
Preparing for Automated
Derivation of Products in a
Software Product Line

John D. McGregor

September 2005

TECHNICAL REPORT
CMU/SEI-2005-TR-017
ESC-TR-2005-017

Pittsburgh, PA 15213-3890

Preparing for Automated
Derivation of Products in a
Software Product Line

CMU/SEI-2005-TR-017
ESC-TR-2005-017

John D. McGregor

September 2005

Product Line Practice Initiative

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2006 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

Table of Contents

Abstract.. v

1 Introduction ... 1

2 Context... 5
2.1 Product Production Capability .. 5
2.2 Practices... 7
2.3 Process Changes to Accommodate Automatic Derivation.......................... 8

2.3.1 Core Assets .. 8
2.3.2 Products.. 8

3 Deciding to Automate... 11
3.1 Economic Model ... 11
3.2 Technical Issues ... 13

3.2.1 Stability ... 13
3.2.2 Completeness... 13

4 Selecting the Automation Approach ... 15
4.1 Decision-Making Criteria... 15

4.1.1 Product Qualities... 15
4.1.2 Production Qualities.. 15

4.2 Automation Approaches.. 16
4.2.1 Specification Approaches ... 16
4.2.2 Intelligent Build.. 17
4.2.3 DSL and Product Generation.. 18
4.2.4 Metamodeling ... 18
4.2.5 Frame Technology .. 19

4.3 Directing Core Asset Development... 21

5 Operating the Automated Production Capability... 23
5.1 Establish Infrastructure ... 23
5.2 Specify Product... 23
5.3 Configure Product... 24
5.4 Extend Product ... 25

CMU/SEI-2005-TR-017 i

6 Case Study .. 27

7 Conclusions .. 33

References... 35

ii CMU/SEI-2005-TR-017

List of Figures

Figure 1: Chain of Derivation... 2

Figure 2: Relationships Among Production Elements ... 6

Figure 3: Use Case Diagram for Production System... 7

Figure 4: Meta-Tower for the MOF .. 19

Figure 5: XVCL Product Template ... 20

Figure 6: Example Product Specification for Brickles Game 21

Figure 7: Resulting Java Code .. 21

Figure 8: The AGM Product Line ... 28

Figure 9: Factory Wizard .. 29

Figure 10: Object Tool ... 30

Figure 11: Report Browser .. 31

Figure 12: Defining a Game Product ... 32

CMU/SEI-2005-TR-017 iii

iv CMU/SEI-2005-TR-017

Abstract

Organizations that adopt a software product line strategy often have business goals that con-
cern improving their ability to produce products by lowering product development costs, by
reducing the time to bring a product to market, or through other production improvements.
Business goals such as these make automated product derivation an appealing strategy to a
software product line organization. Automating production requires up-front investment, in-
cluding the creation of both the core assets that will be assembled as products and the core
assets that will perform the assembly. A software product line provides the ability to amortize
the cost of the infrastructure over a set of products. This report views the process for automat-
ing the production of products in the context of a product production system. The process
begins with the decision to automate, proceeds to the selection of the automation approach,
and continues with the operation and management of the automated production capability.
The process is illustrated by a case study automating the production process in the Carnegie
Mellon® Software Engineering Institute’s pedagogical product line.

CMU/SEI-2005-TR-017 v

vi CMU/SEI-2005-TR-017

1 Introduction

Software product lines have produced promising advances in lowering costs and reducing the
time required to produce a set of products. They deliver these results by taking advantage of
the common behaviors among the products to be produced and by managing the variations in
behavior among the products. Software product lines increase productivity by exploiting both
economies of scope and scale.

One of the potential benefits of software product lines is the ability to use mass customization
to serve a large number of market niches at a fraction of the usual price. Automatic creation
of products makes realizing those benefits more probable in many ways, including moving
product development into the hands of domain experts rather than software experts.

The work in a software product line is usually divided into two separate high-level activities:
(1) developing core assets (the “things” that are needed to build products) and (2) developing
the products using the core assets. The core asset builders accommodate variation among the
products by identifying what should be allowed to vary and designing in mechanisms that can
be used to select a particular variant quickly. The product developers are sometimes required
to create additional, unique software to realize the portion of the product that differentiates it
from other products in the product line.

In a software product line, a product is derived from the existing core assets by exercising the
variation mechanisms defined in the product line architecture. Automatic derivation refers to
the use of a set of tools to both specify a product and to transform that specification into a
product using the core assets. There is a spectrum of such techniques from the simple assem-
bly of existing assets using scripts to the generation of the product components from fine-
grained elements. These techniques can be classified along two dimensions: (1) completeness
of the coverage of product functionality and (2) completeness of the implementation of the
covered functionality. For example, some tools generate user interfaces or entire clients but
do not provide support for developing the servers needed to complete the system. There are
techniques for developing a single level in a multilevel architecture. This report will address
each of these dimensions.

If an entire product can be derived automatically, it is because the product line’s core assets
are sufficient to produce all the specified behaviors and all the variation values can be prede-
termined or used as input. In some cases, the derivation simply binds existing components
together into predefined configurations. In other cases, the components themselves are gener-
ated from fine-grained elements. Such elements provide greater flexibility in the production
capability, but more up-front investment is required to achieve acceptable results.

CMU/SEI-2005-TR-017 1

Automatic derivation is an old and widely used technique in software engineering. Program-
mers routinely derive object code automatically from source code using a compiler. Active
server pages (ASPs) are derived automatically from templates and instantiation data. Both
examples are transformations based on specific languages. Each transformation takes an in-
put written in a grammar and produces a predefined output. More recent technologies do not
change this basic pattern; they simply raise the level of abstraction higher so that products are
developed using fewer constructs.

Automated derivation in a product line follows a similar process, as illustrated in Figure 1.
The process begins with the development of a product specification. The appropriate values
at each variation point are determined and included in the specification of the component that
contains that point. Each specification is transformed automatically into a form that is closer
to, or may be, the final executable product. There may be a series of these steps where each
specification is written in a different language and each transformation is performed by a dif-
ferent tool. The output of each transformation moves closer to the final, executable product.

Figure 1: Chain of Derivation

This report provides an end-to-end view of the activities that are needed to support the auto-
matic derivation of products within a software product line. The portion of the derivation
process that is automated varies from one product line to another. However, in all cases, for
the portion that is automated, the product implementation is generated automatically from
some form of specification. The difference is the exact form of the specification and the point
in the development process at which it is defined.

