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Abstract 

Scans are often used by adversaries to determine the potential weaknesses in a target network 
or system prior to an intrusion attempt.  In other cases, exploits are packaged with the scans 
themselves.  This report presents a novel approach to detecting scans (including very stealthy 
scans) against, or passing through, very large networks.  It meets operational requirements 
that are particular to detecting scans in ISP level networks.  

This scan-detection approach performs an ongoing, incremental analysis of flow-level data 
regarding traffic inbound to a network.  It is multi-dimensional and flexible, based on up to 
21 characteristics describing traffic collected from any single source.  The report describes in 
detail a method developed to provide a probability that a particular traffic sample contains a 
scan. In validation testing using a manual analysis of traffic collected from a high-volume 
network, this method correctly classified 99.3% of TCP traffic samples.   

This report also compares this new approach to other scan approaches, particularly a naïve 
scan approach, based on simple thresholding, and a modified version of the threshold random 
walk approach, to which it performed comparably. Combining the random walk approach 
with the new approach produced very good results, reducing the number of false negatives to 
zero.
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1 Introduction 

Scans are a concern in cyber-security because they either (1) indicate a potential future threat 
or (2) represent an immediate threat of attack.  With regard to the first case, scans have 
traditionally been used by adversaries to map a target network and identify potential 
vulnerabilities before attempting an intrusion.  Military literature documents a direct 
correlation between the success of an attack and the thoroughness of the preceding 
reconnaissance [McCarthy 94].  There is every reason to believe that this is also true in the 
digital realm, wherein an intrusion attempt is more likely to be successful if the adversary is 
familiar with the target network and its services.  By detecting that an adversary is 
conducting reconnaissance—and understanding this may be a precursor to an attack—a 
network administrator is provided the opportunity to determine the specific weaknesses likely 
to be exploited, and to be especially vigilant, knowing that an attack may be pending.  For 
example, Panjwani and colleagues have discovered that approximately 50% of attacks are 
preceded by some form of scanning, most often vulnerability scanning, where open ports are 
probed at the application level to determine what version of what service is running on a 
particular port [Panjwani 05].  Regarding the second case where scans represent an 
immediate threat of attack, intrusion attempts have been programmed to immediately follow 
scan packets, and in other instances the attack packets themselves completely constitute the 
scan.  Worms in their propagation phase are excellent examples of these behaviors, but this is 
also seen in more focused attack tools that have been deployed by “script kiddies” [Honeynet 
02]. Scan information can potentially be used by a network administrator to determine 
whether any host has been potentially infected or compromised. 

However, many commonly deployed port scan detection methods consist of a simple 
thresholding approach applied in real-time—determining whether the source IP address 
attempted to contact more than some minimum number of destinations within a particular 
time frame.  This approach1 suffers from being too general, and is therefore prone to a large 
number of classification errors.  As a result, many scans may be missed and/or so many 
erroneous alerts may be generated that they are largely ignored by network administrators.  In 
addition, attackers have responded to common detection methods by developing more 
stealthy techniques for scanning.  It is widely believed that very stealthy scans suggest more 
sophisticated adversaries who probably pose a greater threat to the target.  As a consequence, 
detection of stealthy as well as non-stealthy scans is an important need in the cyber-security 
community. 

                                                 
1  Other detection approaches have been reported in the literature, and are summarized in Section 

3.2. 
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This report presents a novel approach to detecting scans against, or passing through, very 
large networks. Unlike previous methods, this approach is based on a combination of expert 
opinion and statistical analysis of network traffic. Experts developed a list of characteristics 
that can contribute to determining whether a set of flow records contains a scan. A logistic 
regression model using these characteristics as independent variables, and developed using a 
Bayesian process, was generated based on network traffic. This model is designed to detect 
“noisy scans,” such as those that are readily detected by other approaches, as well as many 
stealthy scans that currently avoid detection by other means. Rather than provide a binary 
(yes/no) decision on whether the event contains a scan, we provide a probability that the 
selected traffic contains a scan, providing the user with some measure of confidence in the 
decision. This new approach performs an ongoing, incremental analysis of flow-level data 
about traffic inbound to a network. It therefore does not rely on having traffic records for 
both directions (which are not always available on large networks due to practices such as 
asymmetric routing), nor does it require examining individual packets. In addition, it does not 
require any knowledge of the internal architecture, or server and workstation deployment, of 
the network being monitored.  

An introduction to port scanning is provided in Section 2. Section 3 provides our motivation 
for performing this work, including our design considerations and how other approaches 
compare to these requirements.  Our approach to detecting scans is described in detail in 
Section 4.   In particular we outline our design considerations, the indicators of scanning 
activity that we recognized in aggregated flow records, and a description of the modeling 
approach used including how it was both developed and tested. In Section 5 we directly 
compare our algorithm to a modified version of the threshold random walk and a naïve 
version of flow-level scan detection [Jung 04].  We then describe some initial results in 
Section 6, including a discussion on how a database of scanning activity might be used, and 
present our conclusions in Section 7. 
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2 Background  

Most definitions of scanning focus on the purpose of reconnaissance. However, as noted at 
the outset of this report, scanning has evolved to include intrusion attempts programmed to 
follow scan packets immediately, and instances where the attack packets themselves 
completely constitute the scan. In this work, we have extended the traditional concept of 
scanning to include these newer cases. Therefore, our definition of scans is a reconnaissance 
activity that is aimed at multiple targets. This definition includes activities such as worms, 
which may not be performing a scan that is targeting the monitored network explicitly.2  

Several methods, described below, have evolved to prevent port scans from being detected 
[de Vivo 99, fyodor 97, hybrid 99, Staniford 02].  

• Abuse the TCP/IP protocol (e.g., SYN scans, FIN scans, and undefined flag 
combinations such as in SYN-FIN, Xmas tree, and NULL scans).  

• Randomize the order in which IP addresses and/or ports are scanned.  

• Insert a time delay between scans and/or randomize the length of the time delay 
between scans. 

• Randomize TCP packet field values (e.g., sequence numbers, acknowledgment 
numbers, source ports).  

• Hide the real scan within scans from spoofed IP addresses.  

• Distribute port scans across multiple sources.  

