
Approaches to Constructive
Interoperability

Grace A. Lewis
Lutz Wrage

December 2004

TECHNICAL REPORT
CMU/SEI-2004-TR-020
ESC-TR-2004-020

Pittsburgh, PA 15213-3890

Approaches to Constructive
Interoperability

CMU/SEI-2004-TR-020
ESC-TR-2004-020

Grace A. Lewis
Lutz Wrage

September 2004

Integration of Software-Intensive Systems (ISIS)
Initiative

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Joint Program Office
HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

Christos Scondras
Chief of Programs, XPK

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2004 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

http://www.sei.cmu.edu/publications/pubweb.html

CMU/SEI-2004-TR-020 i

Table of Contents

Abstract ... vii

1 Introduction ... 1

2 Model-Driven Architecture (MDA) .. 5

3 Service-Oriented Architecture (SOA)... 11

4 Web Services... 15
4.1 Web Services Description Language (WSDL) ... 16

4.2 Simple Object Access Protocol (SOAP) .. 17

4.3 Universal Description, Discovery and Integration Service (UDDI)............ 18

5 Open Grid Services Architecture (OGSA).. 21

6 Component Frameworks .. 23
6.1 Java 2 Platform, Enterprise Edition (J2EE).. 23

6.2 Microsoft .NET .. 24

6.3 J2EE, .NET, and Interoperability.. 24

7 Illustrating the Problem of Constructive Interoperability 27

8 Conclusions and Future Work.. 31

Appendix A Summary of Approaches to Constructive Interoperability.......... 33

Appendix B Acronyms ... 39

References/Bibliography .. 43

ii CMU/SEI-2004-TR-020

CMU/SEI-2004-TR-020 iii

List of Figures

Figure 1: Different Types of Interoperability.. 2

Figure 2: Model Transformation ... 7

Figure 3: Forms of Service Invocation.. 12

Figure 4: SOAP Message .. 17

iv CMU/SEI-2004-TR-020

CMU/SEI-2004-TR-020 v

List of Tables

Table 1: Summary of Approaches to Constructive Interoperability 35

vi CMU/SEI-2004-TR-020

CMU/SEI-2004-TR-020 vii

Abstract

Interoperability between systems requires the capability for users to exchange information
(syntactic interoperability) and a common understanding of its meaning or how to act upon it
(semantic interoperability). This report will discuss several current approaches to construct-
ing systems of systems that have interoperability requirements, with respect to syntactic and
semantic interoperability. The areas examined include Model-Driven Architecture, Service-
Oriented Architecture, Web services, Open Grid Services Architecture, and Component
Frameworks. These initial discussions assume that the interoperating systems agree on a
common approach. Reaching an agreement can be challenging, especially when legacy sys-
tems are involved. Techniques and recommendations for reaching an agreement between
systems that use differing technologies are also briefly explored.

CMU/SEI-2004-TR-020 1

1 Introduction

Interoperability is much more than the capability for exchanging data between systems. Also
required is a shared understanding of that information and how to act upon it.

Interoperability is the ability of a collection of communicating entities to (a) share speci-
fied information and (b) operate on that information according to an agreed operational
semantics [Brownsword 04].

The ability to exchange information is syntactic interoperability and the ability to operate on
that information according to agreed-upon semantics is semantic interoperability; both are
needed to solve the interoperability problem.

Organizations trying to achieve system of systems interoperability usually concentrate on
syntactic interoperability, via techniques such as common messaging standards and inter-
change formats. For example, it is commonly assumed that if systems can exchange XML
(eXtensible Markup Language) files and no errors occur during assembly and parsing of the
files, then interoperability has been achieved. But this approach leaves out the most important
problems, which deal with semantic interoperability: What are systems supposed to do with
the XML files once they are received? How does a system developer obtain the information
to interpret the exact meaning of each of the data elements contained in the XML file? So
ultimately, even perfect syntactic interoperability is insufficient.

To achieve semantic interoperability, system developers usually go through a laborious and
time-consuming process of engineering every inter- and intra-system information exchange a
priori. This generally results in system interfaces that are fragile and relatively inflexible. A
change in something as simple as a single field within a message may require a significant
reengineering effort to numerous systems in order to maintain interoperability. Unfortunately,
this approach is not adequate to respond to the increased demand for distributed, dynamic,
composable systems that require (1) automated processes for locating services and (2) nego-
tiating appropriate service contracts in the absence of complete information.

Figure 1 shows the System of Systems Interoperability (SoSI) Model, developed by the Car-
negie Mellon Software Engineering Institute (SEI) as part of an independent research and
development project. The SoSI Model presents three types of interoperability [Morris 04].

 Carnegie Mellon is registered in the U.S. Patent and Trademark Office.

2 CMU/SEI-2004-TR-020

1. Programmatic: interoperability between different program offices or organizations
tasked with the development of a system

2. Constructive: interoperability between the organizations that are responsible for the con-
struction (and maintenance) of a system

3. Operational: interoperability between the fielded systems

Program
Management

System
Construction

Programmatic Program
Management

System
Construction

Constructive

System
Operation

System
OperationOperational

Program 1 Program 2

Figure 1: Different Types of Interoperability

The focus of this report is constructive interoperability. Constructive interoperability can be
defined as the process by which multiple system development entities interact, such that re-
sultant constructed systems can interoperate. Technology as well as management activities
take place in the constructive interoperability process. Examples of technology activities are
technology selection, model sharing, and system construction. Management activities include
the collaborative interactions between system development entities such as project manage-
ment, contract management, resource allocation, and configuration control.

From a technology perspective, there are many current approaches to constructing systems
with interoperability requirements. Each has particular advantages and disadvantages with
respect to interoperability, and each works well in some circumstances but not others. These
approaches include

• Model-Driven Architecture (MDA)

• Service-Oriented Architecture (SOA)

• Web services

CMU/SEI-2004-TR-020 3

• Open Grid Services Architecture (OGSA)

• Components Frameworks

This is the first in a series of reports covering constructive interoperability, both at the syntac-
tic and semantic level. It will focus exclusively on the technology aspects of constructive in-
teroperability. It will not cover the management aspects of constructive interoperability,
which are mostly driven by activities in programmatic (organizational) interoperability. Sec-
tions 2 to 6 of this report will discuss each of the above approaches with respect to syntactic
and semantic interoperability. Section 7 will illustrate the problem of constructive interopera-
bility. The details of future work and upcoming reports in the area of constructive interopera-
bility will be included in Section 8.

4 CMU/SEI-2004-TR-020

CMU/SEI-2004-TR-020 5

2 Model-Driven Architecture (MDA)

The goal of the MDA is to make it easier for software developers to separate business and
application logic from underlying execution platform technology. The major benefit of this
approach is that it raises the level of abstraction in software development. Instead of writing
platform-specific code in some high-level language, software developers focus on developing
models that are specific to the application domain but independent of the platform. Although
MDA includes the term “architecture,” this does not mean that MDA defines a particular
software architecture or an architectural style. MDA is a broad conceptual framework that
describes an overall approach to software development.

The Object Management Group (OMG) has developed the fundamental concepts of Model-
Driven Architecture and, at the time of writing, working groups are defining new standards
that are necessary to realize the MDA concepts in practice. While the MDA concept is a ven-
dor- and technology-neutral approach [OMG 03], MDA is compatible with

• established OMG standards such as

− CORBA (Common Object Request Broker Architecture)
− UML (Unified Modeling Language)
− MOF (MetaObject Facility)
− XMI (XML Metadata Interchange)

• other industry standards such as Web services

• component frameworks such as

− Sun’s J2EE (Java 2 Platform, Enterprise Edition)
− Microsoft’s .NET

At the core of MDA lies the idea of describing business and application logic in a platform-
independent model or in a set of related models and to utilize tools to generate all platform-
specific implementation code from these models. In this way, all code that depends, for ex-
ample, on the middleware, will be generated instead of written by hand as is usually the case
today. Ideally, it should then no longer be necessary to involve middleware experts in the
software development effort because all knowledge about the middleware-specific implemen-
tation details will be included in the MDA tools and code generators. Other expected benefits
of the MDA approach for the development process include higher developer productivity,
reuse of domain models and platform-independent models, and a more consistent develop-
ment process. Applications that are developed using this approach are expected to be more
portable and to interoperate better across platforms. It is important to note that these benefits

6 CMU/SEI-2004-TR-020

depend on the availability of MDA tools which are just emerging, so there exist little or no
data to confirm or refute their actual delivery.