2 CMU/SEI-2005-TR-017

This report addresses product derivation rather than program derivation. Program derivation
usually means the automatic creation of code from some formal specification. Automated
product derivation addresses issues about the ability of existing assets to be composed and
the applicability of those assets to the needed product. The assets may have been created us-
ing program derivation techniques or manually, but, in this report, they will be viewed as
composable units without regard to their origins. This report goes beyond code to encompass
all elements that commonly constitute a product (e.g., documentation for users and maintain-
ers). This report will accommodate a range of ways in which assets become available for use
in product production.

This report is organized to follow the steps from the earliest phases of software development
to the later ones. Section 2 describes the context in which automatic derivation is appropriate.
Section 3 contains a discussion of the initial decision to automate product derivation. Section
4 describes techniques for choosing the appropriate derivation technology, and Section 5 dis-
cusses carrying out the derivation process. Section 6 contains a brief case study based on the
Carnegie Mellon® Software Engineering Institute’s (SEI’s) pedagogical product line.

® Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon Uni-

versity.

CMU/SEI-2005-TR-017 3

4 CMU/SEI-2005-TR-017

2 Context

The success of a product line depends on its ability to produce products that satisfy the or-
ganization’s goals for its market or mission. These goals and how the product line organiza-
tion has decided to satisfy them establish the context in which automated derivation will be
applied.

2.1 Product Production Capability
This report is part of a continuing effort that is addressing issues about product production in
a software product line organization. This previous work described several production-related
assets: the production strategy, the production method, and the production plan, all of which
are illustrated in Figure 2 [Chastek 02a, Chastek 02b, Chastek 04]:

• production strategy – The production strategy is the direct link between the business
goals and product production. The strategy is a high-level statement that serves as input
to the creation of the production method. It conveys the high-level specification of how
core assets should be built, so products can be built that achieve the product line goals.
This specification drives the creation of other production-related assets.

• production method – The production method bridges the gap between the production
strategy and the production plan. The production method is engineered from the produc-
tion strategy to define the processes, technologies, and models that will be used to pro-
duce products. The production method provides a high-level implementation definition of
how products will be created. Defining the production method creates the information
needed to produce a production plan.

• production plan – The production plan is the operational view of the production strategy.
The plan for a product is created by applying the production method to the set of core as-
sets selected for the product. The production plan identifies the techniques to be used, the
schedule for using them, and the materials needed to build the product. A generic produc-
tion plan is created as a core asset and supplied to product-building teams, who make the
generic plan more specific to produce the product-specific production plan. The speciali-
zation is performed by composing the attached processes from each of the core assets
chosen for developing the product.

CMU/SEI-2005-TR-017 5

Figure 2: Relationships Among Production Elements

The decision to use automatic product derivation is a strategic decision based on those prod-
uct line goals that affect product production. The decision is made very early in the product
line life cycle, usually during the business case analysis, since it affects the entire product
line, including the fundamental organization and cost of the project. The production strategy
is the basis for creating the production method. The method defines the processes, tools, and
models used to automate production. The production plan provides the basic instructions for
applying the production method to develop a specific product. For a product line using auto-
matic derivation, the production plan may be as succinct as a script that drives a set of tools
leading the product builder thorough the product-specification process and that generates the
product.

Figure 3 shows a basic use case diagram for a production system using automatic derivation.
The uses in the diagram, which are described below, illustrate the activities that can occur in
automated derivation:

• specify product – Even the most automated production system provides a means for the
system’s user to enter the specification of the desired product as input.

• configure product – Some automatically derived products will require additional configu-
ration after the production process is complete. This additional configuration is usually
accomplished by someone with domain knowledge (such as a domain expert or a devel-
oper with experience in the domain).

• extend product – The production system may be partially automated, and many products
may require unique extensions to satisfy the complete specification.

• establish infrastructure – A number of tools are required to support automated derivation.
These tools and the basic assets they will manipulate to build products must be made,
commissioned, mined, or bought.

This report uses these use cases as one of its organizing elements.

6 CMU/SEI-2005-TR-017

Specify product

Establish infrastructure

Extend product

Configure product
Customer

Sales/Marketing

Domain Expert

Developer

Specify product

Establish infrastructure

Extend product

Configure product
Customer

Sales/Marketing

Domain Expert

Developer

Figure 3: Use Case Diagram for Production System

2.2 Practices
Organizations that are mature in software product line practice areas, such as “Requirements
Engineering,” “Understanding Relevant Domains,” “Architecture Definition,” and “Configu-
ration Management,” will be better able to take advantage of automated derivation than those
that are not.

The product line organization must be proficient at requirements engineering to use auto-
mated derivation effectively. A thorough analysis of the full scope of requirements and a rec-
ognition of the variations across products are necessary to build core assets that are suffi-
ciently flexible. Building an infrastructure that is insufficient in scope will be both more
likely and more costly if the requirements analysis is insufficient.

An organization that has a mature understanding of relevant domains within its scope will be
more likely to be successful with automated product derivation. There is a tradeoff involving
the additional resources required to develop the infrastructure needed for automated deriva-
tion. The relative difference in the resources needed for manual and automated derivation
must be compared to the velocity at which the domain is evolving.

The amount of effort needed to create the infrastructure for automatic derivation will depend
on the maturity of the organization relative to the domain. A company just beginning to de-
velop products in a domain will take longer to establish the shared models necessary to sup-
port the needed abstractions than a company that has already developed those models.

CMU/SEI-2005-TR-017 7

Having a history of architecture definition contributes to success with automatic derivation.
First, the practice helps establish the needed level of domain maturity. Second, it prepares
personnel to recognize and be able to benefit from multiple levels of abstraction. The compo-
nents that are composed to form products reflect the product line architecture and are de-
signed to provide specific levels of quality when used correctly with the architecture.

The configuration management process in a product line using automatic derivation changes
in that the elements under management are no longer programming language files, in the
usual sense. That is, the components that are assembled into the product may be generated
from fine-grained model pieces, as necessary. Modifications will be made to those fine-
grained model pieces and not to the generated components.

2.3 Process Changes to Accommodate Automatic
Derivation

Using automated means of product production affects the processes for developing both the
core assets and the products.

