

Proceedings of the Second Software

Architecture Technology User Network

(SATURN) Workshop

Robert L. Nord

August 2006

TECHNICAL REPORT
CMU/SEI-2006-TR-010
ESC-TR-2006-010

Software Architecture Technology Initiative
Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Administrative Agent

ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is

published in the interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a

federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2006 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE

MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY

MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO

ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR

PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM

USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY

WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,

TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the

trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this

document for internal use is granted, provided the copyright and "No Warranty" statements are

included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of

this document for external and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-

0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a

federally funded research and development center. The Government of the United States has a

royalty-free government-purpose license to use, duplicate, or disclose the work, in whole or in part

and in any manner, and to have or permit others to do so, for government purposes pursuant to the

copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion

of our Web site (http://www.sei.cmu.edu/publications/pubweb.html).

 SOFTWARE ENGINEERING INSTITUTE | i

Table of Contents

Acknowledgements vii

SATURN Workshop Series ix

Abstract xi

1 Introduction 1

2 Participants 3

3 Presentations 5
3.1 SATURN Opening Presentation: Future Directions of the Software

Architecture Technology Initiative 5

3.2 Keynote Speakers 6

3.2.1 Architecture Analysis Overview and Observations 6

3.2.2 Raytheon’s Architecture Journey 8
3.3 Integrating Methods and Techniques 10

3.3.1 Definition and Evaluation of Geographic Information System

Architecture Using ADD and the ATAM 10

3.3.2 Architecture-Centric Development Method 11

3.3.3 Architectural Design of an Automatic Guided Vehicle (AGV)

Transportation System with a Multi-Agent System Approach 13
3.4 Requirements 15

3.4.1 A Comparison of Requirements Specification Methods from a

Software Architecture Perspective 15

3.4.2 The Best of Three Worlds: Combining the QAW, Model-Driven

Requirements Engineering (MDRE), and Global Analysis (GA) 17
3.5 ATAM 18

3.5.1 Risk Themes Discovered Through Architectural Evaluations 18

3.5.2 The ATAM and Collaboration at the Enterprise Level 20

4 Working Sessions 23
4.1 Architectural Competency 23

4.1.1 Duties of an Architect 24

4.1.2 Skills of an Architect 25

4.1.3 Next Step 25
4.2 Bridging System and Software Architecture 25

4.2.1 Why Is This Disconnect Important? 26

4.2.2 Current State of the Practice 26

4.2.3 Technical Gaps and Issues 28

4.2.4 Next Steps 28
4.3 Architecture Evolution 30

4.3.1 Discussion 31

4.3.2 Next Steps 32

ii | CMU/SEI-2006-TR-010

4.4 Global Software Development 32

4.4.1 Discussion 33

4.4.2 Next Steps 34
4.5 Strategic Risk Management for Architectures 35

4.5.1 Strategic Planning 36

4.5.2 Workshop Output 40

4.5.3 Next Steps 41
4.6 Building a Software Architecture Community 41

4.6.1 Types of Software Architecture Communities 41

4.6.2 Community Stakeholders 42

4.6.3 Community Essentials 42

4.6.4 Community Goals and Objectives 43

4.6.5 Formulating an Action Plan 44

4.6.6 Example: The Software Architect Community 44

4.6.7 Next Steps 45

5 Closing Session 47

6 Future of SATURN 49

Appendix Acronyms 51

References 55

 SOFTWARE ENGINEERING INSTITUTE | iii

List of Figures

Figure 1: The Conceptual Flow of the ATAM 19

Figure 2: Comparing the Choice of Strategies for IV&V Risk Assessment 39

iv | CMU/SEI-2006-TR-010

 SOFTWARE ENGINEERING INSTITUTE | v

List of Tables

Table 1: Demographics of SATURN Participants 3

Table 2: List of GSD Issues and Strategies 33

Table 3: Loss Potential and Probability for Architectural Attributes 38

Table 4: Cost of Assessment Techniques Applied to Architectural Attributes 38

Table 5: Probability of Loss for Architecture Attributes After Technique Application 39

Table 6: Elicited Project Attributes and Their Risk-Reduction Techniques 40

vi | CMU/SEI-2006-TR-010

 SOFTWARE ENGINEERING INSTITUTE | vii

Acknowledgements

Thanks to Linda Northrop for sponsoring the Software Architecture Technology

User Network (SATURN), to Paul Clements for co-organizing SATURN, to the

members of the Software Architecture Technology (SAT) Initiative at the Carnegie

Mellon


 Software Engineering Institute (SEI), and to the SEI for supporting the

workshop. Laura Huber and Pat McDonald provided administrative support. Ruth

Gregg and Linda Canon handled the local hotel arrangements. Eileen Forrester,

Gian Wemyss, David White, and David Zubrow provided feedback on designing

the working sessions and provided facilitation support. The working sessions were

made possible by Felix Bachmann, Len Bass, Matthew Bass, Mike Gagliardi, Rick

Kazman, and Rob Wojcik, who prepared the agendas for the sessions, moderated

discussion, and wrote the summaries that appear in this report. Amine Chigani took

notes during the plenary sessions. Phil Bianco, Larry Jones, Bob Krut, Paulo Mer-

son, and Ipek Ozkaya were scribes for the working sessions. Bob Krut designed

and maintained the SATURN Web site. Bob Fantazier provided graphic arts sup-

port and Pennie Walters provided technical editing support.

Thanks to the SATURN Steering Committee for nurturing the growing SATURN

idea and getting involved in the planning details to make the workshop happen:

Nanette Brown, director, Applied Architecture and Quality Assurance, Pitney

Bowes; Linda Northrop, director, Product Line Systems Program, SEI; and Rolf

Siegers, chief architect and engineering fellow, Raytheon.

Thanks to all who participated by presenting, working in the breakout sessions, and

engaging in the discussions. Those activities all contributed to what people say they

liked best about the workshop: “quality content, diverse presenters, interactive,

flexible, and informal-feeling sessions,” “open atmosphere for discussion,” and

“collaboration and sharing of ideas.”

 Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

viii | CMU/SEI-2006-TR-010

 SOFTWARE ENGINEERING INSTITUTE | ix

SATURN Workshop Series

The goal of the Software Architecture Technology User Network (SATURN)

workshop series is to bring together software systems engineers, architects, techni-

cal managers, product managers, and researchers to share experiences using soft-

ware architecture technology developed by the Carnegie Mellon


 Software Engi-

neering Institute (SEI). Participants discuss ideas, issues, and needs related to

software architecture practices. They also develop a network of individuals who are

interested in using and improving those practices. SEI architecture-centric methods

include the SEI Quality Attribute Workshop (QAW) [Barbacci 03], the SEI Attrib-

ute-Driven Design (ADD) method [Bass 03], SEI Active Reviews for Intermediate

Designs (ARID) [Clements 02], the SEI Architecture Tradeoff Analysis Method


(ATAM


) [Clements 02], the SEI Cost Benefit Analysis Method (CBAM) [Bass

03], the SEI Views and Beyond (V&B) approach to documentation [Clements 03],

and the SEI Architecture Reconstruction and Mining (ARMIN) tool [Kazman 02].

These methods are based on a core set of attribute models, reasoning frameworks,

and architectural tactics.

Participants in the workshop discuss the challenges they face in meeting quality

attribute requirements, predicting quality attribute behavior, and making practical

and informed tradeoffs about quality attributes early in the software development

life cycle. SATURN provides a unique opportunity to learn from fellow partici-

pants about how to use effective software architecture practices throughout the life

cycle to ensure predictable product qualities, costs, and schedules. It also provides

an opportunity to give feedback to the SEI about promising future directions in

software architecture technology and practices.

 Carnegie Mellon, Architecture Tradeoff Analysis Method, and ATAM are registered in the U.S. Patent

and Trademark Office by Carnegie Mellon University.

x | CMU/SEI-2006-TR-010

 SOFTWARE ENGINEERING INSTITUTE | xi

Abstract

The second Carnegie Mellon


 Software Engineering Institute (SEI) Software Ar-

chitecture Technology User Network (SATURN) Workshop was held April 25-26,

2006 in Pittsburgh, Pennsylvania. A total of 61 software systems engineers, archi-

tects, technical managers, product managers, and researchers exchanged best prac-

tices and lessons learned in applying SEI software architecture technology in an

architecture-driven development or acquisition project. In the closing session,

workshop participants noted these highlights: presentations showing the methods in

action, a comparison of multiple SEI Architecture Tradeoff Analysis Method


(ATAM


) evaluations and cross-wise analysis, the workshop format using interac-

tive presentations, a good mix of academic and industry perspectives, and a sharing

of workshop results.

This report describes the workshop format, discussion, and results, as well as plans

for future SATURN workshops. Key topics covered in the workshop and noted by

the participants were the future plans of the SEI’s Software Architecture Technol-

ogy Initiative, the overall integration of software architecture methods and tech-

niques, and the experiences others shared in applying the methods and transitioning

them for use. Slides for the presentations and recordings of the keynote talks are

available at the SATURN workshop Web site:

http://www.sei.cmu.edu/architecture/saturn/.

xii | CMU/SEI-2006-TR-010

 SOFTWARE ENGINEERING INSTITUTE | 1

1 Introduction

The second Carnegie Mellon


 Software Engineering Institute (SEI) Software Ar-

chitecture Technology User Network (SATURN) Workshop was held April 25-26,

2006 at the Sheraton Station Square Hotel in Pittsburgh, Pennsylvania.

During this workshop, 61 participants exchanged best practices and lessons learned

in applying SEI software architecture technology in an architecture-driven devel-

opment or acquisition project. The workshop consisted of 10 talks (including key-

notes), 6 working sessions, a reception, and opening and closing sessions. Mark

Klein, technical lead of the SEI’s Software Architecture Technology (SAT) Initia-

tive, gave the opening presentation. Linda Northrop, director of the SEI’s Product

Line Systems Program, led the closing session. Keynote speakers included

• Don O’Connell, software/systems architect, The Boeing Company

• Rolf Siegers, engineering fellow and chief architect of the Garland Engineering

Center in Intelligence and Information Systems, Raytheon

Workshop activities spanned the SEI technology transition spectrum from creating

usable technologies to applying them to real-world problems and accelerating

adoption [SEI 06b]. Working sessions included topics from new SEI research ini-

tiatives in architectural competency, bridging system and software architecture, and

architecture evolution. Presentations showed how participants are applying the

methods and emphasized combinations of methods and techniques in a broader

context of software development life-cycle practices and technologies.

This report describes the workshop format, discussion, and results, as well as plans

for future SATURN workshops. It is organized as follows:

• Section 2 lists the demographics of the workshop participants.

• Section 3 provides an overview of the presentations.

• Section 4 includes discussions from the six working sessions:

a. Architectural Competency

b. Bridging System and Software Architecture

c. Architecture Evolution

d. Global Software Development

 Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

2 | CMU/SEI-2006-TR-010

e. Strategic Risk Management for Architectures

f. Building a Software Architecture Community

• Section 5 includes the closing session discussion that focused on the top ideas

emerging from the workshop, workshop highlights, and what to do next.

• Section 6 forecasts the future of SATURN workshops.

 SOFTWARE ENGINEERING INSTITUTE | 3

2 Participants

The 61 SATURN workshop participants were from the sectors shown in Table 1.

Table 1: Demographics of SATURN Participants

Sector Number

U.S. Department of Defense (DoD) 3

U.S. DoD contractor 8

U.S. commercial 19

International commercial 3

Academia 5

Federally funded research and development centers (FFRDCs) other

than the SEI

1

SEI (staff within the Product Line Systems Program) 15

SEI (staff outside of the Product Line Systems Program) 7

.

