

Developing AADL Models for Control

Systems: A Practitioner’s Guide

John Hudak
Peter Feiler

July 2007

TECHNICAL REPORT
CMU/SEI-2007-TR-014
ESC-TR-2007-014

Dynamic Systems Program
Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally
funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2007 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for
internal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions
and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for
external and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

http://www.sei.cmu.edu/publications/pubweb.html

Table of Contents

Abstract v

1 Introduction to the SAE AADL 1
1.1 Structure of This Document 1
1.2 Notations Used in This Document 2
1.3 Reader Background 3
1.4 Background of the AADL 3

2 An Overview of the AADL 5
2.1 Application System Components 6
2.2 Connections and Ports 8
2.3 Mappings to Source Text 8
2.4 Modes 8
2.5 Fault/Exception Handling 9
2.6 Flow Specifications 9
2.7 Execution Platform Components 9
2.8 Model Organization 11
2.9 Summary 11

3 Developing Models Using the AADL 13
3.1 An Automotive Example Problem 13

3.1.1 Perspectives on Data Flow 23
3.2 Modeling the Cruise Control System 24

3.2.1 Understanding System Functionality 24
3.3 Mapping to the AADL 28

3.3.1 Representing the System Hierarchy 28
3.3.2 Modeling System Components 29
3.3.3 Identification and Modeling of Application Components 36

3.4 Flow Analysis 38
3.4.1 Flow Specifications 38
3.4.2 Flow Implementation 40

3.5 Developing the System Implementation 42
3.5.1 Binding to a Computing Platform 42
3.5.2 Component Connections 45
3.5.3 Integrating the Application Software and Hardware 48
3.5.4 Connecting the Devices to the Bus 50
3.5.5 Specifying the End-to-End Flow for Analysis 51

3.6 Analysis 53
3.6.1 Notes on OSATE 57

4 Summary 59

Appendix A: AADL Graphical Notation 61

Appendix B: AADL Model of the Vehicle Control Systems 63

 SOFTWARE ENGINEERING INSTITUTE | i

Appendix C: AADL Model of the Cruise Control System 69

References 75

ii | CMU/SEI-2007-TR-014

List of Figures

Figure 1: Components of a Number of Vehicle-Control Systems 16

Figure 2: AADL Context Diagram for a Set of Vehicle Control Systems 17

Figure 3: A Control Engineer’s View of a Control System 23

Figure 4: Cruise Control System, Simulink Input-Output Diagram 25

Figure 5: Representation of the Cruise Control Procedure Call 27

Figure 6: Context Diagram of the Cruise Control System 29

Figure 7: Brake Pedal Modeled as an AADL Device and Associated Data Port 30

Figure 8: AADL System Graphic Symbol with an In Port and Out Port 33

Figure 9: Cruise Control Represented as an AADL System 34

Figure 10: Cruise Control Software Components Depicted as AADL System Components in AADL
Graphic Notation 36

Figure 11: Top-Level Flow Specification Using AADL Graphical Notation, Showing Brake and
Wheel Flow Paths 39

Figure 12: AADL Graphical Notation of a Flow Path Within a Single Thread in a Process 41

Figure 13: Generic Representation of a Flow Implementation through Two Processes 42

Figure 14: An Application Software Component View of the Cruise Control Showing All the Device
and Component Connections. 46

Figure 15: Complete System Hierarchy for the Cruise Control Showing Software Application
Components and Associated Hardware Components 49

Figure 16: Cruise Control Application Showing End-to-End Flow Path from Brake Pedal to Throttle
Actuator 51

Figure 17: The OSATE Environment Containing the Model of the Cruise Control 53

Figure 18: Instantiating the Implementation of the Cruise Control System 55

Figure 19: Running the Check Flow Latency Analysis Plug-in 56

Figure 20: Analysis View of the Cruise Control Instance Model and Latency Analysis Results 56

 SOFTWARE ENGINEERING INSTITUTE | iii

iv | CMU/SEI-2007-TR-014

Abstract

This document is a guide to help practitioners using the Architecture Analysis and Design Lan-
guage (AADL), an international industry standard for the model-based engineering of real-time
and embedded systems. The primary goal of this document is to describe an approach for and the
mechanics of constructing an architectural model that can be analyzed based on the AADL. The
first section of this document presents an overview of AADL concepts and many of the keywords
of the language. The second part of the document illustrates a model-building approach using the
AADL. It takes the perspective of an engineer who is developing a model for the first time using
the AADL. This guide leads the reader through complete AADL model development based on
automotive embedded control systems (cruise control, traction control, etc.) by describing the use
and syntax of the AADL and interleaving modeling abstraction tradeoffs to achieve models that
are abstract but precise. Models are constructed with different analysis perspectives in mind to
illustrate the semantics as well as the richness of the AADL.

 SOFTWARE ENGINEERING INSTITUTE | v

vi | CMU/SEI-2007-TR-014

1 Introduction to the SAE AADL

The Society of Automotive Engineers (SAE) Architecture Analysis and Design Language
(AADL) is a textual and graphic language used to design and analyze the software and hardware
architectures of embedded and real-time systems for performance-critical characteristics (e.g.,
end-to-end latency, schedulability, and reliability). The language is used to describe the structure
of such systems as an assembly of software components that are mapped to an execution platform.
The language is based on the component-connector paradigm. Component descriptions are used to
describe functional interfaces of components (e.g., data inputs and outputs, event inputs and out-
puts) and performance-related aspects (such as latency and error handling). Connection character-
istics (i.e., asynchronous or synchronous) among software components have precise operational
semantics and are enforced by the AADL modeling environment. Dynamic behavior of the run-
time architecture can also be described by supporting the modeling concepts of operational modes
and transitions. Software components can be bound to hardware platforms. The hardware plat-
forms can be modeled to reflect specific characteristics of a processor, bus, and memory.

The language is designed to be extensible to accommodate analysis of the runtime architectures
that the core language does not completely support. Extensions can take the form of new proper-
ties and analysis-specific notation that can expose system variables needed by various analysis
tools particular to the investigation at hand.

1.1 STRUCTURE OF THIS DOCUMENT

This document is organized to achieve multiple goals. The primary goal is to show how to de-
velop and document system architectures using the AADL. To accomplish this goal, several as-
pects of the approach modeling with AADL are detailed in this document:
• system analysis and decomposition, analysis views, and AADL language constructs to model

components

• the mechanics of assembling modeled components

• binding modeled software to modeled hardware

• the AADL structure of a complete model

The intent is for the reader to become knowledgeable enough to know what AADL constructs to
use in assembling a model and to know how to assemble the model that can be successfully
parsed and analyzed.

Another goal of this document is to introduce enough of the AADL semantics and syntax so the
user can precisely represent the system to be analyzed. This goal is accomplished by illustrating in
detail the complete modeling of a realistic system.

 SOFTWARE ENGINEERING INSTITUTE | 1

To meet these goals, the document focuses on understanding and modeling a problem in the
automotive control domain. The second section provides an overview of the AADL and contains
conceptual descriptions of the AADL. Readers may want to supplement this section by reviewing
the AADL standard [SAE 04] and the technical note published by the Software Engineering Insti-
tute [Feiler 06a] for details about exact syntax and allowable keywords and their semantics.

The third section describes an example control problem in the automotive area that is concerned
with the control and performance of a vehicle. Several analysis views of the system are presented
by identifying a top-level abstraction and subsequently decomposing it into less abstract represen-
tations. The third section is divided into subsections that describe the decomposition:
• Traction control, stability control, antilock braking, and cruise control are identified and their

functionality discussed.

• A top-level AADL context diagram is developed, and AADL models of the components are
constructed. In addition, the operational, interactive, and performance issues related to the
subsystem are discussed.

• The cruise control system is modeled to analyze latency requirements and actual latency (via
flows) from the time the brake pedal is depressed to the time the throttle actuator is disen-
gaged. Cruise control components are modeled in detail.

• System implementation is described with respect to binding modeled software components
to a processor, memory, and bus.

In addition, there are several themes that cut across each of the subsections described above.
These include
• producing models that represent different levels of abstraction

• describing the use of AADL keywords, semantics, and usage to enhance analysis

• describing signal flows at different levels in the software architecture

• understanding component declarations and implementations

• producing models that can be analyzed using the Open Source AADL Tool Environment
(OSATE) developed at the Software Engineering Institute (SEI)

The use of OSATE is not described herein, but the models that are contained in this document
have been successfully parsed and analyzed using OSATE V1.4.6, which is based on the AADL
standard V1.0.

1.2 NOTATIONS USED IN THIS DOCUMENT

Text in courier font denotes code examples; courier bold font is used to denote AADL
reserved words. Text in italic denotes concepts that have specific meaning within the AADL (e.g.,
declaration). The graphical AADL notation is introduced with an example as it is used. The com-
plete set of graphical notation symbols is in Appendix A (beginning on page 61).

2 | CMU/SEI-2007-TR-014

1.3 READER BACKGROUND

The intent of this document is to convey how to develop and use AADL models using real-world
engineering examples that are typically encountered in embedded system design. By its nature,
embedded system design requires a working knowledge in a number of different areas. It is there-
fore helpful for the reader to have a background in the following areas:
• system decomposition and modeling—use of models to represent physical systems at the

right level of granularity to analyze a problem domain

• control engineering—basic notion of feedback control and realizations in the continuous and
discrete domains

• real-time operating systems—understanding of process, thread, and timing concepts as well
as data and event communication concepts

In addition, an exposure to the SAE AADL is helpful. It is expected that the reader has an under-
standing of the concepts and constructs of the AADL (from introductory papers or, preferably,
from reading through the standard) [SAE 04]. This document presents a high-level overview of
the language in Section 2 but not the exact syntax. The examples developed in Section 3 show the
use of the language in constructing models, but familiarity with the language would be very help-
ful. One major goal of this document is to help the reader define and assemble the pieces of an
AADL model, so having a copy of the standard would be beneficial.

1.4 BACKGROUND OF THE AADL

The AADL is based on experiences in the use of Defense Advanced Research Projects Agency
(DARPA)-funded Architecture Description Language (ADL) projects, MetaH in particular.
MetaH was developed by Honeywell [Binns 96] and has been used by a number of organizations
in prototypical system developments, including Boeing, the U.S. Army, and the SEI. The case
study of a pilot application of the MetaH technology by the U.S. Army’s Armament Munitions
and Chemical Command Software Engineering Division (AMCOM SED) laboratory to missile-
guidance systems produced some insight into the potential cost savings of an architecture-driven
modeling approach. An existing missile-guidance system, implemented in Jovial, was reengi-
neered to run on a new hardware platform and to fit into generic missile reference architecture
[McConnell 96]. As part of the reengineering effort, the system was modularized and translated
into Ada95. The task architecture consisting of 12 to 16 concurrent tasks was represented as a
MetaH model and the Ada95 coded application components. The cost savings ranged from 50%
for reengineering to a different language and platform to 90% for porting to another platform.

MetaH demonstrated the practicality of using an ADL with precise real-time semantics and syntax
as a core modeling notation for providing analysis capabilities of several performance-critical
quality attribute dimensions, such as schedulability, dependability, and safety-critical concerns.
The MetaH tool set demonstrated the capability of not only supporting system analysis but also
automatic generation of glue code in the form of a system executive that performs all task bind-
ing, dispatching, and inter-task communication with application components as “plug-ins” into
this infrastructure. This separation of concerns allows application developers to focus on domain
functionality, while a software system architect can focus on achieving system-level performance-

 SOFTWARE ENGINEERING INSTITUTE | 3

critical quality attributes. MetaH has demonstrated the feasibility of model-based analysis and
generation of embedded systems (i.e., embedded and system-of-systems engineering driven by an
architecture that is reflected in the models and maintained throughout the system life cycle [Feiler
00]) and has thus served as a proof of concept for the AADL.

4 | CMU/SEI-2007-TR-014

2 An Overview of the AADL

The AADL was designed to be a basis for model-based analysis and generation of embedded sys-
tems. The AADL notation was designed as an extensible core language with well-defined seman-
tics and both a graphical and textual presentation. The core language supports modeling in several
architectural views [Clements 02] and addresses timing and performance analyses through explicit
modeling of the application system and binding to execution platform components. Timing and
performance analyses are modeled through precisely defined concurrency and interaction seman-
tics and timing/performance properties that are explicitly associated with the components.

This section introduces the concepts of the core language. A major subset of the AADL keywords
(in bold) is identified and their meaning presented. The reader is referred to the AADL specifica-
tion for a more detailed description of the language [SAE 04]. Section 3 of this report builds on
the keywords by first showing generic usage syntax and semantics and then by developing an ex-
ample problem throughout the section. Several analysis views are also presented to illustrate the
use of specific AADL concepts (e.g., data communication and signal flow).

The focus of the AADL is to model the software system architecture in terms of an application
system bound to an execution platform. Most of the modeling effort is directed to the application-
specific software, incorporating just enough operating system specifics to ensure that the model is
precise enough to support the investigation adequately. Many operating system characteristics are
already embedded in the AADL semantics to support architectural modeling (communication
mechanisms, thread behavior, etc.).

The AADL language syntax is composed of keywords that represent basic components, connec-
tions, and behavior. The keyword often contains additional keywords that describe features, prop-
erties, refinements, or extensions to the basic component. The software architecture is modeled in
terms of components and interactions. A component represents some hardware or software entity
that is part of a system being modeled in AADL. The standard defines the following categories of
components: data, subprogram, thread, thread group, process, memory, bus,
processor, device, and system. These are explained later in this section.

A component type specifies a functional interface of the component. It can be viewed as a “black
box” in which only the external interfaces are described. It represents a specification of the com-
ponent against which other components can operate. To satisfy the requirements for an AADL
specification, one must specify component implementations. A component implementation speci-
fies an internal structure (e.g., the operational details or “white box”). The AADL allows multiple
implementations to be declared with the same functional interface. Interactions of components are
specified through named connections and what is being communicated through the connections—
either state or event information.

 SOFTWARE ENGINEERING INSTITUTE | 5

Components are named and have a component type that represents the component’s externally
visible interface and other characteristics (i.e., represents a component specification). A compo-
nent type declaration may contain subclauses that represent features, property associations
(properties), and flows. A feature of a component models a component characteristic that is
visible to other components. Features are externally visible, named parts of the component type
and are used to exchange control and data via connections with other components. Properties are
expressions that represent attributes (and possibly associated values) and behaviors of a compo-
nent (i.e., modes). Modes are described later in Section 2.4.

Component type can be declared in terms of other component types (i.e., a component type can
extend another component type, inheriting its features, flows, and property association). If a com-
ponent type extends another component type, then features, flows, and property associations
can be added to those already inherited. A component type extending another component type can
also refine (refines) the inherited features and flow declaration by more completely specifying
partially declared component classifiers and by associating new values with properties. For exam-
ple, an in data port feature of a component type may be refined to denote a specific data
type (e.g., bool). Section 2.2 describes port types.

A component implementation in the AADL specifies an internal structure for a component as an
assembly of subcomponents. Component implementations can be decomposed into an intercon-
nected set of subcomponents that refer to instances of other component types and implementa-
tions. Specialization of components is supported in that component types may be extended by
using extends and component implementations may be further clarified by using
refines. Components must be declared before they can be instantiated or referenced.

The AADL supports modeling of the system at various levels of abstraction, allowing the modeler
to quantify certain aspects of system behavior by focusing on various performance characteristics
(e.g., end-to-end latency, modal operation, and reliability). The general modeling approach is to
define system components that will eventually map into application code via semantic properties.
This approach implies using model variables that have the same name within the application code.
Matching of variable names throughout the development process can be accomplished manually
or as a result of using automatic code generators that obtain the variable names from the AADL
models. Ensuring correct variable mapping from model to actual code is necessary to ensure con-
sistency.

2.1 APPLICATION SYSTEM COMPONENTS

Application system modeling is supported through a number of groups of component categories.
The first group focuses on the runtime behavior of a system: a thread is a basic unit of concur-
rent execution; a process is a unit of protected address space. Threads are contained in proc-
esses and have a dispatch protocol property value. A process must contain at least one thread.
Predefined dispatch protocol values include periodic, aperiodic, sporadic, and background. Addi-
tional protocol names can be declared using the property extension mechanism. Threads are char-
acterized by entry points. They have separate execution entry points into their associated source
text for initialization, nominal execution, and recovery. Nominal execution server threads may

6 | CMU/SEI-2007-TR-014

have separate entry points for each server subprogram. The process load, thread dispatch, and
scheduling semantics are defined using a hybrid automaton notation that is specified as part of the
AADL.

Threads contained in a process may be logically organized into a hierarchy using thread groups. A
thread group type declares the features and required subcomponent access through which
threads contained in a thread group can interact with components declared outside the thread
group. Features and subcomponent accesses defined in the thread group declaration are inherited
by the thread group implementation. The thread group implementation contains threads, data
components accessed by the thread, and thread groups.

Software systems to be modeled can be organized into a hierarchy of AADL components to re-
flect the logical flow and physical bindings of the application. The system construct is a generic
component hierarchy that is modeled by system declarations to represent a composition of com-
ponents into composite components (e.g., a device communicating data to another component). A
system instance models an application and its binding to a system that contains execution plat-
form components (e.g., a thread bound to memory connected to a bus to a central processing unit
[CPU]).

A system can be used to organize processes, execution platform components, or the combina-
tion of both. A system can also contain lower level system instances. It is generally used early
in the modeling process as a generic modeling component and can be made more specific when
decisions are made about
• which components will be included within the system

• how they will compose the workload via units of concurrent execution

• how they will employ address-space protection.

Similarly, a process is composed of threads and thread groups.

The data component category supports representing data types and data abstractions in the
source text at the appropriate level of abstraction for the modeling effort. The data type is used
to type ports (ports are the interface points to the outside, as described in Section 2.2) to specify
subprogram parameter types. Data type inheritance can be modeled using the AADL compo-
nent type extension (e.g., extends) mechanism. Class abstractions can be represented by using
subprogram as a feature of a data type. Provided data features of a data component are sharable
using a specified concurrency control property. A sharable data component instance is specified in
a requires subclause of the component type.