2.3.1 Core Assets
An automated product derivation strategy puts more emphasis on core asset development
than traditional product development does. The core assets must be more complete for that
portion of the product that will be automatically created. The core asset developers construct
the infrastructure for automated product production as well as the core assets that will be de-
veloped to create products. The infrastructure must not only assemble the components
needed, but it must also ensure that inappropriate combinations of assets are prevented. When
automatic derivation techniques are used, the architecture and design processes for the core
assets place a higher priority on the identification of constraints among the assets.

The core asset development process encompasses meta-level constructs requiring a different
set of skills. When using automated derivation, core asset developers require skill sets such as
domain modeling and even building generators of generators. The set of core assets repre-
sents a more complete set when automatic derivation is the goal.

2.3.2 Products
Product building is faster and the production plan simpler in a product line that uses auto-
mated derivation. After the product specification is complete, producing the product is usu-
ally a matter of minutes depending on the size of the product. The derivation infrastructure
captures the production plan in a tool set, so product building is tailored to the skill set of the
personnel assigned to build products.

The production process can be operated by personnel with more domain expertise and less
development skill than a more manual development process. A marketing representative can

8 CMU/SEI-2005-TR-017

produce a product on the client’s site with the client’s direct input. Moving production closer
to the customer changes both the marketing and production processes. The software factory
approach [Greenfield 04] would even put product production into the customer’s hands. With
a software factory, the product line organization delivers a software tool to the client that is
capable of producing the range of products within the product line scope.

CMU/SEI-2005-TR-017 9

10 CMU/SEI-2005-TR-017

3 Deciding to Automate

Deciding to use automatic product derivation is a strategic decision that has economic and
technical dimensions. The production strategy imposes constraints on the production method.
Deciding to automate is based on satisfying these constraints.

To ensure that the core asset developers produce core assets and the product builders build
products that meet the product line’s goals, a software product line organization makes plans.
As described in the previous section, certain production-related assets are created early in the
life of the product line as a way of planning how products will be produced. Planning for pro-
duction essentially involves deciding how products should be built before creating the core
assets that implement production.

As part of choosing production techniques, models are created to evaluate the feasibility of
various options for producing products. In this chapter, we examine a cost model in detail
because many of the other factors, such as time to delivery, can be reduced to economic ar-
guments. Cost functions, for example, can account for the stability of the domain by return-
ing a lower maintenance cost for a more stable domain.

3.1 Economic Model
The Structured Intuitive Model for Product Line Economics (SIMPLE) [Clements 05] pro-
vides a framework for creating cost-benefit models for decision-making support in software
product line organizations. The basic SIMPLE expression is given in Equation 1.

Equation 1: Basic SIMPLE expression

++++ ∑
=

)),(),(()()(
1

tproductCtproductCtCtC ireuse

n

i
iuniquecaborg ∑

=

snumBenefit

j
j

benefit
1

An economic model that compares costs and benefits of an automated derivation approach to
a manual assembly process can be built using SIMPLE. The basic SIMPLE expression given
in Equation 1 is instantiated for each of the two approaches, and the values of the two expres-
sions are compared to determine the approach with maximum return. The “product” parame-
ter in the equation is the specification for an individual product. This parameter is used by the
cost function to compute analyses that evaluate each asset that will be needed to satisfy the
specification. The “t” parameter denotes the time at which the product is expected to be built.
This parameter is used by the cost function to compute analyses that consider the time value

CMU/SEI-2005-TR-017 11

of money, the allocation of scarce resources, and the market timing of product releases as part
of the cost expression.

Each term described below is intended to be broken down into individual expressions that
can be estimated more exactly for the given situation. The following assumptions and con-
straints apply to the cost functions when using automatic derivation:

• Cunique is the cost of developing the unique portion of the product. It will be very small,
and in some cases zero, under the automatic-derivation approach. That is, for automatic
derivation, we assume that little or no additional, unique development is needed to pro-
duce the product. There is usually a need to conduct system tests, since each product is a
unique assembly of assets and has the potential to contain unique asset interactions. Even
though the assets have been inspected and tested individually, unexpected behaviors may
emerge when the assets are assembled. Some of the traditional cost in this category is
shifted to the cost of building the core assets because the core asset base must more com-
pletely cover the behaviors of products in the product line.

• Creuse is the cost of reusing the product line assets. This term should represent how long it
takes the designated people to make variation decisions. For an automatic-derivation ap-
proach, this cost includes using the provided variability selection mechanisms to specify
which assets are to be used for the product and determining any parameter values used
for those assets. This cost is usually lower for automatic derivation than for a traditional
product-building approach partially because some of the traditional reuse costs are
shifted to the cost of building the core asset base. That is, product features or behaviors
are selected rather than specific core assets. The infrastructure for automatic derivation,
which is itself a core asset, does the mapping and selects the appropriate core assets.
Having the infrastructure create a mapping and select the cores assets reduces the cost of
reuse but increases the size and cost of the core asset base.

In automatic generation, the selections may be made by domain-knowledgeable people
as opposed to software development personnel, but, in either case, the selection of core
assets is more indirect than for a traditional product-building approach. Depending on
the domain, the domain experts may cost more or less than the development staff. Even
if the experts cost more than development staff, they may be able to make selections
more quickly with fewer errors.

• Corg is the cost of converting an organization to the product line strategy. If the organiza-
tion is already using product lines, this amount will be small, covering only the cost of
training personnel to use the variability selection mechanisms and tools unique to auto-
matic derivation. If this is the organization’s first product line, this cost will be basically
the same for both the manual and automated techniques. This cost represents a tradeoff
between the cost of training nondevelopment personnel to use mechanisms such as Web
browsers to select options and the cost of training development personnel to implement
product-specific assets.

12 CMU/SEI-2005-TR-017

• Ccab includes the basic costs of producing all the core assets, including the software archi-
tecture and the software components, that are used to produce products. The core asset
base becomes the cost focus when automatic derivation is used. The automatic-derivation
approach includes the additional cost of building the derivation tool chain. In addition,
this cost reflects the previously mentioned transfer of the cost from building the unique
pieces to the cost of the original development of the core assets and the transfer of the
cost from reusing the assets to making them composable.

This SIMPLE expression indicates that the automated approach will be profitable if the sav-
ings realized in producing unique pieces and having personnel make variation point selec-
tions are greater than the sum of the additional costs of the derivation infrastructure and the
additional cost for identifying and developing the core assets to the level required for auto-
matic derivation.