4 | CMU/SEI-2006-TR-010

 SOFTWARE ENGINEERING INSTITUTE | 5

3 Presentations

Mark Klein, technical lead of the SEI’s SAT Initiative, gave the opening presenta-

tion: Future Directions of the Software Architecture Technology Initiative. Keynote

speakers talked about the process of institutionalizing software architecture within

a company and the lessons learned in applying the SEI Architecture Tradeoff

Analysis Method


 (ATAM


). Presentations showed how participants are applying

various SAT methods. Three of the presentations showed combinations of the SEI

Quality Attribute Workshop (QAW), the SEI Attribute-Driven Design (ADD)

method, and/or the ATAM in a broader context of software development life-cycle

practices and technologies. Two of the presentations focused on requirements from

an architecture perspective. One half day was devoted to the ATAM. The ATAM’s

impact is being amplified as external lead evaluators become certified and report

results, as Don O’Connell did at this year’s workshop and Stephan Ferber did at

last year’s [SEI 05]. Len Bass presented an analysis of ATAM evaluations con-

ducted by the SEI to find patterns in the risk themes and encouraged external lead

evaluators to analyze their data and share their results. Craig Martin presented a

proposal for tool support.

The following sections include descriptions of each presentation including an ab-

stract (written by the speaker and edited slightly by SEI staff) and notes taken dur-

ing both the presentation and subsequent discussion. Presentation slides and audio

recordings of the keynote speakers’ remarks are available at the SATURN work-

shop Web site [SEI 06a].

3.1 SATURN OPENING PRESENTATION:

FUTURE DIRECTIONS OF THE SOFTWARE ARCHITECTURE

TECHNOLOGY INITIATIVE

Mark Klein, senior member of the technical staff, SEI

Abstract

The SAT Initiative at the SEI creates, harnesses, and applies innovations that are

then codified as effective software architecture practices and used throughout the

development life cycle. Our work is guided by responding to real-world needs,

maximizing impact, and basing techniques and methods on theoretically sound

foundations. This talk briefly reviews the “state of the SAT Initiative” and then

outlines our future research directions.

 Architecture Tradeoff Analysis Method and ATAM are registered in the U.S. Patent and Trademark

Office by Carnegie Mellon University.

6 | CMU/SEI-2006-TR-010

Notes

Mark Klein, the technical lead of the SAT Initiative, defined the initiative’s focus

as ensuring that business and mission goals are predictably achieved by using ef-

fective software architecture practices throughout the development life cycle. Soft-

ware architecture is an integral aspect of achieving software quality attributes. To

realize the full benefit of software architecture, organizations must be trained to

develop sound architectures for their line of business, whether it is military, com-

mercial, artificial-intelligence focused, or service oriented.

Klein talked about the ATAM as a first step and how it is designed for architectural

evaluation against quality attribute requirements. When the SAT Initiative started,

it focused on architecture tradeoff analysis but later broadened to everything related

to software architecture. He argued that the ATAM is domain independent.

Klein also emphasized the importance of initiatives such as SATURN in driving

the push towards new techniques that make software architecture practice more

structured and therefore more valuable and effective. He mentioned several work

areas and products of the SEI and the status of each. Then, he moved to future di-

rections of the SAT Initiative, namely

• architecture-centric, life-cycle practices (i.e., looking at the other software de-

velopment phases and investigating how they affect or are affected by software

architecture)

• the relationship between software and system architecture practices

• architectural competency

3.2 KEYNOTE SPEAKERS

3.2.1 Architecture Analysis Overview and Observations

Don O’Connell, software/systems architect, The Boeing Company

Abstract

This presentation lists some of the key software/system architectural analysis that

Boeing uses on its products. Next, the presentation focuses on the application of the

ATAM and QAW to a variety of products over the last three years. Only publicly

releasable information is described. An overview of our ATAM process adjust-

ments and focuses are described. Keys to success are highlighted. An overview of

ATAM/QAW results and risk mitigation activities are also described.

Speaker Bio

Don O’Connell has worked as a software/systems engineer for the Boeing Com-

pany for 23 years and holds a master’s degree in software engineering. For the last

seven years, Don has worked in Boeing Phantom Works, handling approximately

35 projects as software/system architecture consultant and/or problem solver. The

projects span all business units of Boeing. Customers include the U.S. Army, Navy,

 SOFTWARE ENGINEERING INSTITUTE | 7

Air Force, Marines, Department of Defense (DoD), National Aeronautics and

Space Administration (NASA), and Department of Energy (DoE), the airlines of

several countries’ militaries, and several commercial airlines. Don has worked on

commercial airplanes; satellite systems; spacecraft; helicopters; jet fighters; and

command, control, communications, computer, intelligence, surveillance, and re-

connaissance (C4ISR), ground, sea, and airborne systems—just to name a few.

Notes

Don O’Connell’s presentation focused on Boeing’s experience in applying the

ATAM to evaluate its projects. He said that the ATAM had become an integral part

of Boeing’s suite of tools used to assess product quality. First, he described where

the ATAM

fits within the company’s tools. Next, he explained the four phases of

the ATAM and how he conducted those phases in many Boeing projects.

During an ATAM evaluation, O’Connell helps team members keep track of their

current stage in the ATAM process with a poster that illustrates the conceptual flow

of the ATAM’s phases. He argued that the focus during an ATAM process was on

identifying risks rather than issues because architects can control risks but not nec-

essarily issues. In addition, O’Connell discussed how Boeing had used an ATAM

approach for projects that are either too small or too large for its standard process.

For small projects, Boeing used a one-day ATAM approach. For large projects, the

company evaluated the architecture of the top-level project using the ATAM and

evaluated modules (subsystems) as they are organized within each subset of the

project using additional ATAM evaluations. He observed that Boeing identified

risks on large-scale, software-intensive systems. O’Connell described how his team

used recurrent risk themes for process improvement by using new evaluation and

risk mitigation techniques such as the ATAM. During the evaluations, he noticed

that his team lacked an emphasis on testability and therefore needed to add a testing

engineer.

O’Connell concluded his presentation with these observations:

• Participating in an ATAM evaluation allows stakeholders to know what is go-

ing on and to appreciate how some decisions were made.

• For large projects, it is good to conduct one ATAM evaluation for the overall

system and take a one-day, ATAM-based approach for system modules.

• When you have good stakeholder role coverage, you get a good breadth of sce-

narios.

• The best thing about the QAW is that when you gather the stakeholders in a

room and put them on the spot, they are likely to give you the best scenarios

possible.

• The QAW produces a snapshot of the quality attribute requirements known at

the time of the workshop and documents any unknowns. As these requirements

8 | CMU/SEI-2006-TR-010

are refined, there is a problem with finishing the quality attribute requirements

document, which continues to evolve throughout the software development

process.

3.2.2 Raytheon’s Architecture Journey

Rolf Siegers, engineering fellow and chief architect of the Garland Engineering

Center in Intelligence and Information Systems, Raytheon

Abstract

Raytheon began an “architecture journey” several years ago to institutionalize ar-

chitecture as a formal practice throughout the company. Corporate Engineering’s

senior leadership defined a vision to address a set of software, systems, and enter-

prise architecture needs across Raytheon’s multiple business areas.

Since then, Raytheon has enhanced its architecture competencies through a variety

of corporate initiatives including

• establishing a corporate Architecture Review Board (ARB)

• establishing a company-wide, standardized architecting process

• definition and deployment of an architecture training program

• definition and deployment of an internal Raytheon Certified Architect Program

(RCAP)

• participation in external architect certification programs

• development of reference architectures

• in-depth analyses of the latest architecture tools

• establishing an architecture repository that is accessible internally

• establishing company-wide, architecture-centric Technical Interest Groups

(TIGs)

• collaborations with academic, industry, and government organizations

Speaker Bio

Rolf Siegers is an engineering fellow and chief architect of the Garland Engineer-

ing Center in Raytheon’s Intelligence and Information Systems. He joined Ray-

theon in 1984 and leads the corporate Raytheon Enterprise Architecture Process

(REAP) Initiative—Raytheon’s standardized, company-wide architecture process.

Rolf sits on Raytheon’s corporate ARB, leading and supporting a variety of archi-

tecture-related initiatives.

Rolf’s program experience includes leading several multidiscipline software archi-

tecture teams for large-scale, software-intensive national and international systems

since 1997. He is a certified architect for The Open Group Architecture Framework

(TOGAF), Version 8.1, ATAM Evaluator (SEI), and Software Architecture Profes-

 SOFTWARE ENGINEERING INSTITUTE | 9

sional (SEI). He has previously presented at conferences held by the U.S. DoD,

Integrated Defense Architectures, The Open Group, and the International Council

of Systems Engineering (INCOSE). Rolf holds bachelor degrees in Computer Sci-

ence and Mathematics from Huntingdon College and is a member of the Institute of

Electrical and Electronics Engineers (IEEE) and INCOSE.

Notes

Rolf Siegers started his talk by describing the kind of projects he has been involved

in at Raytheon. These projects were characterized as large-scale, multiyear, multi-

million-dollar software-intensive systems. His involvement and experience in these

large projects spanned all across Raytheon, which employs about 8,000 people in

18 countries. First, he discussed the business case for architecture in general and

software architecture in particular. He cited Barry Boehm’s research, which reveals

a direct correlation between the amount of architecture effort done in a project and

the quality of the system produced. In 2001, government agencies began requesting

architecture-centric reviews from their contractors. Another factor that made archi-

tecture important is communication. Large projects involve a large number of

stakeholders; thus, different views are needed to formally communicate the sys-

tem’s functionality to all stakeholders.

Siegers then moved his discussion to how Raytheon achieved architectural maturity

that scaled to other company projects. He emphasized that Raytheon’s success in

architecture was a result of top management’s dedication to and faith in the impor-

tance of architecture. Raytheon’s first corporate initiative was establishing an ARB

to establish a company-wide understanding of architecture. However, the question

remained which architecture to emphasize. Based on the size of the company, Ray-

theon was interested in all three levels of architecture: systems, software, and en-

terprise. Therefore, Raytheon initiated the Raytheon Enterprise Architecture Proc-

ess (REAP) project. Its primary focus was on the process of how to architect. Then,

other initiatives focused on notation and collaboration among the different archi-

tects across the company. Raytheon adopted the ATAM to address not only soft-

ware architecture issues but also systems and enterprise architectures. They se-

lected the ATAM because the method was domain independent and could be

adapted to other architectural domains.

Raytheon’s next step was training and certification. Siegers talked in detail about

how the company established Raytheon’s Certified Architect Program (RCAP) for

training and certifying its own architects. In addition, he mentioned that tool sup-

port for architecture is still nascent, even though consolidation is occurring due to

company mergers and competitor buyouts. He concluded by saying that Raytheon’s

experience with architecture shows that institutionalizing architecture within a

company takes money, time, and talent.

10 | CMU/SEI-2006-TR-010

3.3 INTEGRATING METHODS AND TECHNIQUES

3.3.1 Definition and Evaluation of Geographic Information System Ar-

chitecture Using ADD and the ATAM

Ibrahim Habli, Research Associate, Rolls-Royce Systems and Software Engineering

University Technology Centre, University of York

Abstract

The presentation provides an overview of and key findings from the application of

the SEI’s architectural methods in the definition and assessment of a Geographic

Information System (GIS) architecture. This application resulted in the documenta-

tion of 22 quality attribute scenarios covering performance, availability, modifiabil-

ity, security, testability, and usability. Three design iterations were then performed,

in accordance with ADD, and an architecture was produced and documented in two

architectural views: Module and Component-and-Connector (C&C). A total of 38

distinct architectural design decisions were made; each contributed to the achieve-

ment of one or more quality attribute scenarios. Finally, the GIS architecture was

evaluated using the ATAM, resulting in the identification of 16 sensitivity points,

10 tradeoff points, and 13 risks that were summarized in 4 risk themes. Lessons

learned from applying the SEI’s architectural methods revealed that addressing GIS

quality attributes systematically at the architectural stage facilitated an unambigu-

ous record of the rationale, assumptions, and dependencies of the critical technical

decisions involved in achieving key quality drivers. This, in turn, improved the

flexibility, adaptability, and analyzability of the architecture. Additionally, the GIS

architectural process proved to be useful for teaching purposes. It is currently used

as part of a postgraduate course in software architecture as an example of a system-

atically defined architecture.