 SOFTWARE ENGINEERING INSTITUTE | 7

2.2 CONNECTIONS AND PORTS

Connections among components are supported in three ways:
1. directional flow of data and control through data, event, and event data port con-

nections
2. call-return interaction on subprogram entry points

3. access to shared data components

Threads, processors, devices, and their enclosing components (processes, systems, and thread
groups) can have ports (in, out, in out) declared. A data port communicates unqueued
state data; an event port communicates events that are raised in a component’s implementa-
tion, associated source text, or actual hardware; and an event data port represents queued
data whose arrival can have event semantics. Arrival of an event at a thread results in the dispatch
of that thread using semantics defined via thread property values and the AADL’s hybrid auto-
mata for event arrival while the thread is active. For data port connections, data is communi-
cated upon execution completion or upon thread deadline. For periodic threads, data communica-
tion upon completion of the thread execution is an immediate connection with the effect of
midframe communication threads. The case where data is communicated upon a thread deadline
represents a delayed connection with the effect of phase delay. Threads are discussed in Section
2.7.

2.3 MAPPINGS TO SOURCE TEXT

Software components model source text where source text is the target programming language.
The target programming language can be general languages such as C and Ada95 or domain-
specific languages such as Simulink. Rules governing the mapping between the AADL model and
source text depend on the applicable programming or modeling language standard. Predeclared
AADL component properties identify the source text container and the mapping of AADL con-
cepts to source text declarations and statements. AADL port variables, data components, subpro-
gram, and entry points allow mapping of AADL names to names in source text.

2.4 MODES

Components can have modes of operation. Modes represent alternative configurations of the
component implementation, with only one mode being active at a time. At the level of system and
process, a mode represents possibly overlapping (sub)sets of active thread and port connections
and alternative configurations of execution platform components, as well as alternative bindings
of application components to execution platform components. Mode change behavior is specified
as a state transition diagram, in which states are the modes and the transitions are triggered by
events. Thus, the AADL can model dynamically changing behavior of statically known thread and
port communication topologies bound to statically known execution platform topologies. Modes
can also be declared for threads and subprograms. This permits mode-specific property values to
be declared in situations where the thread and connection architecture does not change but the
thread’s internal behavior changes (e.g., it has different worst-case execution times under different

8 | CMU/SEI-2007-TR-014

modes). More detailed modeling of an application system allows for less conservative analysis
such as schedulability analysis.

2.5 FAULT/EXCEPTION HANDLING

The AADL has a basic fault-handling model. Runtime faults may be handled within source text
components through mechanisms that are part of the source language runtime environment (i.e.,
an application fault handler, fault detection, and handling of the application language). For faults
not handled at that level or propagated by the source text, a thread is given an opportunity to
recover and continue with the next dispatch through a recovery entry point. An unrecoverable
thread error is propagated through a predeclared event data port called error. The modeler
of a particular application system indicates through an event connection specified in the AADL
model where the error event is propagated to, and mode change behavior descriptions indicate the
actions to be taken in response to error events [Feiler 07].

2.6 FLOW SPECIFICATIONS

The AADL supports the concept of specifying end-to-end flows to support various forms of end-
to-end analysis throughout a model such as end-to-end timing and latency, reliability, numerical
error propagation, and processing sequences of domain objects. System, process, and thread com-
ponents can have flows. A flow specification declaration indicates that information logically
flows from one of the incoming ports, parameters, or port groups of a component to one of its
outgoing ports, parameters, or port groups. The ports can be event, event data, or data ports. A
flow may start within a component, designated as a flow source, and end within a component,
called a flow sink. A flow path through a component can be from one of its in or in out
ports or parameters to one of its out or in out ports or parameters or, in the case of port groups,
from a port group to its inverse.

Component implementations must provide a flow implementation for each flow specification. A
flow implementation declaration identifies the flow through its subcomponents. In the case of a
flow-source specification, it begins from a flow source of a subcomponent or from the com-
ponent implementation itself and ends with the port name in the flow source specification. In
the case of a flow-sink specification, the flow implementation starts with a port name in the flow-
sink specification declaration and ends within the component implementation itself or within a
flow sink of a subcomponent. Flow characteristics modeled by properties on the flow imple-
mentation are constrained by the property values in the flow specification. Flow implementations
can be declared to be mode specific.

2.7 EXECUTION PLATFORM COMPONENTS

The AADL supports four categories of execution platform components: processor, memory,
bus, and device. A processor is an abstraction of the hardware and software that is respon-
sible for scheduling and executing threads. For their execution, threads will be bound to a proces-
sor that supports the dispatch protocol required by the thread. The Allowed_Dispatch_
Protocol property specifies the dispatch protocol that a processor supplies. Processors may

 SOFTWARE ENGINEERING INSTITUTE | 9

also execute device driver software associated with a device, but they must have access to the cor-
responding device component. Processors may contain memory and may access memories and
devices via buses. A processor component must contain at least one memory component (the
application software executes in the attached memory) or provide access to memories via a bus.

A memory declaration represents an execution platform component that stores binary images.
Memory can represent any randomly accessible storage (e.g., random access memory [RAM],
read-only memory [ROM]) or more complex (random or sequential) storage devices (e.g., mag-
netic disk, optical disk, and tape). Memories have properties such as size (e.g., 8 bits), proto-
col (e.g., read_only, write_only, read_write), and amount (e.g., max_word_count).
Subprograms, data, and processes are bound to memory components for access by processors
when executing threads. A memory component may be contained within a processor declara-
tion or may be accessible from a processor via a bus. This accessibility is realized by the
access keyword in the processor declaration.

A bus provides access between processors, memories, and devices. The bus component repre-
sents a communication channel, typically hardware coupled with a communication protocol.
Typical examples of a bus are Peripheral Component Interconnect (PCI) and Ethernet (category 5
cable), over which runs Transmission Control Protocol/Internet Protocol (TCP/IP). Processors,
memory, and devices can communicate over a shared bus. The shared bus can be located in the
same system implementation as the execution platform components sharing it or higher in the
system hierarchy via access features in the system types.

Memory, process, and device types can declare a need for access to a bus through a re-
quires bus access reference. The allowed_connection_protocol property indi-
cates which forms of access a particular bus supports. A device is accessible from a proces-
sor if the two share a bus component and the allowed_connection_protocol property
value for that bus includes the enumeration literal device_access. A memory is accessible
from a processor if the two share a bus component and the
allowed_connection_protocol property value for that bus includes the enumeration
literal memory_access.

A device represents a component that interfaces with the external environment. A device can
represent single-function components (e.g., sensors) as well as more complicated components
(e.g., global positioning system [GPS] units, camcorders). In reality, the more complicated de-
vices would have internal processors, memory, and so forth that are not explicitly modeled. For
example, the modeling of a camcorder might consist of only a connection to a firewire bus over
which video data is communicated. Data is communicated out of (or into) the device by configur-
ing it with out data port or in data port. If the device has associated software (such as
a device driver that must reside in a memory and execute on a processor external to the device), it
can be specified through appropriate property values for the device (e.g., source_code_size,
source_code_data).

A device interacts with both AADL execution platform components and application software
components. A device has physical connections to processors via a bus. The device modeling

10 | CMU/SEI-2007-TR-014

element represents software executing on a processor accessing the physical device. A device
also has logical connections to application software components. These logical connections are
represented by connection declarations between device ports and application software component
ports. For each logical connection between a device and a thread executing application source
text, there must be a physical connection in the execution platform.

2.8 MODEL ORGANIZATION

The AADL specification is a set of declarations: component classifiers, port group classifiers,
annex libraries, packages, and property sets. A package provides a way to organize component
types, component implementations, port group types, and annex libraries into related sets of dec-
larations by introducing separate name spaces. The name space is divided into public and
private parts. Items declared in the public part are visible and can be referenced from out-
side or inside the package. Items declared in the private part can be referenced only within
the package.

A property provides information about component types, component implementations, sub-
components, features, connections, flows, modes, and subprogram calls. A property has a
name, type, and value. A property set contains declarations of property types and property
names that may appear in an AADL specification. The AADL contains two predeclared property
sets in the standard (AADL_Properties and AADL_Project) that define properties and
property types that are applicable to all AADL specifications. Users may define property sets that
are unique to their model or project.

2.9 SUMMARY

The AADL standard supports modeling of application systems and execution platforms as inter-
acting components with specific semantics and bindings. Such systems are configurable in that
components can have multiple implementations. Semantics defined as part of the component
categories and their predefined properties address timing and resource consumption as well as
interaction consistency in terms of matching port types and data communicated through the ports.
Behavioral descriptions allow for model checking of behaviors as well as mode (state)-specific
analyses with less conservative results.

The core language does not provide properties and semantics for all possible architecture analy-
ses. Instead the AADL has been made extensible both in terms of language notation and standard
annexes to accommodate further analyses. Annexes that are part of the initial core standard in-
clude language extensions such as flow specification, the ability to provide an error model for
reliability analysis, and the ability to support end-to-end flow analysis. Other annexes include a
Unified Modeling Language (UML) profile and an Extensible Markup Language (XML) inter-
change format.1 [jmorley1]An open source development environment (OSATE) based on Eclipse

1 Annexes for error modeling, programming language compliance and application program interface (API), and

XML/XMI interchange format have been published as extensions to the standard language [SAE 06].

 SOFTWARE ENGINEERING INSTITUTE | 11

John Morley
See footnote on the annexes published in 2006

that contains a parser and some analysis plug-ins is available for download at
http://www.aadl.info/.

12 | CMU/SEI-2007-TR-014

http://www.aadl.info/

3 Developing Models Using the AADL

First-time developers of AADL models typically have many questions regarding model organiza-
tion, composition, and the mechanics of assembling a model. There are also issues related to de-
termination of the analysis perspective and problem details that can sometimes result in a struggle
when building a model. This section addresses those issues by describing a model-building proc-
ess that focuses primarily on expressing system architectures in terms of the AADL constructs; it
also shows how certain architectural issues can be modeled at the proper level of detail. (See Im-
proving Predictability in Embedded Real-Time Systems [Feiler 04] for a discussion related to this
topic in modeling an existing architecture.) The process also shows that certain design decisions,
such as a task-to-thread binding or a thread-to-processor binding, can be delayed by being pushed
down into the lower levels of the model hierarchy without adversely affecting the fidelity of the
higher level model. Through the cruise control example, details relating to information flow and
end-to-end latency are discussed and modeled (see Section 3.2).

A general outline for problem analysis and model development involves the following steps:
1. Determine the scope of the area to investigate (Section 3.1).

2. Determine the perspective (e.g., the analysis view) (Section 3.2).

3. Understand the system components and their functionality (Section 3.2).

4. Map the functional components and the data and event flows to AADL components and con-
nections (Sections 3.3−3.4).

5. Direct the output of the AADL parser to the appropriate analysis tool and evaluate the results
(Section 3.5).

These steps are followed as we develop the example model in this section. We must first establish
the example problem.

3.1 AN AUTOMOTIVE EXAMPLE PROBLEM

To help in the understanding and application of the AADL, an example problem based on auto-
motive control systems is analyzed. The first step in problem analysis is to determine the scope.
Consider the following automotive systems:
• traction control system (TCS)

• antilock braking system (ABS)

• stability control system (SCS)

• cruise control system (CCS)

These systems represent a small number of embedded systems contained in modern automobiles.
They are an interesting subset of systems to consider mainly because the hardware and software
architecture of a solution can have many approaches, ranging from a single CPU executing the
application code for all of the systems, to a separate CPU for each system. The architecture may

 SOFTWARE ENGINEERING INSTITUTE | 13

take into account a partitioned system and various fault-tolerant schemes. We initially focus on
identifying the components of each system and then choose a specific subsystem for more de-
tailed modeling and analysis.

In general, each of these systems relies on input from sensors, makes computations based on its
specific control laws, and outputs a control value that affects the state of the engine, throttle posi-
tion, or the brakes.

We will eventually choose one of these subsystems to focus on, but initially, their collective op-
eration must be understood. The following paragraphs present functional descriptions from which
system architects could begin modeling. The descriptions could be viewed as part of the system’s
requirements. As part of this example, we show how to go from descriptions of systems with a
varying amount of detail to architecture models represented in the AADL that allow modeling at
many levels within a system hierarchy. We also suggest the types of analysis and modeling trade-
offs that can be made at each level of detail. At this point in the example, we are not making any
assumptions regarding the number of processors required or the mapping of the control systems to
processors. Later in the development of the example, we will show the mapping to a single proc-
essor.

The traction control system deals specifically with lateral (front-to-back) loss of tire to road fric-
tion during acceleration. In its most basic version, the traction control system uses the data from
the rotation sensor of each wheel of the vehicle, compares the rotation data to detect the slipping
wheel(s), and compensates for the spinning wheels by applying the brake to the spinning wheels
to ensure maximum contact between the road surface and the tires, even under less-than-ideal
road conditions, such as ice or snow. In some cases, the traction control system may even reduce
the power to the engine via the throttle control.

The goal of the antilock braking system is to ensure that maximum braking is accomplished at all
four wheels of the vehicle, even under adverse conditions such as skidding on rain, snow, or ice.
Antilock brakes work by sensing slippage at the wheels during braking and continually adjusting
braking pressure to ensure maximum contact between the tires and the road. In the most basic
version, wheel rotation sensors from all four wheels are used as input and the output is the brake
valve on each of the four brake lines.

The intent of stability control is to keep the vehicle going in the direction in which the driver is
steering the car. To do this, the stability control system applies the brakes to one wheel to help
steer the car in the correct direction. For example, if poor traction causes the front end of the car
to slip sideways when you are going around a corner (understeering or plowing), the control laws
will cause the brakes to be applied on the inside wheels of the corner, causing the car to turn and
slow down. If the back end of the car slips sideways (oversteering or fishtailing), the brake on the
wheel that is outside of the corner is applied to bring the car back into line. The system works
when the car starts to slide on a straight road and when turning corners.

14 | CMU/SEI-2007-TR-014

The stability control system controller takes information from a number of sensors and then de-
termines whether the car is in a stable or unstable state. By combining the data from wheel rota-
tion sensors, steering angle sensors, yaw sensors that measure the amount a car rotates around its
vertical center axis (fishtails), and lateral force sensors that measure the amount of sideways g-
force generated by the car, the central processing unit can actually detect when a vehicle is behav-
ing in a way contrary to how the driver intends. The control system then applies the brakes to the
wheel(s) to counteract the destabilizing force. In some cases, the engine speed may also be ad-
justed.

How does a stability control system differ from a traction control system? Traction control acts on
a vehicle’s drive wheels to prevent unwanted wheel spin under acceleration. While this helps in
low-traction situations such as snow or rain, traction control’s ability to assist in more extreme
emergency situations is limited. A stability control system, on the other hand, goes one step fur-
ther by actually detecting when a driver has lost some control. It then automatically stabilizes the
vehicle to help the driver regain control of the vehicle.

The goal of the cruise control system is to maintain a constant vehicle velocity as determined by a
driver-dictated setpoint. The system is in effect between some minimum and maximum speeds
(e.g., 35 MPH to 100 MPH). The cruise control system maintains the vehicle speed at the prede-
termined setpoint by noting the speed of the wheel rotation when the setpoint is set and attempts
to keep the throttle actuator at a position to maintain the vehicle speed at the speed setpoint. As
the road inclination changes, the vehicle speed is affected, and the throttle position changes to
maintain the vehicle speed in accordance with the speed setpoint. The control system observes the
speed difference between the current speed and speed setpoint and either decreases or increases
the throttle actuator position to counteract the speed differential. The algorithm to accomplish this
is called the control law.

In all of the above systems, signals regarding overall engine and vehicle state (e.g., engine on/off,
brake pedal on/off) are also considered in each control subsystem. These signals are used to en-
sure proper operation of each subsystem. For example, if the brake pedal is depressed, the cruise
control system should disengage (or not become active) and the traction control system should not
become active. There are also outputs from each system used as feedback to the driver that each
system is on. These outputs can be indicating lights or some form of intelligent operator display
(e.g., LCD panel).

The systems described above are illustrated in Figure 1.

 SOFTWARE ENGINEERING INSTITUTE | 15

Engine status

Operator buttons

Wheel motion

Electronic control module

Operator display

Throttle actuator

Vehicle sensors

Brake pedal

Brake actuator

Engine status

Operator buttons

Wheel motion

Electronic control module

Operator display

Throttle actuator

Vehicle sensors

Brake pedal

Brake actuator

Figure 1: Components of a Number of Vehicle-Control Systems

On the left side of Figure 1 are representations of the different inputs that feed a controller (or
controllers). The right side shows the output devices that receive control information or status
information for display purposes. For modeling, a context diagram is needed to show the system
components and their associated interactions (i.e., the structure of the system). In this particular
case, we are interested in the signal processing performed by the system and the flow of the con-
trol and status information. Figure 1 can be transformed using the previous descriptions and repre-
sented as a context diagram using the AADL graphical notation. The AADL graphical notation is
proposed for this purpose because it can adequately represent the systems and components at a
high level and convey some information about component behavior, variable definition, and flow
for purposes of analysis. The intent of this diagram is to show the model components and external
interfaces that map directly to component declarations within the AADL textual model. The
AADL has the capability to model systems and components of a hierarchical structure to what-
ever level of detail is necessary to evaluate various aspects of system performance, such as end-
to-end latency and redundancy. The AADL “context” diagram is shown in Figure 2.

