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Abstract 

This report develops a queueing-theoretic solution to predict, for a real-time system, the aver-
age-case latency of aperiodic tasks managed by a sporadic server. The report applies this the-
ory to a model problem drawn in the domain of industrial robot control. In this model prob-
lem, a controller with hard periodic deadlines is “open” to third-party plug-in extensions. The 
sporadic server is used to limit the invasiveness of aperiodic tasks on the controller’s hard 
deadlines. The theory developed in this report is used to predict the average-case latency of a 
plug-in managed by a sporadic server.
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1 Introduction 

The goal of the Predictable Assembly from Certifiable Components (PACC) Initiative at the 
Carnegie Mellon Software Engineering Institute (SEI) is to enable the construction of soft-
ware systems from components in a manner that allows for automatic prediction of system 
behavior [Wallnau 03]. This goal is realized by developing and enhancing component tech-
nologies, using and extending property theories, and developing prototype tools and methods. 
This report focuses on extending property theories for performance—one of the quality at-
tributes for which the PACC Initiative is developing a prediction capability. 

Performance, or specifically timing behavior, is important to all systems. For some systems, 
ensuring the satisfaction of hard deadlines is of primary importance. For other systems, miss-
ing deadlines occasionally is acceptable, provided the miss rate is guaranteed to not exceed a 
specified threshold. Finally, for some systems, satisfactory performance is defined as meeting 
average latency requirements. Our ultimate goal is to have prediction capability for all these 
types of systems.  

The initial work in creating a performance property theory (called λABA) for a prediction-
enabled component technology (PECT) was documented by Hissam and colleagues [Hissam 
02]. λ is short for latency, and ABA is short for Average-case, with Blocking and allowing for 
Asynchrony.  

λABA is built on a body of work known as Generalized Rate Monotonic Analysis (GRMA) 
[Klein 93], which offers the ability to predict worst-case latency to ensure that hard deadlines 
are met. λABA extends GRMA to predict average-case latency.  λABA is constrained to a set of 
component assemblies whose interpretation1 reduces to sequences of tasks (unit of concur-
rency) initiated periodically using both synchronous (e.g., call/return) and asynchronous (e.g., 
message-passing) communication.   

The focus of this report is to generalize the λABA theory to include tasks that are initiated sto-
chastically (or aperiodically—the terms are used synonymously) in addition to periodically. 
This work entails developing a new analytic theory for predicting the average latency of ape-

                                                 
  Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon Uni-

versity. 
1  Interpretation assigns to an assembly specification a meaning—or semantics—in some property 

theory. Interpretation is described in detail by Wallnau [Wallnau 03]. 
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riodic events in the context of a collection of real-time periodic events. This generalization 
was motivated by systems that must handle aperiodic events without sacrificing the hard real-
time deadlines of periodic processes or tasks.2  This new theory also imposes analytic con-
straints—in particular, systems must manage aperiodic events with sporadic servers.  

The sporadic server scheduling algorithm (SSSA) [Sprunt 89] was invented to solve the prob-
lem of protecting periodic events with hard deadlines from bursts of high-priority stochastic 
events while giving high priority to processing stochastic events. The hallmark of a sporadic 
server is that it provides a periodic “virtual processor” within which aperiodic events can be 
processed and analyzed. This report provides a queueing-theoretic foundation for analyzing 
the average-case latency of aperiodic events handled by a sporadic server. 

Section 2 provides thumbnail sketches of GRMA and queueing theory, which serve as build-
ing blocks for this work. In Section 3, we describe sporadic servers in more detail. In Section 
4, we develop a new property theory for predicting the average-case latency of aperiodic 
events serviced under the control of a sporadic server. In Section 5, we describe a model 
problem from the domain of robotics and show how to apply the property theory to that prob-
lem. We conclude in Section 6 with a brief description of where this work is headed. 

 

                                                 
2  The terms task and process are equivalent for the purpose of this report. 
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2 Performance Approaches 

As described by Wallnau [Wallnau 03], a PECT comprises a construction framework and one 
or more reasoning frameworks. Basically, a construction framework provides a vehicle for 
specifying a set of assemblies that are automatically analyzable. For an assembly to be ana-
lyzed, it is interpreted and its interpretation is evaluated. Interpretation is the process of trans-
lating an assembly into a property-theory-specific representation suitable for evaluation via 
logical rules of inference and/or simulation. 