What distinguishes MDA from the current practice of model usage in software development
is an emphasis on automatic model transformations. This emphasis extends to code genera-
tion because code can be viewed as a very detailed, executable model of a system. Future
MDA tools will incorporate transformation capabilities where the transformations are de-
scribed in a vendor-neutral manner based on OMG standards. This is in stark contrast to cur-
rently available tools where mechanisms for code generation are proprietary. The platform-
independent models allow the developer to reuse the same model to generate implementa-
tions to run on various platforms. MDA tools also should have the capability to generate code
to bridge different platforms. A simple example is a three-tiered Web application where each
tier runs on its own platform (e.g., a relational database, a J2EE application server, and a
Servlet engine). More complex situations would also involve different operating systems,
different middleware, and so on. MDA tools should be able to generate code for various lan-
guages and platforms and also to generate code that integrates parts of an application into one
coherent whole.

Models and Transformations

A model for MDA must be a formal model in the sense that it is described in a language with
well-defined semantics so that an automated tool can process the model. Examples of accept-
able models are UML class diagrams and state charts, entity-relationship diagrams, or even
source code. Ad hoc box-and-line diagrams, on the other hand, do not qualify. Formal models
make it possible to define transformations of models that can be executed automatically.

The OMG’s MOF plays a prominent role in MDA as it provides a standard repository for
models and other meta-data with standardized interfaces to access its content from CORBA
or from a Java application. An MOF repository can contain models as well as models of mod-
els (metamodels). A metamodel essentially defines a language to describe models. There is,
for example, a UML metamodel that defines UML in terms of MOF constructs. MOF
metamodels themselves are described in a language that includes a subset of UML class dia-
grams plus the Object Constraint Language (OCL), so it should be fairly easy to use for de-
velopers who are already familiar with UML.

MDA prescribes the use of three kinds of models: Computation Independent Models (CIM),
Platform Independent Models (PIM), and Platform Specific Models (PSM). A CIM or do-
main model highlights the environment and the requirements of a system. The structure and
operation of a system are described in the PIM, independent of execution platform technol-
ogy details. The details of how the system makes use of the platform are described in a PSM.
In this chain of models, implementation code is another, very platform specific, PSM. Model
transformations convert a PIM or PSM of a system to another model of the same system, for
example, PIM to PSM, or PSM to implementation code. Transformations may use additional

CMU/SEI-2004-TR-020 7

information as indicated by the empty box in Figure 2. This additional information could
specify, for instance, a particular architectural style or data access pattern to be used in the
PSM [OMG 03].

Within MDA there are no objective criteria that determine when a model is platform inde-
pendent or platform specific. This depends greatly on the viewpoint of the model developer
so in practice there is a whole spectrum with PIM and PSM being the extreme cases.

Current MDA tools define model transformations in a vendor-specific manner, such that it is
not possible to exchange transformations between tools from different vendors. There is on-
going work at the OMG to define a declarative transformation description language QVT
(Queries, Views, and Transformations). QVT is a standardized metadata repository that will
support vendor-neutral definition of model transformations. This work is still in its very early
stages.

Figure 2: Model Transformation

MDA Tools

At the time of this writing, there are many tools on the market that claim to support MDA,
but this support can only be incomplete because parts of the MDA concept are not yet final-
ized. In addition, there is no agreed-upon specification of exactly what an MDA tool should
incorporate and so there is no standard notion of MDA conformance of a tool. Tool vendors
have to rely on their own interpretations of the MDA approach to make decisions about their
tools’ capabilities. The OMG site contains a list of companies that are committed to MDA
and their products [OMG 04].

8 CMU/SEI-2004-TR-020

Most tools available so far seem to be designed towards generation for one execution plat-
form only, mostly J2EE.

MDA and Interoperability
There are two major aspects of MDA that relate to interoperability.

1. Interoperability of applications across platforms:
Application interoperability in an MDA context means that software applications can
work together independent of the execution platform of each individual application. The
mechanism to achieve this kind of interoperability is bridge code that an MDA tool gen-
erates based on information about the (a) interoperating parts in the model (b) target
platforms, which is encoded in the models and in the transformation definitions. Bridge
code enables syntactic interoperability. However, semantic interoperability is not neces-
sarily guaranteed because current MOF-based metamodels cannot completely specify
the execution semantics of models.

An approach to achieving semantic interoperability would include a complete specifica-
tion of data and operations on that data, which define both syntactic and semantic as-
pects. This information could be part of additional information for model transforma-
tions, as shown in Figure 2, or it could be stored as part of the model. For example, if
two models specify a data element currency, the transformation would obtain all infor-
mation related to the type currency from the data specification or model and generate the
equivalent data type, documentation, and permitted operations on this data type. Current
tools, however, do not support the definition of semantics at the required level of detail
and, as a result, different tools may generate implementations with different semantics.

Another aspect is the scope and completeness of models. In some cases it may be possi-
ble to create a model that is complete in the sense that a tool can generate all application
code from the model. Other tools only allow specification of models that comprise only
certain aspects of the system and require that developers implement some business logic
directly in the implementation programming language. In this case, even if the same
model is used to generate different parts of the application, interoperability cannot be
guaranteed by the tool because programmers may base their implementations on con-
flicting assumptions.

2. Interoperability of MDA tools:
This aspect relates to the degree to which an MDA tool environment is open and allows
the developer to exchange models with other tools that may be provided by different
vendors. So far, MDA provides the basic mechanisms for enabling such model exchange
through XMI. XMI defines a way to represent metamodels and models as XML Sche-
mas and XML documents. Other concerns that will gain relevance in the future are the
exchange of graphical views of models and the exchange of model transformation defi-
nitions. For current tools, interoperability is limited to syntactic interoperability through

CMU/SEI-2004-TR-020 9

a common exchange format. The semantics of the exchanged information are often tool
specific.

Many tools define model elements that are tool specific, and it may be very difficult to
reconstruct these elements in another tool. XMI will support these elements syntacti-
cally without any problem but the receiving tool will not be able to process the informa-
tion in a meaningful way.

10 CMU/SEI-2004-TR-020

CMU/SEI-2004-TR-020 11

3 Service-Oriented Architecture (SOA)

The simplest way to define a service-oriented architecture is as an architecture built around a
collection of services with well-defined interfaces—similar to DCOM (Distributed Compo-
nent Object Model) or Object Request Brokers (ORBs) based on the CORBA specification. A
system or application is designed and implemented as a set of interactions among these ser-
vices.

A service is a coarse-grained, discoverable, and self-contained software entity that interacts
with applications and other services through a loosely coupled, often asynchronous, message-
based communication model [Brown 02]. Common communication models are

• Web services using Simple Object Access Protocol (SOAP) and Web Services Descrip-
tion Language (WSDL)

• message-oriented middleware (MOM) such as IBM Websphere MQ

• publish-subscribe system such as Java Messaging Service (JMS)

What makes SOA different from DCOM or CORBA are the words discoverable and coarse-
grained, present in the previous definition of a service. Services need to be able to be discov-
ered at both design time and run time, not only by unique identity but also by interface iden-
tity and by type of service. Services are also ideally coarse-grained, that is, they usually im-
plement more functionality and operate on larger data sets, as compared to components in
component-based design. A typical example of a service is a credit card validation service.

A service can be invoked in several ways, as shown in Figure 3 [Brown 02, ServiceArchitec-
ture 04]. A service consumer can

1. directly invoke a service provider

2. use a directory service to find a service provider based on some criteria. The directory
service returns the location of the service so the service consumer can invoke the service
provider.

3. use a service broker to pass on its request to one or more directory services

12 CMU/SEI-2004-TR-020

Directory Service

Service Consumer Service Provider

Directory Service

Service Request

Service Response

Query Service Get Service Provider

Service Request

Service Response

Service Broker

Get Service Provider

Service Request

Service Response

Query Service

Query Service

Directory ServiceDirectory Service

1

2

3

Figure 3: Forms of Service Invocation

Examples of service-oriented architectures are Web services using SOAP and UDDI (Univer-
sal Description, Discovery and Integration Service), HP’s E-Speak [Karp 00], and Sun’s Jini
[Sun04b]. There is a more detailed discussion on Web services in Section 4.

SOA and Interoperability
In a service-oriented architecture, interoperability is simply defined as the ability of the ser-
vice to be invoked by any potential client of the service [Stevens 03]. This definition of inter-
operability has a much narrower scope than the one being used in this report. Nonetheless,
there are several attributes of an SOA that make this a possibility:

• Common payload and protocol: Each service provides an interface that is invoked
through a payload format and protocol that is understood by all the potential clients of
that service.1

1 Payload is the term used by most messaging technologies to refer to the actual data being exchanged.

CMU/SEI-2004-TR-020 13

• Published and discoverable interfaces: Each service has a published and discoverable
interface that allows systems to search for services that are best suited for their purposes.

• Loose coupling: Services are connected to other services and clients using standard, de-
pendency-reducing, decoupled message-based methods such as XML document ex-
changes.2

• Multiple communication interfaces: Services can implement separately defined commu-
nication interfaces. For example, a service could have a Web services adapter, an IIOP
(Internet Inter-ORB Protocol) adapter, and an MQSeries adapter to serve clients of these
three different types.