3.2 Technical Issues
Several technical issues must be considered as part of the decision to automate product deri-
vation. Automated derivation encodes more of the knowledge and techniques used by product
developers into a tool infrastructure than non-automated derivation. The more complete the
automation is, the more investment that will be required in encoded knowledge.

3.2.1 Stability
The stability of the product definition will affect how often the infrastructure will need to be
revised. Deciding to automate too early in the organization’s experience with the domain may
lead to many iterations on the infrastructure.

The rate of change in the main application domains affects the frequency with which the un-
derlying principles must be modified. The faster the changes in domain knowledge occur, the
more maintenance that will be required on the automation infrastructure. These frequent
changes will offset some, and perhaps all, of the potential savings from automating.

The rate of change in the scope of the product line has implications for the feature model on
which the automation is based. In particular, variants at very different places in the feature
tree may disappear if the scope is narrowed, or they may need to be inserted if products are
added.

The maturity of the architecture affects the stability of the derivation infrastructure. Some
automated techniques essentially encode the architecture in the derivation tool chain.
Changes to the architecture can lead to numerous changes in the infrastructure.

3.2.2 Completeness
The derivation infrastructure is created from a set of requirements, but often the infrastructure
is not intended to implement the entire production process. The product line organization may

CMU/SEI-2005-TR-017 13

initially make the investment to automate the derivation of only a portion of the product or to
automate only a portion of the production process. To ensure the correctness of the resulting
product, that automation should result in a conceptual whole that can be evaluated for com-
pleteness.

One way to ensure the correctness of the product is to automate either all or none of an archi-
tectural unit. If complete architectural modules are automated, the test cases that have already
been created from the architecture description can be used to test the generated assets. Most
generated code is not very human readable. Planning on having product builders modify par-
tial code is seldom productive. While it might be possible to limit automation to the produc-
tion of complete modules, it is usually easier to place the requirement on the front end of the
process by selecting complete architectural units to be generated.

If only a portion of the production process is automated, the automation should cover all pos-
sible cases for that portion. Each phase in the process has specific inputs and outputs. Each
input provided to a process phase should be complete to ensure that the resulting output is
also complete.

14 CMU/SEI-2005-TR-017

4 Selecting the Automation Approach

Once the decision has been made to automate product derivation, the next step is to select the
technology to use. There are a number of possible choices, each possessing its own qualities.
The decision as to which approach to select is made in the process of planning the overall
production capability. This section follows the planning process and illustrates the sequence
of decisions.

Automatic derivation requires considerable infrastructure. Typically, the infrastructure sup-
ports the specification of products and the transformation of that specification into working
code. The choice of the technology for writing the product specification affects the choice of
technology for transforming that specification, and vice versa.

4.1 Decision-Making Criteria

4.1.1 Product Qualities
Automatic derivation relies on a well-specified, stable software architecture. Much of the in-
frastructure created for automation encodes the architecture as an integral part of the artifacts
that are assembled into the product. When choosing an automation technology, the architec-
ture assumed, or created, by the technology must be evaluated to determine whether it is ca-
pable of achieving the expected product and product-production qualities.

For example, the GenVoca work of Batory and colleagues is based on a layered architecture
for the generated components [Batory 00]. Each component is composed of layers of behav-
ior that are combined in specific orders. This architecture supports the automated assembly of
fine-grained pieces into components that are, in turn, assembled into products. The resulting
components will have specific attributes. The core asset team must determine whether those
attributes are the appropriate qualities for the products to be built in the product line.

4.1.2 Production Qualities
Different automation technologies require different skills and provide different benefits. The
production qualities required in the charter of the product line are used to evaluate the auto-
mation technologies.

For example, choosing to create and use a domain-specific language results in a production
environment in which product builders must understand features but few, if any, implementa-
tion details. The personnel hired to operate this production process will have training in the

CMU/SEI-2005-TR-017 15

domain rather than software development. The products will be easy to produce as long as
the entire feature set is within the product line scope but more difficult if some of the features
are outside that scope.

4.2 Automation Approaches
We first discuss approaches to product specifications that are at a high level and generally
applicable. We then consider approaches in which the specification technique is closely re-
lated to the generation technology.

4.2.1 Specification Approaches
A product-specification technology is selected that is compatible with the choices made dur-
ing product line analysis. Chastek and Donohoe [Chastek 01] discuss two strategies for build-
ing the requirements model:

1. feature-based approach – A feature-based product specification can be used when a fea-
ture model has been created. The feature-based approach is appropriate when end users,
marketing personnel, or other non-development personnel will be operating the produc-
tion system because the feature level is the level most visible to users.

2. use-case-driven approach – Products can be specified by selecting the applicable re-
quirements when a use-case-driven approach has been used to capture the product line
requirements. This approach is more appropriate when development personnel will be
operating the product production system because the use cases often capture information
that is related to development. Use cases also tend to be more comprehensive, capturing
the views of all stakeholders, not just users.

Other approaches described in the literature include the domain-based approach. This ap-
proach is similar to the feature-based approach, but it uses the more general, and usually
more technical, domain model as the basis for specifying products. The domain model is usu-
ally more technical than a feature model in that it is more detailed and includes information
that is not obvious to users. This approach is appropriate when domain experts will be speci-
fying products.

The more abstracted the specification is away from the actual implementation, the more de-
coupled the product specification is from the product implementation. Decoupling the prod-
uct specification from the product implementation usually simplifies the specification lan-
guage and may reduce the skill set needed to develop a correct specification. Although high-
level specification languages can be used even if implementation is manual, the infrastructure
needed for automatic implementation can usually be extended easily to support checking
specifications for completeness, consistency, and correctness. This type of checking is ac-
complished by using a grammar for the specification language and including constraints on
the elements of that grammar. This checking has the effect of decreasing Creuse in Equation 1

16 CMU/SEI-2005-TR-017

but not increasing Ccab by an equal amount. In addition, this checking results in a lower cost
to use an asset in a given product.

4.2.2 Intelligent Build
The quickest approach to automate some of the derivation process uses an intelligent make
system, such as Ant, to assemble products automatically from a manually derived specifica-
tion [Apache 04]. Each product is specified as a script that assembles the required compo-
nents. The scripting language is often dedicated to the build process and may be specific to
the platform (e.g., UNIX make) requiring a specific skill in script writing. In the case of Ant,
however, the product specification is written in Java.

Each new product requires the development of this script, similar to developing the product
specification. And, just like the product specification, core assets such as a script generator
are made available to facilitate this task. The script is used repeatedly during development
when components are being revised rapidly and builds must be accomplished rapidly. The
script is developed incrementally as new components are integrated into the build. The de-
gree of commonality among products determines the percentage of the script that will be
modified.