Notes

Ibrahim Habli talked about a case study for a GIS architecture done at the Univer-

sity of York, England. The motivation behind this case study came from both aca-

demia and industry. The purpose of this research project was twofold. He wanted

first to create an architecture for GIS systems using different architectural tech-

niques and second to create a model to show students how software architecture fits

within the overall development life cycle. Habli explained some views of the archi-

tecture and discussed the architectural decisions made during the decomposition of

the system’s functionality. He also explained what each module represented.

The next part of the presentation focused on the lessons learned from this exercise.

Habli reported that quality attribute scenarios provided three benefits:

1. understandability. They unambiguously define factors that control the

achievement of quality attributes.

2. precision. A response and a response measure offer specific means for assess-

ing GIS architectures.

 SOFTWARE ENGINEERING INSTITUTE | 11

3. traceability. The decomposition of each quality attribute into scenarios enables

the traceability of how an attribute is addressed during architectural design

and evaluation.

ADD’s benefits include its systematic consideration of quality attributes and a

mapping between quality attribute scenarios and architectural decisions. Coupling

ADD with the Views and Beyond (V&B) approach to documentation provided

well-organized architectural documentation and a record of the architectural design

decisions applied, resulting architectural views, and underlying design rationale.

The ATAM’s benefits include its assessment of the main architectural artifacts (re-

quirements and design), enhancement of architectural documentation, and articula-

tion of the parameters for effective reuse of architectural design decisions.

Habli said that those carrying out the case study did encounter some difficulties

applying ADD techniques and performing an ATAM evaluation. Among these

problems was the need to have a more accurate prioritization, instead of the basic

low-medium-high scale. Also, it was difficult to define a quality attribute response

and response measure for some attributes such as flexibility. In addition, at this

early stage of design, it was difficult to decompose the system functionality without

ignoring some of the main functionality. Finally, Habli argued that the ATAM

needs more quantitative evaluation elements added to it. He suggested there is a

need for specialized assessment techniques to measure quality attributes such as

performance.

In the question and answer (Q&A) session, most questions revolved around the

issue of the applicability of ADD techniques and the ATAM in industry. Also,

there was a discussion about whether it was appropriate to use techniques such as

the ATAM without proper training and certification.

3.3.2 Architecture-Centric Development Method

Anthony J. Lattanze, Associate Teaching Professor, Institute for Software Research

International, Carnegie Mellon University

Abstract

Functionality is a measure of how well a system does the work it was intended to

do, but functionality is not all that matters in software development. Properties like

interoperability, modifiability, and portability matter as much as functionality does.

These properties are determined primarily by the software structure—or the soft-

ware architecture. While many structures can satisfy functionality, few can satisfy

it and the other quality attribute properties needed in a system. Achieving quality

attributes in a predictable way can be accomplished only by deliberately selecting

the appropriate structures early in the development process. This approach is a

radical departure from high-speed, lightweight programming methodologies (e.g.,

extreme programming [XP]) that focus on functionality and prescribe writing soft-

ware until a product emerges—architectures also emerge in this paradigm. Emer-

gent architectural structures may or may not meet the expectations of the broader

12 | CMU/SEI-2006-TR-010

stakeholder community. Unfortunately, architectural shortfalls are not recognized

until it is too late and repair is difficult and costly. On the opposite end of the spec-

trum are methods that espouse high-ceremony processes and a heavy emphasis on

document production. While mature processes are certainly beneficial, there is no

consistent correlation between high-maturity organizations and high-quality archi-

tectures. Again, architectural shortfalls are often discovered late in the development

life cycle.

The Architecture-Centric Development Method (ACDM) differs from these ex-

tremes in that it places the software architecture, not software processes or code

artifacts, at the center of a development effort. Like architectures in the building

and construction industries, the ACDM prescribes using the architecture design to

drive not only the technical aspects of the project but also the process and pro-

grammatic issues of a development effort. The ACDM weaves the product, tech-

nology, process, and people together into a cohesive, lightweight, scaleable devel-

opment method. This presentation gives an overview of the ACDM, briefly

discusses experiences thus far in using the method, and maps out plans for matur-

ing the method.

Notes

First, Anthony Lattanze underscored the need for architecture in all software devel-

opment efforts, not only in big companies but also in medium-sized and small ones.

He detailed his method, the ACDM, and emphasized how it helps focus develop-

ment effort on the architecture. The ACDM is in the middle of two extremes: (1)

high-speed development methodologies that ignore architecture and (2) heavy,

process-oriented paradigms. Lattanze showed that when used properly, the ACDM

helps achieve not only the desired functionality but also the desired quality attrib-

utes.

Lattanze created the ACDM in 1999 as a graduate course project and later im-

proved it using the ATAM and QAW. He discussed his experience with companies

that adopted this method with good results. His experience showed that, in most

cases, it took three iterations to produce sound architecture. Industry wants some-

thing that teaches engineers how to architect. Lattanze argued that his method puts

architecture at the center of the development effort and makes it the guide for de-

sign and implementation. Another motivation behind his method is allowing small

companies to reap the benefits of architecture-driven development, something they

might think is impossible.

In the Q&A session, the main topic discussed was when to stop architecting. Some

audience members liked the observation that it takes about three tries before you

get an architecture right. Others debated about when the architecting has been suf-

ficient enough for you to move on to the next phase of software development. Lat-

tanze argued that knowing when to stop depends on the architectural team’s under-

standing and experience.

 SOFTWARE ENGINEERING INSTITUTE | 13

3.3.3 Architectural Design of an Automatic Guided Vehicle (AGV)

Transportation System with a Multi-Agent System Approach

Danny Weyns, Researcher, DistriNet Labs, Katholieke Universiteit Leuven

Abstract

Introduction: Egemin N.V. is a Belgian manufacturer of Automatic Guided Vehi-

cles (AGVs) and control software for automating logistics services in warehouses

and manufactories using AGVs. In a joint research and development project,

Egemin and the DistriNet research group developed an innovative version of the

AGV control system to cope with new and future system requirements such as

flexibility and openness. In this project, a multi-agent system approach was applied

for modeling and implementing a decentralized control system. Instead of a central-

ized approach, where one computer system is in charge of numerous complex and

time-consuming tasks such as routing, collision avoidance, or deadlock avoidance,

in this project, the AGVs are somewhat autonomous. This autonomy enables a sys-

tem to be far more flexible than in current software. The AGVs can adapt them-

selves to their immediate environment, and order assignment is dynamic. The sys-

tem can cope with AGVs leaving the system (e.g., for maintenance) or with adding

new AGVs automatically. To develop the AGV application, we used the evolution-

ary delivering life-cycle model, which centers architectural design within develop-

ment activities.

Requirements: To describe the functionality of the software system, we worked

with the main stakeholders of the system to define scenarios. Some are initiated by

an external actor (e.g., a scenario that describes the life cycle of a task that enters

the system); other scenarios describe interactions among parts in the system (e.g., a

scenario that describes AGV collision avoidance on crossroads). To establish qual-

ity requirements, we used quality attribute scenarios. In particular, to elicit quality

attribute scenarios, we organized a QAW with the main stakeholders involved in

the project. During this two-day workshop, we generated a utility tree to define and

prioritize the relevant quality requirements precisely. In particular, we specified

quality attributes such as flexibility and openness, which were important project

quality goals.

Architectural Design: For architectural design, we used techniques from the ADD

method—a recursive decomposition method that is based on understanding how to

achieve quality goals through proven architectural approaches. At each stage of the

decomposition, we selected architectural drivers together with the architectural ap-

proaches needed to satisfy them. We used a reference architecture for situated

multi-agent systems extensively as an asset base for selecting architectural solu-

tions. This reference architecture, developed at DistriNet Labs, represents our ex-

pertise with the architectural design of various situated multi-agent system applica-

tions. The software architecture of the AGV application is documented by different

views. Each view belongs to one of the following standard viewtypes: Module,

Component-and-Connector, or Deployment.

14 | CMU/SEI-2006-TR-010

Evaluation: We used the ATAM for the evaluation of the software architecture.

The method’s main goal was to determine whether the software architecture satis-

fied system requirements, in particular the quality requirements. We applied the

ATAM for one concrete application—a tobacco warehouse transportation system

used as a test case in the project. The one-day ATAM evaluation was a valuable

experience. The full group of stakeholders discussed the architecture in-depth for

the first time. Participants agreed they gained insight in four areas:

1. the value of software architecture in software engineering

2. the importance of business drivers for architectural design

3. the value of explicitly listing and prioritizing quality attributes with the stake-

holders

4. the strengths and weaknesses of the architecture and architectural approaches

One interesting discussion arose from the tradeoff between flexibility and perform-

ance. Various decisions in the software architecture aim to improve flexibility in

the system, yet the decentralized nature of the multi-agent system implies an in-

crease in bandwidth. Field tests conducted after the ATAM evaluation proved that

the communication cost remains under control even in the worst-case scenarios.

During the evaluation, stakeholders made the following comments about the

ATAM:

1. A thorough and complete architectural evaluation based on the ATAM of a

realistic industrial application is not manageable in one day.

2. Coming up with a quality attribute tree proved to be difficult, time-consuming

and—at times—tedious. A lack of experience and clear guidelines on how to

construct such a tree hindered group discussion.

3. The general AGV software architecture was developed with several automa-

tion projects in mind; however, during the ATAM evaluation, the scope of the

architecture was assumed to be a single automation project. Clearly, the

ATAM is devised to evaluate a single architecture in a single project. How-

ever, this difference in scope hindered discussions because some architectural

decisions were motivated by the architecture’s product line nature.

4. We lacked good tool support for documenting architectures. Currently, draw-

ing architectural diagrams and writing the architectural documentation incurs

much overhead. Revising the documentation and keeping everything current

(e.g., cross-references and relations between different parts of the documenta-

tion) turned out to be especially hard and time-consuming. In the future, good

tool support would be helpful.

Conclusion: Developing the AGV application with a multi-agent system approach

was a valuable experience for both partners in this project. Egemin learned a lot

about the potential and possible implications of applying multi-agent system tech-

nology in AGV systems. At DistriNet, this real-world application showed that

 SOFTWARE ENGINEERING INSTITUTE | 15

multi-agent systems can make a difference when qualities such as flexibility and

openness are important system goals. Finally, we gained insight into the relation-

ship between multi-agent systems and software architecture.

For a detailed description of the AGV application’s software architecture and an

extensive report on the ATAM evaluation, go to

http://www.cs.kuleuven.be/publicaties/rapporten /cw/CW431.abs.html.

Notes

Danny Weyns described how his research group, DistriNet Labs, and Egemin N.V.,

a Belgium manufacturer, joined their efforts and built an innovative AGV. This

research and development effort used many architectural techniques to cope with

the new quality attributes of AGVs. Weyns described the functionality of AGVs

and their quality attributes (both old and new), emphasizing the importance of two

quality attributes: openness and flexibility. The companies used software architec-

ture as a means to achieve these quality attributes and used ADD techniques during

the design stage. They also developed a reference architecture for AGV systems. In

addition, the group built new middleware to support the development of AGVs.

The documentation of the architecture was created using architectural views.

Weyns showed some of them and explained some of the architectural decisions

made during design.

In the second part of his presentation, Weyns talked about the lessons learned dur-

ing his experience using software architecture techniques to build AGVs. He ar-

gued that documentation consisting only of views was inadequate and that cross-

view relationships were needed to communicate the architecture to the stake-

holders. He commented that ADD is helpful as a design approach for refinement

and would like to see some guidance on using the approach for evolving systems.

He also described the ATAM process that was performed to evaluate the reference

architecture for these systems. Their experience showed that the utility tree was an

important tool but it was time-consuming and required good preparation. A com-

plete evaluation of a complex system such as the AGV system was not manageable

in one day. Their attempt to evaluate both the product-line-like basic architecture

and a product instance during the same exercise hindered discussion.