• Composability: Because services are coarse-grained reusable components that expose
their functionality through a well-defined interface, systems can be built as a composition
of services and evolve through the addition of new services.

From a syntactic point of view, service-oriented architecture is very promising. The challenge
lies in determining the number of adapters to implement and determining the right granularity
of service interfaces, because it is not always known how systems will use the services. It is
important to keep in mind that services are executed across a network as an exchange of a
service request and a service response. If service interfaces are too coarse-grained, clients
will receive more data than they need in their response message. If service interfaces are too
fine-grained, clients will have to make multiple trips to the service to get all the data they
need.

From a semantic point of view, service-oriented architectures by themselves do not offer any
guarantees. Semantic interoperability depends on how the interface to a service is described
and how the meaning of the information is shared with potential clients of the service. There
is a great amount of research being done in this area because this is the difficult problem:
How to know exactly what a service offers? How to interact with this service? What quality
of service (QoS) does it offer? Some of these questions will be covered in Section 4 on Web
services.

2 Service orientation encourages loose coupling, but does not guarantee it. A loosely coupled archi-

tecture is good for systems that do not require near-real-time responses.

14 CMU/SEI-2004-TR-020

CMU/SEI-2004-TR-020 15

4 Web Services

In its simplest definition, a Web service is an instantiation of a Service-Oriented Architecture
where all of the following apply.

• Service interfaces are described using Web Services Description Language (WSDW).

• Payload is transmitted using Simple Object Access Control over HTTP (Hypertext Trans-
fer Protocol).

• Universal Description Discovery and Integration (UDDI) is used as the directory service.

Other combinations of technologies are possible, but this is the most common instantiation
and the reason why the terms SOA and Web services are often used interchangeably.

The growing success of Web services is due to a number of factors, including those below.

• Systems can interact with one another dynamically via standard Internet technologies.

• Services are built once and reused many times.

• Services can be implemented in any programming language.

• Service consumers do not need to worry about firewalls because communication is car-
ried over HTTP.

• Systems can advertise their capabilities for other systems to use. For example, Amazon
Web Services allows systems to access catalog data, manage the shopping cart, and initi-
ate the checkout process via Web services [Amazon 96].

• Standards such as BPEL4WS (Business Process Execution Language for Web Services),
WS-Security, WS-Routing, WS-Transaction, WS-Coordination, and WSCL (Web Ser-
vices Conversation Language) are working toward the automatic discovery and composi-
tion of Web services.

Web Services and Interoperability
The reason why many vendors and users associate Web services with interoperability is be-
cause interoperability is simply defined as the capability to implement a service in multiple
programming languages and to communicate using well-known and platform-independent
protocols and standards. This definition of interoperability, like the SOA definition, has a
much narrower scope than the one being used in this report.

16 CMU/SEI-2004-TR-020

The Web Services Interoperability (WS-I) group is attempting to provide guidance on the
usage of Web services standards. Established in early 2002, WS-I is an open industry effort
chartered to promote Web services interoperability across platforms, applications, and pro-
gramming languages. This organization brings together a diverse community of Web services
leaders to respond to customer needs by providing guidance, recommended practices, and
supporting resources for developing interoperable Web services [WS-I 04]. WS-I also re-
cently announced the availability of its tools for testing interoperability with the WS-I Basic
Profile for use of Web services.

From a syntactic point of view, Web services are very promising and are experiencing tre-
mendous growth because of their reliance on well-known standards and organizations like
WS-I. The current challenge is that these standards are emerging and therefore there is still
considerable room for different interpretations of the standards by parties implementing Web
services. This is especially true of SOAP because of the available choices in formats, enve-
lopes, and transport protocols (see Section 4.2).

From a semantic point of view, there are many limitations because Web services can cur-
rently only be discovered based on keywords. Therefore, the ability for run-time discovery, a
requirement for automatic Web Service composition, is limited. The Semantic Web is a col-
laborative effort led by W3C with participation from many researchers and industrial partners
who wish to tag information on the Web in such a way that it can be interpreted by software
agents looking for specific types of information. The combination of Web services with the
Semantic Web is called Semantic Web Services. A Semantic Web Service is a Web Service
whose description is in a machine-understandable language with formal semantics. The idea
is to be able to describe Web services in such a way that applications can automatically coor-
dinate information exchanges and hence improve interoperability. The Semantic Web Ser-
vices arm of the DAML (DARPA Agent Markup Language) program is developing a Web
Service Ontology based on OWL (Web Ontology Language) called OWL-S (formerly
DAML-S), as well as supporting tools and agent technology to enable automation of services
on the Semantic Web [Sycara 03]. OWL is intended to be used when the information con-
tained in documents must be processed by applications instead of humans [W3C 04b]. With
ontologies such as OWL-S, or others described using OWL, there is a much greater chance of
semantic interoperability, but these ontologies are still emerging and primarily being used in
research environments.

The next subsections will briefly describe the technologies behind Web services from an in-
teroperability perspective.

4.1 Web Services Description Language (WSDL)
WSDL is used to describe what a Web Service can do, where it resides, and how to invoke it.
It is XML-based and supports simple and complex transactions defined by message exchange
patterns [W3C 04a].

CMU/SEI-2004-TR-020 17

From an interoperability perspective, WSDL defines the interface to the Web Service. If inter-
faces are well defined, then the chances of interoperability increase. There are many vendors
that are releasing WSDL interoperability tests against the WS-I Basic Profile. If there is con-
formance to the WS-I Basic Profile, there is an even better chance for interoperability. The
message exchange patterns defined in Part 2 of the WSDL working draft are also a plus for in-
teroperability because they contain pre-defined sequences of messages that make it easier to
interact. Development tools such as Sun Java Studio, Cape Clear CapeStudio, and BEA Cajun
automatically generate WSDL documents. Tools such as these promote interoperability because
they avoid the errors that appear when developers try to create WSDL documents by hand.
There are also WSDL repositories such as www.salcentral.com and www.xmethods.com that
contain tested WSDL documents as well as tools. But regardless of all these advances, WSDL
still does not address the semantic issues of interoperability mentioned earlier.

4.2 Simple Object Access Protocol (SOAP)
SOAP defines a framework to construct XML-based messages that can be used to exchange
information between nodes in a decentralized, networked environment. SOAP messages are
defined as XML Infosets. An XML Infoset is an abstract description of the contents of an
XML document [W3C 03].

Figure 4: SOAP Message

As shown in Figure 4, a SOAP message consists of header and body information. A SOAP
message travels between SOAP nodes on a SOAP message path from an initial sender
through one or more intermediate nodes to an ultimate receiver. Each node on the path may
process the message in some way based on information in the header blocks. The message
body is processed by the ultimate receiver. SOAP does not define how messages are trans-
ported between nodes and how they are routed, but relies on an underlying protocol for this.
There is one standard protocol binding to HTTP, but other protocols such as e-mail could be
used to convey SOAP messages.

SOAP Envelope

SOAP Header

Header Block 1

Header Block N

SOAP Body

18 CMU/SEI-2004-TR-020

While SOAP messages are inherently one-way, applications can build more complex message
exchange patterns on top of them. Examples are request/response or remote procedure call.

From an interoperability perspective the following issues are relevant:

• translation between platform-dependent types and SOAP data types: There is no guaran-
tee that the receiver implements a data type in a manner that is compatible with the
sender; it might not implement that data type at all.

• semantics of conveyed information: This is outside the scope of SOAP as it defines only
the message format and which node must or may process the message. The processing it-
self and the meaning of data contained in the message headers and body is application-
dependent.

• SOAP protocol bindings: Different protocol bindings can implement different features.
For example, HTTP implements a request/response pattern such that an application can
make use of this feature when exchanging SOAP messages over HTTP. E-mail, as an-
other example, only supports one-way messages and therefore an application that ex-
changes SOAP messages via e-mail must contain additional code that matches responses
to requests.

There are groups interested in testing SOAP interoperability. SOAPBuilders, for example, is
an open group of SOAP developers defining interoperability test suites that check custom
data types for compatibility [Cohen 02].

4.3 Universal Description, Discovery and Integration
Service (UDDI)

UDDI is an XML-based distributed directory that enables businesses to list themselves, as
well as dynamically discover each other [OASIS 02]. Businesses register and categorize the
Web services they offer and locate Web services they want to use. UDDI itself is a Web Ser-
vice. The directory contains three types of information, similar to a phone book:

• white pages: contains basic information such as name, address, business description, and
type of business

• yellow pages: follows a categorization based on U.S. government and United Nations
standard industry codes

• green pages: contains technical information about the services that receive exposure
through the business directory that will help a client connect to the service

From an interoperability perspective, the goal behind UDDI is to allow businesses to dy-
namically discover each other. Only business services are described in the registry. UDDI
works in two ways: (1) a developer queries the registry, obtains information on how to access
the service, and writes a client to access the service, or (2) a client uses the registry as a Nam-

CMU/SEI-2004-TR-020 19

ing Service, obtains the endpoints3 for the desired service, and binds to one of the returned
URLs dynamically. The second method is more aligned to the UDDI goals but currently the
first method is the most used because the algorithms on how to decide which is the best ser-
vice when more than one URL is returned are still not very reliable and usually require hu-
man intervention. The first method works very well when the provider of the service is
known, but the problem is that it is static and will work as long as the provider does not
change. To help in this matter, Version 3 of UDDI provides Subscriptions and Notifications
that allow client programs to automatically receive notification of changes made to registered
services. This still does not make it dynamic because the client program has to be modified
when a notification is received.

