, 82, 1 (January

1994).

[Texas 1997]

―TMS370Cx7x 8-bit Microcontroller.‖ Texas Instruments, 1997.

http://www-s.ti.com/sc/psheets/spns034c/spns034c.pdf

http://www-s.ti.com/sc/psheets/spns034c/spns034c.pdf

17 | CMU/SEI-2008-TR-017

4 A Research Agenda for Service-Oriented Architecture

Grace A. Lewis (Lead), Kostas Kontogiannis, Marin Litoiu, Stefan Schuster, and Dennis B. Smith

4.1 PURPOSE

It is clear that service-oriented architecture (SOA) is having a substantial impact on the way soft-

ware systems are developed. However, although significant progress is being made on several

fronts, current efforts seem to be evolving in many directions. There is a danger that important

research needs will be overlooked, while other efforts will focus on issues of peripheral long-term

significance in practice. As a research community that has gone through a substantial ―growth

spurt‖ we find ourselves facing a great opportunity and challenge: to better channel our research

efforts, we should attempt to reflect upon our progress to date and recognize how our efforts and

results build on each other, and to identify—and potentially prioritize—the areas that we still need

to investigate. The purpose of this project is to provide a long-term consensus SOA research

agenda, classified into research issues pertaining to the business, engineering, and operation as-

pects of service-oriented systems, plus a set of cross-cutting aspects. An additional goal is to as-

semble an international research group to analyze the current state of the practice and current re-

search initiatives in SOA and create a community of interest around SOA research to share results

and ideas on how to improve SOA adoption and the development of service-oriented systems.

4.2 BACKGROUND

Over the past decade we have witnessed a significant growth of software applications that are de-

livered in the form of services utilizing the network infrastructure. These services are available

either on corporate intranets or on the internet, and are delivered either on open or proprietary

network protocols. This approach to systems development is commonly referred to as service-

oriented architecture, SOA-based systems, or service-oriented systems.

The initially slow but gradually increasing adoption of service-oriented systems is supported by

both the technical and the business community. From a technical perspective, service-oriented

systems are an approach to software development where services provide reusable functionality

with well-defined interfaces; where a service infrastructure enables discovery, composition and

invocation of services; and where applications are built using functionality from available servic-

es. From a business perspective, service-oriented systems are a way of exposing legacy functio-

nality to remote clients, implementing new business process models by utilizing existing or third-

party software assets, and reducing overall IT expenditures while potentially increasing the poten-

tial for innovation through software investments [Bieberstein 2006]. From either perspective, and

despite their initially slow adoption and the conflicting standards proposed to support them, ser-

vice-oriented systems are becoming the de-facto approach to bridging the gap between business

models and software infrastructure, and flexibly supporting changing business needs [Marks

2006].

A group of European researchers has identified a list of research challenges in service-oriented

computing (SOC) with a goal similar to that of this project: to provide the means for consolidat-

ing and streamlining current SOC research efforts, as well as prioritizing important gaps [Papa-

18 | CMU/SEI-2008-TR-017

zoglou 2007]. While the results of this work are important and compatible with the results of this

project, the work focuses largely on the development and operations of service-oriented systems.

Our proposed taxonomy of research issues takes a step back and identifies issues that would help

an organization make decisions on SOA adoption, create an SOA strategy, and then develop, dep-

loy, and operate service-oriented systems.

4.3 APPROACH

The project started with an extensive literature review on topics related to SOA, with the purpose

of identifying the state of the practice, plus multiple interviews with practitioners and researchers

to identify both enablers of and barriers to SOA adoption. This literature review included multiple

case studies of successful SOA adoption. Most of these case studies, though mostly vendor-

sponsored and product-specific, all had a theme in common: a strong link between business strat-

egy and SOA adoption. With this in mind, we created a service-oriented system development life

cycle that supports the strategic approach to SOA adoption shown in the case studies. We then

identified areas of SOA research necessary to fill in the gaps and developed a draft agenda, which

we validated with a diverse community at seven international workshops and one international

panel. A final report with our findings is scheduled for publication this year.

4.4 COLLABORATIONS

Within the SEI, the core project team consisted of Grace Lewis and Dennis Smith. We also re-

ceived valuable input from Soumya Simanta. Outside the SEI, core team members were Kostas

Kontogiannis from National Technical University of Athens, who provided an academic and prac-

titioner perspective; Marin Litoiu from IBM Canada, who provided an industry perspective; and

Stefan Schuster from the European Software Institute, who provided a European research and in-

dustry perspective. Hausi Müller from the University of Victoria and Eleni Stroulia from the Uni-

versity of Alberta also provided valuable input to the results.

4.5 RESULTS

4.5.1 Overview of the SOA Research Framework

In an ideal service-orientation adoption setting, an organization develops a service strategy that

takes into account the organization’s business drivers, context and application domain. In order to

execute the service strategy, the organization has to generate plans to achieve the goals and objec-

tives outlined by the strategy. Finally, the execution of these plans requires that business, engi-

neering and operations decisions be made, taking into consideration cross-cutting concerns such

as governance, social and legal issues, stakeholder management, and training and education.

These relationships are shown in Figure 4-1.

19 | CMU/SEI-2008-TR-017

Figure 4-1: Overview of the SOA Problem and Solution Space

Problem Space: The problem space corresponds to the characteristics of the organization that

will adopt SOA, as well as the problems that SOA is expected to address. The problem space

shapes and places constraints on the strategy, but can also enable its execution. The elements of

the problem space become the drivers for the strategy.

Planning Space: An SOA strategy should be stated as the way in which SOA will address the

organization’s business drivers for SOA adoption. A service-oriented environment is iterative, to

the point that the term ―perpetual beta‖ is being used to indicate the dynamism of this environ-

ment in responding to requirements for business agility. The organization’s SOA strategy may

change over time because of changes in the problem space or to information provided by data col-

lected during evaluation/optimization, as shown in Figure 4-2.

Solution Space: In the solution space the SOA plans are executed to produce a service-oriented

system. During execution, changes or wrong assumptions about SOA technology may invalidate

the plans and cause the organization to reformulate its SOA strategy, as shown in Figure 4-2.

Once the service-oriented system is deployed, measurements are gathered to support any metrics

designed to test the effectiveness of the SOA strategy and the system itself. This data will help to

optimize the SOA strategy, if needed, and also help the organization plan for the next iteration,

once again reflecting the dynamic nature of service-oriented environments.

20 | CMU/SEI-2008-TR-017

Figure 4-2: Expanded View of the SOA Problem and Solution Space

4.5.2 SOA Framework Phases, Activities, and Indicators

A strategic approach to SOA adoption requires an iterative approach to systems development that

reflects the strong link between business strategy and development strategy. Figure 4-3 shows a

proposed software development life cycle for service-oriented systems, where each pass through

the life cycle corresponds to an iteration in Figure 4-2. The development phases are listed across

the top and the activities that are carried out to develop the service-oriented system during these

phases are on the left, along with indicators to evaluate the effectiveness of the service-oriented

system against SOA adoption goals. The main differences with other iterative development

frameworks, such as the IBM Rational Unified Process (RUP)
2
, are the emphasis on activities to

establish and analyze the relationship with business goals at the beginning of the cycle, the em-

phasis on evaluation at the end of the cycle, and the specification/review of business objectives at

the end of the cycle so that the requirements for each iteration follow business objectives.

2 The IBM Rational Process website is http://www-306.ibm.com/software/awdtools/rup/

Service Model Business Model

Plan Formulation

SOA Plans

Plan Execution

Service-Oriented

System

Evaluation/

Optimization

Domain Area Context Business Drivers

Solution Space

Planning Space

Problem Space

Strategy

Formulation

SOA Strategy

21 | CMU/SEI-2008-TR-017

Figure 4-3: Mapping Between Phases, Activities, and Indicators

4.5.3 SOA Research Taxonomy

The development of a service-oriented system requires business, engineering, and operations de-

cisions to be made, as well as other cross-cutting decisions. Our taxonomy of research topics,

shown in Figure 4-4, is divided into these decision areas. The research topics correspond to areas

where additional research is needed to support a strategic approach to service-oriented systems

development.