By abusing the TCP/IP protocol, adversaries can avoid having their activities logged at the 
application level, and can also avoid being blocked by some firewalls (e.g., those which 
might not allow a SYN packet through, but will not confirm that a FIN packet is associated 
with an established session). By randomizing the order in which IP addresses are scanned, as 
well as the TCP packet field values, early intrusion detection systems (IDSs) would not log 
the activity because the detection of scans would be based on assumptions about these values. 
Additionally, many IDSs are configured to detect a scan only if some minimum number of 
unique targets is contacted within a particular time frame. By inserting time delays between 
targets, adversaries can avoid detection by these IDSs. Some scanning software, such as 
nmap also provides the ability to hide the true scanning IP within a number of spoofed source 
IP addresses [nmap 06]. In addition to obfuscating which source is the actual scanner, some 

                                                 
2  We do not claim that this approach is suitable for the real-time detection of worms, but rather that 

this method will detect worms as performing scans, in addition to detecting the more traditional 
reconnaissance form of scanning. 
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IDSs will log only the first five sources; when the actual source is the sixth source none of its 
activities are logged at all [Solar designer 98]. Finally, distributing scans across multiple 
sources can make the scan from each individual source be small enough not to be logged. At 
the very least, it obfuscates the amount of information about the targets actually gathered by 
the adversary. 
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3 Motivation 

The development of a new approach to scan detection has been motivated by a desire to 
obtain comprehensive, integrated information about the multitude of scans directed against, 
or passing through, very large networks. This includes very stealthy as well as less stealthy 
scans. The approach is intended for organizations managing very large intranets or portions 
of the Internet backbone, as well as for smaller Internet Service Providers and intranets. 
Network traffic will be monitored at the border routers of such a network. Today’s intrusion 
detection systems cannot handle the rate and volume of data necessary for successful 
deployment at the borders of a very large network—leading to the need for this research 
[Kruegel 02]. 

3.1 Design Considerations 
The operating conditions for our scan detection system can be summarized as follows.  

• A very large network generally includes multiple border routers, quite possibly 
geographically distributed, and may also employ asymmetric routing policies.  

• Traffic is being routed for multiple administrative domains, which are relatively, if 
not completely, independent. The overall network managers have relatively little 
control over, or knowledge of, these administrative domains.  

• The managers of very large networks generally do not desire to take real-time actions 
in response to scans (e.g., automatically blocking them), as these actions could cause 
a denial of service if an adversary were to spoof legitimate IP addresses as scanning 
sources, for example.  Given that there are multiple (independent) administrative 
domains, it is difficult, and potentially impossible, to maintain a white list of IP 
addresses that should never be blocked at the router. 

• Any traffic data to be transmitted or stored must be substantially smaller than the 
original network traffic. 

Based on our stated motivation, and these operating conditions, we have developed a scan 
detection approach with the following characteristics:  

• It operates on flow-level traffic data, not on packet-level data. Briefly, flows are 
aggregations of packets sharing the same protocol, source address and port, 
destination address and port, and arriving reasonably close together in time. Cisco’s 
NetFlow which is unidirectional, and Argus, which records bidirectional flow 
information, are probably the best known systems for monitoring flows [Cisco 06, 
QoSient 04]. Flow-level traffic data does not include payload, and is far less 
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voluminous than packet-level data (even packet summaries without payload). Some 
potential users of our system will not want to record payloads due to privacy 
considerations. Even packet-level traffic summaries are too voluminous to manage 
for large networks.  

• It does not need to operate in real-time. Thus our approach is to analyze traffic data 
in an ongoing, incremental manner. This is primarily due to two reasons: (1) flow-
level data is not collected in real time, as the communication session needs to 
terminate or time-out before the flow is flushed from the cache, and (2) operators of 
very large networks generally do not plan to take real-time actions in response to 
scans, such as automatically blocking the traffic. ISPs do not do this and intranet 
managers often do not want to trust intrusion detection that much. The actions they 
do commonly take include sending complaint letters to the source ISPs, blocking 
offending source addresses, and blocking certain destination ports when they have 
little legitimate use. However, these actions are only taken after human review and 
approval—not in real time. Additionally, traffic that has been identified as containing 
scans is often filtered out so that analysts can focus on the non-scan traffic when 
performing security analysis.  

• It does not depend on bi-directional traffic data; we need to analyze only traffic 
inbound to the network. Bi-directional data is more voluminous. More importantly, 
with multiple routers and asymmetric routing we might not be able to observe the 
replies. Performing later matching of two sets of unidirectional flow data is 
computationally intensive.  

• It does not depend on awareness of network characteristics, such as IP addresses in 
actual use, or topography. This information is not likely to be available with 
independent administrative domains and/or dynamic address assignments.  

We have chosen to focus initially on single-source (versus distributed) scans. Our approach is 
designed to detect all of the types of stealthy scans identified in Section 2, except for 
distributed scans. 

3.2 Related Work 
Scan detection itself is not a new concept, of course. For example, Snort has a preprocessor 
that extracts port scans, which is based on either invalid flag combinations (e.g., NULL 
scans, Xmas tree scans, SYN-FIN scans) or on exceeding a threshold. By default, Snort is 
configured to generate an alarm only if it has detected SYN packets sent to at least four 
different ports in less than three seconds [Roesch 99]. 

Bro, written by Vern Paxson also detects scans using thresholding [Paxson 98]. In this 
system, network scans are detected by a single source contacting more than some threshold of 
destination IP addresses. Similarly, vertical scans are indicated by a single source contacting 
too many different ports (it appears that this is independent of the destination IP address). 
Paxson notes that false positives are also generated by this method, such as by a single-source 
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client contacting multiple internal web servers, or by an FTP server being located on a non-
standard port. Bro also uses payload information, as well as packet information, and so 
provides analysis for specific applications to further reduce false positives. 

Staniford and colleagues have developed a method for detecting port scans, including stealthy 
and distributed port scans, based on a simulated annealing approach [Staniford 02]. First, 
packets are pre-processed using a method called Spade, which flags packets as either normal 
or anomalous. All packets flagged as anomalous are passed to Spice, where they are placed in 
a graph, with connections formed based on a simulated annealing approach, so that packets 
that are most similar to each other are grouped together. This approach detects port scans, as 
well as other events such as denial-of-service attacks and server and router misconfigurations 
[Paxson 01]. 

More recently, Robertson and colleagues have developed a method based on return traffic 
[Robertson 03]. They reconstruct sessions (generating approximate sessions, rather than 
dedicating the CPU cycles necessary to generate complete reconstructions) and flag any 
source IP that has contacted a destination that has not responded as performing a port scan. A 
score is assigned to each source IP based on the number of destinations contacted for which 
there was no response. A second method, called PSD (for peering center surveillance 
detection), has additional heuristics for analyzing traffic where there is the possibility that 
some response traffic information is not available (and hence, no response does not 
necessarily indicate a scan). 

Jung and colleagues have also developed a method based on return traffic (or on the use of an 
oracle that knows if a particular host and service are available) [Jung 04a]. They use 
sequential hypothesis testing to determine whether a source is performing a scan as new 
connection requests arrive. If the intended destination does not respond with a SYN-ACK, it 
is more likely that the source is performing a scan. Conversely, if the destination returns a 
SYN-ACK, it is more likely that the source is benign. Once sufficient evidence supporting 
one or the other hypothesis is obtained, a decision is made. 

Visual methods for detecting port scans have also been developed. For example, Conti and 
Abdullah demonstrated how parallel coordinate plots can be used to detect different scanning 
tools, using packet-level information [Conti 04]. Lakkaraju and colleagues presented a 
visualization system called NVisionIP and demonstrated how horizontal scans can easily be 
detected [Lakkaraju 04]. Rather than using packet information, their system is based solely 
on flow information. Finally, both Muelder and colleagues and McPherson and colleagues 
describe PortVis, which produces visualizations based on summarized flow information 
[Muelder 05, McPherson 04]. 