Having a centralized registry of services, whether public or private, is necessary for dynamic
composition of systems.4 A problem that applies to public registries is deciding who is re-
sponsible for the quality of the information. Another problem that applies to both public and
private registries is the need for a common taxonomy or ontology to describe services. Dy-
namic composition of systems will be challenging until these two problems are addressed.

3 This is the term used by UDDI to refer to the location of the Web service in the form of a URL.
4 This is not to be interpreted as a requirement for the registry to be physically centralized. What is

necessary is to have a known place where services are discovered and located, even if the underly-
ing structure of the registry is distributed. This should be transparent for the users of the registry.

20 CMU/SEI-2004-TR-020

CMU/SEI-2004-TR-020 21

5 Open Grid Services Architecture (OGSA)

Grid computing is a form of distributed computing that involves coordinating and sharing
computing, application, data, storage, or network resources across dynamic and geographi-
cally dispersed organizations [Grid 04].

The Open Grid Services Architecture (OGSA) is an SOA for the Grid. It is a non-proprietary
effort by Argonne National Laboratory, IBM, the University of Chicago and other institu-
tions, that combines Grid computing with Web services. The goal of this architecture is to
enable the integration of geographically and organizationally distributed heterogeneous com-
ponents to form virtual computing systems that are sufficiently integrated to deliver desired
QoS [Foster 02].

OGSA defines the mechanisms for creating, managing, and exchanging information among
entities, called Grid Services. The Open Grid Services Infrastructure (OGSI) defines the
standard interfaces and behaviors of a Grid Service [GGF 03]. The Globus Toolkit is an open
source implementation of Version 1 of the OGSI Specification. Release 3.2 is available for
download from the Globus Alliance Web site [Globus 04, Sandholm 03].

As stated previously, OGSA represents everything as a Grid Service. Grid Services are state-
ful transient Web Service instances that are discovered and created dynamically to form lar-
ger systems [Foster 02]. Transience is what allows for the dynamic creation and destruction
of services and has significant implications for how services are managed, named, discov-
ered, and used—that is what makes a Grid Service different from a Web Service. A Grid Ser-
vice conforms to a set of conventions, expressed as WSDL interfaces, extensions, and behav-
iors, for such purposes as

• discovery: mechanisms for discovering available services and for determining the charac-
teristics of those services so that they can be invoked appropriately

• dynamic service creation: mechanisms for dynamically creating and managing new ser-
vice instances

• lifetime management: mechanisms for reclaiming services and state in the case of failed
operations

• notification: mechanisms for asynchronously notifying grid service clients of changes in
state

22 CMU/SEI-2004-TR-020

As OGSA evolves it will include interfaces for authorization, policy management, concur-
rency control, and monitoring and management of potentially large sets of Grid Service in-
stances.

OGSA and Interoperability
Interoperability is a requirement for Grid computing. The ultimate goal behind Grid comput-
ing is the capacity to leverage resources to carry out massive calculations or distributed op-
erations on demand. The problem is that access to a particular resource requires a set of
knowledge and technologies that might be totally different from those of the next resource.
There is an obvious need for standardization in this area, and this is what OGSA is trying to
do.

Because OGSA is based on Web services, it carries with it all the advantages and disadvan-
tages with respect to interoperability covered in the previous section. OGSA adds capabilities
for discovery of services and lifetime management, which are both crucial to the construction
of systems on the fly. It also makes Web services stateful, which is important for Grid com-
puting. OGSA is backed by the Global Grid Forum (GGF) and has several working groups
exploring issues such as an architecture roadmap, infrastructure, security, and database access
and integration. On the security front, the idea is to expose the technologies used within a
particular hosting environment as part of its policy so that “secure interoperability” can be
achieved.

If two services are OGSA-compliant, the chances of interoperability from a syntactic interop-
erability perspective are very high. But OGSA still does not totally solve the semantic inter-
operability problem. There is an operation called FindServiceData that can be performed on a
Grid Service. This allows a client to discover more information about a service’s state, execu-
tion environment and additional semantic details, in essence, to learn more about the service.
This is important for interoperability, but unless there is a common ontology to describe Grid
Services, reaching semantic agreement will be a problem.

CMU/SEI-2004-TR-020 23

6 Component Frameworks

Component-based development (CBD) has received much attention in the software engineer-
ing community. Using CBD, large software systems can be assembled from independent, re-
usable components. Two component frameworks that support this model are the Java 2 Plat-
form, Enterprise Edition (J2EE), and Microsoft .NET.

Even though the scope of this report is system-of-systems interoperability, and not the inter-
operability between components to form a single system, these two component frameworks
are addressed for two reasons: (1) because there is a general belief that systems developed
using the same component framework will interoperate seamlessly and (2) because there is
growing interest in the interoperation between systems developed using J2EE and systems
developed using .NET.

6.1 Java 2 Platform, Enterprise Edition (J2EE)
Developed by Sun Microsystems, the J2EE defines a standard for developing component-
based multi-tier enterprise applications [Sun 04a]. J2EE provides a set of APIs (Application
Program Interfaces) to implement availability, security, reliability, and scalability into appli-
cations developed under this component framework. Components are mainly developed us-
ing the Java language and deployed in containers that transparently provide services to those
components, such as lifecycle management, transaction management, access control, and
others.

Many vendors have application servers that implement the J2EE specification, such as JBoss,
BEA WebLogic, and IBM WebSphere. J2EE runs on a range of operating systems, including
Windows, Sun Solaris, UNIX, and Linux. Sun also provides a Compatibility Test Suite to
ensure consistent implementation across vendors. Only vendors that pass this test receive cer-
tification.

There are several technologies and APIs that are a part of J2EE:

• JavaServer Pages (JSP) and servlets

• Enterprise JavaBeans (EJB)

• Java Naming and Directory Interface (JNDI)

• Java Messaging Service (JMS)

• Java Database Connectivity (JDBC)

24 CMU/SEI-2004-TR-020

• Java Transaction API (JTA)

The current version of J2EE (v1.4) natively supports standards such as SOAP, WSDL, UDDI,
and XML. From an interoperability perspective, the J2EE specification now ensures Web
services interoperability through support for the WS-I Basic Profile.

6.2 Microsoft .NET
Microsoft .NET is a development environment for creating distributed enterprise applica-
tions. The main component of .NET is the .NET Framework, which consists of two main
parts: the common language runtime (CLR) and the .NET Framework class library. The CLR
allows programs to be written in many different programming languages because it translates
them into Intermediate Language (IL). IL is the syntax used to send, receive, and manage
.NET signals. The .NET Framework class library includes ASP.NET for developing Web ap-
plications and Web services, Windows Forms for user interface development, and ADO.NET
for connection to databases [Microsoft 04].

Other components of Microsoft .NET include

• Visual Studio .NET development system

• Windows Server 2003

• Active Directory directory services

• Windows Server system components such as SQL Server 2000 and Exchange Server
2003

From an interoperability perspective, .NET supports standards such as SOAP, WSDL, UDDI,
and XML.

6.3 J2EE, .NET, and Interoperability
From a syntactic point of view, the assertion that two systems can interoperate seamlessly
because they were built using the same component framework is not always true. In the case
of J2EE, because it is a standard, there can be differences between different application server
implementations that can cause problems. This is why Sun has a J2EE certification program.
For .NET this is less of a problem because of its proprietary nature (Microsoft provides full
support for the .NET Framework and there are versions of the Framework that run on most
versions of Windows).

In the case for interoperation between component frameworks, there are a number of ways in
which to implement J2EE to .NET constructive interoperability:

• Web services

CMU/SEI-2004-TR-020 25

• runtime bridges such as Borland’s Janeva, Intrinsyc’s J-Integra for .NET (Ja.NET), and
JNBridge’s JNBridgePro

• message-oriented middleware such as IBM MQseries, Microsoft Message Queue
(MSMQ), BEA MessageQ, and Tibco Enterprise Message Server

• a shared database

• integration brokers such as IBM MQSeries Integrator, Mercator CommerceBroker, Mi-
crosoft BizTalk Server, and webMethods Enterprise Services Platform

When data exchange between systems is involved, three main challenges exist, mainly be-
cause of data type incompatibilities between the languages.5 A typical example occurs when
Java is used for J2EE components and C# for .NET components. These challenges are listed
below [Microsoft 03].