The complete final report will provide the rationale, current efforts, and challenges and gaps for

each of the research topics identified in the taxonomy. Below we list examples of selected topics

from each of the four primary areas of the taxonomy. Greater detail as well as an annotated bibli-

ography for the sources of information will be included in the final report.

22 | CMU/SEI-2008-TR-017

Figure 4-4: SOA Research Taxonomy

4.5.3.1 Example of a Business Topic: Business Case for SOA

Rationale: In general, there is recognition that SOA adoption can provide business agility, adap-

tability, legacy leverage, and integration with business partners. Given these goals, an important

criterion for making business decisions concerns the amount of investment that is required for

SOA adoption and the projected payoff over a certain period of time.

Current Efforts: There is current work that identifies the business value of SOA adoption in var-

ious industries, as indicated by references:

 Tilley, et al., discuss the business value of web services when used for enterprise application

integration or business-to-business (B2B) commerce [Tilley 2004].

 Brandner, et al., claim enhanced integration capabilities of a core banking system through

the use of web services [Brander 2004]. There are several other Australian, U.S., and Finnish

success stories in the banking industry.

 Pujari discusses the pros and cons of self-service technology, potentially enabled by SOA

technologies, in the Canadian B2B industry [Pujari 2004].

 Linthicum has written several articles on the subject, including one in which he proposes a

formula for calculating the relative value of SOA adoption [Linthicum 2006].

SOA Research Taxonomy

Business Engineering Operations Cross-Cutting

SOA Strategy Selection

Business Case for

Service Orientation

Mapping between

Business Processes

and Services

Business Risk Analysis

in an SOA Context

Organizational

Structures to Support

Service-Oriented

Environments

Business Indicators

Process and Life Cycle

Requirements

Service Selection

Service Definition and

Categorization

Technology

Assessments

Engineering Risk

Analysis in an SOA

Context

Architecture and Design

Code

Tools and Products

Quality Assurance and

Testing

Deployment

Maintenance and

Evolution

Engineering Indicators

Adoption

Monitoring

Support

Operations Indicators

Governance

Social and Legal Issues

Stakeholder

Management

Training and Education

23 | CMU/SEI-2008-TR-017

There are other case studies and articles that provide anecdotal evidence of the business value of

SOA adoption—many of these studies are sponsored by vendors or co-authored with vendors.

The problem is that these are examples of point solutions that are all so different that it is difficult

to make valid generalizations across organizations. A comprehensive framework for understand-

ing the business value of SOA has not yet been developed.

Challenges and Gaps: The largest gap in this area is the lack of vendor-neutral data. Current ef-

forts have focused on individual case studies and there have not been rigorous analyses that can

be generalized. This triggers another important question that has to do with the nature of the data

to be gathered. How does an organization measure the common benefits associated with SOA

adoption, such as business agility, legacy leverage, or increased interoperability? An important

research focus would be to gather data from both success stories and failures, find commonalities,

and start to develop a framework for calculating the business value of SOA adoption.

4.5.3.2 Example of an Engineering Topic: System Testing

Rationale: In an SOA environment, system testing means end-to-end testing. The problem is that

in SOA environments, system components are distributed, deployed on heterogeneous platforms,

and often not even available.

Current Efforts: The market for testing tools for SOA environments (mainly for web services) is

growing. Tools are available to perform testing at multiple levels—from business processes to

messages—as well as for qualities such as availability, performance, and security. However, most

testing tools are incapable of building composite interdependent tests across technology plat-

forms, languages, and systems. Also, most testing tools assume control over all elements of the

service-oriented system. Sometimes client developers only have access to interfaces (e.g., WSDL

description files in the case of web services) and lack access to code. This has triggered some re-

search into the use of gray-box
3
 testing, which is appropriate when there is limited knowledge.

Challenges and Gaps: The challenges in system testing are driven by the distributed, heteroge-

neous nature of service-oriented systems components and a growing market of third-party servic-

es, which means that there is no single owner of the complete system. This triggers some interest-

ing research topics, such as

 dynamic testing in distributed, heterogeneous environments

 service certification

 What does a certification process look like?

 What can be certified?

 enhanced service repositories that provide test cases for services

 How are test cases specified?

 test-aware interfaces for service consumers to test services

 Given that providers would need to have test instances of services, how are these test

services specified and how do service consumers become aware of their existence?

3
 Gray-box testing, according to Wikipedia, “involves having access to internal data structures and algorithms for

purposes of designing test cases, but testing at the user, or black-box level.” See
http://en.wikipedia.org/wiki/Software_testing.

24 | CMU/SEI-2008-TR-017

We also need to recognize that it is not always possible to do end-to-end testing. In such cases,

interesting research topics are

 simulation of service-oriented system environments

 best practices for exception handling

4.5.3.3 Example of an Operations Topic: Service-Level Agreements

Rationale: A service-level agreement (SLA) is a formal and bilateral contract between a service

provider and a consumer to specify the requirements and uses of specific services. An SLA is es-

sential for establishing trust between service providers and service consumers. In a growing third-

party service market, the establishment of SLAs can be used to differentiate and select from vari-

ous available services and to help service providers anticipate demand and plan their resource al-

location accordingly. They can also be used as a mechanism for risk mitigation.

Current Efforts: There is a perceived need for standardization, specification, and guidance for

using SLAs in an SOA context. The web service level agreement (WSLA) is a specification and

reference implementation by IBM that provides detailed SLA specification requirements for

enabling the monitoring of SLA compliance, describes how these requirements are addressed in

the WSLA specification, and provides a WSLA monitoring framework that allows monitoring of

SLAs at runtime [IBM 2007]. CBDi Forum provides basic guidance on how to approach SLAs

from the service consumer and service provider perspectives at a higher level than WSLA [CBDi

2006]. Given that most SLAs are based on specifying the required quality of service (QoS) for a

service, an active research area is modeling and implementing various QoS attributes in service-

oriented and dynamic environments.

Challenges and Gaps: An important contribution to SOA adopters would be the creation of a

generic and standardized framework for SLA management across enterprises as well as across

various lines of business inside an organization. This would involve providing appropriate auto-

mation and support for mapping contractual service level agreements to standard and actionable

implementations and the monitoring and management of service level at runtime. In the area of

QoS, more work needs to be done in understanding QoS of composite services, especially when

lower level services in a composite service are provided by different providers.

4.5.3.4 Example of a Cross-Cutting Topic: SOA Governance

Rationale: An InfoWorld 2007 SOA Trend Survey indicates that lack of governance is the main

inhibitor for SOA adoption (50%). Effective SOA governance requires rules that define roles and

responsibilities, define appropriate use of standards, make explicit the expectations of a diverse

set of stakeholders, provide for SLAs, and monitor compliance through metrics and automatic

recording and reporting.

Current Efforts: A number of organizations such as IBM, AgilePath, and Software AG have de-

veloped sophisticated models of SOA governance. These models focus mostly on relationship to

corporate enterprise architecture, use of registries, management of SOA life cycles, how to define

and monitor SLAs, and how to define and analyze metrics on policy enforcement, effectiveness of

services, and use of services. A number of tools have also begun to automatically incorporate me-

25 | CMU/SEI-2008-TR-017

trics and aspects of governance, and research efforts have begun to identify roles and responsibili-

ties [Kajko-Mattsson 2007, Kajko-Mattsson 2008].

Challenges and Gaps: Most efforts to define and implement governance are still vendor driven

and guided by the governance aspects that can be automated by their tools. As with the business

case for SOA, most case studies are anecdotal and idiosyncratic. An interesting research topic

would be to establish an abstract model for SOA governance and its variations within different

domains. A starting point could be the establishment of SOA governance elements, similar to

what has been done at Hartford Inc. with the creation of a template. This is similar to work done

by Burton Group [Afshar 2007, Manes 2007].