3.4 REQUIREMENTS

3.4.1 A Comparison of Requirements Specification Methods from a

Software Architecture Perspective

Ipek Ozkaya, Member of the Technical Staff, Software Engineering Institute

Abstract

Not all requirements are equal from the viewpoint of architecting a system. Often,

architecturally significant requirements are not specified in a manner that makes

them useful to an architect. Exact categorizations of architecturally significant re-

quirements do not yet exist, but given the consensus that those requirements in-

16 | CMU/SEI-2006-TR-010

clude quality attribute requirements, we examined how various methods support

their expression. We addressed one element of the omission—quality attribute re-

quirements—and evaluated the following methods: natural language requirements

using “shall” and “will,” use case analysis, the QAW, global analysis, and an ap-

proach developed by Fergus O’Brien that we call O’Brien’s approach. We chose

these five approaches because they are in widespread use and/or represent methods

that emphasize the capture of quality attribute requirements in particular.

Our ultimate goal is to give guidance as to how to transform the type of business

analysis that is done at higher management levels into architecturally significant

requirements. Each method’s realization differs dramatically from its potential with

its own strengths and weaknesses. Only O’Brien’s approach explicitly starts with

business goals for extracting architecturally significant requirements; however, it

focuses on the process without guidance for the specification. The natural language

approach (using shall and will) is expressive but does not work well in practice; it

often results in a disparate set of requirements that correspond to a collection of

“point” requirements. Use case analysis is widely adopted but does not provide

enough guidance for quality attribute elicitation and specification. Lastly, there is

not enough information about the effectiveness of global analysis and the QAW in

practice.

We used the following nine criteria to evaluate the methods:

1. quality attribute expressiveness

2. ease of organizing quality attribute requirements

3. traceability

4. checking for completeness and consistency

5. support for testing

6. tools

7. support for variability

8. skill level needed to carry out the method

9. support for prioritizing requirements

In our analysis, we observed that all the methods

• offer limited assistance for checking the completeness and consistency of

quality attribute requirements

• require highly skilled personnel to apply them

We can imagine an ideal method for deriving and expressing quality attribute re-

quirements if we combine the above observations with the best features of each

method (identified in parentheses):

• Quality attribute requirements are derivable in a systematic fashion from busi-

ness goals. (O’Brien’s approach and the QAW)

 SOFTWARE ENGINEERING INSTITUTE | 17

• Quality attribute requirements are expressed in a clear and testable fashion.

(QAW scenarios)

• Architecturally significant requirements can be clearly identified. (Use case

modeling with a focus on model-driven requirements engineering)

• Requirements derived from organizational factors can also be systematically

derived and tested. (Global analysis)

• Educational and explanatory materials would be generally available.

This work was done in collaboration with Len Bass, John Bergey, Paul Clements

and Paulo Merson (all from the SEI), and Raghvinder Sangwan (Penn State Great

Valley).

Notes

Ipek Ozkaya compared several requirements specification methods to show how

well they produce requirements an architect can use to make sound architectural

decisions. This comparison was based on the belief that the requirements specifica-

tion has a great effect on the architecture phase. Ozkaya emphasized the goal of this

evaluation: to provide guidance for changing business goals into architecturally

significant requirements that will help architects do their job. Ozkaya moved the

discussion to the nine evaluation criteria listed in her abstract. One participant

asked why investment projection was not used as an evaluation criterion. Ozkaya

explained that this factor was part of the process and therefore was not an artifact.

Ozkaya described each method, evaluated it against the nine criteria, and pointed

out the strengths and weaknesses of each. Next steps will focus on collecting busi-

ness stories.

3.4.2 The Best of Three Worlds: Combining the QAW, Model-Driven

Requirements Engineering (MDRE), and Global Analysis (GA)

Robert W. Schwanke, Senior Member of the Technical Staff, Siemens Corporate

Research

Abstract

The Good Enough Architectural Requirements (GEAR) process is an iterative, in-

cremental analysis process that integrates three approaches to architectural re-

quirements engineering: (1) quality attribute scenarios (as used in the QAW), (2)

model-driven requirements engineering (MDRE), and (3) global analysis (GA).

GEAR shows where these methods overlap and where they complement each other.

It also adds insight into the differences between product requirements and architec-

ture requirements and incorporates experience from over a dozen diverse industrial

software architecture projects.

Notes

In his presentation, Robert Schwanke compared three methods of gathering archi-

tectural requirements: quality attribute scenarios (used in the QAW), MDRE, and

18 | CMU/SEI-2006-TR-010

GA. His analysis led him to create a new approach, GEAR, that combines the best

of the three methods. Schwanke described GEAR as an incremental, adaptable,

pragmatic, and efficient approach.

Schwanke described the nontechnical issues that face architects at the initial stages

of architecture, including competing stakeholders’ interests, project management

styles, and the uncertainty of project direction and funding. Then, he discussed the

“artifact-uses” relation which is analogous to the Parnas “module-uses” relation.

Schwanke provided an overview of the GEAR process. He explained that MDRE

helps elicit product requirements in the form of use cases, which focus primarily on

functionality. To supplement these requirements, a quality attribute approach con-

tributes quality attribute scenarios. Finally, GA provides an architecture problem

analysis that links requirements to architectural strategies. He noted that iteration

was not shown in his model for the sake of clarity, but it was implied. Next, he pre-

sented an instance scenario of how you could use the process during the first itera-

tion of requirements elicitation and explained that

• stakeholder analysis produces stakeholder scenarios (both use cases and qual-

ity attribute scenarios)

• GA analyzes the requirements and then produces architectural strategies

• architecture principles employ the strategies used to produce the decomposi-

tion and interfaces of the product architecture

Finally, the discussion moved to the comparison of requirements and factors. Re-

quirements are true, related to products, unambiguous, verifiable, modifiable, con-

sistent, complete, and traceable. Factors are true, related to product architecture,

explicitly variable, arguable, readable, conflicting, important, and eventually trace-

able. We often generalize factors from requirements. Factors let us conceptualize

candidate requirements and are subject to change (unlike the resulting require-

ments).

3.5 ATAM

3.5.1 Risk Themes Discovered Through Architectural

Evaluations

Len Bass, Senior Member of the Technical Staff, Software Engineering Institute

Abstract

The ATAM is a technique for evaluating software architectures to find risks that

are linked to the business goals and have architectural implications. The SEI has

been doing evaluations based on the ATAM since 1998 and distilling these risks

into risk themes since 2000. Risk themes are a summarization and consolidation of

the collection of risks found during the evaluation. They are continuously emerging

risks that appear repeatedly in the total collection of risks, sensitivities, and trade-

offs, and they have a direct impact on the business drivers and the software archi-

 SOFTWARE ENGINEERING INSTITUTE | 19

tecture. Figure 1 shows the conceptual flow of the ATAM. Most evaluations pro-

duce an Architecture Evaluation Report, which repeats the business drivers used as

input to the ATAM and enumerates the risk themes. For this presentation, we use

the raw data from those reports of 18 ATAM evaluations conducted by the SEI be-

tween 2000 and 2005: 12 are for systems being produced for the DoD; 2 are for

systems being produced for non-DoD government agencies; and 4 are for systems

being built for commercial purposes. The domains involved range from information

systems to embedded systems.

im
p
a
c
ts

Figure 1: The Conceptual Flow of the ATAM

The major results of this investigation are

• a categorization of risk themes

• the observation that twice as many risk themes are risks of “omission” as are

risks of “commission”

• a failure to find a relationship between the business goals of a system being

evaluated and the risk themes associated with the development of that system

• a failure to find a relationship between the domain of a system being evaluated

and the risk themes associated with the development of that system

We draw lessons for the practitioner and the researcher from the data analysis.

This work was done in collaboration with Robert Nord, William Wood, and David

Zubrow of the SEI.

Notes

Len Bass’s presentation discussed a preliminary analysis of the results collected

from ATAM evaluations conducted by the SEI between 2000 and 2005. He ana-

lyzed reports from 18 evaluations and organized the results into risk themes.

20 | CMU/SEI-2006-TR-010

To start, Bass discussed the content of the raw data he analyzed. It consisted mainly

of risks grouped into risk themes using the Affinity Diagram process. Bass pro-

vided examples of each risk theme category. Three of them had subthemes of archi-

tecture, process, and organization. Bass also described how he and his colleagues

categorized the business goals and then asked questions about the relationships be-

tween the risk themes and the business goal categories. Bass stated the two main

results of his analysis:

1. Risks of omission prevail over risks of commission.

2. No evidence exists of a relationship between either the business goals and

mission goals or the domain and the risk themes discovered during an ATAM

evaluation.

Bass presented two of the recommendations he and his colleagues have for practi-

tioners and researchers:

1. Practitioners should use checklists early in the project and use known tech-

niques for mitigating requirement volatility risks.

2. Researchers can explore the hypothesis that risks are related to organizational

settings and determine techniques for mitigating the risks of organizational

awareness and failure to address important considerations.

Bass also suggested that future work is needed to incorporate business goals and

risk themes into ATAM phases. Finally, he asked audience members to help the

SEI improve the ATAM by sharing their ATAM evaluation results and observa-

tions.

3.5.2 The ATAM and Collaboration at the Enterprise Level

Craig R. Martin, Director, Knotion & Osilio Companies (Pty) Ltd.

Abstract

We discovered a distinct gap between enterprise-level and software-architecture-

level planning in our consulting and software development divisions. As a result,

we wanted to build a system that would

• dynamically measure what impact a specific functional requirement (realized

in a use case) has on a business value driver

• measure the traceability from the “deliver products to market faster” business

objective down to a performance metric on an Enterprise Resource Planning

(ERP) solution across a low-bandwidth network

To satisfy these objectives, we built the Synap-c knowledge automation suite—a

workspace where you can mind-map classified data into a database and associate

that data with more structured software engineering information. For example, you

could use Synap-c to develop a use case model and link it to goals, objectives, and

strategic outcomes. Synap-c allows the usual UML modeling with the ability to

associate these models with an enterprise architecture or a simple mind-map ses-

 SOFTWARE ENGINEERING INSTITUTE | 21

sion held in a boardroom meeting. We also modeled the ATAM into the solution

and linked it with both the software-architecture, UML aspect of the tool and the

enterprise-architecture-planning components. As a result, we created a bridge be-

tween the two domains according to their structured models.

Our main objective was not to capture this information but to share, reuse, and

automate it. We can understand how all the components work together to form a

risk theme or mitigation tactic. Together, all these components build what we refer

to as the knowledge of a specific theme or tactic. Synap-c can reuse this knowledge

because it can be uploaded to a host server and shared with other architects both

inside and outside the company. We also developed an overarching agent frame-

work that can synthesize the resulting components, themes, and tactics into a belief

system. Thus, we could have a reliability agent that knows and understands all the

rules and components it interacts with and can adjust a solution’s reliability accord-

ingly. We can also place these reusable agents into a software development envi-

ronment where similar belief systems are captured in their own agents (e.g., project

schedules, resources, objectives, metrics, and technical hardware). Now we can

determine the overall impact of changes to “data primary keys” in a nondeterminis-

tic environment, and the reliability agent can learn from its changes in the project

environment.

At present, we want to accumulate as much ATAM-type information as possible to

build suitable belief systems and to create reusable intelligent and autonomous

agents. These agents could support quality attributes at both the software and enter-

prise levels. The ATAM data could be collected at individual companies or through

an open-hosted environment.

Here are some advantages of using Synap-c within the architecture space as well as

for evaluations based on the ATAM:

1. Models such as the ATAM can be extended to meet individual requirements.

2. A network structure can be used to map anything to anything, which allows

trawling through the entire network.

3. Scenario and gap analysis can be performed on various options.

4. The semantic classification of data and reporting can be performed.

5. Reuse, if needed, is possible at the team, department, client, industry, and in-

ternational levels.