The methods described by Roesch and by Paxson require having packet level information 
and cannot be modified to use flow information, which is one of our requirements [Roesch 
99, Paxson 98]. While the methods described by Robertson and by Jung use packet 
information, the approaches can likely be applied with reasonable success to flow 
information instead [Robertson 03, Jung 04]. Indeed, we demonstrate in Section 5.1 how the 
threshold random walk approach can be successfully modified for flow information. 
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However, these approaches require either that the flow information in both directions be 
(largely) available or that knowledge of the network architecture is available.  Recall that this 
information is generally not available under the operating conditions which we have specified 
in Section 3.1. 

While the above methods depend on either payload information, or having information 
available for both directions of a session, two papers have discussed recognizing port scans 
using only unidirectional flow information. Fullmer and Romig have developed a tool called 
flow-dscan, which examines flows for floods and port scans [Fullmer 00]. Floods are 
identified by excessive packets per flow. Port scans are identified by a source IP address 
contacting more than a certain threshold of destination IP addresses, or destination ports 
(where only ports numbered lower than 1024 are examined) on a single IP address. Fullmer 
and Romig make use of a “suppress list” consisting of IP addresses, such as multi-user games 
and web-based ad servers, that often appear as port scans. Similarly, port scans are identified 
in by Navarro and colleagues by extracting the source IP addresses that have contacted more 
than a certain threshold number of targets within a particular time frame [Navarro 00]. In the 
example used in the paper, the threshold was 64 destination IP addresses within three days. It 
should be noted that, while these two flow-based approaches do not perform their analyses in 
real time, they still meet our design requirements. 

In all of the approaches described here, except the visualization approaches and that of 
Staniford and colleagues, at most two thresholds have been used to determine whether some 
network activity was a scan [Staniford 02]. In the cases where two thresholds were used, this 
was done to distinguish between a network and a host scan, or to determine whether an item 
was definitely a scan or definitely not a scan. Additionally, all of these approaches have made 
a binary decision—classifying the event as a scan or as not a scan. To our knowledge, the 
approach we present in this report is the first approach to scan detection that provides a 
continuum representing the probability that the traffic contains a scan. 

Spade / Spice and the visualization methods are the only exception to the above observations 
[Staniford 02]. The visualization approaches, which are not threshold based and have been 
developed for a range of data granularities, do not automatically detect scans, but rather 
demonstrate how a user can recognize scans based on the patterns they exhibit. In contrast, 
our approach provides an automatic classification of traffic as containing scans. Spade / Spice 
does not use a threshold either, but rather clusters data together, allowing the user to view the 
clusters and determine whether they represent a scan or some other activity. Thus, Staniford 
and colleagues do not provide a binary classification of the cluster as being a scan. 
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4 Approach 

We have developed a scan detection approach that meets the needs and design considerations 
discussed in Section 3.1. In addition, this approach produces a probability that a collection of 
network traffic contains a scan; this is in contrast to the binary (yes/no) results provided by 
most other scan detection methods and tools. Moreover, our approach was developed based 
on an extensible collection of scan indicators, using a statistical analysis to determine the 
contribution of each indicator and whether any of those indicators could be removed from the 
model. This is in contrast to the typically one or two metrics used by most other scan 
detection methods and tools.  

The approach processes all flow records collected for a user-specified time interval (e.g., 10 
minutes, an hour, a day).  On our client site, we collect and process flows using the SiLK3 
toolset [CERTCC 02, Gates 04].  For historical analysis, this approach can be run on any past 
period of time for which flows are available. However, in routine production mode, it is run 
in an ongoing, incremental fashion—processing each successive time period as the flow data 
becomes available. Although it does not perform true real-time analysis, the user can choose 
to operate on successive short time intervals of a few minutes, making it closer to real time 
and less historical. Recall that real-time analysis is not needed for the real-world operating 
conditions for which we have designed this approach (see Section 3.1.). For example, our 
pilot installation has chosen a one-hour interval. 

The first step in this approach is to divide the traffic into discrete events. Here an event is 
defined as a set of traffic flows, from a single source IP address, occurring during a period of 
activity that is bracketed on both sides by a period of no activity. The minimum quiescent 
period (inter-event gap) can be specified by the user (e.g., one minute, five minutes). In 
addition, the beginning and end of the time period for which data are being processed are 
treated as qualifying quiescent periods. This guarantees that there will always be at least one 
event for each observed source address, and that every flow from a source address will be 
part of some event. 

In the heart of our approach, each event is analyzed to assess the likelihood that it contains 
scanning activity. Only events exceeding a user-specified minimum size (e.g., 32 flow 
records) are actually analyzed in this stage. However, all smaller events are segregated for 
processing at a later stage; they are not lost. The details of event analysis are presented below. 

Our ongoing, incremental processing also includes provisions for handling activity that 
extends across time intervals. If the time gap between the last flow in the preceding period 
and the first flow in the current period (for this source IP address) is less than the minimum 
                                                 
3 For more information, see http://silktools.sourceforge.net. 
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quiescent period for an event boundary, we treat this as an extended event and include the 
previous flows in the event analysis in the current period. This allows periodic, updated 
reporting of long-lived scans showing the entirety of each since its start. It also captures the 
beginning of a scan, even if the activity took several time periods to accumulate more than 
the minimum number of flows selected for processing. 

Finally, this approach has been designed to allow multiple passes over the data set. This 
allows a first pass to process data from relatively short periods of time (e.g., minutes, hours), 
analyzing larger events and then removing them from subsequent analysis. The remaining 
flow records can then be combined over longer time periods, and processed again. This 
process can be repeated multiple times, using longer time periods, using longer inter-event 
gaps, and accepting smaller event sizes. Our approach can thereby detect progressively 
smaller and lower intensity scans. 

4.1 Scan Indicators 
Once the incoming traffic for a discrete time interval has been subdivided into events, each 
event of sufficient size is individually analyzed to determine whether it contains a port scan. 
Conceptually, a matrix is generated using the traffic flows for the event, with the destination 
IP address on the x-axis and the destination port on the y-axis (see Figure 1). Thus, the 
destination (the pair of values for destination IP address and destination port) of each flow in 
the event identifies a specific cell in the matrix. Key information about each flow is recorded 
in the appropriate cell of this (conceptual) matrix, including packet count, byte count, source 
port, TCP flags, start time, and duration. (Recall that all flows composing a single event came 
from the same source IP address.) 

The geometry of the filled cells in the matrix can then be analyzed for patterns representing 
horizontal, vertical, or strobe port scans [Staniford 00]. A horizontal scan will appear as a 
horizontal line in the matrix, while a vertical scan will appear as a vertical line in the matrix. 
A strobe scan (a scan of multiple ports across multiple hosts) will appear as multiple 
horizontal lines. 