4.5.4 Results and Future Work

Engineering challenges are significant if SOA is to be used in advanced ways, such as semantic

services, dynamic discovery and composition, and real time applications. The main challenges for

enterprise applications are related to business and operations, and not engineering. As third-party

services become the new business model, we will need support for service-level agreements, run-

time monitoring, end-to-end testing involving third parties, pricing models for third-party servic-

es, and service usability from a design and adoption perspective.

In some areas, non-vendor surveys, studies, and experiments are needed to produce more concrete

guidance, rather than additional basic research. Some examples of these areas are SOA gover-

nance, a business case for SOA adoption, return on investment for SOA adoption, and develop-

ment processes and practices for SOA-based development.

We also found several topics in which there is significant research in academia, such as semantics,

but no support from industry to test ideas in real scenarios. We need more collaborative research

between industry and academia to create real practices.

The next steps for this project are to create a final report with the complete findings and to start

establishing a community of interest around the SOA research agenda.

4.6 PUBLICATIONS AND PRESENTATIONS

The development of the SOA Research Agenda has led to the following publications (and corres-

ponding presentations at the workshops):

 Kontogiannis, K., Lewis, G., & Smith, D. ―The Landscape of Service-Oriented Systems: A

Research Perspective for Maintenance and Reengineering.‖ Proceedings of the International

Workshop on Service-Oriented Architecture Maintenance and Reengineering (SOAM 2007).

International Conference on Software Maintenance and Reengineering (CSMR 2007), March

2007.

 Kontogiannis, K., Lewis, G., Litoiu, M., Muller, H., Schuster, S., Smith, D., & Stroulia, E.

―The Landscape of Service-Oriented Systems: A Research Perspective.‖ Proceedings of the

International Workshop on Systems Development in SOA Environments (SDSOA 2007). In-

ternational Conference on Software Engineering (ICSE 2007), May 2007.

26 | CMU/SEI-2008-TR-017

Additionally, the work was presented at the following conferences:

 IBM Center for Advanced Studies Conference (CASCON 2006): Workshop on the Effects

of Service-Orientation on the Software Development Life Cycle, October 2006.

 International Conference on Composition-Based Systems (ICCBSS 2007): Panel ―A Re-

search Agenda for SOA,‖ March 2007.

 European Conference on Software Maintenance and Reengineering (CSMR 2007): SOAM

2007—Workshop on Service-Oriented Architecture Maintenance, March 2007.

 International Conference on Interoperability for Enterprise Software and Applications (I-

ESA 2007): FSOA 2007—Foundations of Service-Oriented Architecture, March 2007.

 Consortium for Software Engineering Research (CSER) Spring Meeting: Workshop ―A Re-

search Agenda for SOA,‖ April 2007.

 International Conference on Software Engineering (ICSE 2007): SDSOA 2007—Workshop

on Systems Development in SOA Environments, May 2007.

 International Conference on Software Maintenance (ICSM 2007): MESOA 2007—

Workshop on Maintenance and Evolution of SOA-Based Systems, October 2007.

 CASCON 2007: Workshop ―SOA Research Challenges: A User Perspective,‖ October

2007.

4.7 REFERENCES

[Afshar 2007]

M. Afshar & B. Moreland. ―Keys to Successful Governance with SOA.‖ Presentation at the

Transformation and Innovation 2007 Conference, May 2007.

[Bieberstein 2006]

Norbert Bieberstein. Service-Oriented Architecture Compass—Business Value, Planning and En-

terprise Roadmap. Upper Saddle River: Pearson, 2006 (ISBN: 0131870025).

[Brandner 2004]

M. Brandner, M. Craes, F. Oellermann, & O. Zimmermann. ―Web Services-Oriented Architecture

in Production in the Finance Industry. ― Informatik-Spektrum 27, 2 (April 2004): 136-145.

[CBDi 2006]

CBDi. ―Service Level Agreements: Best Practice Report.‖ CBDI Journal. December 2006.

[Fitzgerald 2006]

B. Fitzgerald & C. M. Olsson (eds). ―The Software and Services Challenge. Contribution to the

Preparation of the Technology Pillar on Software, Grids, Security and Dependability.‖ EY 7th

Framework Programme, 2006.

[IBM 2007]

Web Service Level Agreements (WSLA) Project. http://www.research.ibm.com/wsla/ (2007).

http://www.research.ibm.com/wsla/

27 | CMU/SEI-2008-TR-017

[Kajko-Mattsson 2007]

Mira Kajko-Mattsson, Grace Lewis, & Dennis Smith. ―A Framework for Roles for Development,

Evolution, and Maintenance of SOA-Based Systems.‖ Proceedings of the International Workshop

on Systems Development in SOA Environments (SDSOA 2007). International Conference on

Software Engineering (ICSE 2007), May 2007.

[Kajko-Mattsson 2008]

Mira Kajko-Mattsson, Grace Lewis, & Dennis Smith. ―Evolution and Maintenance of SOA-Based

Systems at SAS.‖ Proceedings of the 41
st
 Hawaii International Conference on System Sciences

(HICSS-41), January 2008.

[Linthicum 2006]

D. Linthicum. ―When Building a SOA, How Do You Know When You're Done?‖ InfoWorld,

June 2006.

http://weblog.infoworld.com/realworldsoa/archives/2006/06/when_building_a.html

[Manes 2007]

A. T. Manes. ―SOA Governance Infrastructure.‖ Burton Group, 2007.

[Marks 2006]

E. Marks & M. Bell. Service Oriented Architecture: A Planning and Implementation Guide for

Business and Technology. Hoboken: John Wiley & Sons, 2006 (ISBN: 0471768944).

[Papazoglou 2007]

M. Papazoglou, P. Traverso, S. Dustdar, & F. Leymann. ―Service-Oriented Computing: State of

the Art and Research Challenges.‖ IEEE Computer 40, 11, (November 2007): 38-45.

[Pujari 2004]

D. Pujari. ―Self-Service with a Smile? Self-Service Technology (SST) Encounters among Cana-

dian Business-to-Business.‖ International Journal of Service Industry Management 15, 2 (2004):

200-219.

[Tilley 2004]

S. Tilley, J. Gerdes, J. T. Hamilton, S. Huang, H. A. Müller, D. Smith, & K. Wong. ―On the Busi-

ness Value and Technical Challenges of Adopting Web Services.‖ Journal of Software Mainten-

ance and Evolution: Research and Practice 16, 1–2 (January–April 2004): 31–50.

http://weblog.infoworld.com/realworldsoa/archives/2006/06/when_building_a.html

28 | CMU/SEI-2008-TR-017

5 A Software System Engineering Approach for Fault

Containment

Peter H. Feiler, Dionisio de Niz, Jörgen Hansson, Lui Sha, and Don Firesmith

5.1 PURPOSE

Why do system-level failures still occur despite the deployment of fault-tolerance techniques in

systems? A lack of effective system-level fault management and stability solutions, despite best

efforts at fault tolerance, presents major challenges in modern avionics and aerospace. System

engineering approaches in the form of hardware redundancy for managing hardware failures are

well established. Providing a software system engineering approach for systematic fault manage-

ment with predictable results remains a challenge. The following examples illustrate the point.

After years of development, F-22 flight tests began in late 1997, but the aircraft still experienced

serious avionics instability problems as late as 2003. According to testimony from the U.S. Gen-

eral Accounting Office (GAO), ―The Air Force told us avionics have failed or shut down during

numerous tests of F/A-22 aircraft due to software problems. The shutdowns have occurred when

the pilot attempts to use the radar, communication, navigation, identification, and electronic war-

fare systems concurrently‖

[Li 2003]. As shown in this example, the workload generated by dif-

ferent system configurations affects the execution characteristics of the application in ways that

are difficult to trace. The workload may introduce instability due to violation of assumptions

made by application software components about the timing and fault characteristics of the appli-

cation data streams they operate on, which can lead to a failure.

In another example, the Ariane 5 rocket exploded during her maiden flight. The destruction was

triggered by the overflow of the horizontal velocity variable in a reused Ariane 4 software com-

ponent to perform a function that was ―not required for Ariane 5‖ [Ariane 2008]. That is, a legacy

feature that was not even needed destroyed the rocket. This is a dramatic example of system in-

stability: failure due to inconsistent system configuration. A fault in an unneeded function was not

contained and cascaded into a total system failure. The reason for the overflow was the represen-

tation of a vertical velocity value as a 16-bit integer—placing a range restriction on the value that

was exceeded by Ariane 5. It could and should have been a minor fault that would have no impact

on the flight, had the fault in the unneeded function been contained there.