In the following subsections, we describe the notation and assumptions of the property theo-
ries we are using and developing. 

2.1 Basic Notation 

We assume a single processor executing a set of periodic tasks and a single aperiodic task. 
Each task is stimulated to execute by the arrival of a sequence of events (either generated ex-
ternally such as by the arrival of a message or internally such as by a clock interrupt). When 
the events for a specific task arrive at regular intervals, that task is designated as periodic 
with a period of Ti (or Tp when there is only one periodic task). When the arrivals are not pe-
riodic, they are aperiodic (or sometimes we say stochastic or random). In this case, the aver-
age interarrival interval is denoted by Ta. 

Each task (regardless of whether it’s periodic or aperiodic) executes for a constant amount of 
time when stimulated. This time is denoted by Si, (or Sp) for the periodic task and Sa for the 
aperiodic task. We refer to this time as the execution time or service time. 

Over a long period of time, each task uses a portion of the processor. For periodic tasks, this 
usage is usually referred to as utilization and denoted by Ui (or Up), where Ui = Si/Ti. For ape-
riodic tasks, this usage is referred to as the task’s traffic intensity and denoted by ρ where 
ρ=Sa/Ta. (While traffic intensity usually refers to all tasks, ρ=Sa/Ta is referring to the traffic 
intensity of a single task.) 

Later, we describe a special mechanism for scheduling the execution of aperiodic tasks—the 
sporadic server. The sporadic server is characterized by two parameters: an execution budget 
and a replenishment period. The execution budget is denoted by Sss, and the replenishment 
period is denoted by Tss. 
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Each task also has a latency associated with it. The latency (or waiting time) is how long it 
takes to complete the servicing of an event in the face of preemption from higher priority 
events and the queueing time due to prior events. For periodic tasks, we might be concerned 
with either worst-case or average-case latency. For aperiodic tasks, we are concerned with 
average latency. In this report, we denote latency with the random variable W and average 
latency as E[W]. 

Table 1: Basic Notation 

 Aperiodic Periodic Sporadic Server 
Interarrival time Ta Tp or Ti Tss 

Execution time Sa Sp or Si Sss 
Traffic intensity/ 
Utilization 

ρ Up or Ui  

The next two subsections offer thumbnail sketches of GRMA and queueing theory. 

2.2 Generalized Rate Monotonic Analysis (GRMA) 

GRMA is a theory for predicting the worst-case latency of a collection of hard real-time 
tasks. Rate monotonic analysis (RMA) grew out of the fixed-priority scheduling theory of 
periodic tasks. The term rate monotonic originated as a name for the optimal task priority 
assignment in which higher priorities are accorded to tasks that execute at higher rates (that 
is, as a monotonic function of rate). Rate monotonic scheduling is a term used in reference to 
fixed-priority task scheduling that uses a rate monotonic prioritization. The original theory 
was subsequently generalized to the point of being practicable for a large range of realistic 
situations encountered in the design and analysis of real-time systems and is now referred to 
as GRMA, a codification of which is discussed by Klein and colleagues [Klein 93]. Basic 
GRMA problems3 have the following characteristics: 

• They involve a collection of periodic tasks executing on a single central processing unit 
(CPU). In the simplest case, each task has a period, a priority, and an execution time. 

• They use priority-based preemptive scheduling. 

• Tasks may synchronize to use a shared resource. 

• Deadlines are assumed to be at the end of the task’s period. 

• In some cases, tasks may be broken down into a sequence of subtasks. The entire se-
quence is initiated periodically; however, each subtask has its own execution time and 
priority. 

                                                 
3  These problems are basic in the sense that GRMA can handle a wider class of problem than is 

characterized here. 
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Several Key GRMA Results. One of the principal goals of GRMA is to calculate worst-case 
latency, which can then be compared with a deadline to determine whether it can be met. 
Computing worst-case latency requires knowing that zero-phasing4 produces the worst-case 
latency. The worst-case latency for a task occurs when all the high-priority tasks become 
ready to execute at the same instant as the given task. This moment is known as the critical 
instant. The following recursive formula, Equation (1), can be used to compute the worst-
case latency of a task i, given that 

• Tasks 1 to i-1 are higher priority. 