Domain experts identified 21 variables as potentially indicating that a scan is present or 
specifically not present, based on a combination of the footprint geometry and other event 
characteristics (such as some indication that the event consists of completed connections or 
that the majority of the flag combinations do not indicate the presence of backscatter4). These 
variables are later used to assess the probability that an event contains a scan. The particular 

                                                 
4  Backscatter is the response to a service request initiated by a source that has spoofed its IP 

address.  The response is therefore observed at the network where the spoofed IP address resides.  
This phenomenon has been used to determine the number of denial-of-service victims [Moore 01]. 
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indicators were devised to reflect characteristics of network traffic that would help to 
distinguish between scanning and other types of traffic. No single indicator provides a 
definitive classification of traffic, but in combination these indicators strongly distinguish 
scans from other traffic. We use a statistical analysis to determine which of these indicators 
contributes the most to determining if a scan is present or not. The 21 initial scan indicators 
used in the model are below:  

1. maximum /24 subnet run length  

2. ratio of flows that do not have the ACK bit set to all flows  

3. ratio of flows to known malware ports to all flows  

4. ratio of flows with fewer than 3 packets to all flows  

5. maximum run length of IP addresses in any one /24 subnet  

6. maximum number of IP addresses contacted in any one /24 subnet  

7. maximum number of high destination ports contacted on any one host  

8. maximum number of low destination ports contacted on any one host  
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9. maximum number of consecutive high destination ports contacted on any one host 

10. maximum number of consecutive low destination ports contacted on any one host  

11. number of unique destination IP addresses  

12. number of unique source ports  

13. average number of source ports per destination IP address  

14. ratio of flows with “standard” flag combinations (SYN and ACK set, along with 
either the FIN or RST bit set) to all flows 

15. ratio of the number of flows with the average bytes/packet > 60 to all flows  

16. median value of packets per destination IP address  

17. ratio of flows with “standard” combination (standard flag combination and at least 
three packets and at least 60 bytes/packet on average) to all flows  

18. ratio of flows with backscatter combination (RST, RST-ACK, or SYN-ACK for the 
flag combination and the average number of bytes/packet is ≤ 60 and the number of 
packets per flow is ≤ 2) to all flows 

19. ratio of unique destination IP addresses to number of flows  

20. ratio of unique source ports to number of flows  

21. ratio of flows with backscatter flag combinations (SA—RA—R) to all flows 

The minimum number of flows that we require for analysis is 32.  This figure was arbitrarily 
chosen based on the need for a large enough set of data to recognize that a scan has occurred, 
but a small enough amount of data to catch smaller scans.  In the future we would like to 
address the minimum number of flows required in order to reach a decision on whether or not 
a set of unidirectional flows represents scanning activity.  However, 32 flows have been 
shown to be sufficient for detecting scanning activity (where the scan consists of at least 32 
flows—smaller scans will not be detected). 

4.2 Logistic Regression 
As mentioned above, each event is individually analyzed to determine the probability that it 
contains scanning activity. We use a model based on the statistical technique of logistic 
regression to accomplish this. This particular technique is applicable when the outcome 
(dependent) variable is dichotomous (i.e., Boolean). Such is the case here, as “This event 
does or does not contain scanning activity.” In general, a logistic regression model estimates 
the probability that the outcome variable will be true in any given case, based on the value(s) 
of one or more predictor (independent or explanatory) variables for that case.  
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Mathematically,  

ˆ P (outcome is true) = ey / (1 + ey) 

where  

y = β0 + β1x1 + β2x2 + ... + βnxn 

The β values are the parameters of the model and must be estimated based upon a dataset of 
numerous cases, containing the values of the explanatory variables and indication of whether 
the outcome variable was true or false for each case. Many statistical software packages will 
perform the calculations needed to estimate the β values from the dataset provided. Once the 
model has been calibrated in this way, the equations above can be applied to predict the 
probability for any other case, based on the values of the explanatory variables for that case. 

An important feature of the logistic regression model is that it has a graceful relationship to 
recoding the event of interest.  Thus 

P(outcome is false) = 1 – P(outcome is true) 

= 1 – ey / (1 + ey)  

= 1 / (1 + ey) 

= e-y / (1 + e-y). 

Thus studying the event wherein a particular set of records does not contain a scan would 
result in values of β with the same absolute value, but with the sign reversed. 

4.3 Model Development 
To estimate the β values for the logistic regression model, we must provide a dataset—with 
the predictor (independent) variables as well as the outcome (dependent) variable—to a 
statistical software package. The outcome variable is the experts’ determination of whether or 
not the event contains scanning activity. We use our 21 scan indicators as the explanatory 
variables. 

Classical logistic regression approaches use a labeled training set, developing a model based 
on this training data. This requires that the training data be representative of all possible 
cases. In practice, such a complete training set is difficult to obtain. We therefore use instead 
a Bayesian approach to logistic regression, which uses domain experts to determine prior 
probabilities for each of the variable co-efficients. Once the prior probabilities have been 
established, the model is developed based on the training data, but with adjustments made to 
the co-efficients affected by the prior probabilities. This can be loosely thought of as 
weighting the co-efficients. The resulting model is based on a combination of expert opinion 
and training data. In addition to mitigating the effects of having a training set that might not 
be representative of all cases, this also requires less training data. 
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In order to perform a Bayesian logistic regression, two data sets were required: an elicitation 
set and a training set. Events were generated based on flow data collected on May 4, 2005. 
For the elicitation set we used 129,191 TCP events gathered from 17:00-18:00 GMT. For the 
training set we used 130,062 TCP events gathered during the subsequent hour. The values for 
each of the 21 independent variables were calculated for each of the events in the two data 
sets. 

One of the assumptions that comes from using a logistic regression is that the relationship 
between the dependent and independent variable is linear in the logit scale. This assumption 
implies that the values for the independent variables that will therefore provide the most 
information are those located at the extremes [Elfving 52]. The ultimate goal is to reduce the 
variance in the estimated dependent variable  . The variance of   is proportional to the 
variance of each of the co-efficients. Therefore reducing the variance of   requires reducing 
the variance of each of the co-efficients, β

ˆ y ˆ y
ˆ y

i, for each of the independent variables. Given that 
there is an inverse relationship between variance and the sum of squares, we can minimize 
the variance by maximizing the sum of squares. The sum of squares is maximized by 
choosing values that are furthest from the mean, and so we choose the most extreme values 
for each of the 21 variables when generating the model [Weisberg 85, p. 13-15]. 

We chose the 100 most extreme observations in X-space, where the X matrix contained 21 
columns, one for each variable. In order to ensure that the X matrix was invertible, we needed 
to have at least 21 rows, or observations. These observations were chosen randomly from the 
entire data set, and used to seed the matrix. Each subsequent observation was chosen using a 
maximum variance criterion.  That is, we selected the next observation to be that observation 
for which we had the highest remaining uncertainty (highest variance) about our independent 
variable.  The variance of an observation, v, is proportional to vT (XT X)−1v, where vT is the 
transpose of the vector v, XT is the transpose of matrix X, and (XT X)−1 is the inverse of the 
matrix XTX.  Note: X includes all observations that have been included so far, and each 
observation, v, we consider is chosen from observations not yet included in X.  For each 
observation that has not yet been added to the X matrix, we calculate its variance.  The 
observation having greatest variance is added to X. This process is repeated, using the new X 
matrix and finding the observation with the greatest variance relative to the new X, until X is 
considered sufficiently large. 