The objectives of this project are to

 identify system fault behaviors that are not addressed by component-fault containment tech-

niques

 develop a formalized analysis framework for system fault containment and stability man-

agement

 validate system architectures in the context of this framework

The focus of this framework is on system-level consistency characteristics and rules for identify-

ing direct or indirect contributions to their violation by individual components and by infrastruc-

ture services. By extending best practices, including architecture modeling and analysis, architec-

29 | CMU/SEI-2008-TR-017

ture patterns, component and system-level fault tolerance, and design rules, we will provide de-

velopers with what is required to place future developments on a sound theoretical footing. The

project is a two-year project and this section summarizes the results of the first year.

5.1.1 Background

The National Coordination Office for Networking and Information Technology Research and De-

velopment (NITRD), in its work on high-confidence software and systems, has identified five

technology goals that must be met to realize the vision of high-confidence software systems:

(i) Provide a sound theoretical, scientific, and technological basis for assured construction

of safe, secure systems. (ii) Develop hardware, software, and system engineering tools that

incorporate ubiquitous, application-based, domain-based, and risk-based assurance. (iii)

Reduce the effort, time, and cost of assurance and quality certification processes. (iv) Pro-

vide a technology base of public domain, advanced-prototype implementations of high-

confidence technologies to enable rapid adoption. (v) Provide measures of results [NITRD

2001].

Virtual machines have been recognized as a key concept for providing robustness through fault

containment in integrated modular avionics systems. Known as partitioned architecture in the

avionics systems community, this mechanism provides time and space partitioning to isolate ap-

plication components and subsystems from affecting each other due to sharing of resources. This

architecture pattern can be found in the ARINC 653 standard [ARINC 2008]. In a recent study of

the migration of an avionics system from a federated system architecture to a partitioned system

architecture the SEI team has identified sources of previously absent system-level faults due to

different age characteristics of data streams under the partitioned system runtime architecture

[Feiler 2004].

Dr. Vestal from Honeywell has demonstrated that impact analysis based on models of the runtime

architecture, that is, the application system deployed on an execution platform, can be the basis

for isolation analysis and fault propagation modeling. Through error model and fault occurrence

annotations, he demonstrated the feasibility of reliability and fault tree analysis from the same

architecture model that was the basis of global schedulability analysis [Binns 2004]. His expe-

rience has led to incorporating the concept of error propagation into the error model annex of the

SAE AADL standard. Similarly, the DARP initiative at York University has utilized architecture

dependency information to perform fault propagation analysis [Wallace 2005].

Prof. Welch in his DeSiDeRaTa work has investigated a scalable resource management approach

for distributed real-time systems in the context of the DD(X) program [Welch 1998]. His approach

focuses on managing the desirable performance characteristics of critical information flows in a

distributed embedded application system. The requirement for support of end-to-end flow specifi-

cations in support of system-level consistency analysis has been raised by the Future Combat Sys-

tem (FCS) system architecture contractor and other avionics and aerospace contractors.

Prof. Sha, while a member of the technical staff at the SEI, investigated an innovative approach to

managing software fault tolerance in light of dependable system upgrade. This approach over-

comes shortcomings of redundancy by replication through an analytically redundant fault contain-

er mechanism for software components that are control-system applications (Simplex) [Sha 1998].

In a collaborative project funded by the Defense Advanced Research Projects Agency (DARPA)

30 | CMU/SEI-2008-TR-017

this technology was applied to an avionics system. (Researchers were Prof. Lehoczky, Prof. Raj-

kumar, and Prof. Krogh from Carnegie Mellon University, Prof. Sha and Dr. Feiler from the SEI,

and Jon Preston from Lockheed Martin.) In the context of this project it was recognized that com-

ponent-level fault containment can still lead to system-level inconsistencies that result in faulty

behavior of other components. Under the guidance of Dr. Feiler, Jun Li investigated in a Ph.D.

thesis the feasibility of capturing relevant characteristics of component interactions that would

lead to system-level inconsistencies [Feiler 1998].

The PERFORM group at the University of Illinois, led by Prof. William H. Sanders, conducts

research in the design and validation of dependable and secure networked systems. Such systems

often have requirements for high performance, dependability, and security, and these goals may

contradict one another. By providing a unified method to validate system performance, dependa-

bility, and security during the entire design process, the group develops and applies sound engi-

neering principles to large-scale system design, advanced modeling, analysis, and simulation en-

vironments

[Deavours 2002].

5.2 APPROACH

We have divided the project into three phases:

 root cause identification of system-wide fault propagation

 development of analytical frameworks to predict the impact of seemingly minor faults on the

system operation

 development of architecture design guidance to reduce such faults

Root cause identification involved identification of high-priority and high-criticality system fail-

ures due to unexpected fault propagation and the factors that contribute to such failures. This ac-

tivity draws on Lockheed Martin’s experience with several fighter aircraft developments, in par-

ticular the F-16, F-22, and F-35. In 2008, an evaluation of problem history data from the Carnegie

Mellon team for the DARPA Urban Grand Challenge robotic vehicle competition will be done.

The development of an analytical approach focuses on identifying inconsistencies of expectations

in signal stream characteristics that can lead to system failures. This analytic approach leads to

tool-based validation of system configuration consistency in architecture models and to fault con-

tainment rules that can be verified. The analysis is expected to incorporate each of the root cause

contributors to the violation of these signal stream characteristics, for example, to the increase in

latency variation, which can lead to unexpected control instabilities.

The insights from the analytical framework allow us to specify and analyze architecture patterns

that are aimed at addressing robustness and stability in systems. Initial patterns being examined

are the virtual machine/partitioned systems architecture, redundancy, and pipeline patterns. The

specification includes the description of the problems it is intended to address and the understood

consequences of using such a pattern. The analysis includes the identification of potential impact

of the various runtime mechanisms of this execution platform for task execution and communica-

tion on those characteristics of critical application data streams that affect the robustness and sta-

bility of the system.

31 | CMU/SEI-2008-TR-017

We have chosen the Architecture Analysis and Design Language (AADL) standard as a basis for

these analysis frameworks for model-based engineering because of its strength to be (1) non-

ambiguously and objectively human readable and (2) processable and analyzed by machines due

to well-defined semantics. This system-level approach to fault containment has significant tech-

nical and programmatic merits that complement those of a component-level fault containment

approach. Technically, system stability is achieved by a combination of component-level fault

containment and ensuring well-formed dependency at the system level. Component-level fault

containment ensures the safe sharing of hardware and logical services. That is, a component’s

faults cannot corrupt other components’ code and data, and cannot overuse its CPU quota; nor can

a component’s faults corrupt the common OS and middleware services. An AADL-based system

engineering approach enforces design rules for well formed dependency, meaning that we can

verify that a component may use but not depend on the service of a less critical component. Well-

formed dependency is a key to system dependability as it prevents a minor fault cascade into a

major failure.

5.3 COLLABORATIONS

During the first year we have utilized the existing collaboration between Lockheed Martin Corpo-

ration and Prof. Sha, and GrammaTech. GrammaTech has loaned, free of charge, its CodeSonar

tool to Prof. Sha to support experimentation. In addition, Prof. Sha has several doctoral students

conducting related research who provide assistance. During the second year, we are going to con-

tinue these successful collaborations.

For the second year we will also collaborate with Prof. Raj Rajkumar of the Department of Elec-

trical and Computer Engineering at Carnegie Mellon University, with a focus on the experience of

Carnegie Mellon’s victorious robotic car for the Urban Grand Challenge and the development and

validation of our defect-prevention scheme in this platform. We believe the experience of the

Grand Challenge is an important complement to the F-22/F-35 projects by providing a different

application domain with a multiplicity of time-sensitive environment observations. In addition it

will provide a readily available validation platform.