6. The blackboard nature of the tool is conducive to architecture in practice.

There is support for the agnostic nature of architects and developers.

7. A gap still exists between the outputs of architecture decisions and the risks

identified in tangible code-level decisions. This gap can be significantly re-

duced with the use of Synap-c’s captured belief systems.

8. Feedback from architecture studies and the post-analysis of ATAM data must

also cater to the semantic nature of architecture perception, which is partially

22 | CMU/SEI-2006-TR-010

captured in styles. The automation of these styles into belief systems may

yield some interesting results.

Notes

Craig Martin’s presentation discussed the use of a tool set, Synap-c. His company

developed Synap-c to enable collaboration among architects, project managers,

developers, and stakeholders at the enterprise level. This collaboration is targeted at

project evaluation and planning. To start, Martin discussed the foundation of this

tool. Synap-c builds upon the concepts of the ATAM by forming a closed-loop col-

laboration that keeps all stakeholders informed of the architectural decisions and

relays their feedback.

Martin discussed in detail how he and his colleagues used the ATAM within

Synap-c and used both logical and physical views to illustrate the process. He then

presented some of the results of using the ATAM with Synap-c (which are reported

in the abstract). He said that future work would focus on how to automate the rules

(concepts) of the ATAM within this tool.

 SOFTWARE ENGINEERING INSTITUTE | 23

4 Working Sessions

The working sessions are meant to engage leading-edge software developers, ac-

quirers, and researchers in identifying emerging solutions to pervasive problems.

Six working sessions were scheduled to provide further discussion of topics related

to software architecture:

1. Architectural Competency

2. Bridging System and Software Architecture

3. Architecture Evolution

4. Global Software Development

5. Strategic Risk Management for Architectures

6. Building a Software Architecture Community

Participants were asked to describe the topic, discuss why it is important, define the

gaps between what technology offers and industry needs, and discuss possible solu-

tions.

These summaries are meant to convey preliminary ideas for the purpose of getting

feedback. They do not necessarily represent the consensus of the session partici-

pants.

4.1 ARCHITECTURAL COMPETENCY

Moderator: Len Bass, Software Engineering Institute

Architectural competency is a term that conjures up different visions. One goal of

this breakout was to determine what meanings the attendees envisioned. One aspect

of architectural competency is the competency of an individual versus that of the

organization. Another aspect is an architect’s required technical skills versus non-

technical skills.

We began by distinguishing between the organizational perspective and the indi-

vidual perspective. For an organization to be architecturally competent, it must

have a number of competent architects, but this staff alone is insufficient. One indi-

cator of architectural competence for an organization—in addition to the presence

of competent architects—is the organization’s established set of practices. For ex-

ample, regular architectural reviews should occur. Program plans and schedules

should reflect the influence of architecture (e.g., work teams are not assigned until

at least the first-level decomposition of the architecture has been defined). There

should be a career path for architects and an architectural governance system to

establish corporate standards and practices as they refer to architecture. This gov-

ernance system might establish, for example, the views and notations by which an

architecture should be documented.

24 | CMU/SEI-2006-TR-010

The interests of the attendees at the breakout group cut across the individual and

the organizational perspectives. The interests were

• How should software architects be certified?

• How should software architecture be mapped to early life-cycle activities?

• How can an organization develop a roadmap to improve its architectural com-

petence?

• What goes on in an architecturally competent organization?

• What is the skill set of an architect?

• How should an organization judge talent to determine who should become

architects?

• How do organizations gauge architectural competency?

• What do architects do on a daily or project basis?

• How do you become a competent architect?

• How can an architect mentor others to become competent?

• How does an architect influence an organization to become more architectur-

ally competent?

• How can the architectural competency of a team be assessed?

Attendees of this session were practitioners and researchers from the following or-

ganizations: Chemical Abstract Service, CIBER, the SEI, Siemens, Union Switch

and Signal, and Visteon.

The discussion primarily centered on two areas: (1) the duties of an architect and

(2) the skills of an architect.

4.1.1 Duties of an Architect

An architect’s duties as articulated by the participants in the breakout group include

• problem solving

• project planning

• establishing an architecture and a design for a project

• developing processes and procedures for a project or organization

• writing proposals

• defining platforms for the future

• translating stakeholders’ needs into requirements

• helping business people understand each other’s needs and devising technical

solutions to reflect this understanding

• enforcing the use of the architecture within the development team

 SOFTWARE ENGINEERING INSTITUTE | 25

4.1.2 Skills of an Architect

Architects must have the following attributes:

• organization skills to balance multiple tasks

• communication skills to convey the business goals to various stakeholders

• political skills (including negotiation skills) to convince various stakeholders

of the wisdom of a technical choice and to navigate within an organization’s

political factions

• a broad view of the

− product

− organization

− mission and goals that the product is intended to support

• experience to draw upon when making decisions

• leadership abilities to mentor and inspire others

• technical depth to understand and solve complicated technical issues

• the right perspective to plan for the long term and to identify what is and is not

important to the architecture

4.1.3 Next Step

The discussion focused on an architect’s duties and requisite skills. These items

were not discussed:

• how to map skills to roles and duties

• what an organization must do to become architecturally competent

Given the attendees’ interest in organizational competence, it might be the topic of

papers or a breakout group at the next SATURN workshop.

4.2 BRIDGING SYSTEM AND SOFTWARE ARCHITECTURE

Moderators: Mike Gagliardi and David Zubrow, Software Engineering Institute

There is currently a gap between the engineering practices of system architecture

and software architecture. This disconnect causes many problems in the develop-

ment and acquisition of large-scale, software-intensive systems in the DoD. Sys-

tems-of-systems (SoSs) are particularly susceptible to major disconnects between

system and software architectures. An SoS depends on two things: (1) the system

architecture to guide the development of individual systems and the concept of op-

erations (CONOPS) and (2) the software architecture allowing interoperation be-

tween nodes and the sharing of critical timely information. All programs must find

a way to match the system architecture to the software architecture, to handle the

inevitable development parallelism, and to ensure that the system architects, soft-

ware architects, and CONOPS developers interact to get the best possible system.

This workshop was a facilitated forum for capturing the current state of practice for

26 | CMU/SEI-2006-TR-010

integrating system and software architectures. We also identified the architecture

integration gaps and technical obstacles.

Discussion questions included

1. How do you manage the system’s quality attributes within and between the

system and software architecture(s)?

2. How do you describe the mapping between the representations of the opera-

tional architecture, system architecture, and software architecture representa-

tions? How do you relate the views in the architectures?

3. What are the risks of and lessons learned in the integration of system and

software architecture practices?

Attendees of this session were practitioners and researchers from the following or-

ganizations: Boeing, Navy, Northrop-Grumman, Pitney-Bowes, Raytheon, Rolls-

Royce, the U.S. Army, and Virginia Tech.

4.2.1 Why Is This Disconnect Important?

Software-intensive systems often suffer severe integration and opera-

tional/behavioral problems due to a lack of consistency between the system and

software architectures in addressing system quality attributes. This deficit often

results in costly rearchitecting/redesign efforts and operational failures that signifi-

cantly impact the system’s cost, schedule, and mission effectiveness.

4.2.2 Current State of the Practice

Technical

• quality attribute requirements and specifications

− Quality attribute requirements are often underspecified.

− It is difficult to identify requirements and quality attribute omissions at

the system level.

• system architecture representations, analysis techniques, tactics, and so forth

− Component relationships at the system architecture level don’t have the

robustness that occurs at the software level.

− The tactics for many quality attributes are not described at the system

level.

− There is no analytical support for quality attributes in many instances.

− No real techniques are available to reason beyond the well-known quality

attributes.

− Systems architecture equals system hardware block diagrams. There is lit-

tle notion of multiple system views (hardware maintainability, sustainabil-

ity, etc.).

− The DoD Architecture Framework (DoDAF) doesn’t incorporate software

concerns. The levels of abstraction hinder communication between the

system and software architectures.

 SOFTWARE ENGINEERING INSTITUTE | 27

• metrics

− The lack of metrics about other important quality attributes makes reason-

ing about them difficult.

• common semantics

− There is no common language for the information models in system and

software groups. Software developers should attend system design meet-

ings to enable cross-pollination.

− System architects understand quality attributes but in a different terminol-

ogy.

• architecturally significant scenarios

− Software is becoming scenario based, which creates a bigger disconnect

with some system engineers.

− Mission threads are a good starting point for system scenarios (i.e., sus-

tainment, availability, and performance).

− Scenario templates are used in activities for system fault-tree analysis.

Process

• Decisions at the system architecture level are often pushed down to lower

software architecture levels.

• There is a lack of communication between system and software groups.

• System architecture is the result of a waterfall process with functional decom-

position.

• System architects don’t fully understand and address all of the quality attrib-

utes.

• Early and frequent integration and testing saves integration effort in common

practice, but these tasks may not scale in a large, distributed SoS context.

• Typically, system architecture is defined before hardware and software trade-

offs are made.

Programmatic

• Time and cost constraints make it difficult to get to the quality attributes.

• Customers drive the decision-making process. Companies need to follow ar-

chitecture-centric acquisition strategies.

• A lack of return on investment (ROI) data impacts management’s level of

commitment to architecture activities.

• Developers and acquirers are pressured to allow prototypes to become prod-

ucts.

• The system engineering (and acquisition) community lacks an awareness of

the QAW and ATAM.

• System engineers/architects need to be trained and added to ATAM evaluation

teams.

28 | CMU/SEI-2006-TR-010

Organizational and Cultural

• A separation of systems and software groups often occurs.

• Software groups are large (5×) compared to system groups.

• There is no real system-architecting team.

• There is a lack of respect between the systems and software groups. Parallel

learning experiences create different cultures.

• Postmortem reviews are the current means for improvement, but the findings

are rarely applied.

4.2.3 Technical Gaps and Issues

Gaps

• quality attribute requirements and specifications

• system architecture representations, analysis techniques, tactics, and so forth

• quality attribute metrics

• common semantics

• system scenarios

Issues

• The strict, centralized SoS architect/architecture concept is in question in this

context.

• Can the ATAM be moved into the system area? Some concerns that need to

be addressed include scale, decomposition, scenario/mission threads, and

schedule.

• How service-oriented architecture (SOA) and Web services impact architec-

ture (and vice versa) but are not well understood.

• How open source approaches impact architecture (and vice versa) and must be

better understood.

• Intersystem policies must be thought of as the next higher level of abstraction;

however, technology may be moving too fast to fully cover those policies.

4.2.4 Next Steps

The moderators developed the following recommendations for next steps after the

working session. These recommendations do not necessarily reflect the views of

the session participants.

Near-Term Steps

• Collaborate with external organizations to understand their needs and any ex-

tensions they’ve made to the QAW, ATAM, and so on for system architecture.

− Identify any necessary extensions they’ve made to existing SAT method-

ologies.

− Initiate pilots and case studies with external collaborators.

• Interview individual workshop participants.

 SOFTWARE ENGINEERING INSTITUTE | 29

• Have system engineers/architects attend classes in the SEI’s Software Archi-

tecture curriculum.

Long-Term Steps

• Actively participate in the following groups and standardization discussions

(among others) to ensure that they address quality attribute concerns ade-

quately:

− The International Council on Systems Engineering (INCOSE) to gain

more insight and influence in its architecture framework activities

− SysML standardization and quality attribute UML extensions

− The DoDAF

− The Object Management Group (OMG)

− The Open Group Architecture Framework (TOGAF)

• Describe tactics, patterns, and other features at the system level for the re-

maining important quality attributes. Collaboration with external organiza-

tions is necessary.

• Use system scenarios with mission threads as a good starting point. We need

to

− augment the scenarios for all the important quality attributes

− transform the scenarios into software-specific scenarios

− collaborate with external organizations and participate in pilots

• Investigate how SOA contributes to and impacts operational-to-software

transformations.

• Collaborate with external organizations and staff in the SEI’s Software Engi-

neering Measurement and Analysis (SEMA) Initiative regarding quality at-

tribute metrics.