• Primitive data type mappings: Even though the same data type may exist in both lan-
guages, it cannot be guaranteed that they will map exactly. This is especially true with
floating point numbers and strings.

• Non-existent data types: It is possible that a data type in one language does not exist in
the other. Typical examples are the specialized data types that represent collections of
elements, such as vectors.

• Complex data types: Complex data types that are composed of other data types have to
be exposed to the other party so that the proper mapping can be made.

Extensive testing must be done to assure that these problems do not exist.

From a semantic point of view, component frameworks are no different from the approaches
discussed before. If there is no common understanding of the data being exchanged, then se-
mantic interoperability has not been accomplished. If the applications are wrapped as Web
services, then the semantic interoperability discussion in Section 4 applies.

5 This problem can be extended to Web services as well because underlying components can be

implemented using any programming language.

26 CMU/SEI-2004-TR-020

CMU/SEI-2004-TR-020 27

7 Illustrating the Problem of Constructive
Interoperability

The previous sections have presented some modern technology approaches to address inter-
operability requirements between systems and have included a brief discussion on how these
approaches relate to syntactic and semantic interoperability. These discussions have been
based on the assumption that the interoperating systems have an agreement on the use of a
common approach. Here we include a discussion of the more general case when systems use
or expose different technologies and are faced with an interoperability requirement.

One current example is interoperability between systems based on different component
frameworks. A commonly proposed solution to the problem of making a J2EE application
interoperate with a .NET application is to wrap each application as one or more Web services
as described in section 6.3. Both applications now use a common technology as an interop-
erability enabling mechanism. In the development of a system using an MDA approach there
may be a requirement to interoperate with certain Web services that already exist independ-
ently of the new system. In this situation MDA tools should be available to generate the nec-
essary bridges that allow the new application to call the Web services.

Mary Shaw wrote a paper in 1995 where she listed a series of techniques for dealing with
architectural mismatch between components [Shaw 95]. These techniques can be applied to
systems and present options for constructing interoperable systems. Most techniques are gen-
erally applicable as they can help achieve syntactic as well as semantic interoperability.

1. Change a system’s form to another system’s form: One system is modified in such a way
that it matches the technology or data and operational semantics used/exposed by other
systems.

2. Publish an abstraction of the system’s form: Systems provide a high-level API for use by
other systems. To achieve semantic interoperability the semantics of the exposed opera-
tions must match the semantics expected by other systems using it.

3. Transform on the fly: An external mechanism intercepts the interaction between systems
and converts from one form to another. Gateways can translate between communication
protocols, for example. The transformations must be compatible with the intended se-
mantics of the communication.

4. Negotiate to find a common form: Systems negotiate on the fly to find the optimal
common form (the way some modems find the fastest common protocol). This may re-

28 CMU/SEI-2004-TR-020

quire introduction of a third-party entity to act as negotiator between systems and of a
protocol for the systems to interact with the negotiator. The simplest instance of this is a
negotiator that allows a system to choose among pre-defined alternatives.

5. Make systems multilingual: Systems have the ability to interoperate with multiple other
systems because they provide several interfaces or can interact with multiple external in-
terfaces. Services can implement separately defined communication interfaces. For ex-
ample, a service could have a Web services adapter, an IIOP (Internet Inter-ORB Proto-
col) adapter, and an MQSeries adapter to serve clients of these three different types.

6. Provide systems with an import/export converter: Systems interact with an external en-
tity that provides conversion services between forms or use extensions that translate to
and from other forms on demand. This technique is used in word processors to read and
write documents created using a different word processor.

7. Introduce an intermediate form: Systems agree on an intermediate common exchange
format (e.g., XML) or introduce a mediator system.

8. Use adapters or wrappers: Adapters and wrappers are pieces of code that encapsulate
components and hide their internal details. Systems can build wrappers around them so
that they can interact with other systems.

9. Maintain parallel consistent versions: Parallel consistent versions of a system are built so
that it can interoperate with other systems. A fairly common case occurs when a system
exists in a UNIX and a Windows version to work with other systems in the same envi-
ronment.

This list of techniques is not complete and they all have advantages and disadvantages. Some
techniques will make sense for some systems and will not make sense for others. Some will
require the modification of more than one system and some will require the introduction of
an additional system or component. Aspects to consider when deciding on a technique in-
clude

1. Cost and schedule: Most of the listed techniques require the construction of additional
system components or interfaces, thus affecting cost and schedule.

2. System performance: The introduction of any type of mediator between systems will
affect performance.

3. On-the-fly requirements: If there is a requirement for systems that are composable on-
the-fly, only techniques where interfaces are not decided a priori will be acceptable. On-
the-fly transformations and negotiations fall into this category.

4. Flexibility: For systems that have volatile interoperability requirements, a technique
where these changes can be isolated from the system itself, such as a wrapper, will pro-
vide a better option.

5. Need to reach agreements before building the systems: Some of the techniques will re-
quire a higher degree of negotiation between the entities constructing the systems or the

CMU/SEI-2004-TR-020 29

organizations in charge. Introducing an intermediate form, for example, can take a long
time that is easily underestimated.

6. Ease: Some techniques will be easier to adopt than others. This is especially true for leg-
acy systems where some technologies may not be available or where modification may
prove difficult. Adopting an XML intermediary data representation will be much easier
between modern systems running on current platforms than in a situation where there is
no off-the-shelf XML parser available on a legacy platform.

7. Diversity: Most interoperability scenarios relate to legacy systems. If this is the case and
there is no need or possibility to replace a legacy system, then the selected approach will
have to accommodate diversity. Approaches where an intermediate form or an external
converter or adapter is introduced will allow the legacy system to remain a part of the
system of systems while exposing a more modern interface.

Constructive interoperability is therefore an interesting problem. Selecting the appropriate
technique for making systems converge on a common approach is an important aspect of the
process and should be made explicit so that entities constructing interoperable systems can
plan for the effort.

30 CMU/SEI-2004-TR-020

CMU/SEI-2004-TR-020 31

8 Conclusions and Future Work

A look at some current approaches to constructive interoperability has shown that there is a
large emphasis on syntactic interoperability and less work in semantic interoperability. None-
theless, there is a recognized need for semantics and dynamic composition of systems of sys-
tems.

None of the approaches presented in this report implies that they should be used in isolation.
These approaches can be combined to form systems-of-systems. For example, one could have
systems developed under a certain component framework wrapped as Web services; or one
could use MDA to build abstract models for systems and then generate instances of the system
on different platforms that communicate using the OGSA architecture. The combination of ap-
proaches does not solve the semantic interoperability problem, but it does exploit each ap-
proach for its own advantages. Hopefully the advances in ontologies and the Semantic Web
could eventually make this a dynamic process in which these systems are composed on the fly.

It is important to state at this point that the information in this report corresponds to what is
known about these approaches at the date of this publication. Many standards organizations,
vendors, and consortia are working on some of the issues mentioned in this report; also, ad-
vances in technology will no doubt make this report outdated. Regardless, the report presents
valid issues that have to be considered in system-of-systems interoperability.

This is the first in a series of reports covering constructive interoperability, both at the syntactic
and semantic level. An experimentation setup has been established and there is work in progress
on a model problem that uses each of the approaches described in this report. Future reports will
use the results and lessons learned from this work to describe the experience and provide guid-
ance on when and how to use these approaches when interoperability is a requirement.

There are also plans to investigate the effects of changes in communication protocols on op-
erability. For example, what effort is required to change from using SOAP over HTTP to the
Globus Tookit?

Finally, there are plans for a series of directed experiments in order to assess performance,
reliability, security, and scalability in systems built using these approaches. Some of the ques-
tions that are expected to be answered are as follows:

• What are the response times for communicating between systems and how does it vary
depending on the underlying communication technology?

32 CMU/SEI-2004-TR-020

• What is the overhead caused by the parsing of the XML documents used in some of these
approaches?

• How secure are the systems created using these approaches? What security infrastructure
does each of the approaches provide?

• How do these approaches handle the voluntary or involuntary removal of systems?

• How do these approaches scale? What happens as systems are added?

CMU/SEI-2004-TR-020 33

Appendix A Summary of Approaches to
Constructive Interoperability

It is difficult to compare the approaches presented in this technical report as they are different
in nature. Table 1 presents a summary of the discussion for each of the approaches. The de-
scription of the information contained in each of the columns follows.

• Approach: name of the approach.

• Organizations: organizations responsible or supportive of the development and imple-
mentation of the approach.

• Type of Technology: very broad classification of the technology proposed or imple-
mented by the approach.

• Associated or Supporting Technologies: technologies that are associated with the ap-
proach or that are required (or suggested) for its implementation.

• Elements that Promote Syntactic Interoperability: aspects of the approach that if used
correctly can help achieve syntactic interoperability.

• Elements that Promote Semantic Interoperability: aspects of the approach that if used
correctly can help achieve semantic interoperability.