We choose to use 100 observations for the elicitation process. Thus the X matrix required 100 
rows, where the first 30 were randomly chosen to seed the matrix and the remaining 70 were 
chosen based on their having the largest variance. The values for each of the 21 variables for 
these 100 observations were provided to an analyst who used this information to estimate the 
probability that the event contained a scan (y). The analyst was not allowed to use any other 
information in estimating the probability. The results were used to calculate the priors for the 
logistic regression model. A prior is calculated by transforming the probability yi to a value 
on the logit scale, log( yi ). A linear regression is then used to determine the prior values for 
each of the co-efficients. 
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The training set was chosen using the same procedure as described above; however, the X 
matrix in this case consisted of 200 observations. For each of the 200 observations, the 
analyst was presented with the original flow data, rather than the values for each of the 21 
variables. Additionally, the expert could use any other information in order to determine 
whether the event contained scanning activity. Also contrary to the elicitation process, the 
expert provided only a binary indication when a scan was present in the event data, rather 
than a probability. Of the 200 observations, the expert flagged 53 as containing scanning 
activity. 

The Bayesian logistic regression model updated the prior distribution obtained during the 
elicitation process using the training set resulting from expert analysis.  The resulting 
posterior distribution for the coefficients is proportional to the product of the sampling 
distribution, or likelihood, and the prior distribution for the model coefficients [Gelman 95, p. 
65-88]. We drew samples from the posterior using Markov Chain Monte Carlo simulation 
[Robert 04]. The coefficients for our final logistic regression model are taken to be the mean 
values calculated from the MCMC samples. The posterior coefficients have been informed by 
both expert opinion (via the priors) and the sample training data. 

The resulting logistic regression model was  

ˆ P (event contains a scan) = ey / (1 + ey) 

where  

y = -2.4891 + 0.0032x1 + 1.9576x2 - 4.0846x3 - 0.1572x4 + 0.0073x5 + 0.0112x6 + 0.0002x7 + 
0.4595x8 + 0.0013x9 - 0.3714x10 + 0.0000x11 - 0.0001x12 - 0.0002x13 - 1.0647x14 - 0.3448x15 - 

0.0005x16 -0.8837x17 - 3.5294x18 + 1.8988x19 + 0.1308x20 + 0.1018x21 

where each variable has been enumerated in Section 4.1. 

However having 21 variables can lead to excessive processing time, particularly in the cases 
where not all of the variables contribute importantly to the calculation of the probability that 
an event contains a scan. We therefore used the Akaike Information Criterion (AIC) in order 
to remove any variable whose removal did not importantly affect the model’s fit to the data 
[Akaike 73]. The result was that only six variables are required by the model:  

ˆ P (event contains a scan) = ey / (1 + ey) 

where  

ˆ y  = −2.83835 + 3.30902x2 − 0.15705x4 − 0.00232x13 − 1.04741x15 + 3.16302x19 − 
3.26027x21 

where x2 is the ratio of flows with no ACK bit set to all flows, x4 is the ratio of flows with 
fewer than three packets to all flows, x13 is the average number of source ports per destination 
IP address, x15 is the ratio of the number of flows that have an average of 60 bytes/packet or 
greater to all flows, x19 is the ratio of the number of unique destination IP addresses to the 
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total number of flows, and x21 is the ratio of the number of flows where the flag combination 
indicates backscatter (e.g., RST, RST-ACK or SYN-ACK) to all flows. 

When the predicted probability that the event contains scanning activity is >= 0.5, one would 
normally classify that event as a probable scan, where 0.5 is chosen as a threshold based on 
convention. Using this value of 0.5 as the threshold for a scan, the model is able to correctly 
classify 197 of the 200 cases in the training data. 

One might wonder about interpretation of these β values because regression analysis is so 
frequently used to gain insight into explanatory and causal relationships between the outcome 
(dependent) variable and the independent variables. In such applications the researcher must 
take care to test that the model’s parameter (β) values are non-zero at a statistically 
significant level; those parameters that fail this test are often removed from the final model, 
as model simplicity is a valued characteristic. We used the Akaike Information Criterion in 
order to remove those variables that were not statistically significant. We can interpret the 
remaining co-efficients to determine how the variables affect the prediction that an event 
contains scanning activity. 

A negative co-efficient indicates that as the value for the variable increases, the probability 
that the event contains a scan decreases. Our model has four negative co-efficients, for 
variables x4 (the ratio of flows with fewer than three packets to all flows), x13 (the average 
number of source ports per destination IP address), x15 (the ratio of the number of flows that 
have an average of 60 bytes/packet or greater to all flows) and x21 (the ratio of the number of 
flows where the flag combination indicates backscatter to all flows). The negative co-
efficient for x13 indicates that the greater the number of source ports per destination IP 
address, the lower the probability that the event contains a scan. This is because the greater 
this value, the more connections there were to the same destination host. Since the majority 
of scans consist of horizontal or strobe scans, their presence is marked by very few 
connections on average to the same destination host. Note the optimization for detecting 
horizontal and strobe scans; these are the most commonly found scans in the data, and thus 
the model adjusts for these scans. The negative co-efficient for x15 indicates that the more 
flows that exhibit payload (indicated by flows with >= 60 bytes/packet), the lower the 
probability that the event contains scanning activity. This is intuitively apparent because the 
majority of scanning activity does not consist of connections where data has been exchanged. 
The negative co-efficient for x21 serves to reduce the probability that an event contains 
scanning activity if the evidence is high that there is backscatter activity, based on the flag 
combinations of the observed flows. 

The negative co-efficient for x4 is more interesting. As the ratio of flows that are small to all 
flows increases, the probability that an event contains a scan decreases. This does not make 
immediate intuitive sense. However, it might be explained by the observation that many 
scans consist of three SYN packets to each destination (based on standard TCP retries), 
whereas backscatter, for example, contains only a single packet per flow. Thus the probability 
that an event contains a scan is reduced the more small flows present in the event. It should 
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be noted that scans with small flows can still be detected based on the values for the other co-
efficients. 

Only two variables had positive co-efficients: x2 (the ratio of flows with no ACK bit set to all 
flows) and x19 (the ratio of the number of unique destination IP addresses to the total number 
of flows). For the first variable this result is to be expected given that the majority of scans do 
not include a large number of completed connections where data is exchanged. Additionally, 
scans where the ACK bit has been set are not common. Thus the larger the ratio of flows with 
no ACK bit, the greater the probability that the event contains a scan. Similarly with the 
second variable, if there is a large number of unique destination IP addresses compared to the 
number of flows, it indicates that there were very few flows to each IP address. This behavior 
would also be observed during horizontal scans, when there is likely only one flow per 
destination IP address, versus during legitimate activity where there are likely to be several 
connections to the same host. 