• Leverage the academic community to get methodologies such as the QAW

and ATAM into the systems engineering process.

• Determine how to address common semantics (a technical and cultural issue).

• Investigate the role, activities, and other aspects of SoS architecture based on

a more decentralized approach at the SoS level.

• Hold another working session at the next SATURN workshop.

30 | CMU/SEI-2006-TR-010

4.3 ARCHITECTURE EVOLUTION

Moderators: Felix Bachmann, David White, Software Engineering Institute

The vision of the SEI Architecture Evolution project is to provide an effective, in-

tegrated, widely applicable, and extensible set of life-cycle architectural practices

and tools. An architect can use these practices and tools to keep software architec-

ture in line with its goals as the system evolves.

The challenges associated with this vision include

• understanding the current state of the architectural design. This task entails

discovering the discrepancy between the current and desired states of the ar-

chitecture.

• finding the appropriate practice and/or tools that can take the architecture

where it needs to go. This task may involve tailoring and integrating practices,

and understanding the appropriate fit with other architectural processes and

technologies.

During this two-hour working session, we sought to

• elicit from the participants situations in which they have evolved the architec-

ture

• identify existing practices and tools that are used to solve problems

• identify gaps in those practices and tools

• review opportunities for further work

We asked participants to consider three questions:

1. Where are you?

− What is the current state of the architecture and the forces that impact the

architecture?

− Explore evaluation, reconstruction, and documentation techniques to un-

derstand the architecture.

2. Where do you want to go?

− What new business opportunities do you want to exploit and what risks

need to be mitigated?

− Explore real options and utility techniques to understand alternatives and

characterize the benefits of various qualities.

 SOFTWARE ENGINEERING INSTITUTE | 31

3. How do you get there?

− How do we change the system, and what architectural strategies provide

the most benefit given the cost?

− Explore design methods to transform the architecture and cost benefit

analysis to choose alternatives.

Attendees of this session were practitioners and researchers from the following or-

ganizations: ABB, Chemical Abstracts Service, Cherokee Information Services,

Katholieke Universiteit Leuven, Knotion Consulting, Mellon, Northrop-Grumman,

the SEI, Siemens, and UPS.

4.3.1 Discussion

It seems that architecture evolution is not a problem if it is anticipated and the ar-

chitecture is prepared for it. In that case, evolution becomes a “simple” change.

Unanticipated evolution is a hard problem, since it involves having to evolve soft-

ware architecture to accommodate unanticipated changes.

Participants responded either that they discovered the need for evolution during

architecture evaluation based on the ATAM (risks themes) or that during integra-

tion (mismatch of components) or the change was obvious (e.g., new business

strategy, new technology, new feature, deploying in the field).

Participants offered the following reasons for failing to anticipate changes: short-

term thinking (let’s work only on the next version), lack of expertise (they could

not predict likely changes), and lack of time and/or money.

Is it possible to avoid evolution? If we could reliably predict everything that could

happen and prepare the architecture to accommodate the changes, would that make

the evolution problem disappear? In the real world, it isn’t feasible to prepare the

architecture for every change due to time and cost limitations. Furthermore, there is

the risk of overengineering (the introduction of too much overhead or “analysis

paralysis”) and the inevitability of things happening that no one thought could.

Given that evolution is unavoidable, what can be done when evolution occurs? One

of the first activities should be to determine the reasons why a change was not an-

ticipated or why a mismatch occurred. This lack of forethought could be due to a

lack of expertise, technology, and/or time.

Next, the scope of the evolution must be determined, and the process of change

must be aligned with that scope. Problems outside the scope should not be fixed.

The scope can be understood at the micro or macro level (e.g., one product or mul-

tiple products involved). The scope can be understood through the use of scenarios

to reason about a change. Since changing the architecture is costly, ad hoc deci-

sions can (and should) be avoided through a rigorous process for making decisions

involving a Change Control Board (CCB) or ARB.

32 | CMU/SEI-2006-TR-010

The participants offered the following guidance on how to decide what to do:

• Architectural redesign: Follow a strategy that defines how to fix the architec-

ture. Make sure everything else is still as expected (conduct architecture re-

gression testing using the scenarios).

• The context in which the architecture lives: Increase your organization’s ex-

pertise through training and new hires. Keep in mind that it can be a challenge

to change people’s behavior. Consider the infrastructure required for evolution

and whether the organization can adapt to an architectural change. If the or-

ganization cannot accommodate certain types of changes, do not make them.

• The time frame: There was a strong lobby for incremental change; don’t try to

do everything in one step.

4.3.2 Next Steps

In summary, the major points for the session were

• Do as much as appropriate and feasible to avoid unanticipated change.

• Use architecture evaluations, such as ATAM evaluations, to discover discrep-

ancies.

• Use quality attribute scenarios to

− guide the evolution

− define the scope for the evolution

− guide the change process of the architecture

− ensure that all parts of the architecture not involved in the evolution still

have their required properties

The SEI is interested in collecting information from the developer community

about additional situations in which they have evolved the architecture, the prob-

lems they encountered, and best practices for solving those problems.

4.4 GLOBAL SOFTWARE DEVELOPMENT

Moderators: Matthew Bass, Siemens; David Zubrow, Software Engineering Insti-

tute

The trend towards global software development has quickened pace in recent years.

More and more software-intensive systems are being developed using teams that

are geographically distributed. Developing software in this way poses unique chal-

lenges. Not only do cultural issues, background differences, and organizational

boundaries come into play, but day-to-day communication and coordination is

much more difficult and less effective. The system architecture is a central artifact

in these efforts. The goal of this working session was to bring together people who

are concerned with architecting systems for global development. During this work-

ing session, we collected our experiences to identify issues that are unique to global

software development.

 SOFTWARE ENGINEERING INSTITUTE | 33

Participants were asked to consider the following questions:

1. What software architecture issues have you experienced while developing

software in teams that were geographically distributed?

2. What practices were effective in this environment?

3. What practices were ineffective in this environment?

Attendees of this session were practitioners and researchers from the following or-

ganizations: Bosch, SEI, Siemens, the U.S. Army, Virginia Polytechnic Institute

and State University (Virginia Tech), and Visteon.

The participants expected to learn about the following:

• other attendees’ experiences with Global Software Development (GSD)

• assurance of GSD

• lessons and strategies for GSD

• outsourcing

• communication techniques for GSD

• tools for project management and collaboration for GSD

• architecture for GSD

• cost implications of GSD

• metrics for GSD

• effective collaboration across sites

4.4.1 Discussion

The participants from Visteon talked about their experiences and issues with GSD

projects. Others in the room shared their experiences and identified some strategies

for dealing with those issues. These discussions are summarized in Table 2.

Table 2: List of GSD Issues and Strategies

Issues Strategies

Poor quality of code; team

in India doesn’t have good

technical background.

Coordinate joint reviews across teams. Staff in India

must work in the U.S. during the project’s final stages.

Afterwards, they should return to India and become

more independent.

Short-term use of resources

for managing remote teams

Implement frequent builds with automated testing.

Inexperienced remote team

members; high turnover;

they don’t develop domain

knowledge.

Give remote teams incentives to stay in the company

(e.g., the most productive team/person could come to

the U.S. for a while).

No social relationship with

remote team

Develop remote sites as competence centers to reduce

turnover.

34 | CMU/SEI-2006-TR-010

Table 2: List of GSD Issues and Strategies (Continued)

Issues Strategies

The lead engineer doesn’t

produce very rich design

documents.

Create better documentation.

Some phases (e.g., design)

should happen with teams

collocated. That represents

a much higher cost when

the team is in both the U.S.

and India.

Have two low-cost centers and let them compete for

jobs.

The time zone difference is

a major problem; distribu-

tion itself is a major prob-

lem.

• Constrain the development of remote teams using a

tool infrastructure.

• Do testing independently from development.

• Involve remote teams in early life-cycle activities

(e.g., the QAW, ADD, and the ATAM).

However, it’s not a good idea to have stakeholders

participate in an ATAM evaluation via video tele-

conferencing because part of the evaluation’s value

comes from the social interaction.

• Conduct cross-cultural training.

• Move some local team members to the remote site

and vice versa. This cross-team fertilization can im-

prove trust and minimize attitude issues.

• In some low-cost countries, people would do better

if you specify exactly what they are to do, that is, if

you lay out each step for them.

• Use good tools to support configuration manage-

ment, integrated builds, and a well-defined process.

The discussion focused on the attendees’ problems and their strategies for dealing

with them. It was clear there were many interrelated concerns such as

• system/software architecture

• architecture documentation

• organizational practices

• work allocation

4.4.2 Next Steps

How the concerns discussed in the previous section influence each other is not

known. In the future, it could be fruitful to gain an understanding of the factors that

come into play in GSD projects and their interrelationships. This exploration of

GSD factors could be the basis for future research and/or breakout sessions.

 SOFTWARE ENGINEERING INSTITUTE | 35

4.5 STRATEGIC RISK MANAGEMENT FOR ARCHITECTURES

Moderator: Rick Kazman, Software Engineering Institute

The purpose of risk modeling is to aid in risk management decision making. Man-

aging risk does not necessarily result in removing it; zero risk is not always possi-

ble or even economically feasible. For any risk, there is usually a limit to how

much it can be controlled or mitigated. As such, risk management is the collection

of activities used to address the identification, assessment, mitigation, avoidance,

control, and continual reduction of risks. The goal of risk management is “enlight-

ened gambling” where we seek an expected outcome that is positive regardless of

the circumstances.

In general, architectures are not well planned or managed. Frequently, they are

poorly documented and not analyzed. As such, their impacts on the future and on

their stakeholders are not considered. Why is that the case? Frequently, the focus of

an architecture team is on technical matters—where the value is perceived to be.

Nontechnical factors such as risk, opportunity, and cost are considered boring or

“management issues.” Yet, despite recent progress, techniques for analyzing and

assessing risk in architectures are not widely known or taught.

The purpose of this working session was to assess the state of the art in risk man-

agement for architectures with an eye towards improvement. The perspective that

we took in the workshop is as follows: The expected value of an architecture is the

difference between its expected gain and its expected loss:

 E[Value] = E[Gain – Loss]

 = E[Gain] – E[Loss]

To increase the expected value, we can only increase the expected gain or reduce

the expected loss (subject to cost). Strategic software engineering methods explic-

itly optimize the expected value with respect to cost. To maximize the expected

value, we need to manage both opportunities (expected gain) and risks (expected

loss). Risks are situations or possible events that can cause a project to fail to meet

its goals; those risks range in impact from trivial to fatal and in likelihood from

certain to improbable. Opportunities are the potential to realize benefit from a pro-

ject. They are analogous to risk but have a beneficial impact. Both risk and oppor-

tunity are quantifiable. Risk is typically quantified as “risk exposure” (similarly for

opportunity):

Risk Exposure: RE = Prob(Loss) * Size(Loss)

Opportunity Potential: OP = Prob(Gain) * Size(Gain)

For multiple sources of gain (or loss), this equation applies:

 RE = Σ
 sources

[Prob(Loss) * Size(Loss)]
source

36 | CMU/SEI-2006-TR-010

That is, risk exposure (RE) is the sum, over all sources, of the individual risk expo-

sures. Given our formula for value above, we see that one way to maximize value is

to minimize risk (the expected loss).

The basic driving principle for value-based activities is the following: If it’s risky

to do something, don’t do it (e.g., specify firm graphical user interface [GUI] re-

quirements too early). Likewise, if it’s risky not to do something, do it (e.g., specify

document-sharing protocols). This rule seems obvious, but it is rarely explicitly

followed or managed. People must be educated to perform effective risk identifica-

tion, assessment, mitigation, prioritization, and tolerance. Part of that education

must include learning about models for strategic reasoning about risk. The model

discussed in this workshop was one of strategic planning.