34 CMU/SEI-2004-TR-020

C
M

U
/S

E
I-

20
04

-T
R

-0
20

35

Ta
bl

e
1:

 S

um
m

ar
y

of
 A

pp
ro

ac
he

s
to

 C
on

st
ru

ct
iv

e
In

te
ro

pe
ra

bi
lit

y

A
pp

ro
ac

h
O

rg
an

iz
at

io
ns

T

yp
e

of

T
ec

hn
ol

og
y

A
ss

oc
ia

te
d

or

Su
pp

or
ti

ng

T
ec

hn
ol

og
ie

s

T
yp

es
 o

f
Sy

st
em

s

w
he

re
 t

he
 A

pp
ro

ac
h

is
 a

 G
oo

d
F

it

E
le

m
en

ts
 t

ha
t

P
ro

m
ot

e
Sy

nt
ac

ti
c

In
te

ro
pe

ra
bi

lit
y

E
le

m
en

ts
 t

ha
t

P
ro

m
ot

e

Se
m

an
ti

c
In

te
ro

pe
ra

bi
lit

y

M
od

el
-

D
ri

ve
n

A
rc

hi
te

ct
ur

e

(M
D

A
)

O
M

G

M
od

el

D
ev

el
op

m
en

t

an
d

C
od

e

G
en

er
at

io
n

U
M

L
, C

W
M

,

M
O

F
, X

M
I

T
he

 a
pp

ro
ac

h
ca

n
be

us
ed

 to
 d

ev
el

op
 a

ny

ty
pe

 o
f

sy
st

em
.

•
G

en
er

at
ed

 b
ri

dg
e

co
de

•
M

O
F

 M
et

am
od

-

el
s

•
M

od
el

 in
te

r-

ch
an

ge
 la

ng
ua

ge

X
M

I

A
ch

ie
vi

ng
 s

em
an

ti
c

in
te

ro
pe

ra
bi

li
ty

 b
y

us
in

g
M

D
A

 is

no
t g

ua
ra

nt
ee

d
be

ca
us

e
M

O
F

 c
an

no
t c

om
pl

et
el

y
de

-

fi
ne

 th
e

se
m

an
ti

cs
 o

f
m

od
el

s
(e

.g
.,

ex
ec

ut
io

n
of

 s
ta

te

m
ac

hi
ne

s
an

d
th

e
in

te
rp

re
ta

ti
on

 o
f

X
M

I
is

 p
ar

tl
y

to
ol

sp
ec

if
ic

).
 T

he
 in

cl
us

io
n

of
 d

at
a

sp
ec

if
ic

at
io

ns
 th

at

sp
ec

if
y

bo
th

 s
yn

ta
ct

ic
 a

nd
 s

em
an

ti
c

as
pe

ct
s

of
 th

e

da
ta

, a
s

ad
di

ti
on

al
 in

fo
rm

at
io

n
fo

r
th

e
tr

an
sf

or
m

at
io

ns

or
 a

s
pa

rt
 o

f
a

M
O

F
-b

as
ed

 m
et

am
od

el
, c

an
 h

el
p

ac
hi

ev
e

se
m

an
ti

c
in

te
ro

pe
ra

bi
li

ty
 b

ut
 c

an
no

t g
ua

ra
n-

te
e

it
.

S
er

vi
ce

-

O
ri

en
te

d

A
rc

hi
te

ct
ur

e

(S
O

A
)

C
on

ce
pt

 im
pl

e-

m
en

te
d

by
 m

an
y

or
ga

ni
za

ti
on

s:
 H

P
,

IB
M

, S
un

 M
ic

ro
sy

s-

te
m

s

A
rc

hi
te

ct
ur

al

A
pp

ro
ac

h

W
eb

 S
er

vi
ce

s,

M
es

sa
ge

-

O
ri

en
te

d
M

id
-

dl
ew

ar
e

(M
O

M
),

M
es

sa
gi

ng
 S

er
-

vi
ce

s

T
he

 c
on

ce
pt

 c
an

 b
e

ap
pl

ie
d

to
 a

ny
 ty

pe
 o

f

sy
st

em
, b

ut
 m

ak
es

 th
e

m
os

t s
en

se
 w

he
n

ap
-

pl
ie

d
to

 s
ys

te
m

s
w

he
re

as
yn

ch
ro

no
us

 c
om

-

m
un

ic
at

io
n

is
 a

cc
ep

t-

ab
le

.

•
C

om
m

on
 p

ay
lo

ad

an
d

pr
ot

oc
ol

•
P

ub
li

sh
ed

 a
nd

di
sc

ov
er

ab
le

 in
-

te
rf

ac
es

•
L

oo
se

 c
ou

pl
in

g

•
M

ul
ti

pl
e

in
te

r-

fa
ce

s

•
C

om
po

sa
bi

li
ty

E
ve

n
th

ou
gh

 th
e

co
nc

ep
t i

nc
lu

de
s

pu
bl

is
he

d
an

d
di

s-

co
ve

ra
bl

e
in

te
rf

ac
es

, t
he

re
 a

re
 n

o
el

em
en

ts
 th

at
 g

ua
r-

an
te

e
se

m
an

ti
c

in
te

ro
pe

ra
bi

li
ty

. I
t w

il
l d

ep
en

d
on

 h
ow

th
e

se
rv

ic
e

is
 c

la
ss

if
ie

d
an

d
de

sc
ri

be
d,

 a
nd

 h
ow

 th
is

in
fo

rm
at

io
n

is
 s

ha
re

d
w

it
h

po
te

nt
ia

l c
li

en
ts

 o
f

th
e

se
rv

ic
e.

36

C

M
U

/S
E

I-
20

04
-T

R
-0

20

T
ab

le
 1

: S
um

m
ar

y
of

 A
pp

ro
ac

he
s

to
 In

te
ro

pe
ra

bi
lit

y
(c

on
tin

ue
d)

A
p-

pr
oa

ch

O
rg

an
iz

a-

ti
on

s

T
yp

e
of

T
ec

hn
ol

og
y

A
ss

oc
ia

te
d

or

Su
pp

or
ti

ng

T
ec

hn
ol

og
ie

s

T
yp

es
 o

f
Sy

st
em

s
w

he
re

th
e

A
pp

ro
ac

h

is
 a

 G
oo

d
F

it

E
le

m
en

ts
 t

ha
t

P
ro

m
ot

e

Sy
nt

ac
ti

c
In

te
ro

pe
ra

bi
lit

y

E
le

m
en

ts
 t

ha
t

P
ro

m
ot

e

Se
m

an
ti

c
In

te
ro

pe
ra

bi
lit

y

W
eb

S
er

-

vi
ce

s

O
M

G

C
om

m
un

ic
at

io
n

In
fr

a-

st
ru

ct
ur

e
fo

r
S

er
vi

ce
s

W
S

D
L

, S
O

A
P

,

X
M

L
, U

D
D

I

T
he

 te
ch

no
lo

gy
 c

an
 b

e

ap
pl

ie
d

to
 a

ny
 ty

pe
 o

f

sy
st

em
, b

ut
 m

ak
es

 th
e

m
os

t s
en

se
 w

he
n

ap
pl

ie
d

to
 s

ys
te

m
s

w
he

re
 a

sy
n-

ch
ro

no
us

 c
om

m
un

ic
at

io
n

is
 a

cc
ep

ta
bl

e.
 W

eb
 s

er
-

vi
ce

s
ar

e
cu

rr
en

tl
y

us
ed

in
 th

e
de

ve
lo

pm
en

t o
f

ne
w

 s
ys

te
m

s,
 to

 w
ra

p

le
ga

cy
 s

ys
te

m
s,

 o
r

to

ex
po

se
 p

ar
ts

 o
f

a
sy

st
em

to
 th

e
pu

bl
ic

.

•
C

ap
ab

il
it

y
to

 im
pl

em
en

t a
 s

er
vi

ce

in
 m

ul
ti

pl
e

pr
og

ra
m

m
in

g
la

n-

gu
ag

es

•
S

er
vi

ce
s

co
m

m
un

ic
at

e
us

in
g

w
el

l-
kn

ow
n

an
d

pl
at

fo
rm

-

in
de

pe
nd

en
t p

ro
to

co
ls

 a
nd

 s
ta

n-

da
rd

s.

•
C

on
su

m
er

s
do

 n
ot

 n
ee

d
to

 w
or

ry

ab
ou

t f
ir

ew
al

ls
 b

ec
au

se
 c

om
m

u-

ni
ca

ti
on

 is
 c

ar
ri

ed
 o

ve
r

H
T

T
P

.

•
T

he
 W

eb
 S

er
vi

ce
s

In
te

ro
pe

ra
bi

l-

it
y

(W
S

-I
)

gr
ou

p
is

 a
tt

em
pt

in
g

to

pr
ov

id
e

gu
id

an
ce

 o
n

th
e

us
ag

e
of

W
eb

 s
er

vi
ce

s
st

an
da

rd
s.