This top-level model makes use of the AADL system (e.g., traction control system), device (e.g.,
engine), and port group constructs. At this level of abstraction, we know that data provided by the
physical components will be going to each of the various application components. Two modeling
decisions have been made at this point:
1. show the physical components as devices

2. notationally bundle the data provided by each physical component as a port group (the spe-
cific data of interest can be separated out later)

16 | CMU/SEI-2007-TR-014

Engine

-- Device

Legend-AADL Graphical Symbols

-- System

-- Port group

Brake pedal

Wheel Rotation
Sensor

Vehicle State
Sensors

User Input

Traction
Control
System

Brake
Actuators (4)

Stability
Control
System

Antilock
Brakes
System

Cruise
Control
System Display

Throttle
Actuator

EngineEngine

-- Device

Legend-AADL Graphical Symbols

-- System

-- Port group

Brake pedalBrake pedal

Wheel Rotation
Sensor

Wheel Rotation
Sensor

Wheel Rotation
Sensor

Wheel Rotation
Sensor

Vehicle State
Sensors

Vehicle State
Sensors

User Input

Traction
Control
System

Traction
Control
System

Traction
Control
System

Brake
Actuators (4)

Brake
Actuators (4)

Brake
Actuators (4)

Brake
Actuators (4)

Stability
Control
System

Stability
Control
System

Stability
Control
System

Antilock
Brakes
System

Antilock
Brakes
System

Antilock
Brakes
System

Cruise
Control
System

Cruise
Control
System

Cruise
Control
System DisplayDisplayDisplay

Throttle
Actuator
Throttle
Actuator
Throttle
Actuator
Throttle
Actuator

Figure 2: AADL Context Diagram for a Set of Vehicle Control Systems

The physical components are represented as AADL devices. The device construct is generally
used to model sensors. Sensors can be simple or complex. The device construct allows the inner
workings of the components to be hidden and only exposes the data that is to be communicated.
For example, the wheel information that is required by the various applications is revolutions per
minute (RPM). The wheel-rotation sensor device produces pulses, which over time can be inte-
grated to indicate speed. The wheel-rotation sensor device is described by the following declara-
tion:

device wheel_rotation_sensor
 features
 wheel_signal: port group wheel_sensors_socket_1;
end wheel_rotation_sensor;

For the device wheel_rotation_sensor, we must specify the data that it presents to the
outside world within the features declaration. In this example, the port group concept was
chosen to bundle the variables. Section 3.3.2 shows an alternative modeling approach that de-
clares each variable within the device declaration. The graphical icon for the port group
connector on wheel_rotation_sensor is a semicircle with a ball in it. There is a matching
symbol at the other end of the connecting line. One can think of the semicircle as being the col-
lecting point of all the variables within the device and emanating out of the device as a group. The
variable updates are independent of one another and are not determined until thread assign-
ments are made. Timing relationships are discussed in Section 3.4. The interface outside of the
wheel rotation sensor is declared in the variable list of the wheel_sensors_socket_1 port
group:

port group wheel_sensors_socket_1
 features
 wheel_pulse: in data port bool_type;
end wheel_sensors_socket_1;

Each variable is declared (e.g., wheel_pulse) as well as the direction and the type (data
port or event data port). The variable wheel_pulse could have been represented as an

 SOFTWARE ENGINEERING INSTITUTE | 17

event data port. The type depends on whether the signal is to be sampled or event driven. We are
assuming a sampled system.

We also made use of variable typing that is part of the AADL. Variable typing is used to enforce
type consistency between components. For this example, it is added to the end of the variable port
definition and is of type Boolean. Type checking along connections is performed by the AADL
parser. Type checking is performed on the model where both ends of a connection declaration
must have matching types. When the model is instantiated (discussed in Section 3.5.2), the type
consistency also applies to semantic connections. This checking is satisfied if the declarative
model is consistent.

Additional information relevant to analysis may be added to the wheel model as required. In the
discussion of the traction control system, it is stated that the application would detect wheel slip-
page to better control the vehicle. The wheel device makes the measurements and computations to
provide an indication of slippage. Those details of the computation are not important at this level
of modeling; just the indication of slippage is necessary. Presumably, the wheel device contains
an embedded CPU that performs the computations necessary to produce a wheel slippage value or
event. The wheel device declaration above is modified to reflect the inclusion of slippage infor-
mation.

port group wheel_sensors_socket_1
 features
 wheel_pulse: in data port bool_type;
 wheel_slippage: in data port real_type;
end wheel_sensors_socket_1;

Slippage can be computed as an angular acceleration. At a constant rotational velocity, the angu-
lar acceleration would be zero. When the wheel slips, the angular acceleration would be greater
than zero, indicating some relative degree of slippage, hence the typing of the
wheel_slippage variable as real. For a wheel to be slipping, the angular acceleration would
have to be greater than some predetermined value.

The port group concept is based on the notion that variables are gathered at the external interface
of a component and then split apart at the interface of another component, where they are acted on
internal to that component. The wheel_sensor_socket_1 declaration above illustrates the
gathering. The splitting apart notion is done by using the AADL inverse of construct:

port group wheel_sensors_plug_1
 inverse of wheel_sensors_socket_1
end wheel_sensors_plug_1;

The semantics of inverse mean that the mating connector is declared, the variable names and
associated typing remain the same, and the direction of the data is the inverse of the mating port
group. The direction change is made clear in the next few paragraphs.

The remaining physical components of the automobile-control systems are modeled in the same
way using the device construct. The complete set of device declarations is in the model shown
in Appendix B (beginning on page 63).

18 | CMU/SEI-2007-TR-014

The traction control, stability control, cruise control, and antilock brake applications are modeled
using the generic construct system. At this level of detail, the system declaration represents
the application software components and associated connections. The semantics of the system
construct state that the components must be bound to an execution platform. At this point in the
development of the model, decisions have not been made with respect to binding the application
to an execution platform. Each system may be bound to a separate processor, bound to the same
processor, or some combination. Binding decisions can be done at a later time in the modeling
process. Section 3.5.1 discusses model implementation and binding for this example.

As an example, the system declaration of the traction control
application would look like this:

system traction_control_system
 features
 tcs_wheel_input: port group wheel_sensors_plug_1;
 tcs_engine_input port group engine_plug_1; :
 tcs_user_input: port group user_console_plug_1;

 tcs_throttle_output: port group throttle_actuator_plug_1;
 tcs_display: port group user_display_plug_1;

end traction_control_system;

 tcs_brake_output: port group brake_actuator_plug_1;

Note that the input variables used in the traction control system come from different devices, and,
similarly, the outputs go to different devices (Figure 2). As an aid to understanding the connec-
tivity among model components, directional hints are used in the naming of the port group vari-
ables. In this particular case, the name (e.g., tcs_wheel_input) contains the direction (input) that
can be associated with the component being referenced. Declarations for the cruise control, stabil-
ity control, and antilock brake systems are composed in a similar fashion and are shown in Ap-
pendix B.

Building on the above discussion regarding port groups, the variables in the engine device are
used in the traction control system and bundling of the variables is accomplished using the port
group:

port group engine_socket_1
 features
 engine_state: out data port - engine is off (0) or on (1) ;-
 engine_temp_1: out data port;
 throttle_position: out data port;
end engine_socket_1;

The engine_socket_1 port group declares three variables: (1) engine_state, (2)
engine_temp_1, and (3) throttle_position. This grouping of ports allows the number
of connection declarations to be reduced, especially at higher levels of a system when a number of
ports from one subcomponent and its contained subcomponents must be connected to ports in
another subcomponent and its contained subcomponents. The semantics of the port group
construct state that the variables are available to the component but do not mean that they are used
by the component. Components may or may not connect to the variable within a port group. The
port group construct does not impose any timing-related information with respect to each
variable within the port group.

 SOFTWARE ENGINEERING INSTITUTE | 19

Timing semantics for data communication at each port are determined by the corresponding
thread model and processor binding, and data is valid when the thread execution is
complete. There are two communication mechanisms that can be used: immediate and delayed.
Immediate communication occurs among threads that execute within the same partition. The
data is communicated at the end of thread execution and is immediately available to be used
by the next thread, as indicated in the specified connection.

Delayed communication occurs across partitions. Data in the source partition is valid only at the
end of the execution of the source partition. When the next (destination) partition begins execu-
tion, any data that is shown to be connected to the destination partition will be valid at the time of
execution.

The engine socket port group consists of three outputs (engine_state, engine_temp, and
throttle_position) that will be connected to some other component. The component to
which the port group is being connected will have, as part of its interface, inputs that corre-
spond to the matching outputs from the engine. To ensure this matching of the number and names
of signals, the inverse of reserved word would be used to represent the complement to the
referenced port group type. An example of the use of port group inverse declaration
is shown below:

port group engine_plug_1
inverse of engine_socket_1
end engine_plug_1;

A port group declaration named engine_plug_1 is made to indicate that it contains a comple-
ment of the input and output ports associated with engine_socket_1. It should be noted that
port groups support signal “fan-out” where data from an out data (or event) port can feed an
infinite number of corresponding in data ports. The notion of “fan-in” does not make sense for
data but does work for event data, because event data is queued.

Alternatively, we could have represented each data port declaration individually within the fea-
tures section of each system. Graphically, each data port would have a connection from its output
to each of its corresponding inputs. For example, the declaration of the traction control system
would be shown as follows:

system traction_control_system
 features
 tcs_wheel_pulse: in data port;
 tcs_engine_on: in data port;
 tcs_on_off: in data port;

 tcs_throttle_output: out data port;
 tcs_on_off_indicator: out data port;
 tcs_brake_output: out data port;
end traction_control_system;

The actual connections are made when the model is instantiated. This model-building approach is
discussed in Section 3.5.

20 | CMU/SEI-2007-TR-014

Output device declarations must be made to complete the example. The device construct is used
to model the displays and actuators because of the potential complexity of the components. For
example, the operator display would most likely be an embedded controller, but for modeling
purposes, we are interested only in what data it receives (and eventually displays), not the internal
details of how it actually accomplishes the operation. The device declaration for the operator dis-
play is shown below:

device display
 features
 tc_display_input_signals: port group
tc_user_display_socket_1;
 cc_display_input_signals: port group
cc_user_display_socket_1;
 sc_display_input_signals: port group
sc_user_display_socket_1;
 abs_display_input_signals: port group
abs_user_display_socket_1;
end display;

The variables that the display actually receives are contained in the port group declaration
that the display declaration refers to, specifically port groups tc, cc, sc, and abs user display
sockets. The port group tc_user_display_socket_1 is shown below as an example.

port group tc_user_display_socket_1
 features
 tc_state: out data port;
end tc_user_display_socket_1;

The variable tc_state contains status information of the traction control system, namely that it
is either on or off. For the operator display, the first three data ports represent the state of their
respective system being on or off. For the antilock brake system, fault information is displayed.
All four inputs are Boolean signals. The remaining devices are similar in their declarations and
associated port group, and they are shown in Appendix B (beginning on page 63).

This example shows the use of the device, system, and port group constructs of the
AADL. As shown in Figure 2 on page 17, it also illustrates the use of the graphical AADL nota-
tion to construct a context diagram from which the component declarations were derived. The
context diagram shows the logical connections of the data and the data flow from the device
through the application to the actuator (an analysis theme that is elaborated on later in Section
3.4). AADL diagrams at this level serve to document devices, application software, and the struc-
tural data relations between the devices and application software. Analyses that could ensue from
this level of detail include correct variable mapping, specification-based computational latency of
signal flow, system interdependency, and possible variable access ordering (i.e., two or more ap-
plications writing to the same device). Some of these analyses are described in detail in the fol-
lowing sections.

At this point in the development of the top-level model, all of the component types and their data
have been defined. Figure 2 (page 17) shows the data flow from left to right. This figure shows
several behavioral facts about the system as modeled in the AADL. For example, the data flows
from the devices on the left, through some application software, to devices on the right. Data ports

 SOFTWARE ENGINEERING INSTITUTE | 21

are named with variable names of interest that can eventually be mapped to the source text. Data
ports represent external data interfaces of the component. In the declarative model, the data is
typed. No decisions have been made about how the data will be realized (e.g., shared variable,
register, local) or about the access methods (e.g., open, mutex, asynchronous, synchronous).
These details will be discussed when an actual implementation model is developed and compo-
nent connection semantics are considered. To represent this detail, a model of the connection and
associated threads is developed. The detailed implementation model is discussed in Section 3.5.
When the software component (i.e., device or system) is eventually mapped onto an execution
platform, the values associated with the output ports will be available at the end of the execution
time slot of the thread. In actuality, the task may complete execution before the deadline, but the
data will not be presented until the deadline, assuming no preemption.

The four application software systems process data independently of one another. This independ-
ence suggests some degree of concurrency among all of the applications, which has ramifications
with respect to threading, scheduling, and binding to an execution platform. Decisions concerning
these implementation aspects can be delayed until late in the modeling and system development
process. These decisions are discussed later in this example to show how the base model can be
expanded to include the precise detail needed for system investigation.

Another set of observations can be made with respect to the output devices. The same control
variable is acted on by separate applications. The brake actuators receive brake signals from the
traction control system, the stability control system, and the antilock brake system. The throttle
actuator receives throttle position data from the cruise control system and from the stability con-
trol system, which raises questions about the effects of possible conflicting data to the device. For
example, the cruise control may be producing throttle positions corresponding to an increase of
speed, while the stability control system may be calling for a decrease in speed. From a control
engineer’s perspective, each individual control loop would be designed, developed, and imple-
mented as if it were the only application communicating with the devices. This assumption is rea-
sonable when developing control systems. Furthermore, the control engineer may assume that the
control system will be running on a dedicated processor and that this application will have total
control and access to all resources. Although this assumption is commonly made, it may not re-
flect reality. From a cost perspective, it may be necessary to locate all the applications on a single
processor or split the applications between two processors. While this decision does not affect the
design of the control laws (i.e., the sampling frequency and stability should remain the same), it
may cause errors in the operation of the integrated system due to the effects of concurrency and
scheduling decisions.

Investigating the possible architectures that arise when application software is integrated onto a
single processor or spread across multiple processors is outside the scope of this report. It is a
scenario that is well suited for modeling and analyzing designs with the AADL. This example
underscores the ways in which analysis using the AADL can reveal problems of this type that
manifest themselves during integration.

22 | CMU/SEI-2007-TR-014

3.1.1 Perspectives on Data Flow

The second step of problem analysis is to determine the perspective for analysis.

Embedded real-time systems that contain software controllers have data flow and timing issues
that are viewed in one way by the control engineer (e.g., consistent sampling rate, minimal/no
resource contention) and in a slightly different way by the software system engineer (e.g., multi-
ple tasks and scheduling issues, resource utilization).

Figure 2 on page 17 showed an abstraction of the vehicle-control system from a systems engi-
neer’s viewpoint and captured the essence of the solution. Figure 3 shows the control system from
a control engineer’s viewpoint.

Inputs

Outputs
PlantController

Inputs

Outputs
PlantController

Figure 3: A Control Engineer’s View of a Control System

The actual physical plant is shown on the right side of Figure 3. In our example, the physical plant
is the automobile (e.g., engine or steering) and the control variables of interest (e.g., speed or di-
rection of travel) with their associated actuators (brakes, throttle). On the left side of the figure is
the controller, which is the collection of hardware (and software if it is digital) that acts on the
signals according to some mathematical control law. In the digital domain, sensor signals are gen-
erally sampled at some frequency and outputs are updated at some frequency as well (usually the
same frequency as the sampling frequency). Software engineers do not necessarily view the prob-
lem in this way. Their perspective is one of data flow where input data flows through a number of
computational components and is then output to some device eventually. The notion of time is
also perceived differently. The control engineer thinks in terms of sampling frequency, which de-
termines signal fidelity and the design of the control laws. The software engineer is more con-
cerned with having data processed through the system at some rate that is realized by thread
scheduling during execution. These two views, which are important for analysis, can be united
during system specification by defining flow specifications for various control loops. The flow-
specification declaration in a component type specifies an externally visible flow through a com-
ponent’s ports or port groups. This flow specification can be used to capture and model the con-
trol system’s frequency (often referred to as sampling time), and it provides a common characteri-
zation by which both the software engineer and the control engineer can validate the system’s
performance.

The above discussion points out how different domain experts view an embedded application of
this type and how the AADL can address the concerns of each domain expert by the use of flow
specifications. We will use these multiple views or concerns as the motivation to determine the
analysis view in this example. The second step for problem analysis is to determine the analysis
view, which in this case will be to determine latency values for end-to-end signal flows. Referring

 SOFTWARE ENGINEERING INSTITUTE | 23

to Figure 2 on page 17, a number of signal flow paths and associated latencies are of concern, and
those latencies are specified as part of the requirements. For example, user input via a push-button
to the visual indication on the display or an engine RPM (revolutions per minute) signal to the
throttle actuator would be specified in the requirements. For this specific example, we are inter-
ested in the latency of the brake pedal depression to the throttle actuator. We want a model that
will allow us to specify the latency requirement, so that when the brake is applied while the cruise
control is operating, the corresponding signal should reach the throttle actuator in a specified
number of milliseconds. Furthermore, we want to be able to specify (from requirements) and vali-
date (with actual execution times) the latencies of each of the individual components within the
analysis. Section 3.2 describes the details of how the system components work individually and
collectively, how the component and system specifications are captured in a model, and how the
specifications can be validated through analysis. Section 3.5 addresses how the design of the ap-
plication software architecture is performed. Performing a specification-based flow analysis
within the AADL—in which the end-to-end flow is specified and then decomposed through each
of the components in the system’s flow path—is discussed in Section 3.4.

3.2 MODELING THE CRUISE CONTROL SYSTEM

This section builds on the structural representation capability of the AADL by describing the de-
tails of one of the application subsystems (e.g., traction control or cruise control) that were dis-
cussed in Section 3.1. The cruise control application subsystem is modeled showing the use of
other AADL constructs and, at the same time, showing how state information is modeled via data
variables. Later sections build on this architectural representation to model data flows and to set
the basis for latency analysis by using end-to-end flows (specified and actual).

The modeling perspective is determined by deciding what question(s) must be answered through
analysis and was set forth in Section 3.1.1. The fidelity of an analysis model to be generated is
driven by the specific issues we want to investigate. A model should only be as detailed as neces-
sary to answer the driving questions. This guideline will be followed throughout the development
of the models that are presented in the remainder of this report. To that end, some component in-
stantiations are exactly like their declarative part, and some may be changed depending on the
desired analysis.

To develop a model with the right amount of fidelity, it is necessary to identify and understand the
functionality of the components. Developing an understanding of system functionality is Step 3 of
the modeling approach.

3.2.1 Understanding System Functionality

The basic functionality of each control system was discussed in Section 3.1. This section de-
scribes the details of the cruise control functionality. The purpose of the cruise control system is
to maintain the speed of a vehicle, over varying terrain, when it is engaged by the driver. When
the brake is applied, the system must relinquish speed control until told to resume. The vehicle
must also steadily increase or decrease the current speed when directed to do so by the driver (via

24 | CMU/SEI-2007-TR-014

holding the increase speed or decrease speed buttons, or by depressing/releasing the accelerator).
Releasing the buttons causes the cruise control system to control to the last speed setpoint.

Figure 4 represents the block diagram of the input-output signals for such a system. This represen-
tation has been adapted from the cruise control operation as described by Shaw [Shaw 95]. This
graphical representation is typical of how functional blocks are represented in Simulink. The
named signals (e.g., cc_system_on_off, resume) represent variable names that are used in
code and are carried over into the AADL models as port variable names, which are described in
Section 3.3.2.

brake_status

cruise_control

resume

increase_speed

decrease_speed

set_speed

engine_status

wheel_pulse

throttle_setting

clock

cc_system on_off

brake_status

cruise_control

resume

increase_speed

decrease_speed

set_speed

engine_status

wheel_pulse

throttle_setting

clock

cc_system on_off

Figure 4: Cruise Control System, Simulink Input-Output Diagram

There are several inputs:
• cc_system on_off

If on, this signal denotes that the cruise control system should acknowledge the inputs by
processing them in the appropriate way.