5.4 EVALUATION CRITERIA

The key criteria for evaluating this project have been the ability to identify several root cause

areas of system-wide fault propagation, to develop or adapt existing frameworks to predictably

identify contributors to those root causes through analysis of architecture models, and to codify

guidance in architecture patterns.

In addition, our objective is to apply the results to an actual project and make them the foundation

for methods and tools that can be used to support the F-35 and other programs.

32 | CMU/SEI-2008-TR-017

5.5 RESULTS

5.5.1 Root Cause

During the first year we have identified four root cause areas of system-wide faults that are not

addressed by traditional fault tolerance techniques:

 Exclusive resource use assumptions in partitioned architectures: Partitioned architectures, as

promoted by the ARINC653 standard, offer a virtual processor concept that provides both

time and space partitioning—giving the illusion of exclusively dedicated hardware. Large-

scale embedded applications can be modularized into partitions, known as Integrated Mod-

ular Avionics (IMA) in the avionics domain, and deployed on a range of distributed comput-

er platforms. Experience with actual systems has shown that use of the partition concept can

still lead to performance issues due to unplanned resource sharing across partitions. We have

characterized several actual problem scenarios in the use of partitions that have been encoun-

tered with the F-35 through the use of AADL models. This allowed us to pinpoint the key

contributors to the unexpected reduction of performance in both the application and in the

runtime infrastructure.

 Mismatched data stream assumptions: Control engineers make assumptions about the physi-

cal systems that are being observed and controlled. They create models of their algorithms

and the controlled systems at various fidelity levels. These models are analyzed to gain con-

fidence in the stability of the system. Application developers translate these control equa-

tions into application software components that execute in a real-time system environment in

discrete time, in many cases distributed across multiple processors. These implementation

choices affect the assumptions made by control engineers about the latency, latency jitter,

and age of the data processed by the control loop, resulting in unexpected instability of the

control behavior. We have identified a number of contributors to end-to-end latency varia-

tions due to choices in the implementation of embedded systems in software that result in po-

tential control system instability.

 Non-determinism in signal stream processing due to concurrency: Modern avionics architec-

tures are multi-threaded to increase utilization of individual processors through techniques

such as rate-monotonic analysis and to take advantage of concurrency in distributed and mul-

tiple processor hardware platforms. This concurrency can lead to increased variation in sig-

nal data latency, which results in sporadic controller instabilities. We have identified a num-

ber of actual problems that are due to ordering assumptions made by embedded application

code with respect to task execution and communication. Migration from legacy systems to

multi-threaded, partitioned, and distributed architectures introduces concurrency, which if

not managed properly results in unexpected non-deterministic behavior. Consequences of

such behavior may result in control instabilities as well as unplanned stress on the physical

systems.

 Multiple time reference points: Control system and mission system processing is time sensi-

tive. During our analysis of avionics systems we have identified virtualization of timelines

when migrating to partitioned systems as a second contributor to the non-deterministic signal

stream processing behavior. This virtualization of timelines, when used by communication

mechanisms, results in multiple independent time reference points (clocks). The use of glo-

33 | CMU/SEI-2008-TR-017

bally asynchronous locally synchronous (GALS) architectures in some avionics systems,

such as the F-22, has the same effect. Recent interactions with Prof. Rajkumar have con-

firmed that multiple time reference points are a major system fault root cause area in auto-

nomous vehicles, such as those used in the DARPA Urban Grand Challenge.

During the first year we have developed two proof-of-concept analysis frameworks and have ex-

tended a third analysis framework.

 We have developed a fault impact analysis framework to model and validate fault propaga-

tion. This framework is based on and extends the fault propagation calculus (FPC) developed

by Dr. Wallace at University of York [Wallace 2005]. We have mapped FPC into AADL and

have developed a prototype analysis tool. This tool extends the original work by providing

traceability between fault sources and impacted system components. In addition, the original

calculus does not take into account the hardware platform, the partitioned architecture con-

cept, and architecture dynamics. We have identified an approach to address those in the

AADL-based fault impact analysis framework and plan to prototype it during year two. A

prototype exists of the initial fault impact analysis capability and fault traceability support.

We have developed a fault-detection scheme that explores potential faults due to variations on

concurrency (addition of threads and processors) that can be introduced in the system. We have

demonstrated the feasibility of using chaotic system theory and model checkers, such as Alloy, as

a computer-based solution. We have applied chaotic system theory developed by Ortmeier, et al.

[Ortmeier 2004] as a way of exploring execution and communication ordering issues due to the

introduction of concurrency to several examples from the avionics and automotive domains. We

have utilized the AADL annex concept to extend AADL in support of concurrency constraint spe-

cifications. We have chosen Alloy

[Jackson 2000] as a temporal specification language and have

interfaced the Alloy toolset with the Open Source AADL Tool Environment (OSATE) to auto-

matically generate Alloy models and identify counter examples—evidence of potential concur-

rency issues. A prototype of the integration of OSATE with Alloy has been made available to

Rockwell-Collins and the University of Illinois at Urbana-Champaign.

 We have investigated the extension of a flow latency analysis framework to accommodate

partitioned architectures and to account for latency jitter. Dr. Feiler originally developed a la-

tency analysis capability in the context of AADL to demonstrate the potential of end-to-end

flow analysis in embedded system architectures under a previous SEI research project. In the

context of this project we have extended this analysis framework to take into account parti-

tions, such as ARINC653 partitions, in its determination of maximum end-to-end flow laten-

cy. A prototype of this analysis capability is available as part of the OSATE toolset. We have

identified the extensions to this analysis framework to also accommodate latency variation

(jitter) analysis.

We have prototyped templates for codifying design guidance through architecture patterns. We

have identified three key patterns that will be used in year two: the redundancy pattern, the parti-

tion pattern, and the pipeline pattern.

34 | CMU/SEI-2008-TR-017

5.6 PUBLICATIONS AND PRESENTATIONS

Presentations have been given in a number of forums including the UIUC AADL workshop (De-

cember 2006), the SAE AADL Standards User Group meeting (January 2007, July 2007), the

Open Group RT-Forum Workshop (January, April, July 2007), the International Workshop on

Aspect-Oriented Modeling (March 2007), the Army Advisory Group (October 2007), the

ARTIST2 Network of Excellence on Embedded Systems Design Workshop on Integrated Mod-

ular Avionics (November 2007), and the International Congress on Embedded Real-Time Sys-

tems (January 2008).

The following are publications related to this project with additional articles and technical reports

in progress.

[de Niz 2007]

Dio de Niz & Peter H. Feiler. ―Aspects in the Industry Standard AADL.‖ Proceedings of 10th

International Workshop on Aspect-Oriented Modeling. Vancouver, Canada, March 2007.

[de Niz 2008]

Dio de Niz. ―Architectural Concurrency Equivalence with Chaotic Models.‖ 5th International

Workshop on Model-Based Methodologies for Pervasive and Embedded Software, 2008.

[Feiler 2007a]

Peter H. Feiler. ―Integrated Modular Avionics: The Good, The Bad, and The Ugly.‖ ARTIST2

Network of Excellence on Embedded Systems Design Workshop on Integrated Modular Avio-

nics, Proceedings, 2007. http://www.artist-embedded.org/artist/Integrated-Modular-Avionics.html

[Feiler 2007b]

Peter H. Feiler & Jörgen Hansson. Flow Latency Analysis with the Architecture Analysis and De-

sign Language (AADL) (CMU/SEI-2007-TN-010). Software Engineering Institute, Carnegie Mel-

lon University, 2007. http://www.sei.cmu.edu/pub/documents/07.reports/07tn010.pdf

[Feiler 2008]

Peter H. Feiler & Jörgen Hansson. ―Impact of Runtime Architectures on Control System Stabili-

ty.‖ Proceedings of 4
th

 International Congress on Embedded Real-Time Systems, 2008.