Attendees at this session were practitioners and researchers from the following or-

ganizations: Bechtel Bettis, Chemical Abstract Service, Cherokee Information Ser-

vices, Mellon Financial, Northrop-Grumman, the SEI, Siemens, Union Switch and

Signal, the University of York, and Visteon.

4.5.1 Strategic Planning

To strategically manage architectures—and in particular to manage architectural

risk—we need the following information:

• a set of project attributes that we want to manage (and presumably optimize)

• an estimate of Size(Loss) and Prob(Loss) for each attribute

• a set of attribute assessment techniques

• a set of assessment cost estimates

• a set of Prob(Loss) estimates after the application of technique T

Given this information, we can determine an optimal management plan for reduc-

ing risk and the expected loss, subject to cost. This was the practical problem for

the workshop: Which techniques (T1, T2, T3, …) should be used on which attrib-

utes (A1, A2, A3, …) and in what order, to reduce an architecture’s overall RE?

We assume that a technique has a particular cost when applied to a given attribute,

that a technique will reduce the RE when applied to a given attribute, and that

sometimes a technique may not be used with a given attribute.

Examples of project attributes that are critical for architecture include

• A1: Worst-Case Performance (i.e., priority inversion, queue overflows)

• A2: Availability/Robustness (i.e., no single point of failure)

• A3: Ease of Integration

• A4: Usability

• A5: Performance (i.e., no missed data frames)

• A6: Cost

• A7: Development Schedule

 SOFTWARE ENGINEERING INSTITUTE | 37

• A8: Portability/Replaceability

• A9: Maintainability

• A10: Scalability

• A11: Testability

• A12: Understandability

• A13: Resource Utilization

• A14: Security

Examples of assessment techniques that might reduce architectural risk include

• T1: SAAM

(the SEI Software Architecture Analysis Method)

• T2: ARID

(the SEI Active Reviews for Intermediate Designs)

• T3: FRAP

(the Facilitated Risk Analysis Process)

• T4: Model Checking

• T5: ATAM

• T6: ALPSM

(Architecture Level Prediction of Software Maintenance)

• T7: ALMA

(Architecture-Level Modifiability Analysis)

• T8: OCTAVE
®

(the SEI Operationally Critical Threat, Asset, and Vulnerability Evaluation)

• T9: QAW

• T10: Markov Modeling

• T11: CBAM

(the SEI Cost Benefit Analysis Method)

• T12: RMA

(Rate Monotonic Analysis)

We assumed that, for each attribute, we could estimate the probability of a loss due

to that attribute and the size of that loss. This information might be captured in

terms of dollars, utility, or a percentage of the project value, as shown in Table 3.

® OCTAVE is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

38 | CMU/SEI-2006-TR-010

Table 3: Loss Potential and Probability for Architectural Attributes

Attribute i (Ai) A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14

Loss potential (Ai) 100 90 90 80 60 30 50 20 10 10 60 10 90 60

Pbefore(Ai) 6 5 20 15 20 5 20 10 10 10 30 20 50 40

Similarly, we assumed that, for each attribute assessment technique, we could esti-

mate the cost of applying technique Tj on assessing attribute Ai, as shown in Table

4 (the letter x means that the technique does not apply to the attribute).

Table 4: Cost of Assessment Techniques Applied to Architectural Attributes

Cost of

assessing

Ai with Tj A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14

T1 50 x 10 70 10 x x x x 50 5 x 10 x

T2 100 x x 100 100 x x x x x x x x x

T3 x x 80 80 80 x x x x x x x x x

T4 100 90 x x 19 x x x x x x x x x

T5 70 100 70 70 70 x x x x x x x x x

T6 30 30 30 30 30 x x x x x x x x x

T7 x x x x x 5 10 x 5 5 3 x 3 x

T8 x x x x x 80 70 x 80 80 x x x x

T9 x x x x x x 3 10 20 20 20 10 20 10

T10 60 x x 60 50 40 50 50 50 40 40 20 40 20

T11 60 x 90 60 60 x x x x 50 10 x 10 x

T12 x x x x x 5 5 10 10 10 10 5 x x

T13 30 x x 30 30 x x 30 x 30 5 x 30 x

T14 100 x x 100 100 x x x x 100 5 x 100 x

Finally, for each technique applied to each attribute, we need to know how much

risk is reduced. In other words, we apply a technique to reduce risk in the architec-

ture. To strategically manage risk, we must be able to assess the degree to which a

technique mitigates a particular risk. This assessment is captured in Table 5.

 SOFTWARE ENGINEERING INSTITUTE | 39

Table 5: Probability of Loss for Architecture Attributes After Technique Application

Pafter(Ai)

using Tj A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14

T1 4 x 15 12 15 x x x x 5 15 x 20 x

T2 6 x x 13 15 x x x x x x x x x

T3 x x 15 12 13 x x x x x x x x x

T4 6 0 x x 19 x x x x x x x x x

T5 6 2 2 13 18 x x x x x x x x x

T6 6 2 5 13 19 x x x x x x x x x

T7 x x x x x 2 15 x 8 10 30 x 30 x

T8 x x x x x 1 10 x 7 9 x x x x

T9 x x x x x x 10 4 6 8 25 20 30 30

T10 6 x x 12 19 3 15 8 8 8 27 20 30 20

T11 3 x 15 5 5 x x x x 5 5 x 5 x

T12 x x x x x 3 18 9 10 10 30 20 x x

T13 5 x x 12 15 x x 5 x 6 20 x 28 x

T14 3 x x 3 5 x x x x 5 10 x 20 x

Given this information, a project leader may then choose the type and order of risk-

reduction strategies. The choice of strategy matters, as shown in Figure 2.

Figure 2: Comparing the Choice of Strategies for IV&V Risk Assessment
1

Figure 2 shows how different strategies affect risk reduction. The risk-reduction

example shown is taken from the domain of Independent Verification and Valida-

tion (IV&V). However, the principle is the same for any set of risk-reduction ac-

1 CB stands for cost/benefit.

IV&V Assessment Strategies

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 100 200 300 400 500 600

C ost

R
E

highest C B

arbitrary

lowest cost

highest RE first, lowest
cost
highest RE, max RE drop

40 | CMU/SEI-2006-TR-010

tivities: A project decision maker should arrange risk-reduction activities in the

order that provides the most benefit per unit cost. To do this for architecture, we

need to know the costs and benefits of architecture risk-reduction methods (such as

those listed above), as exemplified by the data contained in Table 1–Table 3.

4.5.2 Workshop Output

Eliciting a complete set of data, such as that presented in Table 1-Table 3, was not

feasible for the limited time of the workshop. Instead, we focused on eliciting a set

of project attributes, a set of techniques that can assess each attribute, and cost in-

formation on a subset of the techniques. Establishing more precise models may be a

future project. The elicited information on architecture attributes and their risk-

reduction techniques is presented in Table 6.

Table 6: Elicited Project Attributes and Their Risk-Reduction Techniques

Attribute Assessment Technique

Security • Security checklist in the DoDAF

• ATAM-like reviews with scenario generation and
analysis only
focusing on information assurance

• Boeing’s Predictive Analysis, Security Method
(PASM) (a largely DoD-based checklist style for
qualitative security assessment)

Project

Management

• Time-box scheduling

• Scope reduction

• Periodic recomputation of the cost of project com-
pletion and how long it will take so that you can
address schedule and cost risks and determine
how many resources are left

Testability • Scenario-based testing

Performance • Boeing’s Reused Architectural Component Method
(RACM) for changing or new technologies

• Boeing’s Predictive Analysis, Performance Method
(PAPM) for performance and scalability

• Instrumentation

• Modeling Tools (e.g., SLAM-2)

• Building executable architectures with stubbed
components to look for risks

• Simulation

• Experimenting for performance and scalability

Availability • Boeing’s Predictive Analysis, Availability Method
(PAAM) for availability analysis

• Experimenting for availability

Safety • HazOp analysis

• Fault-tree analysis

 SOFTWARE ENGINEERING INSTITUTE | 41

Table 6: Elicited Project Attributes and Their Risk-Reduction Techniques (Continued)

Attribute Assessment Technique

Interoperability • Inspections for measuring interoperability (which
include looking at data exchanges)

Modifiability • Checklists for modifiability

• Experimenting for modifiability

Usability • Rapid application development

• Goals, Operators, Methods, and Selection Rules
(GOMS) modeling

• Paper prototypes and Visual Basic mock-ups

4.5.3 Next Steps

The workshop, while fruitful, underlined the need for more careful, methodical data

collection on risk exposures and risk-reduction techniques and their costs. Some of

the workshop participants have agreed to collaborate on defining and collecting the

necessary data. That collaboration has already begun.

4.6 BUILDING A SOFTWARE ARCHITECTURE COMMUNITY

Moderator: Rob Wojcik, Software Engineering Institute

During this working session, we discussed our experiences with building a software

architecture community of practice within an organization. We also talked about

our ideas for growing SATURN beyond a yearly workshop and into a network that

would available to members throughout the year.

Prior to the working session, we asked participants to consider the following ques-

tions:

1. Who are the stakeholders in your organization who have an interest in soft-

ware architecture?

2. How does software architecture information flow in your organization?

3. Where do you go for information on software architecture?

4. What opportunities for exchanging ideas would you like to see?

Attendees of this session were practitioners and researchers from the following or-

ganizations: ABB, Boeing, Ciber, Katholieke Universiteit Leuven, Knotion Con-

sulting, Mellon Financial, and the SEI.

4.6.1 Types of Software Architecture Communities

We began the working session by discussing what software architecture communi-

ties exist today. The specific communities mentioned were diverse, including some

that were organizational, industry wide, user related, project related,

42 | CMU/SEI-2006-TR-010

large, and small. The discussion eventually shifted from naming specific software

architecture communities to listing general types of communities as follows:

• research

• training

• professional (e.g., data management professionals, project management pro-

fessionals)

• vendor-related (e.g., Java 2 Enterprise Edition [J2EE], .NET)

• organization, project, TIGs

• partnerships

• specialists

• domains (e.g., enterprise architects, workflow)

Participants noted that every community has its own vision, goals, and objectives.

Members within a community also have their own goals to improve their own prac-

tices which collectively advance the state of the practice.

4.6.2 Community Stakeholders

Having noted some of the general types of software architecture communities, the

group focused its attention on listing stakeholders who have a vested interest in

communities:

• developers

• project managers

• business units

• software architects

• business sponsors

• enterprise-level architects

• users of the software systems

• researchers

• software vendors (e.g., tools, applications, Microsoft or Sun Microsystems

certification)

4.6.3 Community Essentials

Given various types of communities and stakeholders, workshop participants

named the following characteristics as essential to successful software architecture

communities:

• community vision

• community goals and objectives

• ability to measure progress

 SOFTWARE ENGINEERING INSTITUTE | 43

• leaders for bringing people together

• organization/structure, responsibilities (e.g., roles)

• people who want to improve their knowledge and skills

• participation and contribution by community members

• sharing information within the community

• funding

• a critical mass of like-minded thinkers with mutual interests

4.6.4 Community Goals and Objectives

Having identified community goals and objectives as key factors in any successful

software architecture community, workshop participants identified the following

candidate goals and objectives that any community might wish to consider:

• Advance the practice of software architecture.

• Meet with others and share ideas.

• Support users of software architecture.

• Support a community in moving from suppliers to users (e.g., value chain).

• Identify, understand, and fulfill the needs of software architects.

• Identify, understand, and fulfill the needs of stakeholders based on the vision,

goals, and objectives.

• Implement knowledge transfer, including education for novices.

• Enforce the consistency of practices (e.g., leading to standards).

• Evolve/mature practices and have a method to assess maturity.

• Establish a network.

• Identify and evaluate new forms of architecting software solutions.

• Share methods and ideas with like-minded people.

• Educate others about our methods and ideas.

• Develop and manage a network of like-minded people.

• Apply new ideas and methods through the network.

• Measure the implementation.

• Gather feedback from applying new ideas and methods.

• Standardize our methods and ideas.