• engine_status
If on, this signal denotes that the car engine is turned on; the cruise control system is active
only if the engine is on.

• brake_status
This signal is asserted when the brake pedal is depressed; the cruise control system disen-
gages when the brake pedal is depressed.

• resume
This signal resumes the last maintained speed; it is applicable only if the cruise control sys-
tem is on.

• decrease_speed
This signal decreases the maintained speed; it is applicable only if the cruise control system
is on.

 SOFTWARE ENGINEERING INSTITUTE | 25

• increase_speed
This signal increases the maintained speed; it is applicable only if the cruise control system
is on.

• set_speed
When depressed, the current speed should be maintained.

• wheel_pulse
A pulse is sent for every revolution of the wheel.

• clock
This signal sends a timing pulse (e.g., every 10 milliseconds).

There is one output from the system:
• throttle_setting

This signal is the positional value for the throttle setting.

Solutions to the cruise control design can be accomplished in a number of different ways, includ-
ing the data-flow approach [Wang 89]; the procedure-call approach, which is based on
Ward/Mellor and Boeing/Hatley structured methods techniques for modeling real-time systems
[Ward 87]; the object-oriented programming approach [Booch 86, Ward 84]; the state-based ap-
proach [Smith 88]; the data structured systems-development approach [Higgins 87]; and the ap-
proach emphasizing feedback-control models [Shaw 95]. Each of these techniques represents a
different approach to viewing and solving the problem. For example, in the object-oriented ap-
proach, each component is viewed as an object with its own set of methods and data scope; but in
the state-based approach, the system is viewed as a series of states driven by changes of data or
events. It is important to note that the AADL can model the software architecture no matter what
technique is chosen. The artifacts within the AADL model are directly traceable to the implemen-
tation language or technique.

Deciding which design methodology should be used to solve real-time control problems is diffi-
cult due to the complexity of interrelated issues. Developing or evaluating the rationale for which
method to use in system design is not the purpose of this report. The focus here is to show how
the AADL is used once a method is chosen. To that end, we will choose the procedure-call ap-
proach. This approach uses the contents of data variables as an indication of system state. Data
values are updated at some nominal rate, which is generally the conversion time of a sensor or the
compute time of an algorithm. The data is then used at an appropriate time by other components.
Gradually, the control values emanate from the control system and are applied to the actuator. An
interesting phenomenon can occur in systems of this type. The latency of the data can vary from
one computational cycle to another, and it is also affected by scheduling. The mathematics of
sampled data systems in control systems analysis is based on the premise that data sampling is
constant and is maintained in all of the control laws. When a control law is realized in software
implementation, the timing constant can vary and can manifest itself as jitter or as seemingly un-
stable data on displays. The timing variation is typically introduced when the control algorithms
are placed onto a processor that is running multiple tasks according to some scheduling algorithm
(e.g., cyclic executive, rate monotonic, or earliest deadline first). The timing irregularities typi-
cally result from unexpected preemption of a task or a task not running because a required re-
source is not available The AADL can represent data that is time consistent among components

26 | CMU/SEI-2007-TR-014

and can indicate when data may be delayed (time delayed) due to scheduling side effects. This
characteristic of the AADL is detailed in an earlier SEI report [Feiler 04]. In this example, as
shown later, the connections between the data of two components will be represented by immedi-
ate connections. If necessary, when a delayed or previous value of the data is required, it will be
represented as a delayed connection.

An abstract representation of the procedure-call perspective is shown in Figure 5. The rectangular
blocks represent processing software, and the rounded-edge boxes represent data stores.

CV

Throttle_setting

Desired_speed

CDS CTS

System

state

data

Legend

Pipe

Local procedure call

Global data use

brake_status

resume

increase_speed

decrease_speed

set_speed

engine_status

wheel_pulse

clock

cc_system_on_off

CV

Throttle_setting

Desired_speed

CDS CTS CTS

System

state

System

state

data data

Legend

Pipe

Local procedure call

Global data use

brake_status

resume

increase_speed

decrease_speed

set_speed

engine_status

wheel_pulse

clock

cc_system_on_off

Figure 5: Representation of the Cruise Control Procedure Call

Within this cruise control implementation, a transformation from stream input to data that can be
used in the procedure-call architectural style is necessary. A component called “system state” acts
as the main program, scanning (sampling) the input streams and updating the global data in the
shared-data component called “data.” System state also acts as the driver for the cruise control
system. It periodically makes a procedure call to CalculateThrottleSetting (CTS) to calculate new
throttle settings. System state periodically outputs the new throttle setting from the cruise control.
This representation has a slight modification from that described by Shaw [Shaw 95], namely that
the compute velocity (CV) function is explicitly represented.

CalculateThrottleSetting (CTS) and CalculateDesiredSpeed (CDS) are computation components
because they do not maintain state. They provide a result based on function inputs and global
data. Both CalculateThrottleSetting and CalculateDesiredSpeed read and update data via a global
data use connection (shown by dotted lines) to the shared data.

Given the traction control, stability control, antilock brake, and cruise control systems, the engi-
neering objective is to produce a safe and reliable implementation of each system’s functionality.
System cost is also of concern both for the hardware and the software. Analysis of these systems
could begin after composing a set of preliminary requirements. The main issue to address is what
kinds of analysis should be performed. Some pertinent questions that could be asked include the

 SOFTWARE ENGINEERING INSTITUTE | 27

following: What is the robustness of the system given a failure? Can the minimum latency speci-
fied by the control engineers be met? What is the minimum latency of a specific signal propagat-
ing in a system (e.g., application of brakes, wheel rotation)? Given the commonality of variable
usage, can the system be designed to ensure predictable update order and latency of variables?
These questions can be applied to each system individually or to all systems as a whole. For illus-
trative purposes, we will focus on the cruise control operation. The analysis for the cruise control
operation can be similarly applied to the other systems (e.g., traction control or stability control).

Since the purpose of this report is to provide an introduction to using the AADL, and one of the
strengths of the AADL is modeling performance-related issues, we will look at determining signal
latency from sensors to actuators (specifically, the end-to-end latency of brake actuation until the
throttle actuator signal goes to zero). Another issue to investigate is logical consistency of cruise
control states; that issue will be addressed as an extension of the base model that will be devel-
oped.

3.3 MAPPING TO THE AADL

Having established the components and their functionality, we can begin Step 4 of the problem
analysis and model development by embodying the component functionality and analysis con-
cerns as AADL components, connections, and flows. Model development using the AADL can be
done using a top-down, a bottom-up, or a combination approach. We will develop this example by
first composing a top view of the system using the AADL and then decomposing the system into
its constituent parts and developing the AADL declarations for each component. The software-
component side of the model will then be connected by specifying the implementation. A similar
approach will be taken for the hardware. The software will then be bound to the hardware to illus-
trate the use of component binding and composition of a system composed of both hardware and
software components.

3.3.1 Representing the System Hierarchy

The top-level view of the cruise control and its input and output components is shown in Figure 6.

28 | CMU/SEI-2007-TR-014

User Input

Throttle
Actuator

Cruise
Control
System

Engine

Wheel
Rotation

Display
Brake
Pedal

User Input

Throttle
Actuator
Throttle
Actuator

Cruise
Control
System

Engine

Wheel
Rotation

DisplayDisplay
Brake
Pedal

Figure 6: Context Diagram of the Cruise Control System

This figure is based on Figure 2 (on page 17), showing only the cruise control and related compo-
nents. The user input device contains the cruise control on, speed up, speed down, resume, and set
speed buttons. We will simplify the above example by eliminating the display functionality,
which is shown as a dotted line. The component declarations of the simplified model are devel-
oped in the following section.

3.3.2 Modeling System Components

This section describes the declarative statements of the model. In the implementation section of
the model, the devices are connected to the application. (The connection naming and syntax are
discussed in Section 3.5.2.) In addition, this section
• discusses the abstract modeling of system components with the device construct

• shows how refinements can be made to the model via the property construct to more pre-
cisely capture key data elements that can be used in the application

• illustrates the use of the latency property to compute an end-to-end flow latency from the
brake pedal, through the application software and the throttle_actutor device

• models the cruise control application software by using the system construct

At some point early in the modeling phase, a decision must be made regarding the modeling of
events or data flow within components. In general, this decision is based on the analysis perspec-
tive used. The modeling of events and/or data may be used within the same model (i.e., latency
through a component may be different based upon the modal configuration within the compo-
nent).

The context diagram shown in Figure 6 is a good starting point for developing the application
components. We can begin by modeling the sensors and other inputs. The AADL construct
device is generally used to model components such as sensors because it provides a useful ab-
straction of entities that may contain complex hardware such as a CPU and associated software,

 SOFTWARE ENGINEERING INSTITUTE | 29

allowing only the meaningful information (in this case, data and data communication) to be mod-
eled.

For the cruise control example, the device types must be declared first. The graphical representa-
tion of the brake pedal device and associated data port is shown in Figure 7.

Brake
Pedal
Brake
Pedal

Figure 7: Brake Pedal Modeled as an AADL Device and Associated Data Port

As shown in Figure 7, the rectangular box is the symbol for an AADL device. The triangle
represents the data port, which is the device’s interface to the outside world. The correspond-
ing AADL textual model is shown for all of the devices in the cruise control in the following code
segment:

device _pedal brake
 features
 brake_status: out data port bool_type;
 flows

end brake_pedal;

 Flow1: flow source brake_status {Latency => 10 Ms;};

In this example, we are declaring a brake pedal device that has an output data port. The variable
name of that port is brake_status, and the data type is Boolean. We are also designating that
this device is part of a flow specification by the flows reserved word, that it is a flow
source, that the variable for the flow analysis is brake_status, and that the name of the
flow is brake_signal_path_1.

In order to perform latency analysis across a flow path, the latency property must be added to the
flow attribute (e.g., 10 ms). For a device, this latency value represents the time from when the
pedal is depressed to when the associated signal is available at the output port. If the device is
a switch, the latency is the state change time of the switch. Since a device can represent an ab-
straction of something more complicated, the break pedal could contain a processor that
checks for brake pedal state, performs some other processing in sequence (e.g., watchdog timer
functions), and outputs the state on the brake_status port. The latency in this case would be
the time associated with the switch state change and the computation time of the CPU. Details of
flow specifications are contained in Section 3.4. If a more detailed model of the internal operation
of a device is desired, the device can be replaced with a system component that would al-
low modeling of the hardware and software characteristics. For this example, the input/output
(I/O) components details can be adequately modeled using a device. A few of the other devices
are specified in a similar manner below:

device wheel_rotation_sensor
 features

end wheel_rotation_sensor;

 wheel_pulse: out data port;

device throttle_actuator

30 | CMU/SEI-2007-TR-014

 features
 throttle_setting: in data port
{control_properties::actuator_voltage_range => 0.0V .. 5.0V;};
 flows
 Flow1: flow sink throttle_setting {Latency => 20 Ms;};
end throttle_actuator;

The device wheel_rotation_sensor declaration models the wheel rotation by providing
an indication of wheel pulses. The data type is not declared in this particular example to show that
untyped data declarations are supported. This example is also indicative of real-world modeling
scenarios in which a specific data type is not known at the early stages of modeling. This declara-
tion can be refined later in the modeling cycle.

The throttle_actuator model represents an electronic device that meters the fuel into the
engine. The actuator is capable of receiving a 0−5 VDC (volts of direct current) signal that repre-
sents a relationship between input voltage and fuel output (given by the transfer function of the
device). The property construct applies a limit on the minimum and maximum input values
the actuator can experience. The property construct specifies a user-defined property set
and property name. The construct must be syntactically fully qualified (e.g., control_
properties:: actuator_voltage_range), followed by the appropriate expression for
the range (e.g., 0.0V .. 5.0V;), and enclosed in braces. The property name must be de-
clared in the property set declaration, which is discussed below.

The use of properties is very helpful in identifying potential mismatches of data interpreta-
tions. Setpoint data derived by the control law may manipulate data that corresponds to actual
engineering units (e.g., gallons and gallons per unit time). A transformation is needed to scale the
engineering units to corresponding device units (i.e., volts) before it is output. If this step is omit-
ted, the output of the control algorithm is mismatched with the input expectations of the actuator.
Using the property values when modeling will eliminate both data range and unit interface
mismatches.

The throttle_actuator device illustrates the use of AADL user-defined property
sets. Properties provide information about components, features, modes, connec-
tions, and flows. A property has a name, a type, and a value. The property type speci-
fies the set of acceptable values for a property. A property set contains declarations of
property types and property names that may appear in an AADL model. The AADL stan-
dard defines a set of standard properties (called AADL_Properties) that apply to all
AADL models. A user-defined property set specifies additional properties and prop-
erty types that must be named by qualifying them with the property set name. The user-
defined property set for the cruise control example is shown in the AADL code excerpt be-
low:

property set control_properties is
 dc_voltage_units: type units (mV, V=>mV*1000);
 dc_voltage: type aadlreal 0.0V..15.0V units
control_properties::dc_voltage_units;
 actuator_voltage_range: range of control_properties::dc_voltage
applies to (data port);
end control_properties;

 SOFTWARE ENGINEERING INSTITUTE | 31

In the code segment, the property set control_properties names three properties:
(1) dc_voltage, (2) dc_voltage_units, and (3) actuator_voltage_range. The
property dc_voltage_units specifies the type of units and the labels that are applicable in
this particular setting, namely mV and V. Note that the specification of V must be written as V=>
mV*1000; the syntax V=>1000*mV is not valid.

The property dc_voltage specifies the type as aadlreal with a numeric range as well
as an associated unit. The keyword aadlreal is an AADL standard property type. The
dc_voltage property declaration and the actuator_voltage_range declaration must
contain a fully qualified name space of the property value to which it is referring. The name-
space syntax is exemplified by control_properties::dc_voltage_units. The
property name units is found in the control_properties property set and is
applied to dc_voltage_units.

The actuator_voltage_range property uses the AADL reserved term range of to
indicate that the dc_voltage values apply only to data ports. The reserved word all may be
used instead of the property-owner category data port to indicate that the range of
dc_voltages is applied to all of the AADL property-owner categories (e.g., mode, port
group, flow, event port, data port, server subprogram, and connections). The
semantics of properties are extensive, and the reader is referred to the AADL standard and
language introduction documents [SAE 04, Feiler 06a] for complete coverage of this topic.

Added to this device model is a property of the wheel_pulse variable to specify units
(e.g., PPS [pulses per second]) and the minimum and maximum pulse rate (e.g., 0-1000 PPS).
This property illustrates that the property construct can clarify some sensor characteristics
that may be specific to the application or manufacturer. For example, multiple vendors may pro-
vide wheel rotation sensors with different characteristics. The minimum and maximum rates
specified could be used to distinguish what sensor is used in this particular modeling application.

Another reason to explicitly state some sensor characteristics when modeling the sensor is to pro-
vide limit-checking information that can be used by the application. For example, if the actual
value exceeds the known physical limitation of a device, a check could be performed in the model
(and presumably reflected in the actual code), and, if the limit were exceeded, some fault-tolerant
scheme could be invoked.

The throttle_actuator device also contains a flow specification statement, indicating that
it is a flow sink and that the device has latency of 20 ms. Given that the throt-
tle_actuator device is an abstraction of the actual throttle actuator, the mechanism to
carryout the throttle signal could be simple or complex (similar to the brake_pedal abstrac-
tion). The 20 ms value represents the time from when the signal is applied to the input port to
when the output is completed.

32 | CMU/SEI-2007-TR-014

The remaining set of devices—engine, resume button, speed up button, speed down button, and
speed set button—are modeled in a similar manner and are documented in Appendix C beginning
on page 69.

In addition to identifying the external devices, we also must define the application’s software
component (in this example, the cruise control). Software components can be hierarchical, in that
general functionality can be decomposed into smaller functional subsystems. The AADL supports
this hierarchical relationship for many of the modeling objects (e.g., system, mode, port,
port group, and processor). We use the system construct as a generic application soft-
ware component to represent some software functionality, the interface to the external world (via
ports) and information or event flow (via flow statements) from an input port to an output port.
Design decisions about thread realizations, concurrent execution, and space partitioning can be
deferred until later in the design process and can be contained within the same model. Flow la-
tency analysis can be performed with this high-level model, while detailed scheduling can be per-
formed later when thread and processor details are added to the model. Adding the
thread information allows scheduling to be performed by a scheduling analysis plug-in.

Figure 8 shows the AADL graphical representation of a named system with a named in data port
and a named out data port. The system construct was used previously in Section 3.1 to model
each of the four major control applications in an automobile.

system_name
outport_nameinport_name

system_namesystem_name
outport_nameinport_name

Figure 8: AADL System Graphic Symbol with an In Port and Out Port

System component interfaces are characterized by their features, flow specifications, and proper-
ties. This section focuses on ports as features. Ports have names and a direction of flow. In the
case of data ports, they may also have a data type. The port name identifies the port; the keywords
in, out, or in out define the direction. The keyword in specifies that data flows into the sys-
tem, the keyword out indicates that data flows out of the system, and the keyword in out speci-
fies that the data is bidirectional.

We use a top-down decomposition approach to develop the cruise control application. At the top
level, the cruise control application can be modeled as a system component. The system is
graphically represented as shown in Figure 9.

 SOFTWARE ENGINEERING INSTITUTE | 33

brake_status

cruise_control

resume

increase_speed

decrease_speed

set_speed

engine_status

wheel_pulse

throttle_setting

cc_system_on_off

brake_status

cruise_control

resume

increase_speed

decrease_speed

set_speed

engine_status

wheel_pulse

throttle_setting

cc_system_on_off

Figure 9: Cruise Control Represented as an AADL System

The associated textual declaration of the cruise control system component is provided below:

system cruise_control
 features
 cc_system_on_off: in data port;
 engine_status: in data port;
 brake_status: in data port;
 resume: in data port;
 decrease_speed: in data port;
 increase_sp in data port; eed:
 set_speed: in data port;
 wheel_pulse: in data port;
 throttle_setting: out data port;
 flows
 brake_flow_1: flow path brake_status -> throttle_setting;
end cruise_control;

In this example, all ports are represented as data ports. They support unqueued communication of
state data. Data from the sensors flowing to other components can be viewed as a signal stream.
This communication choice has several important characteristics. The stream rate among different
sensors may be different, which means that the port sampling rate must be fast enough so a
change of state will not be missed. Decisions must be made later in the analysis to define what the
rate should be and to determine if it makes sense to group sensors with similar rate characteristics
to possibly achieve better performance. A related data communication issue is that of sending
delta information instead of state information for each sample. The wheel sensor could send an
accumulated pulse count, or it could send a delta pulse count since the last communication time.
This tradeoff affects the communication scheme to be used. If a delta value is lost (e.g., the port is
not read at the appropriate time), the next delta data value is communicated and used in the com-
putation. In computing velocity, this lost value may be masked due to the inertia of the system and
the net effect will be unobservable. However, if the data is used to compute distance, the accumu-
lated distance would be noticeably incorrect.