It should be noted that the relative values for each of the co-efficients cannot be used to 
determine the relative importance of each of the variables. This is the case with our model 
because we did not adjust all the variables to be on the same scale. 

One potential weakness of the model stems from reducing it to the most statistically 
significant indicators. This may have made the model less robust to detection of scan types 
not well represented in the development and validation samples, such as vertical scans. We 
also believe that retaining the large number of indicators makes this detection approach far 
more difficult to defeat than typical approaches using only one or two indicators—even if an 
adversary is familiar with how the detection approach works. Thus a user more concerned 
with complete detection rather than processing time might choose to use the full model 
consisting of 21 variables rather than the reduced model with only six variables. 

4.4 Validation 
Although our model performed well on the development sample, there is always a risk that 
such a model has “over-fit” the sample. Therefore it is best to validate the model’s 
performance on a second sample. Because the validation sample will be used to predict the 
performance of the model on the full population of events, this sample should be drawn 
purely at random from that population. Accordingly, 300 events were selected at random 
from a full dataset of 127,873 events collected on May 4, 2005, from 19:00-20:00 GMT from 
the same network that was used to gather data for the elicitation and training sets. 

The raw NetFlow data for each of these 300 sample events were examined and classified by 
the same domain expert that analyzed the elicitation and training sets. The six scan indicator 
values were then calculated for each of these events. The model described in Section 4.3 of 
this report was applied to compute the probability that each event contained scanning activity 
based on these six variables. As before, the customary probability of 0.5 was used as the 
threshold for a scan. Finally, the classification of each event produced by the model was 
compared with the experts’ classification, as the validation test. 
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There were 22 events containing scans, and 278 events that did not contain scans, according 
to the analysis by the domain expert. Our model correctly classified 298 (99.3%) of the 300 
events in the validation sample. Of the two incorrect classifications, there was one false 
negative and one false positive. We use the conditional probability definitions provided by 
Axelsson where the detection rate is the conditional probability that an alert was generated 
given there was a scan [Axelsson 00]. Similarly a false positive is the conditional probability 
that an alert was generated when a scan was not present. Our detection rate was 95.5% 
(21/22) and our false positive rate was 0.4% (1/278). The sensitivity (true positive rate) is 
0.955 while the specificity (true negative rate) is 0.996.5 

Robertson and colleagues also used domain experts to validate the results of their scan 
detection system [Robertson 03]. They reported a 0.6% false positive rate—quite comparable 
to our results. Because they had domain experts review only cases that their system had 
already identified as scans, their validation approach could not provide any insight into their 
false negative rate. In both their work and our work, the authors served as the primary 
domain experts. It should be noted that this does not provide assurance that other experts, 
unconnected to the work being validated, would classify the same events as scans. 

We next turn to the false negative and false positive. The false negative had an estimated 
probability of being a scan of 41.04%; however, the threshold for classifying an event as 
containing a scan was set at 0.5 and so this event was classified as not containing a scan.  It 
should be noted that this event had the highest probability of any of the non-scans in the 
validation data set. This event consisted of 70 flows to seven unique destination IP addresses, 
all of which were one-to-three packet SYN-only flows. 

The false positive consisted of 62 flows to three destination IP addresses. Only two of the 
flows exhibited characteristics of completed connections to two of the addresses. The 
remaining 60 flows were all to the third IP address and each consisted of four packets with a 
SYN-RST flag combination. This event had a probability of being a scan of 60.74%—the 
lowest probability of any of the scans in the testing set. 

4.5 UDP and ICMP Models 
In addition to creating a model for detecting TCP scans, we also developed models for User 
Datagram Protocol (UDP) and Internet Control Message Protocol (ICMP) scans using 
exactly the same procedure. However, not all of the 21 indicators could be used for each of 
these data sets, as they used information that was specific to TCP data (flag combinations, for 
example). Thus for UDP we used 15 variables, omitting the 6 variables that included flag 
information. For ICMP we used only five variables, omitting the variables that included port 
information as well as flag information from the list of TCP variables. Thus we had four 

                                                 
5  It is worth noting that ROC (receiver operating characteristics) curves can be used to understand 

the tradeoffs between false positives and false negatives and determine an appropriate cutoff  
[Swets 00, Agresti 02, p. 229-230]. In our case, with such a small number of misclassifications, 
such an analysis is not particularly valuable. 
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variables that were the same as for TCP scan detection, plus an additional variable that was 
specific to ICMP: the ratio of ICMP echo requests to all ICMP flows. 

The result for UDP traffic, after elicitation and training, was the following logistic regression 
model:  

ˆ y  = -3.6090 + 0.0017x1 + 0.2785x4 + 0.0087x5 + 0.0147x6 + 0.0011x7 +  0.4190x8 – 0.0064x9 
– 0.0913x10 + 0.0000x11 + 0.0000x12 – 0.0007x13 – 0.0815x15 – 0.0011 x16 + 1.8879x19 – 

0.0977x20 

where x1 is the maximum /24 subnet run length,  x4 is the ratio of flows with fewer than three 
packets to all flows, x5 is the maximum run length of IP addresses per /24 subnet, x6 is the 
maximum number of IP addresses contacted in any one /24 subnet, x7 is the maximum 
number of high destination ports (1024 or higher) contacted on any one host, x8 is the 
maximum number of unique low-numbered (less than 1024) destination ports contacted on 
any one host, x9 is the maximum number of consecutive high-numbered destination ports 
contacted on any one host,  x10 is the maximum number of consecutive low-numbered 
destination ports contacted on any one host, x11 is the number of unique destination IP 
addresses, x12 is the number of unique source ports, x13 is the average number of unique 
source ports per destination IP address,  x15 is the ratio of flows with ≥ 60 bytes/packet to all 
flows, x16 is the median number of packets per destination IP address, x19 is the ratio of 
unique destination IP addresses to flows, and x20 is the ratio of unique source ports (both low 
and high) to the number of flows. Using the AIC to reduce the number of variables in the 
model resulted in the following:  

ˆ y  = −1.88791 + 0.54368x4 + 0.02515x5 + 0.52909x8 − 1.24418x10 − 0.00184x13 − 0.22455x15 

− 0.69794x20 

The testing set for UDP consisted of 300 randomly chosen events, which contained only three 
scans. This model correctly identified 299 of the 300 events, where it missed detecting one of 
the scans. This particular scan was a vertical scan of a single host, where a single 48-byte 
packet was sent to ports 7273 to 6282, inclusive. 