A product is realized from a script by executing the script. In the case of Ant, this execution
involves running a Java program. Many scripting languages have platform dependencies,
making them unsuitable for multiplatform development. The Java dependency of Ant makes
it suitable for running on any platform that supports Java. Ant also makes managing the tool
chain easy because the main driver program can invoke a variety of tools in the programmed
order.

This approach is largely independent of product tailoring. Since each build script is hand
built, often by cloning an existing script, new or revised components can be included in the
product with almost the same effort as existing components.

This technique is suitable for individual products and platforms that are relatively stable. In a
mature product line, building this script may take more effort than developing a product
specification in a domain-specific language (DSL); however, developing the DSL is a major
effort. The make tool may not have any checks on whether the specification is correct, com-
plete, or consistent, whereas a DSL should have tools that make consistency checking possi-
ble. On the other hand, the generic make tool is ready-made and does not require the effort
needed to build the derivation infrastructure.

Diaz and colleagues describe a detailed scheme for composing Ant build definitions to im-
plement an automated production plan [Diaz 05].

CMU/SEI-2005-TR-017 17

4.2.3 DSL and Product Generation
Domain-specific languages provide a vocabulary that is accessible to someone whose exper-
tise is in the domain of the application rather software engineering. A DSL provides deep
support for automatic derivation of products. This support includes the language in which a
product specification can be written and tools that support checking specifications for cor-
rectness and completeness.

DSLs support the automation of transforming the specification into executable code, but the
specification process is still largely manual. The specification is a program but one that is
easier to write than the complete executable program. The program is written in the DSL
where fewer constructs are needed to express the solution than in a traditional programming
language.

The transformation process, in this context, is usually a multipart process in which the DSL
code is translated into a conventional programming language. The new program is then trans-
lated using the standard tools for that language. Often, the DSL is tied to code fragments, so
the transformation process generates the components “on the fly” while producing the inter-
mediate code.

Tailoring a product can be difficult in this environment. If the DSL is incomplete, traditional
programming expertise may be required to add the necessary semantics. Additional compo-
nents and modifications to the generator may also be required.

4.2.4 Metamodeling
Metamodeling is one approach to developing a DSL and providing automatic code genera-
tion. We’re including it in this report because it has sufficient power and applicability to
product line development.

In this approach, the product line is modeled by a metamodel, which essentially constrains
derived models to the types of products described by the product line scope. The model pro-
vides a fine-grained factorization of the concepts in the domain, so they can be assembled
easily and composed in a large number of ways.

Each product is specified by creating a model based on the metamodel. This process is suc-
cessful if both of the following statements are true:

• The metamodel provides a sufficiently factored view of the domain to allow the modeler
to state the requirements for the product accurately.

• The metamodel correctly constrains the relationships among elements in the metamodel.

The metamodel must separate common behavior from variation points so that including re-
quired behavior does not result in including optional behavior as well. Metamodels typically
handle this separation by defining a platform that is a black box of common behavior.

18 CMU/SEI-2005-TR-017

A typical metamodeling environment provides a hierarchy of models. The hierarchy defined
by the Meta-Object Facility (MOF) of the Object Management Group (OMG) is shown in
Figure 4. As you move up in the figure, each level constrains the scope of the levels below it.
The meta-meta level defines a modeling language that can be used to define metamodels.

Figure 4: Meta-Tower for the MOF

The product is realized by applying a transformation to the model-based specification of the
product. Some metamodeling environments then use code generators in the form of report
writers to produce product code. This approach makes it easy to automate generation of
documentation and other supporting materials.

The development of the complete meta-tower, the fully factored domain model, and the code
generation infrastructure are the major expenses of this approach. Setting up the infrastruc-
ture can be more expensive than the usual product line asset base, but savings will be realized
during production. The advantage of the tower is that each concept is pushed to the highest
possible level, so changes in scope or variation points can be handled as globally as possible.

Product tailoring affects different levels of the modeling hierarchy depending on the com-
plexity of the change. A change to the specification of a product is accomplished at level M1.
A change that requires a modification to the scope of the metamodel is accomplished at level
M2. At the least, changes at level M2 require knowledge of the metamodel and possibly pro-
gramming skills.

4.2.5 Frame Technology
A technology based on Bassett’s frame technique provides another approach to a metamodel
[Zhang 05]. The technique uses the ideas of Minsky, in which knowledge is represented and

CMU/SEI-2005-TR-017 19

retrieved as a series of frames. The domain model is translated into a hierarchical network of
frames. Frames at one level of the hierarchy “adapt” frames at the next level of the hierarchy
to produce more complex entities by using a template-instantiation paradigm.

XML-based Variant Configuration Language (XVCL) is a technology that uses an Extensible
Markup Language (XML)-type language to support the frame technique. (See Figure 5 for
example syntax using the product described in the case study provided in Section 6 of this
report.) Each frame is a meta-component (as shown in Figure 5) that can be specialized by
combining the meta-component with a product specification (as shown in Figure 6) and a
document type definition (DTD). The output is the specialized component, as shown in Fig-
ure 7. While this is a simple example, it shows the basic process.

For this technology, the product specification is an XML file that assigns specific values to a
set of variables. The transformation process is the XVCL processor applying a DTD to the
appropriate templates and the specification file. This technique automates the generation of
components but does not directly automate the production of the final executable.