In this example, the ports were named identically to the data that is expected on each port (i.e.,
port named brake_status is to receive data named brake_status, of type specified
by the device brake_pedal declaration).

34 | CMU/SEI-2007-TR-014

Some observations about data port specifications are worth noting. Looking at the
brake_pedal device specification (Figure 7), note that the device declaration specifies an
out data port of type Boolean. The intent is to connect this out data port to the cor-
responding input port of the cruise control application. Doing this will ensure a data matching
between the data source and the data sink. Looking at the cruise control application dec-
laration discussed above, note that the brake_status in data port does not have a data
type specified. The AADL states that interfaces must be completely specified, including data type.
It is acceptable not to include the data type specification in the declaration. In this case, the inten-
tion is to use the declaration as a template, and the data type would be specified in the implemen-
tation.

When comparing Figure 9 to Figure 5 (see page 27), we see that the clock signal is not shown. We
did not show the clock because the intent of this exercise is to represent the data-flow view of the
system to illustrate flow-path modeling, which can be used to perform subsequent latency compu-
tations. The amount of detail represented thus far is sufficient to meet the intended analysis. The
clock represents the sampling frequency of the system. To drive the model to more detail, one
would model a thread (e.g., sample_thread_10hz) with a periodic dispatch protocol and
with a dispatch frequency of 10 ms.

Alternatively, one could model the clock as a device (e.g., clock_10hz) with a
Device_Dispatch_Protocol property specified with the appropriate period. The clock
device would also contain an out event port connected to the
cruise_control_system (cc_app.impl) via a corresponding in event port that
would trigger a processing thread within the application. Refer to the AADL standard, Sections
5.3 (Threads), 6.4 (Devices), and 8.1 (Ports) for details regarding event utilization and execution
properties [SAE 04].

The cruise control system declaration also contains a flow path specification indicating that a
named flow path, brake_flow1, begins at the input port brake_status and ends at
the port throttle_setting. The declared flow path name will be used again to model
the cruise control implementation. Section 3.3.3 describes the individual software application
components contained in cruise control and their flow and latency values. Section 3.4 describes
the construction of the cruise control implementation using those components.

 SOFTWARE ENGINEERING INSTITUTE | 35

3.3.3 Identification and Modeling of Application Components

The top-level view of the cruise control application can now be refined into the computational
subcomponents that make up the details of the cruise control. Recall that the architectural ap-
proach taken in this design is that of procedure calls. As denoted in Figure 5 (on page 27), the
main functional components to be modeled as subprograms are
• in_control: Acquire the inputs and perform state checking.

• compute_velocity: Compute the velocity from wheel pulses.

• compute_desired_speed: Compute the speed based on a control law.

• compute_throttle_setting: Convert the speed to throttle position.

Each software component is represented in Figure 10 using the AADL graphical notation. Each
software component is shown as a system, configured with in ports and out ports. The correspond-
ing data name is adjacent to each port.

throttle_setting

desired_speed

instantaneous_velocity

ok_to_run

previous_Instantaneous_velocity

compute_velocity

brake_status

wheel_pulse

resume

increase_speed

decrease_speed

set_speed

engine_status

compute_
desired_
speed

in_control

compute_
throttle_
setting desired_speed

instantaneous_velocity

ok_to_run

cc_system_on_off

throttle_setting

desired_speed

instantaneous_velocity

ok_to_run

previous_Instantaneous_velocity

compute_velocitycompute_velocity

brake_status

wheel_pulse

resume

increase_speed

decrease_speed

set_speed

engine_status

compute_
desired_
speed

compute_
desired_
speed

in_controlin_control

compute_
throttle_
setting

compute_
throttle_
setting desired_speed

instantaneous_velocity

ok_to_run

cc_system_on_off

Figure 10: Cruise Control Software Components Depicted as AADL System Components in AADL
Graphic Notation

We have abstracted away the details of the functionality and have shown them as computational
entities with input and output ports. The AADL textual type declaration for each of these compo-
nents is shown below:

-- the
system in_control

 in_control software component

 features
 cc_system_on_off: in data port;
 brake_st in data port bool_type; atus:
 resume: in data port;
 decrease_speed: in data port;
 increase_speed: in data port;
 set_speed: in data port;
 engine_status: in data port;
 ok_to_run: out data port;
 flows
 FS1: flow path brake_status -> ok_to_run; {Latency => 30 Ms;};
end in_control;

36 | CMU/SEI-2007-TR-014

-- the compute velocity software component
system compute_velocity
 features
 wheel_pulse: in data port;
 instantaneous_velocity: out data port;
 flows
 FS1: flow path wheel_pulse -> instantaneous_velocity;
end compute_velocity;

-- the compute desired speed software component
system compute_desired_speed
 features
 ok_to_run: in data port;
 instantaneous_velocity: in data port;
 current_instantaneous_velocity: out data port;
 previous_instantaneous_velocity: in data port;
 desired_speed: out data port;
 flows
 FS1: flow path ok_to_run -> desired_speed {Latency => 40 Ms;};

end compute_desired_speed;

 FS2: flow path instantaneous_velocity -> desired_speed;

-- the compute throttle setting software component
system te_throttle_setting compu
 features
 desired_speed: in data port;
 throttle_setting: out data port;
 flows
 FS1: flow path desired_speed -> throttle_setting {Latency => 50
Ms;};
end compute_throttle_setting;

Each cruise control software component has been declared as shown in the preceding code seg-
ment. In the AADL syntax of the in_control software component, the system reserved word
denotes the beginning of the component’s description; the reserved word end marks the end of
that description. The features of this component are named input or output ports (e.g.,
brake_status: in data port). The general format of this feature declaration is
port_name: port_direction port_type. The port name is a necessary label used to
designate the source and destinations of connections (see Section 3.5.2). Port direction specifies
the direction of data flow. The data flow can be in, out, or in out (i.e., there can be incoming and
outgoing communication). In order to compute the latency of a specified flow path, each ap-
plication component declaration that composes the flow path of interest includes a flow speci-
fication and the associated computational latency. This latency is specified as shown in the pre-
ceding code segment, using the latency property of the AADL. The specification of data flow
is used in computing end-to-end latency of specific data of interest (see Section 3.4.1).

The entire cruise control application has been abstracted to encompass the basic computation of
the software components and their interfaces to other components via data ports. This abstraction
represents a complete declarative model of the cruise control application and its associated de-
vices. The complete model is in Appendix C (beginning on page 69).

 SOFTWARE ENGINEERING INSTITUTE | 37

3.4 FLOW ANALYSIS

As discussed earlier in this report, the AADL contains support for modeling data and control
flows as part of architectural descriptions. A flow specifies the flow of data or events through
multiple components along a sequence of components and connections. A component—such as a
thread, process, or system—has a flow specification as part of its component type declaration (i.e.,
an externally visible specification of a flow of data or control from a component’s in ports to its
out ports). The purpose of providing flow specifications is to support many forms of end-to-end
analysis completely through a system or within a subset of components. These end-to-end analy-
ses include end-to-end timing and latency, numerical error propagation, processing sequences of
domain objects, and quality-of-service resource management based on operational modes. To
support such analysis of software components using the AADL, we must specify relevant proper-
ties such as ports, flow specifications, and flow-specific properties. For example, a flow-specific
property could be the expected maximum latency that the data within a component would experi-
ence, as well as the actual latency. The expected maximum flow-specific property, which pre-
sumably would be determined during design, could be checked against the actual implementation
(whose results would be contained in the actual latency) to see if the design assumption was met.

An explicit flow-path declaration indicates that input sent to a component via its in port will
emerge on its out port. This is the case when a component processes input from an in port
and makes the results available as different data on different out ports. Similarly, a component
may merge data from different in ports into a single resulting data element available on an out
port. Multiple flow specifications can be defined involving the same port. For example, data
coming in through an in port is processed and derived data is sent out through two or more dif-
ferent out ports. Naming of flow specifications allows multiple flows to be specified through
the same component, in particular, multiple flows through the same port.

A flow may start within a component (making the component a flow source), and it may end
within the same component (making the component a flow sink). The flow source and flow sink
are also specified for a flow that spans a number of components. A flow-source specification is
indicated with a flow source reserved term, while a flow-sink specification is indicated with a
flow sink reserved word. A flow from an in port to an out port is referred to as a flow
path.

3.4.1 Flow Specifications

End-to-end flows are composed of three entities: a flow specification, a flow declaration, and a
flow implementation. A flow-specification declaration indicates that information logically flows
from one of its incoming ports, parameters, or port groups to one of its outgoing ports, parame-
ters, or port groups. In order to analyze a system for its flow, a flow specification must be written
for the top-most component over which the flow is to be determined. The specification can be
written for any component within the component hierarchy.

For the cruise control system, we want to determine the latency from the brake_status input
port to the throttle_setting output port. The flow of interest is shown in Figure 11.

38 | CMU/SEI-2007-TR-014

brake_status

Cruise_control

resume

increase_speed

decrease_speed

set_speed

engine_status

wheel_pulse

throttle_setting

Brake_flow_1

Wheel_flow_1

cc_system_on_off

brake_status

Cruise_control

resume

increase_speed

decrease_speed

set_speed

engine_status

wheel_pulse

throttle_setting

Brake_flow_1

Wheel_flow_1

cc_system_on_off

Figure 11: Top-Level Flow Specification Using AADL Graphical Notation, Showing Brake and Wheel
Flow Paths

Flow specifications must be named; therefore the flow of interest is Brake_flow_1. There is an-
other flow shown named Wheel_flow_1. A flow-specification declaration in a component type
specifies an externally visible flow through a component’s ports, port groups, or parameters. The
flow can be through a component (a flow path), a flow-originating component (flow
source), or a flow-ending component (flow sink). The syntax of the flow specification for
the cruise control application is shown below:

 flows
 brake_flow_1: flow path brake_status -> throttle_setting;

The general case is of the following form:

flows
 flow_path_name: flow path source_point -> sink_point;

where flow_path_name maps to brake_flow_1 (i.e., the name of the flow path), flow
path is the AADL reserved term, source_point maps to brake_status (the input port
name), and sink_point maps to throttle_setting (the output port name). The flow
statement is contained within the system declaration of the component.

In the AADL, the overall flow must have a declared beginning and end points. The beginning and
end points must be in declarations in the following form:

flows
 flow_specification_name: flow source flow_source_spec;

flows
 flow_specification_name: flow sink flow_sink_spec;

 SOFTWARE ENGINEERING INSTITUTE | 39

For the cruise control application, the brake-pedal device and the throttle-actuator device are the
desired source and sink of the flow analysis. The flow source and sink statements appear in the
device declarations (Section 3.3.2) as follows:

flows
 Flow1: flow source brake_status

flows
 Flow1: flow sink throttle_setting;

Some things to note in the semantics are that the flow specification name is Flow1, the flow-
source specification is the brake-pedal data port named brake_status, and the throttle
actuator data port is named throttle_setting.

As mentioned earlier, specification-based flow analysis is possible at this level of abstraction.
Properties can be associated with a flow specification. The allowed properties include expected
latency, actual latency, expected throughput, and actual throughput. For the brake-flow specifica-
tion above, the syntax to include an expected latency value would take the following form:

 flows
 brake_flow_1: flow path brake_status -> throttle_setting;
 properties
 Expected latency: 200ms;

Specifying the latency at this level clearly conveys the design goal of the system. Each of the de-
clared subsystems (such as CalculateDesiredSpeed [CDS]) would have an associated latency
property in its system declaration. A check could be performed to ensure that the overall flow la-
tency is equal to or greater than the summation of each subsystem’s expected latency property. In
system implementations, each component would have an actual latency property specified, and
this latency property would hold the actual execution time of the subsystem as measured by the
appropriate analysis tool or plug-in. The sum of the actual values would be compared to the over-
all specification to see if the latency requirement was met. A comparison of actual versus ex-
pected latency on a subsystem-by-subsystem basis could also be performed to identify any com-
ponent that exceeds its expected value.

3.4.2 Flow Implementation

A flow specification specifies an externally visible flow through a component’s ports, parameters,
or port groups. A flow-implementation declaration in a component implementation specifies how
a flow specification is realized in the implementation: as a sequence of flows through subsystems
(i.e., subcomponents) along connections from the flow-specification in port to the flow-
specification out port. Since flow is realized when code is executed, processes and threads must
be considered.

Figure 12 shows a graphical notation of the system implementation for the brake-flow path, F2. It
shows the cruise control implementation (named cruise_control.impl) and contains the cruise con-
trol process. Connection names are assigned to the connections linking the port names at the sys-

40 | CMU/SEI-2007-TR-014

tem level to their logical input to the process. For example, the brake-status port is connected to
the cruise control process with connector C2.

brake_status

Cruise_control.impl

resume

increase_speed

decrease_speed

Set_speed

engine_status

wheel_pulse

throttle_setting

Brake flow path F2

Cruise control process
C2

C13

cc_system_on_off

brake_status

Cruise_control.impl

resume

increase_speed

decrease_speed

Set_speed

engine_status

wheel_pulse

throttle_setting

Brake flow path F2

Cruise control process
C2

C13

cc_system_on_off

Figure 12: AADL Graphical Notation of a Flow Path Within a Single Thread in a Process

Connection C13 connects the output variable throttle_setting to an external interface. A
connection will have to be made to connect the variable to the throttle actuator. The throttle actua-
tor will then receive the data from the port named throttle_setting. The flow-path imple-
mentation would be written as F2: brake_status->C2->cruise control proc-
ess.brake flow path F2-> C13->throttle setting. The implementation in the
AADL syntax is discussed in Section 3.5; the flows through the subcomponents are discussed in
Section 3.5.2; and the end-to-end flow syntax and analysis view is discussed in Section 3.5.5.

Systems with multiple flows can be modeled as shown in Figure 13. This figure depicts a system
implementation, my_system.impl, containing two processes, P1 and P2, that contribute to imple-
menting a flow specification, F1 (not shown in Figure 13). The flow path, F1, is realized in the
implementation section of the model, and would be written as F1: port_1->C1->p1.F5-
>C2->p2.F7->C3->port_3. The implementation details for our flow example is described
in Section 3.5.5

Process p1

Process p2

Flow path F5

Flow path F7

Port_1

Port_3

C1

C2

C3

Port_2

my_system.impl

Process p1

Process p2

Flow path F5

Flow path F7

Port_1

Port_3

C1

C2

C3

Port_2

my_system.impl

 SOFTWARE ENGINEERING INSTITUTE | 41

Figure 13: Generic Representation of a Flow Implementation through Two Processes

3.5 DEVELOPING THE SYSTEM IMPLEMENTATION

At this point in the report, a top-level model of the cruise control application has been developed.
By subsequently decomposing it into its subsystems and forming declarative models of those sys-
tems, we have illustrated the hierarchical modeling approach using the AADL. Connections
among the systems have been shown graphically to illustrate data-flow intent, but modeling of
those connections has not been performed. System flows have been defined, and a specification-
based analysis approach has been discussed. In this section, we complete the model by showing
how binding to hardware occurs and, subsequently, how system implementations are modeled
based on the declarations, how connections are made for a specific implementation, and how flow
implementations can be specified to illustrate a complete flow analysis.

3.5.1 Binding to a Computing Platform

A powerful characteristic of the AADL is its ability to model hardware components of the target
system. Binding the software components to the associated hardware components allows the
modeler to specify and evaluate the interactive effects of the complete system. For example,
evaluating system software on a uniprocessor system versus a distributed parallel processor sys-
tem could provide speed-up numbers for comparative evaluation. Another advantage of this mod-
eling approach is the ability to test and evaluate the system for problems that occur due to concur-
rency (e.g., access order to variables, deadlocks) that could surface and are generally not exposed
until actual integration and testing are performed.

Specifying a computing processor and associated components can generally be done anytime dur-
ing the modeling effort. Using the AADL, software applications can be mapped onto any number
of processors. Depending on the type of the analysis, processors do not have to be declared or
implemented. Since we are performing a flow analysis, a processor type is specified. Doing this
can help ensure that, later in the actual implementation, the execution time will be consistent with
the specified target processor that is acquired.

Multiple processors may also be specified and the application distributed among them. This is
often done to ensure that the desired overall computation time meets the specification. The cruise
control example is small enough to fit on a single processor, and that is how it is implemented. As
more automotive subsystems are modeled, it may be necessary to investigate their application to a
uniprocessor or distributed processors to decrease overall computation time.

As in the case of software-component modeling, different system views can be developed and
evaluated. The scope and the degree of the abstraction for the hardware-runtime platform are dic-
tated by the amount of detail desired for analysis. At a very general level, declaring the processor,
memory, and bus with minimal characteristics is sufficient. Only the features that would support
the analysis would have to be declared. For example, specifying the total amount of physical
memory and the amount in each partition would be sufficient to check if each software subsystem

42 | CMU/SEI-2007-TR-014

would fit into each partition (i.e., program footprint budget). Similarly, memory speed could be
declared, which would aid in analyzing actual runtime performance.

Once a processor and memory have been declared, they must be connected by a bus. Declaring a
bus type of, for example, PCI (Peripheral Component Interconnect) or VME (Virtual Machine
Environment) encompasses the protocol and speed characteristics defined by each of those stan-
dards. Custom bus configuration can also be developed and modeled. One example is a “PCI-2”
bus that would embody the current PCI protocol but with increased speed. This type of modeling
could be used to evaluate end-to-end latency with systems using input/output (I/O) devices that
are attached to either the slower or faster bus.

For the cruise control example, a relatively simple hardware platform will be declared, namely a
uniprocessor system composed of a Pentium class CPU, a PCI bus, and 256 megabytes of Syn-
chronous Dynamic Random Access Memory (SDRAM), which is typical of many embedded sys-
tem applications.