T
he

re
 a

re
 m

an
y

li
m

it
at

io
ns

 b
ec

au
se

W
eb

 s
er

vi
ce

s
ca

n
cu

rr
en

tl
y

on
ly

 b
e

di
sc

ov
er

ed
 b

as
ed

 o
n

ke
yw

or
ds

. T
he

w
or

k
on

 th
e

S
em

an
ti

c
W

eb
, t

he
 O

W
L

W
eb

 O
nt

ol
og

y
L

an
gu

ag
es

, a
nd

 o
th

er

on
to

lo
gi

es
 c

on
ti

nu
es

 to
w

ar
ds

 o
ve

rc
om

-

in
g

th
es

e
li

m
it

at
io

ns
. S

ta
nd

ar
ds

 s
uc

h
as

B
P

E
L

4W
S

 (
B

us
in

es
s

P
ro

ce
ss

 E
xe

cu
-

ti
on

 L
an

gu
ag

e
fo

r
W

eb
 S

er
vi

ce
s)

, W
S

-

S
ec

ur
it

y,
 W

S
-R

ou
ti

ng
, W

S
-

T
ra

ns
ac

ti
on

, W
S

-C
oo

rd
in

at
io

n,
 a

nd

W
S

C
L

 (
W

eb
 S

er
vi

ce
s

C
on

ve
rs

at
io

n

L
an

gu
ag

e)
 a

re
 w

or
ki

ng
 to

w
ar

ds
 th

e

au
to

m
at

ic
 d

is
co

ve
ry

 a
nd

 c
om

po
si

ti
on

of
 W

eb
 s

er
vi

ce
s.

C
M

U
/S

E
I-

20
04

-T
R

-0
20

37

T
ab

le
 1

: S
um

m
ar

y
of

 A
pp

ro
ac

he
s

to
 In

te
ro

pe
ra

bi
lit

y
(c

on
tin

ue
d)

A
pp

ro
ac

h
O

rg
an

iz
at

io
ns

T

yp
e

of

T
ec

hn
ol

og
y

A
ss

oc
ia

te
d

or

Su
pp

or
ti

ng

T
ec

hn
ol

og
ie

s

T
yp

es
 o

f
Sy

st
em

s
w

he
re

th
e

A
pp

ro
ac

h

is
 a

 G
oo

d
F

it

E
le

m
en

ts
 t

ha
t

P
ro

m
ot

e

Sy
nt

ac
ti

c
In

te
ro

pe
ra

bi
lit

y

E
le

m
en

ts
 t

ha
t

P
ro

m
ot

e

Se
m

an
ti

c
In

te
ro

pe
ra

bi
lit

y

O
pe

n
G

ri
d

S
er

vi
ce

s

A
rc

hi
te

ct
ur

e

(O
G

S
A

)

T
he

 G
lo

bu
s

A
ll

ia
nc

e

(A
rg

on
ne

 N
at

io
na

l

L
ab

or
at

or
y,

 U
ni

ve
r-

si
ty

 o
f

C
hi

ca
go

,

IB
M

, a
nd

 o
th

er
s)

,

G
lo

ba
l G

ri
d

F
or

um

(G
G

F
)

C
om

m
un

ic
at

io
n

In
fr

as
tr

uc
tu

re
 f

or

G
ri

d
S

er
vi

ce
s

G
lo

bu
s

T
oo

lk
it

,

W
S

D
L

, S
O

A
P

,

X
M

L

T
he

 g
oa

l o
f

th
is

 a
rc

hi
te

c-

tu
re

 is
 to

 e
na

bl
e

th
e

in
te

-

gr
at

io
n

of
 g

eo
gr

ap
hi

ca
ll

y

an
d

or
ga

ni
za

ti
on

al
ly

di
st

ri
bu

te
d

he
te

ro
ge

ne
ou

s

co
m

po
ne

nt
s

to
 f

or
m

 v
ir

-

tu
al

 c
om

pu
ti

ng
 s

ys
te

m
s

th
at

 a
re

 s
uf

fi
ci

en
tl

y
in

te
-

gr
at

ed
 to

 d
el

iv
er

 d
es

ir
ed

Q
ua

li
ty

 o
f

S
er

vi
ce

 (
Q

oS
).

O
G

S
A

 is
 b

as
ed

 o
n

W
eb

se
rv

ic
es

 a
nd

 th
er

ef
or

e

br
in

gs
 a

ll
 it

s
el

em
en

ts
 th

at

su
pp

or
t s

yn
ta

ct
ic

 in
te

ro
p-

er
ab

il
it

y.

O
G

SA
 a

dd
s

ca
pa

bi
li

ti
es

 f
or

 d
is

co
ve

ry

of
 s

er
vi

ce
s

an
d

li
fe

ti
m

e
m

an
ag

em
en

t,

w
hi

ch
 a

re
 b

ot
h

cr
uc

ia
l t

o
th

e
co

ns
tr

uc
-

ti
on

 o
f

sy
st

em
s

on
 th

e
fl

y.
 A

n
op

er
a-

ti
on

 c
al

le
d

F
in

dS
er

vi
ce

D
at

a
al

lo
w

s
a

cl
ie

nt
 to

 d
is

co
ve

r
m

or
e

in
fo

rm
at

io
n

ab
ou

t a
 s

er
vi

ce
's

 s
ta

te
, e

xe
cu

ti
on

 e
nv

i-

ro
nm

en
t,

an
d

ad
di

ti
on

al
 s

em
an

ti
c

de
-

ta
il

s.
 B

ut
 u

nl
es

s
th

er
e

is
 a

 c
om

m
on

on
to

lo
gy

 to
 d

es
cr

ib
e

G
ri

d
S

er
vi

ce
s,

re
ac

hi
ng

 s
em

an
tic

 a
gr

ee
m

en
t w

ill
 b

e
a

pr
ob

le
m

.

C
om

po
ne

nt

F
ra

m
ew

or
ks

S
un

 M
ic

ro
sy

st
em

s,

M
ic

ro
so

ft

D
ev

el
op

m
en

t

A
pp

ro
ac

h

J2
E

E
, .

N
E

T

C
om

po
ne

nt
 f

ra
m

ew
or

ks

ar
e

us
ed

 m
os

tl
y

to
 b

ui
ld

sy
st

em
s

co
m

po
se

d
of

bu
si

ne
ss

 o
bj

ec
ts

 m
od

el
ed

as
 o

bj
ec

t-
or

ie
nt

ed
 c

om
-

po
ne

nt
s.

S
ys

te
m

s
bu

il
t u

si
ng

 c
om

-

po
ne

nt
s

fr
am

ew
or

ks
 c

an
 b

e

us
ed

 in
 c

on
ju

nc
ti

on
 w

it
h

W
eb

 s
er

vi
ce

s,
 r

un
ti

m
e

br
id

ge
s,

 m
es

sa
ge

-o
ri

en
te

d

m
id

dl
ew

ar
e,

 a
 s

ha
re

d
da

ta
-

ba
se

, a
nd

 in
te

gr
at

io
n

br
o-

ke
rs

. T
he

re
 is

 e
xt

en
si

ve

li
te

ra
tu

re
 a

nd
 p

ro
du

ct
 s

up
-

po
rt

 to
 d

o
so

.

If
 th

er
e

is
 n

o
co

m
m

on
 u

nd
er

st
an

di
ng

of
 th

e
da

ta
 b

ei
ng

 e
xc

ha
ng

ed
, t

he
n

se
-

m
an

ti
c

in
te

ro
pe

ra
bi

li
ty

 h
as

 n
ot

 b
ee

n

ac
co

m
pl

is
he

d
ev

en
 if

 th
e

in
te

gr
at

io
n

is

se
am

le
ss

.

38 CMU/SEI-2004-TR-020

CMU/SEI-2004-TR-020 39

Appendix B Acronyms

API Application Program Interface

BPEL4WS Business Process Execution Language for Web Services

CBD Component-Based Development

CIM Computation Independent Model

CLR common language runtime

CORBA Common Object Request Broker Architecture

DAML DARPA Agent Markup Language

DARPA Defense Advanced Research Projects Agency

DCOM Distributed Component Object Model

EJB Enterprise JavaBeans

GGF Global Grid Forum

HTTP Hypertext Transfer Protocol

IIOP Internet Inter-ORB Protocol

IL Intermediate Language

ISIS Integration of Software Intensive Systems

J2EE Java 2 Platform, Enterprise Edition

JDBC Java Database Connectivity

JMS Java Messaging Service

40 CMU/SEI-2004-TR-020

JNDI Java Naming and Directory Interface

JSP JavaServer Pages

JTA Java Transaction API

MDA Model-Driven Architecture

MOF MetaObject Facility

MOM message-oriented middleware

MSMQ Microsoft Message Queue

OCL Object Constraint Language

OGSA Open Grid Services Architecture

OGSI Open Grid Services Infrastructure

OMG Object Management Group

ORB Object Request Broker

OWL Web Ontology Language

PIM Platform Independent Model

PSM Platform Specific Model

QoS Quality of Service

QVT Queries, Views, and Transformations

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SoSI System of Systems Interoperability

UDDI Universal Description, Discovery and Integration Service

CMU/SEI-2004-TR-020 41

UML Unified Modeling Language

WS-I Web Services Interoperability

WSCL Web Services Conversation Language

WSDL Web Services Description Language

XMI XML Metadata Interchange

XML eXtensible Markup Language

42 CMU/SEI-2004-TR-020

CMU/SEI-2004-TR-020 43

References/Bibliography

URLs are valid as of the publication date of this document.