 <?xml version="1.0"?>
<!DOCTYPE x-frame SYSTEM "file:///d:\XVCL\dtd\xvcl.dtd">
<!--
 Name: Game.XVCL
 Title: The Frame for Java Brickles
 Version: 01.10.02
 Category: Frame
 Project: XVCL Example

 Copyright (C) 2005, AGM. All rights reserved.
-->

<x-frame name="Game">
package <value-of expr="?@TITLEOFGAME?"/>;

import javax.microedition.lcdui.CommandListener;

import coreAssets.Menu;

public class <value-of expr="?@TITLEOFGAME?"/> extends
Menu implements CommandListener {
 public <value-of expr="?@TITLEOFGAME?"/>() {
 super();
 this.board = new <value-of
expr="?@TITLEOFGAME?"/>Board(this.display);
 board.setApp(this);
 }
}

</x-frame>

Figure 5: XVCL Product Template

20 CMU/SEI-2005-TR-017

 <?xml version="1.0"?>
<!DOCTYPE x-frame SYSTEM "file:///d:\xvcl\dtd\xvcl.dtd">

<x-frame name="Brickles" outfile="Brickles.java" language="java">

 <set var="TITLEOFGAME" value="Brickles"/>
 <adapt x-frame="Game.xvcl">

 </adapt>

</x-frame>

Figure 6: Example Product Specification for Brickles Game

 <?xml version="1.0"?>
<!DOCTYPE x-frame SYSTEM "file:///d:\xvcl\dtd\xvcl.dtd">

<x-frame name="Brickles" outfile="Brickles.java" language="java">

 <set var="TITLEOFGAME" value="Brickles"/>
 <adapt x-frame="Game.xvcl">

 </adapt>

</x-frame>

Figure 7: Resulting Java Code

4.3 Directing Core Asset Development
The choices made for the production method guide the core asset developers in the decisions
of which assets to develop and how to develop them. The primary assets, such as the product
line requirements and the software architecture, are used to derive the production assets such
as specification tools and generators. In effect, the product generator is a generation technol-
ogy specialized to the software architecture [Glück 96]. The product generator can generate
only assemblies that are compatible with the architecture. Complex dependencies among ar-
chitectural elements are encoded in the generator and automatically resolved. Doing this re-
duces the cost of testing the assemblies by eliminating certain types of defects, but at the cost
of validating the generator.

CMU/SEI-2005-TR-017 21

22 CMU/SEI-2005-TR-017

5 Operating the Automated Production
Capability

Automated product derivation techniques must support the production uses illustrated in the
use case diagram shown in Figure 3. In this section, we examine each action in that figure.
These actions are the responsibility of the production capability, but they are enacted as
needed rather than as a fixed sequence.

5.1 Establish Infrastructure
Automatic product derivation works because it rests on an infrastructure that is created with
the exact nature of the derivation in mind. That nature encompasses the scope of the product
line and the production goals that the infrastructure must achieve. This infrastructure must
support the two basic activities of product specification and specification transformation.
Usually the infrastructure consists of models of the domain, tools that allow products to be
specified using those models, and tools that map a specification onto libraries of templates or
implementations.

The infrastructure can be developed in phases like any other set of core assets. However,
even in a reactive approach to product line adoption, there is still an initial investment to es-
tablish the required infrastructure. Much of this investment, such as the cost of creating a
domain model, is part of the cost of a product line organization regardless of the product
derivation approach being used. Other costs, such as using the domain model to create a
DSL, are not part of the usual cost of a product line and represent an additional investment.

The domain model is the fundamental element in the infrastructure. The model is a result of
exercising the “Understanding Relevant Domains” practice area. Two different strategies are
possible for developing the domain model incrementally. One is to identify some subset of
the architecture and to drive it to the appropriate, and completed, level of detail. Another is to
develop a model that covers the breadth of the product line’s scope but does not provide
much detail. The detailed, partial model provides support for automatic derivation for that
portion of the product covered by the model.

5.2 Specify Product
A product developer uses the automated production capability to specify the product to be
produced. The specification can take on many different forms depending on the automation
technology being used. The specification language is usually some form of a DSL that raises

CMU/SEI-2005-TR-017 23

the level of specification above a basic programming language. MetaEdit+, for example, pro-
vides the ability to represent domain concepts as textual language primitives or as graphical
icons.

The foremost issue is whether the infrastructure has the ability to specify the product com-
pletely. The Unified Modeling Language (UML) in its second full version has taken a major
step in that direction. The Object Constraint Language (OCL) is a more complete language
for expressing constraints than earlier versions. However, UML and other similar languages
still must be supplemented to produce a complete specification.

A second issue is whether the technology matches the skill set of the product developers. The
DSLs created using MetaEdit+ are more intuitive than UML for an expert in a domain other
than software design modeling. The tradeoff is the amount of resources needed to create the
DSL versus the extensive number of UML tools.

The result of this activity is a machine-parseable description of a product that is within the
scope of the product line. A product specified using a DSL is guaranteed to be within the
product line’s scope because the language can not express concepts outside the scope. Other
specification languages may not enforce this limit, and those specifications must be manually
checked for conformance.

5.3 Configure Product
Some automatically derived products will require additional configuration after production is
complete. This configuration is intended to add information specific to the environment in
which the product is deployed or to address the user’s preferences. The product must contain
the mechanism that supports the configuration functions.

Configuration may be automated as when a plug-and-play capability is provided. For exam-
ple, Eclipse is configured as it starts execution. The plug-ins directory is traversed, and each
plugin.xml is used to activate a piece of Eclipse. In this case, the product has a mechanism
that reads the XML files and uses the configuration information in each file to compose
menus, the help system, and other product parts.

Configuration may be manual as when the user must edit a configuration file or use menu
entries in the product to select options and set values. The product still includes functionality
to read the file and use the values in the file. A number of programming tools use this ap-
proach.

The configuration mechanism should be selected to minimize errors and to be compatible
with the skill level of the product’s users. In addition, the mechanism should maintain suffi-
cient constraint information to prevent inconsistent settings.

24 CMU/SEI-2005-TR-017

5.4 Extend Product
The production system may be partially automated, and many products in the product line
may require unique extensions to satisfy the complete specification. The integration of the
automated and manual portions of the product should occur along an architectural boundary.
The extension will fit one of two scenarios:

1. The extension is a new variant value at an existing variation point. The extension adds
features that are compatible with, although different from, the existing features in the ar-
chitecture. The required information is provided to the infrastructure to generate the ap-
propriate components.

2. The extension introduces a new variation point. This scenario is an unanticipated evolu-
tion of the product line [McGregor 03]. Either a modification to an existing interface or
the addition of a glue-code adapter between the existing interface and the required fea-
ture is necessary.

Usually when products or features are added to the product line’s scope, the infrastructure
will eventually be extended. The effective way to do this is to follow the same process by
which the infrastructure was built initially. The domain models are modified to accommodate
the new features. These models are used to regenerate the DSL and related tools.

CMU/SEI-2005-TR-017 25

26 CMU/SEI-2005-TR-017

6 Case Study

This case study is based on the SEI’s pedagogical product line. The fictional company Arcade
Game Maker1 (AGM) has a product line of three different games available in three major
variations, each with a number of minor variations (see Figure 8). The games are Brickles,
Pong, and Bowling. The three major variants are (1) a simple PC-based game, (2) a wireless
device version, and (3) a convention giveaway version that can be customized to the com-
pany giving it away. Further, a number of platforms are supported either through different
operating systems or, in the case of the wireless version, several different processors.