The general syntax for a processor declaration is shown below:

processor processor_name
 features

end processor_name;

 controller_cpu: requires bus access bus_name;

The processor_name can be any user-defined name reflecting the target processor. The fea-
tures section of the processor declaration may contain references to a required bus access, server
subprogram, or port. A processor component must contain at least one memory component
and must require at least one bus access. The bus access is specified in the declaration
(bus_name), whereas the memory is specified within the implementation and is not shown in
the declaration template above.

A number of standard properties can be specified within an implementation (or within a declara-
tion). These include source_language, source_code_size, source_data_size,
thread_limit, and scheduling_protocol. The user can make the processor model
as detailed as necessary. Deciding whether or not to specify the properties for the compo-
nent type or implementation depends on the modeler’s decision of what is the basic set of prop-
erties that each component will need as part of a base configuration.

For the cruise control example, the processor declaration is shown below:

processor PENTIUM
 features
 controller_cpu: requires bus access PC104_ISA_16BIT;
end PENTIUM;

The only necessary specification is requires bus access.

The general syntax for the bus component declaration is provided below:

 SOFTWARE ENGINEERING INSTITUTE | 43

bus ; bus_name
 features
end bus_name;

The bus-declaration features can contain a requires bus access clause and flow specifica-
tion. The bus implementation can contain a number of predeclared AADL properties that
include allowed_connection_protocol, allowed_access_protocol, and al-
lowed_message_size. These properties are useful for ensuring consistency among enti-
ties that would connect to the bus. For example, devices that communicate via TCP/IP could be
connected only to buses that support TCP/IP.

The declaration of the bus for the cruise control is shown below:

-- hardware platform declaration
bus PC104_ISA_16BIT
end PC104_ISA_16BIT;

The memory declaration below shows how the bus declaration is used. The bus that the mem-
ory connects to is the 16-bit Industry Standard Architecture (ISA) standard bus, contained within
a PC104 form factor.

memory SDRAM
 features

end SDRAM;

 controller_memory: requires bus access PC104_ISA_16BIT;

To complete the hardware-component declarations, a system component must be declared that
will eventually hold the hardware components. This declaration is accomplished by the following
AADL syntax:

system cc_computer
end cc_computer;

This declaration is not quite correct as it stands. Recall that we have a number of devices that
must be connected to the computer. The AADL states that, in order to use devices, the executing
processor must be connected to a device via a bus. To effect this connection, a statement must be
added to this declaration indicating that the system provides bus access. This connection is ac-
complished in the following example:

system cc_computer
-- a declaration for cc_computer to be composed of processor, memory,
-- and bus in its implementation
-- Needs to provide bus access so the devices in cc_application can
-- communicate with cpu
-- Devices need to be attached to a bus.
 features
 device_bus: provides bus access PC104_ISA_16BIT;
end cc_computer;

44 | CMU/SEI-2007-TR-014

Since we are assembling the software components of the cruise control into a system, we must
also declare a component that contains those components. This is accomplished by the following
declaration:

system cc_app
end cc_app;

This declaration is not quite correct either for the same reason discussed above for the
cc_computer component. The only difference in this declaration is that we must use the re-
quires bus access reserved term, as shown below.

system p cc_ap
 features
 device_bus: requires bus access PC104_ISA_16BIT;
end cc_app;

This declaration indicates that the cc_app system requires access to a bus of type
PC104_ISA_16BIT. The resolution of the device_bus named in each of the declarations
will be addressed in Section 3.5.3.

3.5.2 Component Connections

At this point, all of the components necessary for analyzing the model for end-to-end latency have
been declared. The components now have to be connected to provide the data-flow paths. A con-
nection is a linkage that represents communication of data and control between components. The
AADL supports three types of connections: port connections, parameter connections, and access
connections.
• Port connections represent the transfer of data and control between two concurrently execut-

ing components (i.e., between two threads or between a thread and a processor or device).

• Parameter connections represent the flow of data through the parameters of a sequence of
subprogram calls (i.e., between units of sequential execution within a thread).

• Access connections represent access to shared data components by concurrently executing
threads or by subprograms executing within a thread. They also represent communications
between processors, memory, and devices by accessing a shared bus.

Parameter connections represent the flow of data between the parameters of a sequence of sub-
program calls within a thread of execution. Parameter connections may be declared as follows:

• from an in data or event data port, or an in out data or event data port
of the thread containing a subprogram (or subcomponent) call

• from an in parameter or in out parameter of the containing subprogram to a
subprogram call’s in or in out parameter

• from a subprogram call’s out or in out parameter to an out or in out pa-
rameter of the containing subprogram call’s in or in out parameter of the con-
taining thread’s out, in out data, or event data port

 SOFTWARE ENGINEERING INSTITUTE | 45

In other words, the parameter-connection declarations follow the containment hierarchy of sub-
program calls inserted in other subprograms.

For parameter connections, data transfer occurs at the time of the subprogram call and call return.
In the case of subprogram calls to a server subprogram in other threads, the data is first transferred
to a local proxy and from there passed to the remote subprogram.

The rules for component connections are that (1) out ports must be connected to in ports (or in
out ports) and they must be of the same type and that (2) components connected at the same
level of the hierarchy must follow the hierarchy. The architecture of the fully connected system is
shown graphically in Figure 14.

throttle
actuator

speed_up
_button

resume
button

Throttle_setting

engine_state

in_control

desired_speed

compute_

desired_

speed

compute_

throttle_

setting

brake_pedal

set_speed_
button

wheel_rotation_
sensor

instantaneous_velocitycompute_velocity

Ok_to_run
speed_dn_

button

previous_Instantaneous_velocity

brake_status Cruise_control -thread

Cruise_control -process

C13

C10

C9

C27

C26

C25

C24

C23

C22

C28

C12

C11

cruise_control
_button

C21

C1

C2

C3

C4
C5

C6

C7

C8

C29

throttle
actuator

speed_up
_button

resume
button

Throttle_setting

engine_state

in_control

desired_speed

compute_

desired_

speed

compute_

throttle_

setting

brake_pedal

set_speed_
button

wheel_rotation_
sensor

instantaneous_velocitycompute_velocity

Ok_to_run
speed_dn_

button

previous_Instantaneous_velocity

brake_status Cruise_control -thread

Cruise_control -process

C13

C10

C9

C27

C26

C25

C24

C23

C22

C28

C12

C11

cruise_control
_button

C21

C1

C2

C3

C4
C5

C6

C7

C8

C29

Figure 14: An Application Software Component View of the Cruise Control Showing All the Device and
Component Connections.

Assembling the system graphically helps when writing the textual representation. The assembly
(or connection) of the components can occur only in an implementation of the declared compo-
nents. The AADL system implementation reserved term is used to compose the system
instance. The general syntax is shown below:

system implementation implementation_name.impl
 subcomponents
 subcomponent_identifier_1: system subcomponent_name_1;
 subcomponent_identifier_2: system subcomponent_name_2;

:
 subcomponent_identifier_n: system subcomponent_name_n;

 connections
connection_identifier_1: data port port_name ->
component_name_1.port_name;
connection_identifier_2: data port port_name ->
component_name_2.port_name;
:
:

46 | CMU/SEI-2007-TR-014

connection_identifier_n: data port port_name ->
component_name_n.port_name;

 flows
flow_path_name: flow path flow_source_name -> connection_1-
>component_1.FS1->connection_2->component_2.FS1-> connection_3-
>component_3.FS1->connection_4->flow_sink_name;

end implementation_name.impl;

The system implementation lists all of the subcomponents, connections, and
flows (if necessary) that are to be contained for a specific implementation. Within the imple-
mentation, each applicable component previously declared for the analysis must be listed (sub-
component_name) and named with an implementation name (subcomponent_iden-
tifier).

The data-flow connections are implemented within the connections section. Connections are
named to provide a reference (connection_identifier). The connections’ implementa-
tions specify the path of data from a specified port (port_name) to the next entity contained in
the path. This entity is specified by identifying the component name and its associated port name
(.port_name).

Since a flow analysis of this example is desired, the flow section must be included within the im-
plementation. The flow implementation is named flow_path_name, which is a unique name
for this particular implementation. The flow path contains an enumerated string that begins with
the source; it continues with the named connections, the next component within the path, and the
component’s associated incoming port name into which the data flows; and it ends with the flow
sink. This flow path specifies in an unambiguous way the entire data path for analysis. If a system
contains other systems (e.g., in a hierarchical fashion), each of them must have a flow specifica-
tion, and each connection and port through each level traversed by the flow must be enumerated
in the implementation.

For this specific example, the system implementation for the cruise control application is as fol-
lows:

system implementation cruise_control.impl
-- List the declared components that comprise this implementation
 subcomponents
 I_C: system in_control;
 C_V: system compute_velocity;
 C_D_S: system compute_desired_speed;
 C_T_S: system compute_throttle_setting;
-- make the connections among the components as desired
 C1: data port cc_system_on_off -> I_C.cc_system_on_off;
 C2: data port brake_status -> I_C.brake_status;
 C3: data port engine_status -> I_C.engine_status;
 C4: data port resume -> I_C.resume;
 C5: data port decrease_speed -> I_C.decrease_speed;
 C6: data port increase_speed -> I_C.increase_speed;
 C7: data port set_speed -> I_C.set_speed;
 C8: data port wheel_pulse -> C_V.wheel_pulse;

 SOFTWARE ENGINEERING INSTITUTE | 47

 C9: data port I_C.ok_to_run -> C_D_S.ok_to_run;
 C10: data port C_V.instantaneous_velocity ->
C_D_S.instantaneous_velocity;
 C11: data port C_D_S.current_instantaneous_velocity ->
C_D_S.previous_instantaneous_velocity;
 C12: data port C_D_S.desired_speed -> C_T_S.desired_speed;
 C13: data port C_T_S.throttle_setting -> throttle_setting;
-- the flow, beginning at the input port, through each of the
necessary
-- subcomponents, to the out port
 flows
 brake_flow_1: flow path brake_status -> C2->I_C.FS1->C9-
>C_D_S.FS1-> C12->C_T_S.FS1->C13->throttle_actuator;

end cruise_control.impl;

The cruise control application has been given the extension “.impl” as a name for the specific im-
plementation. The system components that have previously been declared and that are included in
this specific instantiation are listed in the subcomponent section and are named. Other configura-
tions may be made by composing implementations with different names (i.e.,
cruise_control.multi-threaded) and with a different set of declared components and
connections.

3.5.3 Integrating the Application Software and Hardware

At this point in the example, the software components and hardware components have been de-
clared, and the implementation of the application has been developed
(cruise_control.impl). Pictorially, the complete system hierarchy is shown in Figure 15.

48 | CMU/SEI-2007-TR-014

cruise

control system

cc_computercc_application

PENTIUM

compute_desired_speed

compute_throttle_setting

compute_velocity

in_control

cruise_control
cruise_control_button

brake_pedal

throttle_actuator

engine

resume_button

speed_up_button

speed_down_button

set_speed_button

wheel_rotation_sensor

PC104_ISA_BUS
SDRAM

devices processor memorybuscruise_control

cruise

control system

cc_computercc_computercc_applicationcc_application

PENTIUM

compute_desired_speed

compute_throttle_setting

compute_velocity

in_control

cruise_control
cruise_control_button

brake_pedal

throttle_actuator

engine

resume_button

speed_up_button

speed_down_button

set_speed_button

wheel_rotation_sensor

PC104_ISA_BUS
SDRAM

devices processorprocessor memorymemorybuscruise_control

Figure 15: Complete System Hierarchy for the Cruise Control Showing Software Application Compo-
nents and Associated Hardware Components

The left side of Figure 15 shows the devices and system components that have been declared and,
in this particular case, constitute the cc_application system. The right side of the figure shows the
hardware components that have been declared and that constitute cc_computer. To compose the
cc_computer system, the hardware implementation must be specified. The general declaration of
cc_computer, which was developed in Section 3.5.1, is used as the basis of the implementation.
The hardware implementation will be named for a specific (but fictitious) automobile manufac-
turer (in this case, CompanyZ), and the AADL representation is shown below:

system implementation cc_computer.CompanyZ
 subcomponents
 CompanyZ_memory: memory SDRAM;
 CompanyZ_bus: bus PC104_ISA_16BIT;
 CompanyZ_processor: processor PENTIUM;
 connections
 bus access CompanyZ_bus -> CompanyZ_memory.controller_memory;
 bus access CompanyZ_bus -> CompanyZ_processor.controller_cpu;
end cc_computer.CompanyZ;

The implementation consists of the memory, bus, and processor subcomponents and the connec-
tions between the bus access to the memory and processor. This example can be used as a general
template for a uniprocessor system.

 SOFTWARE ENGINEERING INSTITUTE | 49

To complete the model of the entire system (application and hardware platform), the cruise con-
trol system (the top system icon in Figure 15) must be declared and implemented. This declaration
and implementation is accomplished in the following AADL model:

system CompanyZ_cruise_control_system
-- a declaration for Company Z cruise control system to be composed
-- of computer + applications sw in its implementation
end CompanyZ_cruise_control_system;
-- Com osing the comp
system implementation CompanyZ_cruise_control_system.impl

p lete system

 subcomponents
 CompanyZ_computer: system cc_computer.CompanyZ;
 CompanyZ_software: system cc_app.impl;
 connections
 C1: bus access CompanyZ_computer.device_bus ->
CompanyZ_software.device_bus;
end CompanyZ_cruise_control_system.impl;

The system CompanyZ_cruise_control_system is declared. The declaration is left
empty, indicating that no external interfaces are present. The implementation of the complete sys-
tem is modeled using the system implementation reserved term. This specific implemen-
tation is given a name (CompanyZ_cruise_control_system.impl), and the component
implementations of the pieces to be used are enumerated using the subcomponents reserved
word. The component implementations for this system are cc_computer.CompanyZ and
cc_app.impl.

3.5.4 Connecting the Devices to the Bus

To complete the cruise control model, the devices must be connected to the CPU-memory bus.
The AADL specifies that the executing processor that has access to the device must be connected
to the device via a bus. The declarations of cc_app and cc_computer were discussed in Sec-
tion 3.5.1, which cited the use of the following AADL reserved words: requires bus ac-
cess and provides bus access. These declarations, in essence, named an external inter-
face called device_bus, in which access to the CPU-memory bus (PC104_ISA_16BIT) is
made available. The cc_app implementation, which inherits access to the device_bus via the
cc_app declaration, must connect the devices configured in the cc_app implementation to the
hardware implementation. This connection is accomplished by using the AADL connections
reserved word in the system implementation of CompanyZ_cruise_con-
trol_system.impl discussed in Section 3.5.3. The connection is named C1, and using the
reserved word bus access indicates that the devices attached to the named device_bus of
the software are connected to the computer. This connections subclause resolves the de-
vice_bus name that was specified in a specific implementation of CompanyZ_computer
which is composed of the cc_computer.CompanyZ. Similarly, the CompanyZ.software is
composed of the CC_app.CompanyZ.

50 | CMU/SEI-2007-TR-014

3.5.5 Specifying the End-to-End Flow for Analysis

We now have in place sufficient information to specify an end-to-end flow path. To briefly recap:
• devices and application software components have been declared (Sections 3.3.2, 3.3.3)

• individual device and component flow latencies have been defined (Sections 3.4, 3.4.1)

• flow implementation across the application software components has been specified (Section
3.4.2)

• component bindings to a computing system have been performed (Section 3.5.1)

• connections of all the components have been constructed for the complete system implemen-
tation (Section 3.5.2)

Having connected all of the software application components and devices allows us to specify
end-to-end flow paths that are of particular interest for analysis. In this example, we want to spec-
ify the time it takes for a signal originating at the brake pedal to arrive at and move the throttle
actuator.

The end-to-end flow specification can be viewed as the maximum latency allowed for this path. It
is, in essence, a requirement that the total latency of all the components in the specified flow path
should not exceed the latency value stated in the end-to-end flow specification. For this example,
Figure 16 shows the end-to-end flow across the entire system.

Throttle_setting

Compute_

desired_

speed

Compute_

Throttle_

setting

brake_pedal

Ok_to_run Throttle
actuator

brake_status
Cruise_control.impl

cc_app.impl

Flow1

Flow1
FS1

FS1
FS1

In_control

brake_status
Throttle_setting

desired_speed

C2
C22

C13
C29

CC.brake_flow_1

Throttle_setting

Compute_

desired_

speed

Compute_

Throttle_

setting

brake_pedal

Ok_to_run Throttle
actuator

brake_status
Cruise_control.impl

cc_app.impl

Flow1

Flow1
FS1

FS1
FS1

In_control

brake_status
Throttle_setting

desired_speed

C2
C22

C13
C29

CC.brake_flow_1

Figure 16: Cruise Control Application Showing End-to-End Flow Path from Brake Pedal to
Throttle Actuator

The outermost system oval, CC_app.impl, defines the scope of the entire model, containing all of
the devices as well Cruise_control.impl, the application software. The application software sub-
components that make up the processing functions are within Cruise_control.impl. The end-to-end
flow specification for CC_appl.impl is formulated by identifying the source device and associated
flow, the connection to the application software component (e.g., cruise_control.impl) and its as-

 SOFTWARE ENGINEERING INSTITUTE | 51

sociated flow (CC.brake_flow_1), and the sink device and its associated flow. For this example,
the latency requirement for this end-to-end flow path is 200 ms. This end-to-end flow is high-
lighted in Figure 16 with the dotted line beginning with the brake pedal and ending in the throttle
actuator. The code fragment that composes the cc_app.impl is shown below:

-- the implementation
system implementation cc_app.impl

 of the cc system, complete with devices

 -- list of declared components and component implementations
particular to this (cc_app_ implementation
 subcomponents
 CC: system cruise_control.impl;
 BRAKE: device brake_pedal;
 TA: device throttle_actuator;
 CC_ON_OF device cruise_control_button; F:
 ENGINE: device engine;
 RESUME: device resume_button;
 SP_UP: device speed_up_button;
 SP_DN: device speed_dn_button;
 SETBUTTON: device set_button;
 WHEEL_ROT_SENSOR: device wheel_rotation_sensor;
 connections
 -- connect devices to software components
 C21: data port CC_ON_OFF.cc_system_on_off -> CC.cc_system_on_off;
 C22: data port BRAKE.brake_status -> CC.brake_status;
 C23: data port ENGINE.engine_status -> CC.engine_status;
 C24: data port RESUME.resume -> CC.resume;
 C25: data port SP_DN.decrease_speed -> CC.decrease_speed;
 C26: data port SP_UP.increase_speed -> CC.increase_speed;
 C27: data port SETBUTTON.set_speed -> CC.set_speed;
 C28: data port WHEEL_ROT_SENSOR.wheel_pulse -> CC.wheel_pulse;
 C29: data port CC.throttle_setting -> TA.throttle_setting;
 flows
 ETE_F1: end to end flow BRAKE.Flow1 -> C22 -> CC.brake_flow_1
 -> C29 -> TA.Flow1
 {
 Latency => 200 Ms;
 };
end cc_app.impl;

In this implementation, devices and software application components that have been declared pre-
viously or have implementations are renamed (e.g., the subcomponent cc_app.impl has been
named CC). This renaming is noteworthy because the resulting flows within this implementation
must use the name defined within this new implementation. Also, all of the devices are connected
to the cruise_control.impl via its associated interface ports.