[Amazon 96] Amazon.com.Web Services, 1996.
http://www.amazon.com/gp/aws/landing.html

[Berners-Lee 01] Berners-Lee, T.; Hendler, J.; & Lassila, O. “The Semantic
Web.” Scientific American, (March 2001).
http://www.scientificamerican.com/article.cfm?articleID=000
48144-10D2-1C70-84A9809EC588EF21&catID=2

[Brown 02] Brown, A; Johnston, S.; & Kelly, K. Using Service-Oriented
Architecture and Component-Based Development to Build
Web Service Applications. Rational Software Corporation,
2002. http://www-106.ibm.com/developerWorks/rational
/library/4860.html

[Brownsword 04] Brownsword, L. et. al. Current Perspectives on Interoperabil-
ity (CMU/SEI-2004-TR-009). Pittsburgh, PA: Software Engi-
neering Institute, Carnegie Mellon University, 2004.
http://www.sei.cmu.edu/publications/documents/04.reports
/04tr009.html

[Cohen 02] Cohen, F. Understanding Web Service Interoperability: Issues
in Integrating Multiple Vendor Web Services Implementa-
tions. developerWorks, 2002. http://www-106.ibm.com
/developerworks/ webservices/library/ws-inter.html

[Foster 02] Foster, I.; Kesselman, C.; Nick, J.; & Tuecke, S. The Physiol-
ogy of the Grid: An Open Grid Services Architecture for Dis-
tributed Systems Integration. 2002.
http://www.globus.org/research/papers/ogsa.pdf

http://www.amazon.com/gp/aws/landing.html
http://www.scientificamerican.com/article.cfm?articleID=000
http://www-106.ibm.com/developerWorks/rational
http://www.sei.cmu.edu/publications/documents/04.reports
http://www-106.ibm.com
http://www.globus.org/research/papers/ogsa.pdf

44 CMU/SEI-2004-TR-020

[GGF 03] Global Grid Forum—Open Grid Services Infrastructure
Working Group. Open Grid Services Infrastructure (OGSI)
Version 1.0. June 2003.
http://www.gridforum.org/Public_Comment_Docs
/Archive_Comments.htm

[Globus 04] The Globus Alliance. http://www.globus.org/ogsa/ (2004).

[Grid 04] Grid.org. United Devices, Austin TX. http://www.grid.org
(2004).

[Karp 00] Karp, A. E-speak E-xplained. Hewlett-Packard Laboratories,
2000.
http://www.hpl.hp.com/techreports/2000/HPL-2000-101.html

[Krill 04] Krill, P. Web Services Interoperability Tools Released. Info-
world.com., March 2004.
http://www.infoworld.com/article/04/03/17/HNwsitools_1.html

[Microsoft 03] Microsoft Corporation. Application Interoperability: Micro-
soft .NET and J2EE. December 2003.
http://msdn.microsoft.com/library/default.asp?url=/library
/en-us/dnpag/html/jdni.asp

[Microsoft 04] Microsoft Corporation. Microsoft .NET, 2003.
http://www.microsoft.com/net/

[Morris 04] Morris, E.; Levine, L.; Meyers, C.; Place, P.; & Plakosh, D.
Systems of Systems Interoperability (CMU/SEI-2004-TR-004)
Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, 2004. http://www.sei.cmu.edu/publications
/documents/04.reports/04tr004.html

[OASIS 02] OASIS UDDI. UDDI Version 3.0. July 2002.
http://www.uddi.org/

[OMG 03] Object Management Group. MDA Guide Version 1.0.1., 2003.
http://www.omg.org/docs/omg/03-06-01.pdf

[OMG 04] Object Management Group. Committed Companies and Their
Products. http://www.omg.org/mda/committed-products.htm
(2004).

http://www.gridforum.org/Public_Comment_Docs
http://www.globus.org/ogsa/
http://www.grid.org
http://www.hpl.hp.com/techreports/2000/HPL-2000-101.html
http://www.infoworld.com/article/04/03/17/HNwsitools_1.html
http://msdn.microsoft.com/library/default.asp?url=/library
http://www.microsoft.com/net/
http://www.sei.cmu.edu/publications
http://www.uddi.org/
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/mda/committed-products.htm

CMU/SEI-2004-TR-020 45

[Sandholm 03] Sandholm, T. & Gawor, J. Globus Toolkit 3 Core – A Grid
Service Container Framework. 2003.
http://www-unix.globus.org/toolkit/3.0/ogsa/docs/gt3_core.pdf

[ServiceArchitecture 04] Web Services and Service-Oriented Architectures.
http://www.service-architecture.com/ (2004).

[Shaw 95] Shaw, M. “Architectural Issues in Software Reuse: It’s Not
Just the Functionality, It’s the Packaging,” 219-221. Proceed-
ings of the IEEE Symposium on Software Reusability,
Seattle,WA, April 1995. http://www-2.cs.cmu.edu/~Vit
/paper_abstracts/Packaging.html

[Stevens 03] Stevens, M. “Service-Oriented Architecture Introduction.”
http://www.developer.com/services/article.php/1010451
(2004).

[Sun 04a] Sun Microsystems. Java 2 Platform, Enterprise Edition
(J2EE). http://java.sun.com/j2ee/ (2004).

[Sun 04b] Sun Microsystems. Jini Network Technology.
http://wwws.sun.com/software/jini/ (2004).

[Sycara 03] Sycara, K. Autonomous Semantic Web Services (presenta-
tion), 2003. http://www-2.cs.cmu.edu/~softagents
/presentations/Caise-final-brief.pdf (2004).

[WS-I 04] Web Services Interoperability Organization.
http://www.ws-i.org/ (2004).

[W3C 03] W3C. SOAP Version 1.2 Part 1: Messaging Framework. June
2003. http://www.w3.org/TR/SOAP/

[W3C 04a] W3C. Web Services Description Language (WSDL) Version
2.0 Part 1: Core Language. W3C Working Draft 3, August
2004. http://www.w3.org/TR/wsdl20/

[W3C 04b] W3C. Web Ontology Language (OWL). June 2004.
http://www.w3c.org/2004/OWL/

http://www-unix.globus.org/toolkit/3.0/ogsa/docs/gt3_core.pdf
http://www.service-architecture.com/
http://www-2.cs.cmu.edu/~Vit
http://www.developer.com/services/article.php/1010451
http://java.sun.com/j2ee/
http://wwws.sun.com/software/jini/
http://www-2.cs.cmu.edu/~softagents
http://www.ws-i.org/
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/wsdl20/
http://www.w3c.org/2004/OWL/

46 CMU/SEI-2004-TR-020

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

December 2004

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Approaches to Constructive Interoperability

5. FUNDING NUMBERS

F19628-00-C-0003
6. AUTHOR(S)

Grace A. Lewis, Lutz Wrage
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2004-TR-020

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

ESC-TR-2004-020

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Interoperability between systems requires the capability for users to exchange information (syntactic interop-
erability) and a common understanding of its meaning or how to act upon it (semantic interoperability). This
report will discuss several current approaches to constructing systems of systems that have interoperability
requirements, with respect to syntactic and semantic interoperability. The areas examined include Model-
Driven Architecture, Service-Oriented Architecture, Web services, Open Grid Services Architecture, and
Component Frameworks. These initial discussions assume that the interoperating systems agree on a com-
mon approach. Reaching an agreement can be challenging, especially when legacy systems are involved.
Techniques and recommendations for reaching an agreement between systems that use differing technolo-
gies are also briefly explored.

14. SUBJECT TERMS

Constructive Interoperability, Model-Driven Architecture, MDA, Ser-
vice-oriented Architecture, (SOA),Web services, Open Grid Services
Architecture, (OGSA), Component Frameworks

15. NUMBER OF PAGES

56

16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Approaches to Constructive Interoperability
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	2 Model-Driven Architecture (MDA)
	3 Service-Oriented Architecture (SOA)
	4 Web Services
	5 Open Grid Services Architecture (OGSA)
	6 Component Frameworks
	7 Illustrating the Problem of Constructive Interoperability
	8 Conclusions and Future Work
	Appendix A Summary of Approaches to Constructive Interoperability
	Appendix B Acronyms
	References/Bibliography