5.7 REFERENCES

[Ariane 2008]

―Ariane 5 Flight 501.‖ http://en.wikipedia.org/wiki/Ariane_5_Flight_501

[ARINC 2008]

Avionics Application Software Standard Interface. ―ARINC 653 Standard Document.‖

http://www.arinc.com

[Binns 2004]

P. Binns & S. Vestal. ―Hierarchical Composition and Abstraction in Architecture Models.‖ IFIP

TC-2 Workshop on Architecture Description Languages (WADL), World Computer Congress,

http://www.artist-embedded.org/artist/Integrated-Modular-Avionics.html
http://en.wikipedia.org/wiki/Ariane_5_Flight_501
http://www.arinc.com/

35 | CMU/SEI-2008-TR-017

Aug. 22-27, 2004, Toulouse, France, Series: IFIP International Federation for Information

Processing, Vol. 176, 2005 (ISBN: 0387245898).

[Deavours 2002]

D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derasavi, J. Doyle, W. H. Sanders, & P. Web-

ster. ―The Möbius Framework and its Implementation.‖ IEEE Transactions on Software Engi-

neering 28,10 (2002): 956–970.

[Feiler 1998]

P. H. Feiler & J. Li. ―Managing Inconsistency in Reconfigurable Systems.‖ IEEE Proceedings

Software (1998): 172-179.

[Feiler 2004]

P. H. Feiler, D. P. Gluch, J. J. Hudak, & B. A. Lewis. ―Pattern-Based Analysis of an Embedded

Real-time System Architecture.‖ IFIP TC-2 Workshop on Architecture Description Languages

(WADL), World Computer Congress, August 22-27, 2004, Toulouse, France, Series: IFIP Inter-

national Federation for Information Processing, Vol. 176, 2005 (ISBN: 0387245898).

[Jackson 2000]

Daniel Jackson, Ian Schechter, & Ilya Shlyakhter. ―Alcoa: the Alloy Constraint Analyzer.‖ Pro-

ceedings of the International Conference on Software Engineering, Limerick, Ireland, June 2000.

[Li 2003]

Allen Li. Testimony by Allen Li, Director, Acquisition and Sourcing Management, U.S. General

Accounting Office, to the House Subcommittee on Tactical Air and Land Forces, Committee on

Armed Services, April 2003. http://www.gao.gov/new.items/d03603t.pdf

[NITRD 2001]

NITRD—National Office for Networking and Information Technology Research, High Confi-

dence Software and Systems Coordinating Group. ―High Confidence Software and Systems Re-

search Needs.‖ January 2001. http://www.nitrd.gov/pubs/hcss-research.pdf

[Ortmeier 2004]

F. Ortmeier, A. Thums, G. Schellhorn, & W. Reif. Combining Formal Methods and Safety Analy-

sis: The Formosa Approach. Integration of Software Specification Techniques for Applications in

Engineering. Part V: Verification. Lecture Notes in Computer Science (2004): 474-493.

[Wallace 2005]

Malcolm Wallace. ―Modular Architectural Representation and Analysis of Fault Propagation and

Transformation.‖ Proceedings of Formal Foundations of Embedded Systems and Component-

Based Software Architectures (FESCA), April 2005.

ftp://ftp.cs.york.ac.uk/pub/malcolm/fesca05.html

[Welch 1998]

L. Welch, B. Shirazi, & B. Ravindran. ―DeSiDeRaTa: QoS Management Technology For Dynam-

ic, Scalable, Dependable, Real-Time Systems.‖ Proceedings of the 15th Symposium on Distri-

buted Computer Control Systems (DCCS'98), IFAC (September 1998).

36 | CMU/SEI-2008-TR-017

[Sha 1998]

L. Sha, J. B. Goodenough, & B. Pollak. ―Simplex Architecture: Meeting the Challenges of Using

COTS in High-Reliability Systems.‖ Crosstalk, April 1998.

[Wallace 2005]

M. Wallace. ―Modular Architectural Representation and Analysis of Fault Propagation and Trans-

formation.‖ Electronic Notes in Theoretical Computer Science 14 (2005): 53-71.

37 | CMU/SEI-2008-TR-017

6 Using the Vickrey-Clarke-Groves Auction Mechanism for

Enhanced Bandwidth Allocation in Tactical Data Networks

Mark Klein, Daniel Plakosh, and Kurt Wallnau

6.1 PURPOSE OF THIS RESEARCH

We investigate the application of computational mechanism design to systems of interest to the

U.S. Department of Defense (DoD), with particular emphasis on using computational mechanisms

in highly dynamic, resource constrained, performance critical systems. To provide the investiga-

tion with clear and realistic scale dimensions, we developed an application framework that emu-

lates a tactical data network, and investigated the use of one class of mechanism, the Vickrey-

Clarke-Grove (VCG) auction, to efficiently allocate bandwidth on the tactical network to improve

the quality of a common operating picture.

6.2 BACKGROUND

Systems make decisions. Control systems sense state and decide on control actions to keep key

state parameters within a control envelope. Program trading systems monitor financial markets

and decide when to buy and when to sell. Both use information obtained from the parts of the sys-

tem to make these decisions. In many cases a decision maker can obtain the necessary information

from the parts, and can make optimal decisions accordingly. However, this scheme can break

down as systems get bigger. Two dimensions of scale are sufficient to demonstrate the point:

 The system is developed by and/or serves a growing number of human users; and human us-

ers have their own incentives. For example, in market trading systems and frequently encoun-

tered peer-to-peer systems, computational agents act on behalf of humans. In this setting the

users must have an incentive to provide truthful information (e.g., how much a user values an

item that is for sale) to the decision maker. Without this incentive, we can depend on users to

hide or misrepresent this information, if it is in their interest to do so, even if this deception

comes at the expense of the system as a whole.

 The system is increasingly distributed, and performs a growing number and diversity of tasks.

For example, ad hoc sensor networks and network-centric combat systems will support a

(possibly open-ended) number and variety of human tasks and computational agents. In these

settings, it is impractical to assume that a decision maker can be constructed that knows

enough about each of these tasks to impose an efficient solution. By analogy one can think of

the economic distortions (e.g., supply, price, forecasting) introduced by centralized command

economies. Such distortions become more prominent and severe as economies grow and be-

come more diversified.

As systems scale up in these dimensions, interaction protocols are needed that are resistant to stra-

tegic manipulation by selfish users, and that efficiently aggregate information from the parts of a

system to enable effective global decision making. Computational mechanism design is the dis-

cipline of designing such interaction protocols.

38 | CMU/SEI-2008-TR-017

6.3 COMPUTATIONAL MECHANISM DESIGN

A mechanism is an institution such as an auction, voting protocol, or a market that defines the

rules or protocols for how individuals are allowed to interact and governs the procedure for how

collective decisions are made. Mechanism design is the sub-discipline of game theory and eco-

nomics concerned with designing such institutions so that they achieve prescribed and desirable

global outcomes. Computational mechanism design
4
 addresses situations where individuals are

computational agents working on behalf of human agents.

Mechanism design has a deep research tradition in game theory, where it is sometimes known as

implementation theory, and in microeconomics, where it is sometimes known as institution de-

sign. There are many examples of the practical use of mechanism design to achieve large-scale

social objectives. McMillan offers a good discussion of the importance of getting the details of

mechanism design right (in the U.S. public radio spectrum auction) and illustrates the conse-

quences of mechanism defects (in the New Zealand radio spectrum auction) [Mas-Colell 1995].

Computational mechanism design has a more recent history of practical application. One substan-

tial and well-documented use of computational mechanisms falls under the general heading of ―e-

commerce.‖ For example, it has been reported that over 98% of Google’s $6.14 billion in revenue

(as of 2006) is achieved through the use of an explicitly designed auction mechanism for allocat-

ing advertising space on web pages returned from keyword searches [Edelman 2007]. Another

substantial application area in electronic commerce is in supply chain optimization [Staib 2001,

Chen 2005, Sandholm 2006].

6.4 APPROACH

Our investigation focuses on the comparatively less-well-understood use of computational me-

chanisms to control or direct the behavior of large-scale, decentralized systems, and in particular

to achieve an efficient allocation of computational resources using economic mechanisms. In this

use, computational systems are viewed as virtual economies, with computational elements com-

peting to use scarce computational resources to achieve their individual objectives.