The AGM product line is divided into three increments of three products, each addressing
specific markets. Each increment consists of one variant of all three games, such as the wire-
less device implementations of Brickles, Pong, and Bowling. Since a grouping of three prod-
ucts is often about the break-even point between product line and individual product devel-
opment, this division was useful for decision making.

The organization conducted a product line analysis to develop some of the information
needed to build the production strategy. The company also constructed an economic model
that allowed it to analyze the costs of automating production. The model showed that the cost
of automation was high in the initial increments, but, by the third increment, the team’s un-
derstanding of the domain would reduce the cost of automation to the point that automation
would be the most advantageous approach.

The organization developed the following production strategy: We will produce the initial
products using a traditional iterative, incremental development process using a standard pro-
gramming language, Integrated Device Electronics (IDE), and available libraries. We will
create domain-based assets, including a product line architecture and software components,
for the initial products in a manner that will support a migration to automatic generation of
products in the second and third increments.

1 The AGM product line is currently available at www.cs.clemson.edu/~johnmc

/productLines/example/frontPage.htm, but it will eventually appear on the SEI’s Web site.

CMU/SEI-2005-TR-017 27

http://www.cs.clemson.edu/%7Ejohnmc

Figure 8: The AGM Product Line

As part of developing the production method specification from the production strategy,
AGM identified low cost and simple as two qualities that were immediately required of the
production method, with automatic to be added as the product line matured. The product line
organization used the strategy as input to its production-planning activity. The organization
used goal-driven method-engineering techniques to develop the production method from the
production strategy and then developed a production plan from that method.

The AGM product line organization could use any of several automation techniques. The
company’s years of experience in producing game products have created many domain ex-
perts on staff, but most of them also have development skills so they can use a wide range of
technologies. An approach in which a large code base is delivered and then configured is not
a good choice because the wireless increment requires a small memory footprint for the prod-
ucts. Generation of the executable seems to be a reasonable approach because the software
architecture binds all variation points during product definition.

Initially, AGM experimented with narrowly focused wizards as the means to generate por-
tions of the products for the wireless increment based on feature selections by the product
builder. Figure 9 shows one such wizard. Here the product builder can select one of several
styles of scoreboards or choose to have no scoreboard at all. This technique was taking too
long and was not used for the majority of the product.

28 CMU/SEI-2005-TR-017

Figure 9: Factory Wizard 2

The team developing the production method for the customized convention giveaways that
were part of Increment 3 decided to explore metamodeling, and they eventually chose it as
their approach to automation. They used MetaEdit+ as the modeling tool [Tolvanen 04]. In
this approach, a metamodel is developed that essentially builds a modeling tool that imple-
ments a DSL. This tool supports the development of products within the domain described in
the metamodel.

The AGM domain experts developed a metamodel using their company’s terminology and
the basic architecture of the products. Figure 10 shows the wizard used to define a new object
type. In this case, it is the GameBoard, which contains two collections: one for Mov-
ableSprites and one for StationarySprites.

2 Thanks to John Hunt of Clemson University for the implementation and figure.

CMU/SEI-2005-TR-017 29

Figure 10: Object Tool

The asset developers associate each domain concept with a specific implementation. This
association is made using the report browser shown in Figure 11. A series of reports are de-
fined, and a product will be produced by a top-level report that calls the other reports that are
required to produce the code needed for the product.

30 CMU/SEI-2005-TR-017

Figure 11: Report Browser

The product builders use the dialog box shown in Figure 12 to define a product. The product
builder defines a new top-level graph that links together instances of object types. These links
enable interactions between the associated objects. The report associated with this graph will
invoke the other reports associated with the members of the graph.

CMU/SEI-2005-TR-017 31

Figure 12: Defining a Game Product

32 CMU/SEI-2005-TR-017

7 Conclusions

The automatic derivation of products from a set of core assets requires more infrastructure
than most manual approaches. A product line organization can still implement this capability
in either the proactive (i.e., create all assets before any products) or reactive (i.e., create assets
as needed for a product) modes. The percentage of the product derivation process that is auto-
mated may be 100 percent, or initially only a portion of each product may be built automati-
cally with that portion increasing slowly over time.

A specification language and a transformation infrastructure are needed for automatic deriva-
tion. There is a tradeoff between the expressiveness of the specification language and the cost
of developing the transformation infrastructure. The more fine grained and comprehensive
the specification language is, the more complex and larger the infrastructure must be to im-
plement the specifications.

Automated product derivation is attractive when time to market must be drastically reduced,
but it is a viable goal only for a product line organization that is mature in the domain or that
implements a standard architecture. The scope of the domain and its stability directly affect
the costs of automated derivation. A sufficiently large number of products relative to the size
of each product are needed to produce a positive return on investment.

A major challenge in automatic derivation is the identification of and reasoning about de-
pendencies between variation points. While this is a problem for product lines in general,
automated techniques are particularly sensitive to this problem because there may be no hu-
man oversight of what components are assembled. To avoid the inclusion of incompatible
components in the same assembly, automation technology provides a means of specifying
dependencies and constraints between elements.

A second challenge is anticipating the behavior that emerges when two or more components
are assembled. This problem is widely recognized in component-based development, but it is
true regardless of the paradigm being used. For example, this problem arises when interface
methods are not properly implemented for multi-threading or when timing issues among mul-
tiple threads are not properly resolved [Wallnau 03].

This challenge can be mitigated in two ways. First, extensive integration test suites can be
created to test possible integrations among components. The combinatorial explosion of
component compositions makes creating such suites an arduous task. The second approach is
to provide thorough specifications for components that are derived from a single software
architecture.

CMU/SEI-2005-TR-017 33

Automatic derivation is a viable approach for a software product line organization because
the scope of a product line amortizes the cost of the derivation infrastructure. Many of the
practices required for product line success are also required for successful automatic deriva-
tion. In particular, the numerous planning activities in a product line organization ensure that
the production capability is planned early and thoroughly. The result is an automated produc-
tion capability that greatly reduces the time to market for those products that are within the
scope of the product line.

34 CMU/SEI-2005-TR-017

References

URLs are valid as of the publication date of this document.