Flow properties are attached to the component declarations. Flow values could also be attached to
the implementations. It is suggested that one or the other approach be chosen to avoid possible
conflicts of information. Interpreting the presence of multiple flow information for a component
declaration and implementation is a matter for the analysis plug-in.

The flow section of cc_app.impl contains the end-to-end flow specification, named ETE_F1
and begins with the source device (as named in this implementation), BRAKE, with its associated
flow, Flow1, the named connection, C22 to the cruise_control.impl (herein named

52 | CMU/SEI-2007-TR-014

CC), the connection C29 to the throttle actuator device (named TA) and its associated flow,
Flow1.

This discussion completes the detailed modeling of the software and hardware of the embedded
cruise control system. The complete model of the cruise control subsystem is in Appendix C (be-
ginning on page 69).

3.6 ANALYSIS

Step 5 of the model development and analysis approach (described on page 13) for this cruise
control example is to perform the analysis and evaluate the results. For this example, this step is to
determine whether the specified end-to-end latency of the brake-to-throttle actuator signal can be
met, given the flow specifications of each component in the flow path.

We entered the components that have been discussed throughout this example into OSATE; the
result is shown in Figure 17.

Figure 17: The OSATE Environment Containing the Model of the Cruise Control

 SOFTWARE ENGINEERING INSTITUTE | 53

The OSATE window contains these four panes:
• The pane on the left-hand side contains the project workspace and associated project files.

(This area is known as the AADL Navigator.)

• The middle pane is a multi-tabbed, editable text area that displays the model in the form that
the user selects in the AADL Navigator pane (e.g., aadl [source text] or aaxl [compilation of
aadl]).

• The right-hand pane shows the outline view of all the components contained in the model.

• The multi-tabbed bottom pane shows problems, properties, and AADL property values.

A detailed description of the mechanics of model composition and analysis using OSATE is be-
yond the scope of this report, but we will review the functionality of each pane in the context of
discussing our example. Once a workspace has been defined, the user defines a new AADL model
name, which will appear in the AADL folder in the left-hand pane with the extension .aadl.2 In
our example, the model name is cc_example_with_flows_tn2.aadl. The user enters a textual
AADL model in the middle pane. When model entry is completed, the user clicks the disk icon in
the upper left-hand side tool bar to run the parser and generate the aaxl instance file. (In our ex-
ample, this file is named cc_example_with_flows_tn2.aaxl.) The user’s action also creates the
model object outline in the right-hand pane. Any errors will appear in the Problems tab in the bot-
tom middle of the OSATE window.

With the model entered and no errors (as shown in Figure 17) discovered, the model can be in-
stantiated, as shown in Figure 18, by
1. selecting the implementation System Impl CompanyZ_cruise_control_system.impl name in

the middle pane and right-clicking on it

2. clicking to select the OSATE command from the resulting list

3. clicking to select the Instantiate System command from the list revealed for the OSATE com-
mand

2 For information on defining a workspace, see Section 4.1 in the OSATE user manual [SEI AADL 06].

54 | CMU/SEI-2007-TR-014

Figure 18: Instantiating the Implementation of the Cruise Control System

Selecting the Instantiate System command results in the display of the instance model in the mid-
dle pane of the OSATE environment, as Figure 19 illustrates. To run the latency analysis on the
instantiated model (as shown in Figure 19)
1. right-click in the middle pane on the

cc_example_with_flows_tn2_CompanyZ_cruise_control_system_impl_Instance.aaxl file
name

2. click to select the AADL Analysis command from the resulting list

3. click to select Check Flow Latency command from the list revealed for the AADL Analysis
command

 SOFTWARE ENGINEERING INSTITUTE | 55

Figure 19: Running the Check Flow Latency Analysis Plug-in

The result of running the latency analysis plug-in is shown in Figure 20.

Figure 20: Analysis View of the Cruise Control Instance Model and Latency Analysis Results

56 | CMU/SEI-2007-TR-014

Analysis results appear in the pane at the bottom middle of the window, in the Problems tab. The
flow implementation for the ETE_F1 flow path is computed. The flow path of interest (described
in Section 3.4.1) is composed of three subcomponents: (1) in_control with a latency of 30
ms, (2) compute_desired_speed with a latency of 40 ms, and (3) com-
pute_throttle_setting of 50 ms. Also, the brake pedal device has a latency of 10 ms,
and the throttle actuator device has a latency of 20 ms. The total of these latencies is 150 ms,
which agrees with the analysis results shown in the bottom middle pane in Figure 20. The actual
latency of 150 ms is less than the specified latency of 200 ms, indicating that the actual processing
time of the brake pedal to throttle actuator path is less than the budgeted amount. A more exten-
sive analysis would entail describing a number of additional flow paths and checking to see if
their latencies would be less than or equal to the specified latency. If there were exceptions, the
latency requirements could be met by modifying the code to reduce execution time or the system
architecture to redefine component connections and perhaps flow paths.

This flow analysis was performed on a high-level architecture whose components are modeled as
AADL systems. This model can be refined into a runtime architecture represented by AADL
threads. The latency analysis performed on the high-level model determines its latency from the
latency values of the system component flow specifications. This analysis can be rerun on the run-
time architecture model, in which case the analysis plug-in accounts for worst-case execution
time, deadlines, and sampling by periodic threads, and compares the result to the flow specifica-
tion latencies.

3.6.1 Notes on OSATE

The models developed as part of this report can be found at www.aadl.info. They were run using
OSATE V 1.4.6, the latest version at the time this report was prepared. Minor modifications to the
model may be necessary for it to run using future versions. The current version of OSATE can be
found through http://www.sei.cmu.edu/pcs/model.html, http://www.aadl.info, or
http://la.sei.cmu.edu/aadlinfosite/OSATEUpdateSite/.

As referenced in Section 1.1, OSATE is the Eclipse-based open-source tool environment that is
the front-end AADL parser and generator. AADL models are developed in OSATE and an inter-
mediate representation (an XML-persistent document) is generated. The intermediate representa-
tion communicates the modeled elements to an underlying analysis engine. The intermediate rep-
resentation is in XML, which allows interoperability among the embedded AADL-XML tool
interface, the tool-specific XML representation, and a tool-specific representation. The interface
mechanism to accomplish interoperability in Eclipse/OSATE is the plug-in. The plug-in is the
standard interface mechanism in the Eclipse environment. Refer to the OSATE Plug-in Develop-
ment Guide [Feiler 06b] for details regarding developing analysis plug-ins and interfacing to ex-
ternal tools. The version of the OSATE current at the time this report was developed contains a
small number of plug-ins (for example, computing model statistics and latency analysis).

 SOFTWARE ENGINEERING INSTITUTE | 57

http://www.aadl.info/
http://www.sei.cmu.edu/pcs/model.html
http://www.aadl.info
http://la.sei.cmu.edu/aadlinfosite/OSATEUpdateSite/

The AADL modeling language can provide system models to the level of detail required for many
types of analysis. The analysis is carried out by the back-end analysis engine via the plug-in inter-
face. Examples of analysis supported by the AADL include, but are not limited to
• scheduling

• throughput

• latency

• resource utilization

• error analysis (e.g., Markov analysis of faulted hardware and software)

• reliability (e.g., failure modes and effects analysis [FMEA] and fault tree [FT] analysis)

• security

Many commercially developed, open-source, and academically developed analysis tools are avail-
able to carry out the desired analysis. As the wider adoption and use of the AADL and OSATE
tool environment occur, a body of plug-ins to open source and commercially available analysis
tools will evolve.

58 | CMU/SEI-2007-TR-014

4 Summary

An approach has been presented to model various vehicle systems (e.g., stability control or cruise
control) in a hierarchical manner using the SAE AADL. The cruise control system was modeled
in detail by modeling each of the computational components as well as sensors and actuators. In-
cluded in the model was a flow specification for analyzing end-to-end data-flow latency of a par-
ticular signal path through the automotive cruise control. Both the declared and instantiated parts
of the model have been developed. The mechanics of connections and flow have been presented,
as well as a description of running the latency analysis plug-in and interpreting the results. The
source code of the completed model is contained in Appendices B and C. A brief description of
using the AADL parser (OSATE) and associated Eclipse tool environment has been discussed.

 SOFTWARE ENGINEERING INSTITUTE | 59

60 | CMU/SEI-2007-TR-014

Appendix A: AADL Graphical Notation

Application Components

 System: hierarchical organization of components System

 Process: protected address space process

 Thread group: organization of threads in processes Thread group

 Thread: a schedulable unit of concurrent execution Thread

 Data: potentially sharable data
data

 Subprogram: callable unit of sequential code
subprogram

outin

in out
event

event data

outin

in out
event

event data Port: in, out, in out, event; logical connection points between com-
ponents

 Port group: a group of ports

 Connection: connects ports in the direction of their flow

 SOFTWARE ENGINEERING INSTITUTE | 61

Execution Platform Components

 Processor: provides thread scheduling and execution services Processor

 Memory: provides storage for data and source code
Memory

Bus
Bus: provides physical connectivity between execution platform
components

 Device: interface to external environment
DeviceDevice

62 | CMU/SEI-2007-TR-014

Appendix B: AADL Model of the Vehicle Control Systems

-- AADL model of automobile control systems consisting of: traction
-- control, stability control, cruise control, and antilock brake
-- systems.
-- Use with Figure 2: AADL context diagram for a set of vehicle
-- control systems
--
-- THIS IS THE 'PORT GROUP' VERSION

-- d
data bool_type

ata type declarations

-- This shows example of the use of AADL pre-declared properties
 properties

end bool_type;

Source_Data_Size => 16 bits;

data real_type
 properties
 S
end real_type;

ource_data_size => 32 bits;

-- Device declarations ---

device engine
 features
 engine_signals: port group engine_socket_1;

engine is off or on --
end engine;

device rotation_sensor wheel_
 features
 wheel_signal: port group wheel_sensors_socket_1;
end wheel_rotation_sensor;

device brake_pedal
 features
 brake_signals: port group brake_sensors_socket_1;
end brake_pedal;

device vehicle_state_sensors
 features
 vehicle_state_signals: port group
 vehicle_state_sensors_socket_1;
end vehicle_state_sensors;

device onsole user_c
 features
 user_console_outputs: port group user_console_socket_1;
end user_console;

----- o
device throttle_actuator

utput devices

 features
 tc_throttle_signals: port group tc_throttle_actuator_socket_1;
 cc_throttle_signals: port group cc_throttle_actuator_socket_1;

 SOFTWARE ENGINEERING INSTITUTE | 63

end throttle_actuator;

device display
 features
 tc_display_input_signals: port group
tc_user_display_socket_1;
 cc_display_input_signals: port group
cc_user_display_socket_1;
 sc_display_input_signals: port group
sc_user_display_socket_1;
 abs_display_input_signals: port group
abs_user_display_socket_1;
end display;

device brake_actuators
 features
-- device receives braking signals from three systems
 tc_brake_actuator_signals: port group
tc_brake_actuator_socket_1;
 sc_brake_actuator_signals: port group
sc_brake_actuator_socket_1;
 abs_brake_actuator_signals: port group
abs_brake_actuator_socket_1;

end brake_actuators;

-- port group declarations ----------------------------------

port group gine_socket_1 en
 features
 engine_status: out data port; -- engine is off (0) or on (1)
 engine_temp_1: out data port;
 throttle_position: out data port;
end engine_socket_1;

port group engine_plug_1
 inverse of engine_socket_1
end engine_plug_1;

port group wheel_sensors_socket_1
 features
 wheel_pulse: in data port bool_type;
 wheel_slippage: in data port real_type;
end wheel_sensors_socket_1;

-- assume only one rotation sensor on one wheel....could add one on
-- other wheels for redundancy
port group wheel_sensors_plug_1

inverse of wheel_sensors_socket_1
end wheel_sensors_plug_1;

port group brake_sensors_socket_1
 features
 brake_status: out data port;
end brake_sensors_socket_1;

port group brake_sensors_plug_1

64 | CMU/SEI-2007-TR-014

 inverse of engine_socket_1
end brake_sensors_plug_1;

port group vehicle_state_sensors_socket_1
 features
 steering_wheel_angle: in data port;
 yaw_rate: in data port;
 lateral_acceleration: in data port;
end vehicle_state_sensors_socket_1;

port group vehicle_state_sensors_plug_1
 inverse of vehicle_state_sensors_socket_1
end vehicle_state_sensors_plug_1;

port group user_console_socket_1
 features
 cc_system_on_off: out data port;
speed_set: out data port;
 resume: out data port;
 cancel: out data port;
 speed_increase: out data port;
 speed_decrease: out data port;
end user_console_socket_1;

port group user_console_plug_1
 inverse of user_console_socket_1
end user_console_plug_1;

-- TCS out
port group tc_throttle_actuator_socket_1

put port groups

 features
 throttle_actuator: out data port;
end tc_throttle_actuator_socket_1;

port group tc_throttle_actuator_plug_1
 inverse of tc_throttle_actuator_socket_1
end tc_throttle_actuator_plug_1;

port group tc_user_display_socket_1
 features

end tc_user_display_socket_1;

 tc_state: out data port;

port group tc_user_display_plug_1

end tc_user_display_plug_1;

inverse of tc_user_display_socket_1

port group tc_brake_actuator_socket_1
 features
 tc_brake_output: out data port;
end tc_brake_actuator_socket_1;

port group tc_brake_actuator_plug_1

end tc_brake_actuator_plug_1;

inverse of tc_brake_actuator_socket_1

 SOFTWARE ENGINEERING INSTITUTE | 65

--
-- cc outp
port group cc_throttle_actuator_socket_1

ut port groups

 features

end cc_throttle_actuator_socket_1;

 cc_throttle_actuator: out data port;

port group cc_throttle_actuator_plug_1

end cc_throttle_actuator_plug_1;

inverse of cc_throttle_actuator_socket_1

port group cc_user_display_socket_1
 features
 cc_state: out data port;
end cc_user_display_socket_1;

port group cc_user_display_plug_1

end cc_user_display_plug_1;

inverse of cc_user_display_socket_1

-- sc outp
port group sc_brake_actuator_socket_1

ut port groups

 features
 sc_brake_actuator: out data port;
end sc_brake_actuator_socket_1;

port group sc_brake_actuator_plug_1
 inverse of sc_brake_actuator_socket_1
end sc_brake_actuator_plug_1;

port group sc_user_display_socket_1
 features
 sc_state: out data port;
end sc_user_display_socket_1;

port group sc_user_display_plug_1
 inverse of sc_user_display_socket_1
end sc_user_display_plug_1;

-- abs output port groups
port group abs_brake_actuator_socket_1
 features
 abs_brake_actuator: out data port;
end abs_brake_actuator_socket_1;

port group s_brake_actuator_plug_1 ab
 inverse of abs_brake_actuator_socket_1
end abs_brake_actuator_plug_1;

port group s_user_display_socket_1 ab
 features
 abs_state: out data port;
end abs_user_display_socket_1;

port group abs_user_display_plug_1
 inverse of abs_user_display_socket_1
end abs_user_display_plug_1;

66 | CMU/SEI-2007-TR-014

system traction_control_system
 features
 tcs_wheel_input: port group heel_sensors_plug_1; w
 tcs_engine_input: port group engine_plug_1;
 tcs_user_input: port group user_console_plug_1;

 tcs_throttle_out: port group tc_throttle_actuator_socket_1;
 tcs_display_out: port group tc_user_display_socket_1;
 tcs_brake_out: port group tc_brake_actuator_plug_1;
end traction_control_system;

system cruise_control_system
 features
 cc_user_input: port group user_console_plug_1;
 cc_wheel_speed: port group wheel_sensors_plug_1;
 cc_engine_input: port group engine_plug_1;
 cc_brake_status: port group brake_sensors_plug_1;

 cc_throttle_actu port group cc_throttle_actuator_plug_1; ator:
 cc_display_out: port group cc_user_display_plug_1;

end cruise_control_system;

system stability_control_system
 features
 sc_user_input: port group user_console_plug_1;
 sc_wheel_speed: port group wheel_sensors_plug_1;
 sc_engine_input: port group engine_plug_1;
 sc_brake_status: port group brake_sensors_plug_1;

 sc_display_out: port group sc_user_display_plug_1;
 sc_brake_output: port group sc_brake_actuator_plug_1;

end stability_control_system;

system antilock_brake_system
 features
 abs_user_input: port group user_console_plug_1;
 abs_wheel_speed: port group heel_sensors_plug_1; w
 abs_engine_input: port group engine_plug_1;

 abs_brake_actuator: port group abs_brake_actuator_plug_1;
 abs_display: port group abs_user_display_plug_1;

end antilock_brake_system;

---------- End of component declarations ----------------------------
-
--- End of example ---------

 SOFTWARE ENGINEERING INSTITUTE | 67

68 | CMU/SEI-2007-TR-014

Appendix C: AADL Model of the Cruise Control System

-- Cruise Control Example, binding to single CPU, end to end flow
-- model
--
-- Contains the following INPUT devices:
-- CRUISE CONTROL BUTTON, ENGINE, BRAKE_PEDAL, RESUME_BUTTON,
-- SPEED_UP_BUTTON, SPEED_DN_BUTTON, WHEEL_ROTATION_SENSOR
--
-- Contains the following OUTPUT devices:
-- THROTTLE_ACTUATOR
--
-- Contains the following software components:
-- In_control, Compute_desired_speed, Compute_throttle_setting,
-- Compute_velocity
--
-- Analysis views: End-to-end flow of brake pedal -> throttle
-- actuator
-- Compare the declared latency of each component with the latency
-- specified in the implementation.
-- Check to ensure that the actual latency is less than or equal to
-- the specified latency.
-- Software implementation: Single threaded, polled input, sampled
-- output at thread completion time
-- Processor bindings: CompanyZ CPU
--
--
-- Author: J. Hudak
-- Date: January, 2006
-- Revision: August, 13, 2006 - FINAL VERSION for TN
-- User-defin th
property set control_properties is

ed property set for is example

 actuator_voltage_range: range of control_properties::dc_voltage
applies to (data port);
 dc_voltage_units: type units (mV, V => mV * 1000);
 dc_voltage: type aadlreal 0.0 V .. 15.0 V units

trol_properties::dc_voltage_units; con
end control_properties;