The result for ICMP traffic was the following model:  

ˆ y  = −4.307079 − 0.08245704x1 − 0.02800612x5 + 0.04877852x6 − 0.000006398878x11 + 
4.016751x22 

where x1 is the maximum number of consecutive /24 subnets that were contacted, x5 is the 
maximum run length of IP addresses per /24 subnet, x6 is the maximum number of IP 
addresses contacted in any one /24 subnet, x11 is the total number of IP addresses contacted, 
and x22 is the ratio of ICMP echo requests to all ICMP flows. We do not use the AIC to 
further reduce this model because it is already so small, using only five variables. The testing 
set consisted of 300 randomly chosen events, which contained only a single scan. This model 
correctly identified all 300 events. 
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5 Direct Comparison with Other Detectors 

As discussed above in Section 3.2, there are several other approaches to scan detection that 
have been developed. One scan detection approach has emerged as a gold standard in scan 
detection—the threshold random walk method proposed by Jung and colleagues [Jung 04a]. 
This approach has been used in, for example, high-speed worm detection [Jung 04b,Weaver 
04]. We modified this approach to work on flow-level data, using an oracle to determine 
whether a host exists, rather than the return network traffic. Our modifications are outlined in 
more detail below.  

5.1 Threshold Random Walk 
The threshold random walk (TRW) approach was designed for packet-level inspection, and to 
be placed either at a border router where both incoming and outgoing data are available, or 
for use with an oracle that knows what hosts and services are available on the internal 
network. Given our operating limitations, we modified TRW to operate on flow data and 
provided it with an oracle. 

For a given hour of data, we generated an oracle that indicated the hosts known to exist 
during that hour. We did this by assuming the source address for any flows recorded on the 
outgoing interfaces for our network indicated that this particular source address contained an 
active host. We know that this approach is not perfect because there are, for example, known 
backdoors on the network that have not been instrumented. However, this oracle provides us 
with a first approximation for known hosts. 

We further modified the TRW algorithm to take into account that our oracle does not have 
perfect knowledge. If, for a given flow, the destination IP address exists in the oracle, then we 
consider this as evidence that the source might be benign. However, if the destination IP 
address does not exist in the oracle, we consider this only as evidence that a host might be 
scanning if the flow does not have the ACK bit set, indicating that no communication was 
established between the source and destination. Otherwise, we regard the destination host as 
existing, and so there is evidence that the source is benign.  Thus we err on the side of 
flagging a source as benign rather than as a scanner. 

5.2 Sampling Strategy 
The sampling strategy used to compare the capabilities of the TRW approach with our 
approach and with a naïve algorithm6 was based on the results obtained from first running 

                                                 
6  We have also developed a naïve approach to scan detection using unidirectional flow data.  In this 

case we flag as a scan any SYN-only flow records generated by a source with 100 or more flows. 
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each of the algorithms.  We chose all TCP data collected on January 15, 2006, 15:00-16:00 
GMT, from a large network.  Out of 631,870 total source addresses (regardless of the number 
of flows associated with each source address), the number of scanners and non-scanners 
identified by each of the three algorithms is presented in Table 1. 

Table 1: Number of Scanners Detected by Each Algorithm 

 Naïve Our approach TRW 

Scans 9,118 3,184 7,932 

Non-scans 622,752 628,686 623,938 

 

Our sampling strategy focused on determining the capabilities of the algorithms given 
complex examples, as opposed simply to performing random sampling and comparing true 
and false positive rates. In order to determine appropriate test cases, eight different sets of 
data were generated, using the results from each of the three algorithms. Each algorithm 
splits data into two groups: scanners and non-scanners. The data sets that were generated 
consist of all possible combinations of these groups.  The size of each of the eight groups is 
presented in Table 2.  For this comparison, we only used those sources that generated at least 
32 flows, in order to ensure that we did a fair comparison between our approach and the other 
algorithms.7  When the input set is reduced in this manner, the number of sources is reduced 
from 631,870 to 135,406. 

                                                 
7 We recognize that the threshold random walk approach detects scans much more quickly than 

either our approach or that of the naïve algorithm, as it can detect a scan in as few as five packets 
as opposed to the 32 flows required for our approach. 
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Table 2: Number of Sources in each Group 
 

Naïve  Our approach TRW # of Sources 

Non-scan Non-scan Non-scan 124,354 

Non-scan Non-scan Scan 491 

Non-scan Scan Non-scan 417 

Non-scan Scan Scan 1026 

Scan Non-scan Non-scan 7413 

Scan Non-scan Scan 96 

Scan Scan Non-scan 182 

Scan Scan Scan 1427 

 

We randomly selected 104 samples—23 from each group in Table 2—to analyze.  The same 
domain expert evaluated the raw flow data for each of the samples, identifying 69 of them as 
representing scanning activity.  The results for each of the algorithms were compared to the 
opinion of three experts, with the results summarized in Table 3. The three experts agreed on 
87 of the samples, labeling 24 of them as non-scans and 63 as scans.  For the 17 cases where 
the experts disagreed, the majority opinion was used to determine whether the event was a 
scan, resulting in a further 5 non-scans and 12 scans. 

The threshold random walk (TRW) algorithm has the lowest false positive and false negative 
rates of any of the methods.  The TRW algorithm has a total of 23 misclassifications.  We 
considered a combined approach using both TRW and our scan approach.  If either algorithm 
classifies a source as a scanner, then the combined approach labels the source as a scanner.  
This method would result in only three misclassifications, a considerable improvement over 
TRW alone.  However, the nature of the misclassifications has changed.  The combined 
approach causes three false positives and no false negatives.  The TRW algorithm has 
essentially no false positives in practice, but it will miss many scans.  The combined 
approach misses essentially no scanners, but it will inaccurately classify a small number of 
sources as scanners.  This indicates that the nature of the scans missed by TRW and our 
approach are sufficiently different that, when combined, there is very little overlap between 
the two sets of missed scans. 
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Table 3: Number of False Positives and Negatives for each Algorithm. 
 

 Naïve Our Approach TRW Combined 

False Positives 13 3 0 3 

False Negatives 36 26 23 0 

 

It should be noted that the numbers provided in Table 3 cannot be used to determine an 
overall rate for each of the algorithms.  For example, the false positive rate of 10.3% (3/29) 
obtained by our algorithm on this sample cannot be generalized—it does not indicate an 
overall false positive rate of 10.3%.  This is because our sampling strategy was chosen 
specifically to ensure that the most difficult cases were analyzed, rather than the average 
case.   

In order to determine what the false positive and false negative rates would be for the entire 
sample, we first assume that we analyzed a representative hour and that the stratified 
sampling approach represented each stratum effectively.  To perform this estimation, we need 
to account for the frequency of the different strata in our data.  For the hour under 
consideration, we had 135,406 hosts generating at least 32 flows each, where the frequency 
for each stratum provided in Table 2.  

The majority of hosts (124,354) were not classified as scanners by any of the detection 
methods.  To estimate the false positive rates, we must assume that the proportion of scanners 
to non-scanners found in our sampled strata (based on expert consensus) hold for those strata 
in the population of all hosts.  Please note that we are estimating this proportion for each 
stratum using a fairly small sample size (N = 13 per stratum).  Under this assumption, we 
would expect the overall false positive rate for our detection approach to be 0.073%.  In other 
words, around 7 out of 10,000 non-scanning hosts would be misclassified as scanners using 
our approach.  We estimate that 96 hosts would have been incorrectly classified as scanners 
during this hour.  The false negative rate for our approach in the population of all hosts in the 
hour is estimated to be 16.567%.  This means that our approach would fail to detect 587 
scanning hosts in the larger population during this hour. 