[Apache 04] The Apache Software Foundation. Axis CPP - Ant Build Guide.
http://ws.apache.org/axis/cpp/antbuild-guide.html (2004).

[Batory 00] Batory, Don; Johnson, Clay; MacDonald, Bob; & von Heeder, Dale.
“Achieving Extensibility Through Product Lines and Domain-
Specific Languages: A Case Study,” 117-136. Proceedings of the
Sixth International Conference on Software Reusability. Vienna,
Austria, June 27-29, 2000. New York, NY: Springer-Verlag, 2000.

[Chastek 01] Chastek, Gary; Donohoe, Patrick; Kang, Kyo Chul; & Thiel,
Steffen. Product Line Analysis: A Practical Introduction
(CMU/SEI-2001-TR-001, ADA396137). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2001.
http://www.sei.cmu.edu/publications/documents
/01.reports/01tr001.html.

[Chastek 02a] Chastek, Gary & McGregor, John D. Guidelines for Developing a
Product Line Production Plan (CMU/SEI-2002-TR-006,
ADA407772). Pittsburgh, PA: Software Engineering Institute, Car-
negie Mellon University, 2002. http://www.sei.cmu.edu
/publications/documents/02.reports/02tr006.html.

[Chastek 02b] Chastek, Gary; Donohoe, Patrick; & McGregor, John D. Product
Line Production Planning for the Home Integration System Exam-
ple (CMU/SEI-2002-TN-029, ADA405846). Pittsburgh, PA: Soft-
ware Engineering Institute, Carnegie Mellon University, 2002.
http://www.sei.cmu.edu/publications/documents/02.reports
/02tn029.html.

[Chastek 04] Chastek, Gary; Donohoe, Patrick; & McGregor, John D. A Study of
Product Production in Software Product Lines (CMU/SEI-2004-
TN-012). Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, 2004. http://www.sei.cmu.edu/publications
/documents/04.reports/04tn012.html.

CMU/SEI-2005-TR-017 35

http://ws.apache.org/axis/cpp/antbuild-guide.html
http://www.sei.cmu.edu/publications/documents%0B/01.reports/01tr001.html
http://www.sei.cmu.edu/publications/documents%0B/01.reports/01tr001.html
http://www.sei.cmu.edu/publications/documents/02.reports

[Clements 05] Clements, Paul C.; McGregor, John D.; & Cohen, Sholom G. The
Structured Intuitive Model of Product Line Economics (CMU/SEI-
2005-TR-003). Pittsburgh, PA: Software Engineering Institute, Car-
negie Mellon University, 2005. http://www.sei.cmu.edu
/publications/documents/05.reports/05tr003.html.

[Diaz 05] Diaz, Oscar; Trujillo, Salvador; & Anfurrutia, Felipe I. “Supporting
Production Strategies as Refinements of the Production Process,”
210-221. Proceeding of Software Product Lines: Ninth Interna-
tional Conference. Rennes, France, September 26-29, 2005. New
York, NY: Springer, 2005.

[Glück 96] Glück, Robert & Jones, Neil D. “Automatic Program Specialization
by Partial Evaluation: An Introduction,” 70-77. Software Engineer-
ing in Scientific Computing. Edited by W. Mackens & S. M. Rump.
Braunschweig, Germany: Vieweg, 1996.

[Greenfield 04] Greenfield, Jack; Short, Keith; Cook, Steve; Kent, Stuart; & Crupi,
John. Software Factories: Assembling Applications with Patterns,
Models, Frameworks, and Tools. Indianapolis, IN: Wiley, 2004.

[McGregor 03] McGregor, John D. The Evolution of Product Line Assets
(CMU/SEI-2003-TR-005, ADA418409). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2003.
http://www.sei.cmu.edu/publications/documents/03.reports
/03tr005.html.

[Tolvanen 04] Tolvanen, Juha-Pekka. “Making Model-Based Code Generation
Work.” Embedded Systems Europe 8, 60 (August/September 2004):
36-38.

[Wallnau 03] Wallnau, Kurt. Volume III: A Technology for Predictable Assembly
from Certifiable Components (CMU/SEI-2003-TR-009,
ADA413574). Pittsburgh, PA: Software Engineering Institute, Car-
negie Mellon University, 2003. http://www.sei.cmu.edu
/publications/documents/03.reports/03tr009.html.

[Zhang 05] Zhang, Weishan & Jarzabek, Stan. “Reuse Without Compromising
Performance: Industrial Experience from RPG Software Product
Line for Mobile Devices,” 57-69. Proceedings of Software Product
Lines: Ninth International Conference. Rennes, France, September
26-29, 2005. New York, NY: Springer, 2005.

36 CMU/SEI-2005-TR-017

http://www.sei.cmu.edu/publications/documents/03.reports

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

September 2005
3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Preparing for Automated Derivation of Products in a Software Product
Line

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

John D. McGregor
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2005-TR-017

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

ESC-TR-2005-017

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Organizations that adopt a software product line strategy often have business goals that concern improving
their ability to produce products by lowering product development costs, by reducing the time to bring a prod-
uct to market, or through other production improvements. Business goals such as these make automated
product derivation an appealing strategy to a software product line organization. Automating production re-
quires up-front investment, including the creation of both the core assets that will be assembled as products
and the core assets that will perform the assembly. A software product line provides the ability to amortize the
cost of the infrastructure over a set of products. This report views the process for automating the production of
products in the context of a product production system. The process begins with the decision to automate,
proceeds to the selection of the automation approach, and continues with the operation and management of
the automated production capability. The process is illustrated by a case study automating the production
process in the Carnegie Mellon® Software Engineering Institute’s pedagogical product line.

14. SUBJECT TERMS

automated production, pedagogical product line, software product line
15. NUMBER OF PAGES

44
16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Preparing for Automated Derivation of Products in a Software Product Line
	Table of Contents
	 List of Figures
	 Abstract
	1 Introduction
	2 Context
	2.1 Product Production Capability
	2.2 Practices
	2.3 Process Changes to Accommodate Automatic Derivation

	3 Deciding to Automate
	3.1 Economic Model
	3.2 Technical Issues

	4 Selecting the Automation Approach
	4.1 Decision-Making Criteria
	4.2 Automation Approaches
	4.3 Directing Core Asset Development

	5 Operating the Automated Production Capability
	5.1 Establish Infrastructure
	5.2 Specify Product
	5.3 Configure Product
	5.4 Extend Product

	6 Case Study
	7 Conclusions
	References