The research literature provides examples of mechanisms being used to allocate processor cycles

for scientific computing on the worldwide grid [Chen 2004]; for network routing [Holzman

2003]; for allocating network capacity [Anshelevich 2004, Anderson 2005]; for sensor fusion

[Rogers 2006, Dang 2006]; for peer-to-peer systems [Chen 2004, Shneidman 2003]; for task allo-

cation for autonomous robots [Gerkey 2002]; and for electricity markets [Hinz 2003]. This is not

in any sense an exhaustive survey, and the use of market mechanisms to control complex system

behavior is receiving considerable attention.
5

Our investigation focuses on the use of economic mechanisms to achieve an efficient allocation of

network bandwidth for a tactical data network. We developed a realistic emulation of a tactical

4 The term algorithmic mechanism design is also encountered in the literature.

5 See http://www.marketbasedcontrol.com/ for example.

http://www.marketbasedcontrol.com/

39 | CMU/SEI-2008-TR-017

data network modeled on LINK-11, and developed a variant of a well-known auction mechanism

to allocate network bandwidth for radar sensor fusion.

6.5 AUCTIONING BANDWIDTH ALLOCATION ON TACTICAL NETWORKS

LINK-11 is a collection of digital data link protocols for communications among a number of par-

ticipating units. Communication on the link takes place by round robin, designated roll call. Each

unit reports when requested to do so by a participating unit that has been designated as Net Con-

trol Station.

At 2250 BPS for data (a bit more for voice) network bandwidth is a scarce resource in LINK-11.

Even its successor LINK-16 has only 28.8 KBS for data. To conserve bandwidth, LINK-11 uses a

reporting responsibility (―R2‖) protocol where exactly one platform assumes R2 for each radar

contact, and only this platform reports data for that contact. While this approach has the virtue of

conserving bandwidth, it sacrifices opportunities to fuse track data to improve the quality of the

common operating picture.

Our concept is to auction additional quanta of bandwidth, and allow the participating units them-

selves to decide which track data will be most valuable. A computational auction mechanism au-

tomates this process.

Figure 6-1 shows a snapshot of a tactical network display developed for this study. In this snap-

shot, there are four participating units, each with its own region of observation highlighted. Track

symbols displayed in white are tracks with only a single report, from the platform with reporting

responsibility for that track. The contact is equally likely to be actually located at any position

within the error ellipse of each track, depicted in red. Track symbols displayed in yellow are

tracks that have been fused from at least two or more platforms, one of which has reporting re-

sponsibility. Note that the error ellipse for fused tracks is considerably reduced; this reflects the

improved quality of the common operating picture yielded by the auction.

The amount of additional bandwidth allocated for fusion can be varied for each auction; the plat-

forms themselves choose how that bandwidth should be allocated.

40 | CMU/SEI-2008-TR-017

Figure 6-1: Tactical Display With Fused Track Data

6.5.1 Designing the Mechanism

Designing an auction mechanism induces several characteristic design questions. These questions,

and our answers for LINK-11, are briefly summarized below.

Question 1: What is the scarce resource? We will auction additional quanta of bandwidth beyond

the baseline R2 protocol, so that extra track data can be transmitted for data fusion. This fusion

will improve the quality of the common operating picture.

Question 2: What is the criteria for desirable overall outcome. The mechanism must maximize

the total information gain over all of the participants as a consequence of auctioning off spare

bandwidth. Information gain is a quantifiable measure of the improvement in the quality common

operating picture.

Question 3: What private information is possessed by participants that will determine their out-

come preferences? Participants have private information about which tracks they can see, and

about the quality of their track data. Participants will misrepresent their private information to the

auctioneer if doing so will induce an outcome that is more favorable than if they tell the truth.

41 | CMU/SEI-2008-TR-017

Question 4: How are participant preferences represented in a payoff structure? Each participant

is driven by self interest. Self-interest stems from this hypothesized, but plausible, doctrine:

 Survivability of the individual participant depends on the survivability of the battle group,

which in turn depends on maximizing information gain of the whole group.

 ―After action reviews,‖ which lead to promotions and other rewards, use marginal contribu-

tion to total information gain as an important evaluation criterion.

This incentivizes every participant to maximize their contribution to the group's information gain

rather than increasing one’s own information gain.

The incentivized payoff structure for the bandwidth auction is defined in Eq.1, which reflects each

participant’s marginal contribution to total information gain, where ui and vi are payoff and value

functions for participant i, respectively; Z is the information that participant i has for all tracks; F*

and F-i* is the optimal bandwidth allocation with and without participant i included in the auc-

tion, respectively.

The above doctrine incentivizes each participant to maximize its payoff; and, its payoff is max-

imized by maximizing the information gain of the whole group.

Question 5: What are the rules of the auction? An auction defines the bidding rules, the resource

allocation approach, and the ―payments‖ made by each participant for the resources they receive.

We used the Vickrey-Clarke-Groves (VCG) mechanism as our starting point. The VCG auction is

a generalization of the second price sealed bid auction. The VCG auction has the key property of

―incentive compatibility,‖ which ensures that each participating unit will maximize their payoff

only by truthfully revealing their private information.

The result is that the needs of the individual are aligned with the needs of the many. This is the

―trick‖ of mechanism design.

6.6 ASSESSING THE AUCTION

Figure 6-2 depicts a snapshot of the portion of the ―Net Control Station‖ interface used to study

the auction at runtime.

ij

*j

ij

*ij*i*i)F,Z(v)F,Z(v)F,Z(v)F,Z(u

Eq.1
Total information gain

Participant i's payment

Participant i's

information gain

Participant i's

payoff

ij

*j

ij

*ij*i*i)F,Z(v)F,Z(v)F,Z(v)F,Z(u

Eq.1
Total information gain

Participant i's payment

Participant i's

information gain

Participant i's

payoff

42 | CMU/SEI-2008-TR-017

Figure 6-2: Studying the Runtime Effects of the Auction

The vertical, two-headed arrow labeled ―NCT allocated…‖ shows the quantum of bandwidth auc-

tioned for the purpose of data fusion. The horizontal bar labeled ―Steady state R2 reporting‖

shows how bandwidth is used, and includes the cost of running the auction itself. The auction is

run periodically, for example once every fifteen network cycles.

The economic outcome for one auction is shown at the bottom of Figure 6-2. In this example, par-

ticipating unit 3 (PU 3) gains the most information but also makes the largest payment. PU 3’s

payment represents its adverse impact on the other participants. That is, if PU 3 were not in the

auction, its payment (red bar) would be distributed as information gain (yellow bar) among the

remaining participants.

Improvement in the quality of the common operating picture as a result of this auction is shown

by the yellow ―fused‖ tracks displayed in Figure 6-1. The error ellipse for these tracks (shown in

red on each track) has been substantially reduced (that is, their accuracy has been increased) as a

result of the auction.

6.7 CONTRIBUTION OF THIS WORK

The viability of techniques such as computational mechanism design can be established only

when they are applied to problems of sufficient scale and complexity to expose the practical limi-

tations of the techniques in question. When theory is applied to practice, practice invariably

Auction overhead

Steady-state R2 reporting

Non-R2 tracks for fusion

Payoff for PU 3

NCT allocated for

non-R2 tracks

Information gain for PU 3

Payment by PU 3

Auction overhead

Steady-state R2 reporting

Non-R2 tracks for fusion

Payoff for PU 3

NCT allocated for

non-R2 tracks

Information gain for PU 3

Payment by PU 3

43 | CMU/SEI-2008-TR-017

―pushes back.‖ It is often the case that this ―push back‖ leads to identification of opportunities to

advance and refine the underlying theory of a technique that would never have been identified but

for the confounding, and impossible-to-predict, effects of real-world problems. Our work builds

on earlier work by Dash et al. [Rogers 2006, Dang 2006], but adds significantly to the complexity

(and, we claim, the resulting fidelity) to the experimental setting. In addition, our work emphasiz-

es the importance of accounting for human incentives in the process of designing computational

mechanisms. With this philosophical background, our work has made three key contributions.