-- Data type declarations for this application. Enforces data type
-- checking
-- Data type checking only shown for bool_type on one variable
-- Other variables not typed, but still OK for modeling
data bool_type
 -- This shows example of the use of AADL pre-declared properties
 properties
 Source_Data_Size => 16 Bits;
end bool_type;

data float_type
 properties
 Source_Data_Size => 32 Bits;
end float_type;

--Component type declarations
---- Devices
device cruise_control_button

 SOFTWARE ENGINEERING INSTITUTE | 69

 features
 -- Turns the cruise control on or off
 cc_system_on_off: out data port ;
end cruise_control_button;

device brake_pedal
 features
 brake_status: out data port bool_type;
 flows
 Flow1: flow source brake_status {
 Latency => 10 Ms;
 };
end brake_pedal;

device wheel_rotation_sensor
 features
 wheel_pulse: out data port ;
end wheel_rotation_sensor;

device throttle_actuator
 features
 throttle_setting: in data port {
 control_properties::actuator_voltage_range => 0.0 V .. 5.0 V;
 };
 flows
 Flow1: flow sink throttle_setting {
 Latency => 20 Ms;
 };
end throttle_actuator;

-- eng
device engine

ine is off (0) or on (1)

 features
 engine_status: out data port ;
end engine;

-- resume off (0) or on (1)
device resume_button
 features
 resume: out data port ;
end resume_button;

-- inc
device speed_up_button

rease speed off (0) or increase by 1 mph on (1)

 features
 increase_speed: out data port ;
end speed_up_button;

-- decrease speed off (0) or increase by 1 mph on (1)
device speed_dn_button
 features
 decrease_speed: out data port ;
end speed_dn_button;

-- cau
device set_button

ses the current speed to become the speed setpoint (1)

 features
 set_speed: out data port ;
end set_button;

70 | CMU/SEI-2007-TR-014

-- Additional component declarations, not used in connecting to
-- cruise control implementation -------------------------
-- resume off (0) or on (1)
-- TCS operator buttons (TBD)
-- SCS Operator buttons (TBD)
-- ABS Operator buttons - None required
device operator_panel
 features
 -- Cruise Control operator buttons
 cc_system_on_off: out data port bool_type;
 -- turns cc on/off
 set_speed: out data port bool_type;
 -- causes the current speed to become the speed setpoint (1)
 decrease_speed: out data port bool_type;
 -- decrease speed off (0) or increase by 1 mph on (1)
 increase_speed: out data port bool_type;
 -- increase speed off (0) or increase by 1 mph on (1)
 resume: out data port bool_type;
end operator_panel;

-- lat
device sensor_platform

eral force of vehicle

 features
 -- Sensors used by stability control system
 yaw_sensor_1: out data port float_type;
 -- the instantenous yaw of vehicle
 yaw_rate_sensor_1: out data port float_type;
 -- the yaw rate of the vehicle (x/ms)
 lateral_force_sensor_1: out data port float_type;
end sensor_platform;

-- the steering angle
device ering_wheel ste
 features
 -- Sensors used by stability control system
 steering_angle: out data port float_type;
end steering_wheel;

------ end of additional component declarations
-- System declarations
-- the cruise control software application is declared (sw + devices,

ices will be bound later) -- dev
system cc_app
 features

end cc_app;

 device_bus: requires bus access PC104_ISA_16BIT;

-- hardware platform declaration
bus PC104_ISA_16BIT
end PC104_ISA_16BIT;

memory SDRAM
 features
 controller_memory: requires bus access PC104_ISA_16BIT;
end SDRAM;

processor PENTIUM
 features
 controller_cpu: requires bus access PC104_ISA_16BIT;
end PENTIUM;

 SOFTWARE ENGINEERING INSTITUTE | 71

-- the cruise control software system - composed of only ports, and
-- the flow we want to analyize
system cruise_control
 features
 cc_system_on_off: in data port ;
 engine_status: in data port ;
 brake_status: in data port bool_type;
 resume: in data port ;
 decrease_speed: in data port ;
 increase_speed: in data port ;
 set_speed: in data port ;
 wheel_pulse: in data port ;
 throttle_setting: out data port ;
 flows
 brake_flow_1: flow path brake_status -> throttle_setting;
end cruise_control;

-- the
system compute_velocity

 compute velocity sw component

 features
 wheel_pulse: in data port ;
 instantaneous_velocity: out data port ;
 flows
 FS1: flow path wheel_pulse -> instantaneous_velocity;
end compute_velocity;

-- the compute desired speed sw component
system compute_desired_speed
 features
 ok_to_run: in data port ;
 instantaneous_velocity: in data port ;
 current_instantaneous_velocity: out data port ;
 previous_instantaneous_velocity: in data port ;
 desired_speed: out data port ;
 flows
 FS1: flow path ok_to_run -> desired_speed {
 Latency => 40 Ms;
 };
 FS2: flow path instantaneous_velocity -> desired_speed;
end compute_desired_speed;

system pute_throttle_setting com
 features
 desired_speed: in data port ;
 throttle_setting: out data port ;
 flows
 FS1: flow path desired_speed -> throttle_setting {
 Latency => 50 Ms;
 };
end compute_throttle_setting;

system in_control
 features
 cc_system_on_o in data port ; ff:
 brake_status: in data port bool_type;
 resume: in data port ;
 decrease_speed: in data port ;
 increase_speed: in data port ;
 set_speed: in data port ;

72 | CMU/SEI-2007-TR-014

 engine_status: in data port ;
 ok_to_run: out data port ;
 flows
 FS1: flow path brake_status -> ok_to_run {
 Latency => 30 Ms;
 };
end in_control;

-- end of the declarations
-- Cruise control implementation
-- Implementation of the cruise control sofware components and
-- connections
system implementation cruise_control.impl
 -- List the declared components that comprise this implementation
 subcomponents
 I_C: system in_control;
 C_V: system compute_velocity;
 C_D_S: system compute_desired_speed;
 C_T_S: system compute_throttle_setting;
 -- make the connections among the components as desired
 -- connections

 -- cruise control port interfaces connected to subcomponent port
 -- interfaces

 C1: data port cc_system_on_off -> I_C.cc_system_on_off;
 C2: data port brake_status -> I_C.brake_status;
 C3: data port engine_status -> I_C.engine_status;
 C4: data port resume -> I_C.resume;
 C5: data port decrease_speed -> I_C.decrease_speed;
 C6: data port increase_speed -> I_C.increase_speed;
 C7: data port set_speed -> I_C.set_speed;
 C8: data port wheel_pulse -> C_V.wheel_pulse;
 C9: data port I_C.ok_to_run -> C_D_S.ok_to_run;
 C10: data port C_V.instantaneous_velocity ->
C_D_S.instantaneous_velocity;
 C11: data port C_D_S.current_instantaneous_velocity ->
C_D_S.previous_instantaneous_velocity;
 C12: data port C_D_S.desired_speed -> C_T_S.desired_speed;
 C13: data port C_T_S.throttle_setting -> throttle_setting;
 -- the flow, begining at the input port, through each of the
 -- necessary subcomponents, to the out port
 flows
 brake_flow_1: flow path brake_status -> C2 -> I_C.FS1
 -> C9 -> C_D_S.FS1
 -> C12 -> C_T_S.FS1

end cruise_control.impl;

 -> C13 -> throttle_setting;

-- the implementation of the cc system, complete with devices
system implementation cc_app.impl
 -- list of declared components and component implementations
 -- particular to this (cc_app_implementation)
 subcomponents
 CC: system cruise_control.impl;
 BRAKE: device brake_pedal;
 TA: device throttle_actuator;
 CC_ON_OFF: device cruise_control_button;
 ENGINE: device engine;
 RESUME: device resume_button;
 SP_UP: device speed_up_button;
 SP_DN: device speed_dn_button;

 SOFTWARE ENGINEERING INSTITUTE | 73

 SETBUTTON: device set_button;
 WHEEL_ROT_SENSOR: device wheel_rotation_sensor;
 connections
 -- connect devices to software components
 C21: data port CC_ON_OFF.cc_system_on_off -> CC.cc_system_on_off;
 C22: data port BRAKE.brake_status -> CC.brake_status;
 C23: data port ENGINE.engine_status -> CC.engine_status;
 C24: data port RESUME.resume -> CC.resume;
 C25: data port SP_DN.decrease_speed -> CC.decrease_speed;
 C26: data port SP_UP.increase_speed -> CC.increase_speed;
 C27: data port SETBUTTON.set_speed -> CC.set_speed;
 C28: data port WHEEL_ROT_SENSOR.wheel_pulse -> CC.wheel_pulse;
 C29: data port CC.throttle_setting -> TA.throttle_setting;
 flows
 ETE_F1: end to end flow BRAKE.Flow1 -> C22 -> CC.brake_flow_1
 -> C29 -> TA.Flow1
 {
 Latency => 300 Ms;

end cc_app.impl;

 };

system cc_computer
 -- a declaration for cc_computer to be composed of processor,
 -- memory, and bus in its implementation
 -- Needs to provide bus access so the devices in cc_application can
 -- communicate with cpu
 -- Devices need to be attached to a bus.
 features
 device_bus: provides bus access PC104_ISA_16BIT;
end cc_computer;
-- system CompanyZ_computer
-- a declaration for Company Z computer to be composed of processor,
-- memory, and bus in its implementation
-- end CompanyZ_computer;
-- a declaration for Company Z cruise control system to be composed
-- of computer + applications sw in its implementation
system CompanyZ_cruise_control_system
end CompanyZ_cruise_control_system;

-- Cruise control comp
system implementation cc_computer.CompanyZ

uter implementation specific to CompanyZ

 subcomponents
 CompanyZ_memor memory SDRAM; y:
 CompanyZ_bus: bus PC104_ISA_16BIT;
 CompanyZ_processor: processor PENTIUM;
 connections
 C1: bus access CompanyZ_bus -> CompanyZ_memory.controller_memory;
 C2: bus access CompanyZ_bus -> CompanyZ_processor.controller_cpu;
end cc_computer.CompanyZ;

-- Composing the compl
system implementation CompanyZ_cruise_control_system.impl

ete system

 subcomponents
 CompanyZ_computer: system cc_computer.CompanyZ;
 CompanyZ_software: system cc_app.impl;
 connections
 C1: bus access CompanyZ_computer.device_bus ->
CompanyZ_software.device_bus;
end CompanyZ_cruise_control_system.impl;
------------------- end of cruise control example ------------------

74 | CMU/SEI-2007-TR-014

References

URLs are valid as of the publication date of this document.

[Binns 96]
Binns, Pam, Englehart, Matt, Jackson, Mike, & Vestal, Steve. “Domain Specific Software Archi-
tectures for Guidance, Navigation and Control.” International Journal of Software Engineering
and Knowledge Engineering 6, 2 (June 1996): 201−227.

[Booch 86]
Booch, Grady. “Object-Oriented Development.” IEEE Transactions on Software Engineering 12,
2 (February 1986): 211−221.

[Clements 02]
Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little R., Nord, R., & Stafford, J.
Documenting Software Architectures: Views and Beyond (SEI Series in Software Engineering).
Boston, MA: Addison-Wesley, 2002.

[Feiler 00]
Feiler, Peter H., Lewis, Bruce, & Vestal, Steve. Improving Predictability in Embedded Real-Time
Systems (CMU/SEI-2000-SR-011, ADA387262). Software Engineering Institute, Carnegie Mel-
lon University, 2000.
http://www.sei.cmu.edu/publications/documents/00.reports/00sr011.html

[Feiler 04]
Feiler, Peter H., Lewis, Bruce, Hudak, John, & Gluch, David. Embedded System Architecture
Analysis Using the SAE AADL (CMU/SEI-2004-TN-005, ADA443481). Software Engineering
Institute, Carnegie Mellon University, June 2004.
http://www.sei.cmu.edu/publications/documents/04.reports/04tn005.html

[Feiler 06a]
Feiler, Peter H., Gluch, David P., & Hudak, John J. The Architecture Analysis & Design Lan-
guage (AADL): An Introduction (CMU/SEI-2006-TN-011). Software Engineering Institute, Car-
negie Mellon University, 2006.
http://www.sei.cmu.edu/publications/documents/06.reports/06tn011.html

[Feiler 06b]
Feiler, Peter H. & Greenhouse, Aaron. OSATE Plug-in Development Guide.
http://www.aadl.info/downloads/Plug-in%20Guide%202006-09-14.pdf (2006).

[Feiler 07]
Feiler, Peter & Rugina, Ana. Dependability Modeling with AADL (CMU/SEI-2007-TN-043).
Software Engineering Institute, Carnegie Mellon University, 2007.
http:// www.sei.cmu.edu/publications/documents/07.reports/07tn043.html

 SOFTWARE ENGINEERING INSTITUTE | 75

http://www.sei.cmu.edu/publications/documents/04.reports/04tn005.html
http://www.sei.cmu.edu/publications/documents/00.reports/00sr011.html
http://www.sei.cmu.edu/publications/documents/06.reports/06tn011.html
http://www.aadl.info/downloads/Plug-in%20Guide%202006-09-14.pdf
http://www.sei.cmu.edu/publications/documents/07.reports/07tn043.html

[Higgins 87]
Higgins, David A. “Specifying Real-Time/Embedded Systems Using Feedback/Control Models,”
127-147. Proceedings of the Twelfth Structured Methods Conference. Chicago, IL, August 3−6,
1987. Chicago, IL: Structured Tech. Assoc., 1987.

[McConnell 96]
McConnell, David J., Lewis, Bruce, & Gray, Lisa. “Reengineering a Single Threaded Embedded
Missile Application onto a Parallel Processing Platform Using MetaH,” 57−64. Proceedings of
the 5th Workshop on Parallel and Distributed Real Time Systems. Honolulu, HI, April 15−16,
1996. Los Alamitos, CA: IEEE Computer Society Press, 1996.

[SAE 04]
Society of Automotive Engineers (SAE). Architecture Analysis & Design Language (AADL)
(Document Number AS5506). Warrendale, PA: Society of Automotive Engineers, November
2004.

[SAE 06]
Society of Automotive Engineers (SAE). SAE Architecture Analysis and Design Language
(AADL) Annex (Document Number AS5506/1). Warrendale, PA: Society of Automotive Engi-
neers, June 2006.

[SEI AADL 06]
SEI AADL Team. An Extensible Open Source AADL Tool Environment (OSATE) (Release 1.3.0,
June 2006). Software Engineering Institute, Carnegie Mellon University, 2006.
http://la.sei.cmu.edu/aadl/downloads/osate13/AADLToolUserGuide1.3.0%202006-06-02.pdf

[Shaw 95]
Shaw, M. “Beyond Objects: A Software Design Paradigm Based on Process Control.” ACM SIg-
soft Software Engineering Notes 20, 1 (January 1995): 27−38.

[Smith 88]
Smith, Sharon L. & Gerhart, Susan L. “STATEMATE and Cruise Control: A Case Study.” 49-56.
Proceedings of the Twelfth Annual International Computer Software and Applications Conference
(COMPSAC88). Chicago, IL, October 5−7, 1988. Washington, DC: IEEE Computer Society
Press, 1988.

[Wang 89]
Wang, Jianbai & Tanik, Murat M. “Describing Real Time Systems Using PPA and XYZ/E,” 712-
713. Proceedings of the 22nd Annual Hawaii International Conference on System Sciences, Vol-
ume II: Software Track. Kailua-Kona, HI, January 3−6, 1989. Washington, DC: IEEE Computer
Society Press, 1989.

[Ward 84]
Ward, Paul T. & Mellor, Stephen J. “Structured Development for Real Time Systems,” 127−142.
Volume 2, Essential Modeling Techniques. New York, NY: Yourdon Press, 1984.

[Ward 87]
Ward, Paul. T. & Keskar, Dinesh A. “A Comparison of the Ward/Mellor and Boeing/Hatley Real-
Time Methods,” 356−366. Proceedings of the Twelfth Structured Methods Conference. Chicago,
IL, August 3-6, 1987. Chicago, IL: Structured Tech. Assoc., 1987.

76 | CMU/SEI-2007-TR-014

http://la.sei.cmu.edu/aadl/downloads/osate13/AADLToolUserGuide1.3.0%202006-06-02.pdf

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

July 2007
3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Developing AADL Models for Control Systems: A Practitioner’s Guide
5. FUNDING NUMBERS

FA8721-05-C-0003
6. AUTHOR(S)

John Hudak, Peter Feiler
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER
CMU/SEI-2007-TR-014

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER
ESC-TR-2007-014

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)
This document is a guide to help practitioners using the Architecture Analysis and Design Language (AADL), an international industry
standard for the model-based engineering of real-time and embedded systems. The primary goal of this document is to describe an ap-
proach for and the mechanics of constructing an architectural model that can be analyzed based on the AADL. The first section of this
document presents an overview of AADL concepts and many of the keywords of the language. The second part of the document illus-
trates a model-building approach using the AADL. It takes the perspective of an engineer who is developing a model for the first time us-
ing the AADL. This guide leads the reader through complete AADL model development based on automotive embedded control systems
(cruise control, traction control, etc.) by describing the use and syntax of the AADL and interleaving modeling abstraction tradeoffs to
achieve models that are abstract but precise. Models are constructed with different analysis perspectives in mind to illustrate the seman-
tics as well as the richness of the AADL.

14. SUBJECT TERMS
Architecture Analysis and Design Language, AADL, architecture model, real-time sys-
tem, system architecture

15. NUMBER OF PAGES
84

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT
Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Developing AADL Models for Control Systems: A Practitioner’s Guide
	Table of Contents
	List of Figures
	Abstract
	1 Introduction to the SAE AADL
	2 An Overview of the AADL
	3 Developing Models Using the AADL
	4 Summary
	Appendix A: AADL Graphical Notation
	Appendix B: AADL Model of the Vehicle Control Systems
	Appendix C: AADL Model of the Cruise Control System
	References