44 | CMU/SEI-2006-TR-010

4.6.5 Formulating an Action Plan

Next, workshop participants pondered how to use these discussion results as a basis

for formulating an action plan to further the interests of any software architecture

community.

An action plan can be derived based on answers to the following questions:

• Who are the key stakeholders in the community?

• What is the vision sought by the community?

• What goals and objectives follow from the community vision?

• What actions follow from community goals and objectives?

• Who will provide leadership within the community?

• What organizational structure is needed to support the community?

• How will information, knowledge, and skills be shared among community

participants?

• How will participants be able to contribute information, knowledge, and skills

to the community?

• How will community activities be funded?

• How will progress towards the community’s vision, goals, and objectives be

tracked and measured?

4.6.6 Example: The Software Architect Community

To conclude the working session, participants wanted to apply what they had

learned to formulating an action plan for furthering the interests of the software

architect community. There was only enough time to answer the first three ques-

tions posed in the previous section:

1. Who are the key stakeholders in the community?

Software architects are the key stakeholders.

2. What is the vision sought by the community?

Advance the practice of software architecture.

3. What goals and objectives follow from the community vision?

− Identify and evaluate new forms of architecting solutions.

− Share the methods and ideas with like-minded people.

− Educate others about our methods and ideas.

− Develop and manage a network of like-minded people.

− Apply new ideas and methods through the network.

− Measure the implementation.

− Gather feedback from applying new ideas and methods.

− Standardize our methods and ideas.

 SOFTWARE ENGINEERING INSTITUTE | 45

4.6.7 Next Steps

Participants looking to start their own software architecture communities noted that

the generated lists of community essentials, goals, and objectives are a good place

to start and can serve as checklists. The goals of SATURN can also be critiqued

with respect to these criteria to better serve the group’s members.

Much of the discussion on achieving the higher level goal of building a community

revolved around the issue of knowledge transfer: research, teach, learn, and build

networks. What currently works well in knowledge transfer is on-the-job training,

involvement in existing projects, and opportunities to practice software architecture

and learn from experienced architects. Obstacles to knowledge transfer include cost

and issues related to proprietary information and intellectual property. More work

is needed in the areas of semantics, ontology, standard terminology, and the effec-

tive communication of architectural decisions and the context in which they are

made.

46 | CMU/SEI-2006-TR-010

 SOFTWARE ENGINEERING INSTITUTE | 47

5 Closing Session

In the closing session, Linda Northrop, director of the SEI’s Product Line Systems

Program, led participants in a discussion on emergent themes, workshop highlights,

and the future of SATURN.

Participants noted the following key topics:

• the future plans of the SEI’s SAT Initiative

• overall integration of software-architecture-centric methods and techniques

• experiences that others shared in applying the methods and taking the next

step of transitioning them for use

Participants noted the following highlights:

1. presentations giving evidence of methods in action

2. a comparison of multiple ATAM evaluations and cross-wise analysis

3. the workshop format of the SATURN meeting and the collaboration it fos-

tered

4. a good degree of interaction in presentations

5. a good mix of academic and industry perspectives

6. a sharing of workshop results at the end of the meeting

Participants expressed interest in these areas and requested that the SEI investigate

them:

• SOA testing techniques

• integrating methods across the life cycle; for example, moving from the QAW

to an ATAM evaluation

• architecting the semantic Web and ontology application

• variability, reference architecture, software product lines, and the ATAM in

the context of product lines

• reliability management

• the maintenance and evolution of architecture

• architecture traceability

• using architecture approaches in chaotic environments

The SEI will take these requests under advisement.

48 | CMU/SEI-2006-TR-010

 SOFTWARE ENGINEERING INSTITUTE | 49

6 Future of SATURN

The vision for SATURN is to be a forum for a growing number of practitioners to

share practices and expertise in what does and does not work. It is open to users of

software architecture technology and those interested in promoting software archi-

tecture practices. The SEI intends to make SATURN an annual event. Based on the

positive feedback from the first and second SATURN workshops in 2005 and 2006,

the SEI is planning a third SATURN workshop in Pittsburgh in the spring of 2007.

Participants suggested the following ideas for the next SATURN workshop:

• Broaden the scope of the workshop beyond SEI technology, but still focus on

architecture.

• Get more industrial participants (e.g., financial, pharmaceutical).

• Present more demos (during breaks and lunch hours).

• Solicit presentations on sustainable architecture descriptions and show more

interconnections among the methods.

• Continue to address system and software architecture relationships.

• Invite system architects to the meeting.

• Solicit presentations on more ATAM case studies and other applications of

methods.

• The two-hour format of the working sessions worked well. In the future, im-

prove the preparation for them by having one or two people create a 10-

minute vignette.

• Involve standards bodies.

• Provide more modern guidance for life-cycle engineering experience.

• Ask registrants to complete a profile when registering.

• Consider having birds of a feather (BoF) and poster sessions.

• Involve more students who will become software architects.

• Facilitate remote participation (e.g., through Web casts, Web-based dialogs).

For more information and announcements, go to

http://www.sei.cmu.edu/architecture/saturn/.

50 | CMU/SEI-2006-TR-010

 SOFTWARE ENGINEERING INSTITUTE | 51

Appendix Acronyms

ACDM
Architecture-Centric Development Method

ADD
Attribute-Driven Design

AGV
Automatic Guided Vehicle

AI
artificial intelligence

ALMA
Architecture-Level Modifiability Analysis

ALPSM
Architecture Level Prediction of Software Maintenance

ARB
Architecture Review Board

ARID
Active Reviews for Intermediate Designs

ARMIN
Architecture Reconstruction and Mining

ATAM
Architecture Tradeoff Analysis Method

BoF
birds of a feather

C4ISR

command, control, communications, computers, intelligence, surveillance,

and reconnaissance

C&C
Component-and-Connector

CB
cost benefit

CBAM
Cost Benefit Analysis Method

52 | CMU/SEI-2006-TR-010

CCB
change control board

CONOPS
concept of operations

DoD
Department of Defense

DoDAF
DoD Architecture Framework

DoE
Department of Energy

ERP
Enterprise Resource Planning

FFRDC
federally funded research and development center

FRAP
Facilitated Risk Analysis Process

GA
global analysis

GEAR
Good Enough Architectural Requirements

GIS
Geographic Information System

GOMS
Goals, Operators, Methods, and Selection Rules

GSD
Global Software Development

GUI
graphical user interface

IEEE
Institute of Electrical and Electronics Engineers

INCOSE
International Council on Systems Engineering

IV&V
Independent Verification and Validation

 SOFTWARE ENGINEERING INSTITUTE | 53

J2EE
Java 2 Enterprise Edition

MDRE
Model-Driven Requirements Engineering

NASA
National Aeronautics and Space Administration

OCTAVE
Operationally Critical Threat, Asset, and Vulnerability Evaluation

OMG
Object Management Group

PAAM
Predictive Analysis, Availability Method

PAPM
Predictive Analysis, Performance Method

PASM
Predictive Analysis, Security Method

Q&A
question and answer

QAW
Quality Attribute Workshop

R&D
research and development

RACM
Reused Architectural Component Method

RCAP
Raytheon Certified Architect Program

RE
risk exposure

REAP
Raytheon Enterprise Architecture Process

RMA
Rate Monotonic Analysis

ROI
return on investment

54 | CMU/SEI-2006-TR-010

SAAM
Software Architecture Analysis Method

SAT
Software Architecture Technology

SATURN
Software Architecture Technology User Network

SEI
Software Engineering Institute

SEMA
Software Engineering Measurement and Analysis

SOA
service-oriented architecture

SoS
system of systems

TIG
Technical Interest Group

TOGAF
The Open Group Architecture Framework

UML
Unified Modeling Language

V&B
Views and Beyond

XP
Extreme Programming

 SOFTWARE ENGINEERING INSTITUTE | 55

References

URLs are valid as of the publication date of this document.

[Barbacci 03]
Barbacci, M. R.; Ellison, R.; Lattanze, A. J.; Stafford, J. A.; Weinstock, C. B.; &

Wood, W. G. Quality Attribute Workshops (QAWs), Third Edition (CMU/SEI-

2003-TR-016, ADA418428). Pittsburgh, PA: Software Engineering Institute,

Carnegie Mellon University, 2003.

http://www.sei.cmu.edu/publications/documents/03.reports/03tr016.html.

[Bass 03]
Bass, L.; Clements, P.; & Kazman, R. Software Architecture in Practice, Second

Edition. Boston, MA: Addison-Wesley, 2003.

[Clements 02]
Clements, P.; Kazman, R.; & Klein, M. Evaluating Software Architectures:

Methods and Case Studies. Boston, MA: Addison-Wesley, 2002.

[Clements 03]
Clements, P.; Bachmann, F.; Bass, L.; Garlan, D.; Ivers, J.; Little, R.; Nord, R.; &

Stafford, J. Documenting Software Architectures: Views and Beyond. Boston, MA:

Addison-Wesley, 2003.

[IEEE 00]
Institute of Electrical and Electronics Engineers. Recommended Practice for Archi-

tectural Description of Software-Intensive Systems (IEEE Standard 1471-2000).

New York, NY: Institute of Electrical and Electronics Engineers, 2000.

[Kazman 02]
Kazman, R.; O’Brien, L.; & Verhoef, C. Architecture Reconstruction Guidelines,

Third Edition (CMU/SEI-2002-TR-034, ADA421612). Pittsburgh, PA: Software

Engineering Institute, Carnegie Mellon University, 2002.

http://www.sei.cmu.edu/publications/documents/02.reports/02tr034.html.

[SEI 05]
Software Engineering Institute. SEI Software Architecture Technology User

Network (SATURN) Workshop 2005.

http://www.sei.cmu.edu/architecture/saturn/saturn_2005.html (2005).

[SEI 06a]
Software Engineering Institute. SEI Software Architecture Technology User

Network (SATURN) Workshop. http://www.sei.cmu.edu/architecture/saturn/

(2006).

[SEI 06b]
Software Engineering Institute. Vision, Mission, and Strategy.

http://www.sei.cmu.edu/topics/about/vision.html (2006).

56 | CMU/SEI-2006-TR-010

REPORT DOCUMENTATION
PAGE

Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruc-
tions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.
Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this
burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC
20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

August 2006

3. REPORT TYPE AND DATES COVERED

Final

4. TITLE AND SUBTITLE

Proceedings of the Second Software Architecture Technology User Network

(SATURN) Workshop

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Robert L. Nord

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2006-TR-010

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY

REPORT NUMBER

ESC-TR-2006-010

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

The second Carnegie Mellon Software Engineering Institute (SEI) Software Architecture Technology User Network

(SATURN) Workshop was held April 25-26, 2006 in Pittsburgh, Pennsylvania. A total of 61 software systems engineers, ar-

chitects, technical managers, product managers, and researchers exchanged best practices and lessons learned in applying

SEI software architecture technology in an architecture-driven development or acquisition project. In the closing session,

workshop participants noted these highlights: presentations showing the methods in action, a comparison of multiple SEI Ar-

chitecture Tradeoff Analysis Method (ATAM) evaluations and cross-wise analysis, the workshop format using interactive

presentations, a good mix of academic and industry perspectives, and a sharing of workshop results.

This report describes the workshop format, discussion, and results, as well as plans for future SATURN workshops. Key top-

ics covered in the workshop and noted by the participants were the future plans of the SEI’s Software Architecture Technol-

ogy Initiative, the overall integration of software architecture methods and techniques, and the experiences others shared in

applying the methods and transitioning them for use. Slides for the presentations and recordings of the keynote talks are

available at the SATURN workshop Web site: http://www.sei.cmu.edu/architecture/saturn/.

14. SUBJECT TERMS

software architecture, architecture-centric methods, architectural best practices,

quality attribute scenario, quality attribute behavior

15. NUMBER OF PAGES

71

16. PRICE CODE

17. SECURITY

CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

20. LIMITATION OF

ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