1. We developed an application framework
6
 that exhibits sufficient scale and dynamic com-

plexity to study the feasibility of computational mechanism design in a practical setting. The

application framework emulates a combat tactical data network, and includes much of what

is required to construct a common operating picture from radar sensor data.

2. We designed and implemented a variant of the well-known Vickrey-Clarke-Grove auction

for use in the application framework. The auction is used to efficiently allocate a fixed, but

selectable, amount of network bandwidth to permit fusion of additional sensor data to im-

prove the common operating picture. One novel aspect of our auction is that participants are

both buyers and sellers of information, and each can obtain value from buying and selling.

3. Finally, and perhaps most importantly, we demonstrated that computational mechanisms can

be used to implement distributed, value-based resource allocation schemes in the kind of

highly dynamic, resource constrained, performance critical systems found in DoD combat

systems. Such systems are non plus ultra for evaluating the practicality for using computa-

tional mechanisms to control the behavior of complex systems.

6.8 CONCLUSIONS

Our research provides strong evidence that:

 Computational mechanism design provides new and useful design principles for the design of

complex systems, especially those that support users who may have distinct incentives.

 Computational mechanisms can be used in performance critical, highly dynamic settings such

as those found in tactical data networks, with behavior that is predictable using strong under-

lying game- and microeconomic theory.

These results, we believe, are applicable to a much broader class of system than tactical data net-

works; in fact, the research is primarily intended to study mechanism design and only secondarily

to study its use in a particular setting.

Nonetheless, the research also demonstrates that the well-known VCG auction can be useful in

existing DoD tactical data networks as a tool for providing incremental improvements in the qual-

ity of a common operating picture. In addition, we have identified avenues for further refining the

VCG auction, and for using market mechanisms, to embrace different tactical data network set-

tings.

Last, and concretely, we have provided the research community with a robust application frame-

work for studying computational mechanisms. This sort of framework—and others like it—will

6 The implementation has been packaged for use by external research collaborators and has already been made

available to select researchers at Naval Postgraduate School and Harvard University.

44 | CMU/SEI-2008-TR-017

be enormously useful to close the gap between the sometimes alien research traditions of game

theory and microeconomics and the practical requirements of software and systems engineering of

complex systems.

6.9 REFERENCES

[Anderson 2005]

Edward Anderson, Frank Kelly, & Richard Steinberg. ―A Contract and Balancing Mechanism for

Sharing Capacity in a Communication Network.‖ Computing and Markets, Dagstuhl Seminar

Proceedings. Schloss Dagstuhl, Germany, March-July 2005. Lehman, Muller & Sandholm (eds).

Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), 2005.

[Anshelevich 2004]

Elliot Anshelevich, Anirban Dasgupta, Jon Kleinberg, Eva Tardos, Tom Wexler, & Tim Rough-

garden. ―The Price of Stability for Network Design with Fair Cost Allocation.‖ In FOCS '04:

Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science

(FOCS'04), IEEE Computer Society, 2004.

[Chen 2004]

Ming Chen, Guangwen Yang, & Xuezheng Liu. ―Gridmarket: A Practical, Efficient Market Ba-

lancing Resource for Grid and P2P Computing,‖ 612-619. Grid and Cooperative Computing:

Second International Workshop, GCC 2003. Lecture Notes in Computer Science, Volume 3033.

Shanghai, China, December 2003. Springer, 2004.

[Chen 2005]

Rachel Chen, Obin Roundy, Rachel Zhang, & Ganesh Janakiraman. ―Efficient Auction Mechan-

isms for Supply Chain Procurement.‖ Source Management Science 51, 3 (March 2005): 467-482.

[Dang 2006]

V. D. Dang, R. K. Dash, A. Rogers, & N. R. Jennings. ―Overlapping Coalition Formation for Ef-

ficient Data Fusion in Multi-Sensor Networks.‖ In Proceedings of the National Conference on

Artificial Intelligence, Vol 21; Part 1 (2006): 635-640.

[Edelman 2007]

Benjamin Edelman, Michael Ostrovsky, & Michael Schwarz. ―Internet Advertising and the Gene-

ralized Second-Price Auction: Selling Billions of Dollars Worth of Keywords.‖ Journal of Ameri-

can Economic Review (2007).

[Gerkey 2002]

Brian P. Gerkey & Maja J. Mataric. ―Sold! Auction Methods for Multirobot Coordination.‖ IEEE

Transactions on Robotics and Automation 18, 5 (October, 2002).

[Hinz 2003]

Juri Hinz. ―Optimal Bid Strategies for Electricity Auctions.‖ Journal of Mathematical Methods of

Operations Research, Physica Verlag, 57, 1 (April 2003).

45 | CMU/SEI-2008-TR-017

[Holzman 2003]

Ron Holzman & Nissan Law-Yone. ―Network Structure and Strong Equilibrium in Route Selec-

tion Games.‖ Journal of Mathematical Social Sciences 46, 2 (October 2003): 193-205.

[Mas-Colell 1995]

Andreu Mas-Colell, Michael Dennis Whinston, & Jerry R. Green. Microeconomic Theory. New

York: Oxford University Press, (ISBN: 0195073401).

http://www.loc.gov/catdir/enhancements/fy0604/95018128-d.html

[Rogers 2006]

A. Rogers, R. K. Dash, N. R. Jennings, S. Reece, & S. Roberts. ―Computational Mechanism De-

sign for Information Fusion within Sensor Networks.‖ 9th International Conference on Informa-

tion Fusion, July 2006.

[Sandholm 2006]

T. Sandholm. ―Expressive Commerce and Its Application to Sourcing.‖ In Proceedings of the

Eighteenth Conference on Innovative Applications of Artificial Intelligence (IAAI06), June 2006.

Menlo Park, CA.

[Schneidman 2003]

Jeffrey Shneidman & David C. Parkes. ―Rationality and Self-Interest in Peer to Peer Networks.”

In Proc. 2nd Int. Workshop on Peer-to-Peer Systems (IPTPS'03), 2003.

[Staib 2001]

Wing Commander Margaret Staib. ―Sustainment Procurement in the Air Force – U.S. Department

of Defense.‖ Air Force Journal of Logistics, Summer, 2001.

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

July 2008

3. REPORT TYPE AND DATES

COVERED

Final

4. TITLE AND SUBTITLE

Results of SEI Independent Research and Development Projects

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Len Bass, Dionisio de Niz, Jörgen Hansson, John Hudak, Peter H. Feiler, Don Firesmith, Mark Klein, Kostas Kontogiannis,

Grace A. Lewis, Marin Litoiu, Daniel Plakosh, Stefan Schuster, Lui Sha, Dennis B. Smith, & Kurt Wallnau

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2008-TR-017

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

ESC-TR-2008-017

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

The Software Engineering Institute (SEI) annually undertakes several independent research and development (IRAD) projects. These

projects serve to (1) support feasibility studies investigating whether further work by the SEI would be of potential benefit and (2) support

further exploratory work to determine whether there is sufficient value in eventually funding the feasibility study work as an SEI initiative.

Projects are chosen based on their potential to mature and/or transition software engineering practices, develop information that will help

in deciding whether further work is worth funding, and set new directions for SEI work. This report describes the IRAD projects that were

conducted during fiscal year 2007 (October 2006 through September 2007).

14. SUBJECT TERMS

independent research and development, IRAD, architectural design decisions, software archi-

tecture, software-intensive systems, real-time systems, embedded systems, fault tolerance,

fault management, fault containment, Vickrey-Clarke-Groves, auction mechanism, VCG, com-

putational mechanism design

15. NUMBER OF PAGES

53

16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

20. LIMITATION OF

ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

	Results of SEI Independent Research and Development Projects
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	2 Improving Architectural Design Through Organizational Considerations
	3 Performance Challenges of Modern Hardware Architectures for Real-Time Systems
	4 A Research Agenda for Service-Oriented Architecture
	5 A Software System Engineering Approach for Fault Containment
	6 Using the Vickrey-Clarke-Groves Auction Mechanism for Enhanced Bandwidth Allocation in Tactical Data Networks