In comparison, we would expect an overall false positive rate to be nearly 0%, while the 
expected false negative rate would be 14.197%.  Thus TRW would fail to detect 503 scanning 
hosts in the larger population during this hour.  Combining TRW with our approach results in 
an expected overall false positive rate of 0.073%, while the overall false negative rate would 
be nearly 0%.  Therefore considerable accuracy can be achieved by combining these two 
approaches. 
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6 Deployment Results 

Our approach for detecting TCP scans has been implemented and in operational use on a 
large client network for several months, with summary information on each scan detected 
saved to a database. In this section we provide some sample results from this database. 

Figure 2 provides the number of unique scans and scanning sources per hour for November 
and December 2005. (Note that there is some missing data during this time period, indicated 
by either gaps in the data or data points below 500.) In general, approximately 1500 unique 
sources are scanning this particular network during any given hour, a number that includes 
worms as well as scanning activity directed by a human actor. There are slightly more scans 
per hour, which indicates that some sources stop scanning for a period of at least five 
minutes, and then resume. 

 

 

Figure 2: Scan Traffic for Two Months in Late 2005 
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The top ten most commonly scanned ports for this two-month period can be found in Table 4. 
Port 80 was by far the most commonly scanned port, both by number of scans and by number 
of unique sources scanning. A large number of high-numbered ports are being scanned, with 
eight of the top 10 ports being ephemeral ports. Figure 3 shows the scanning behavior for the 
top four scanning ports for November and December. Note that some interesting activity can 
be observed by just looking at these four ports. First, both ports 80 and 25 show an increase 
in the number of scans around Christmas. Second, scanning against port 1025 stops abruptly 
around December 14, 2005. Scanning to this port seems to be largely due to an exploit 
against the Microsoft Distributed Transaction Coordinator. The abrupt disappearance of this 
scanning appears to coincide with the release of a patch for the vulnerability.  Finally, port 
51736 suddenly becomes widely popular starting around November 20, peaking around 
December 11 and the dropping off sharply by December 15.  It is not clear why there was a 
spike in scanning for this port. 

 

Table 4: Top Ten Most Commonly Scanned Ports for November-December 2005 

Port # of Scans # of Sources 

15118 32,650 20,222 

2745 37,661 9368 

5000 64,038 18,815 

3410 73,990 23,812 

5900 84,121 8666 

4899 102,174 17,579 

51736 113,091 60,659 

1025 152,140 44,462 

25 212,214 39,927 

80 504,016 146,470 
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Figure 3: Trending Activity for Four Commonly Scanned Ports for November and 
December 2005 

 

There are several possible uses for maintaining a database of scan data, including the three 
below:  

1. Add scanning IP addresses to access control lists to block their communication 
requests at the border. Note that this requires a complementary white list of 
legitimate external hosts in order to prevent denial-of-service (DoS) attacks on the 
external hosts.  It should be noted, however, that this is difficult to manage on large 
networks. 

2. Investigate IP addresses where possible exploit attempts have been identified.  When 
we process events for scanning activity, we retain a list of all those destinations 
where there appeared to be further contact based on the number of bytes and the flag 
combination of the flow.  These hosts can then either be investigated to determine 
whether they have been successfully compromised, or watched for subsequent 
unusual activity that might indicate a compromise. 

3. Perform periodic trend analyses to determine whether new exploits or vulnerabilities 
have been released/identified.  For example, in Figure 3 port 51736 demonstrated a 
sudden increase in scanning activity.  A periodic trend analysis could detect activity 
such as this, and could result in port 51736 being blocked at the border, for example. 
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Additionally, in the cases where a large amount of  flow data is maintained and used for 
security analysis, those flows that represent scanning activity can be processed into a second 
set of data separate from the non-scan data.  A security analyst can then focus on the traffic of 
interest, whether that is scan traffic or non-scan traffic. This reduces the search time for the 
analyst, by allowing him or her to specify whether the target of interest is in the scanning data 
set or the non-scanning data set. 
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7 Conclusions 

This report presents a novel approach to detecting scans against, or passing through, very 
large networks. It is intended for use by organizations managing very large intranets or 
portions of the Internet backbone, as well as by smaller Internet service providers and 
intranets. Few other scan detection approaches are suitable for these operating conditions 
(described in Section 3.1). This scan detection approach performs an ongoing, incremental 
analysis of flow-level data about traffic inbound to the network. Our implementation 
successfully runs on very large data sets from live networks.  

In addition to these important characteristics, this approach offers four key research 
contributions:  

• It produces a probability that a collection of network traffic contains a scan; this is in 
contrast to the binary (yes/no) results provided by most other scan detection tools.  

• It uses a flexible and extensible collection of scan indicators—each with an 
associated metric—rather then the typical one or two metrics used by many other 
scan detection methods and tools. Using a large number of varied indicators makes it 
more difficult for an adversary to “game” the system and thus avoid detection.  A 
user can repeat our methodology, adding other indicators to the model that would 
improve the detection capability. 

• It provides a method of scan detection based solely on unidirectional flow data. Thus, 
we require less information to be collected than other scan detection techniques, 
which require either packet-level or bi-directional flow information be provided in 
order to recognize scanning activity.  Moreover, our approach can operate without 
knowledge of the monitored network architecture.  

• It offers a model for careful, thorough, statistically grounded development and 
validation of a new intrusion detection approach.  We have presented a methodology 
for generating a model that takes advantage both of expert opinion and data analysis, 
rather than being driven strictly by one or the other. 

In this paper we presented a model that predicts whether or not a set of flows from the same 
source represents scanning activity, which we validated against a set of 300 randomly chosen 
events that were manually labeled as containing scans or not.  For TCP scans we found that 
our model has 99.3% accuracy, with a sensitivity (true positive rate) of 95.5% and a 
specificity (true negative rate) of 99.6%.   

We compared our approach to a modified version of the threshold random walk algorithm, 
using a sampling strategy that focused on events that were sufficiently unusual as to make 
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classification difficult.  A test set consisting of 104 such events were chosen, where our 
approach had a misclassification rate of 29 while the threshold random walk had a 
misclassification rate of only 23.  This result is not surprising, given that the threshold 
random walk method has access to more information—specifically an oracle that knows 
which hosts exist—than does our approach, which uses only unidirectional flow information 
with no network knowledge.   

We combined the two approaches and found that the misclassification rate dropped to three.  
This indicates that there is a disjoint set of scans that each approach misses, where each set 
has different scan characteristics. Thus, for those instances where both an oracle is available 
and the preference is for false positives over false negatives, a combined approach might be 
the best solution.  Extrapolating our results to a typical hour, we expect that the combined 
approach would have a false positive rate of 0.073% and a false negative rate of nearly 0%. 
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