• There is no task synchronization. 

• Tasks complete before the end of their periods. 

• Task i starts at its critical instant. 

ij

i

j j

k
k SS

T

x
x +












=∑

−

=
+

1

1
1  (1) 

The recursion can be started by setting x0 to Si, and it ends when a fixed point is reached—
that is, when two successive iterations yield the same result. Variations of Equation (1) can be 
used to account for blocking, to handle computation past the end of the period, and to handle 
tasks with multiple subtasks. 

Using GRMA for Average-Case Latency. Strictly speaking, GRMA was developed as a 
worst-case analysis tool; attention was focused on determining conditions leading to worst-
case latency. However, λABA has used GRMA as an average-case analysis tool. To understand 
average-case latency, we need some additional terminology: 

• hyperperiod - The hyperperiod of task i is the least common multiple (LCM) of the peri-
ods of all tasks that have a priority greater than or equal to task i’s. After a hyperperiod, 
the pattern of execution repeats. 

• job - corresponds to each instance of a task’s execution during the hyperperiod 

• job latency - the time it takes from the moment the task is ready to run to the moment it 
finishes executing. Different jobs under the same task might have different latencies.  

Since the pattern of execution is completely defined by a task’s hyperperiod, the average la-
tency of task i can be determined by computing the average job latency of all the jobs in task 
i’s hyperperiod. A variation of Equation (1) can be used to calculate the job latency for each 
job in the hyperperiod; these job latencies can then be used to compute the average latency. 

                                                 
4  We say two or more events are zero-phased in time when they happen at the same moment (i.e., 

there is no time delay between them). 
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2.3 Classical Queueing Theory 

Whereas GRMA focuses on the case in which interarrival and service times are deterministic 
(or at least bounded), queueing theory focuses on the case in which interarrivals and service 
times are stochastic. Basic queueing5 problems have the following characteristics: 

• Customers (that is, events) arrive to a service facility. They could be messages arriving to 
a CPU according to a probability distribution. Due to its analytical tractability, exponen-
tial interarrival times are often used. We limit ourselves to exponential distribution for 
now. 

• Each customer requires a certain amount of time in the service facility also described by 
a probability distribution. We limit ourselves to a constant amount of time for now. 

• In many cases, queueing models include more than one service facility. We limit our-
selves to one service facility (that is, a single CPU). 

Key Queueing-Theory Result. The key queueing result that we draw on is the following 
formula: 

][
][2

][

1
][

2

a
a

a SE
SE

SE
WE +

















−

=
ρ

ρ
 (2) 

The first term in Equation (2) above (known as the Pollacek-Khinchin expression [Kleinrock 
75]) is the mean queueing time, which we denote by E[Q]: 



















−

=
][2

][

1
][

2

a

a

SE

SE
QE

ρ
ρ

 (3) 

Therefore, Equation (2) basically says that the mean latency is the mean queueing time plus 
the mean service time: E[W] = E[Q] + E[Sa]. 

The graph in Figure 1 shows E[W] as a function of ρ (for the case in which E[Ta] = 200 and 
E[Sa] varies from 0 to 190). Νotice that for low values of ρ (and E[Sa]), E[Sa] is the main 
contributor to average latency. However, as ρ increases, the dominant term becomes E[Q].  

                                                 
5  Queueing theory comprises a vast and rich body of knowledge. We describe only the most basic 

queueing-theory situations. 
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Contributions to E[W]
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Figure 1: Average Latency for a Simple Queue 

A major factor in a queueing system is the queueing time. Queues fill up due to bursts of ar-
rivals caused by variability in arrival and service times. 
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3 Sporadic Servers 

The SSSA [Sprunt 89] was invented to protect periodic events with hard deadlines from 
bursts of high-priority stochastic events while giving high priority to processing stochastic 
events. The SSSA both limits and guarantees a certain amount of execution time for aperiodic 
requests with soft or hard deadlines in a hard real-time system [Gonzalez Harbour 91].  

Implementations of the SSSA are based on the general premise that a server (a process within 
an operating system (OS) or a thread of control within a process) that handles high-priority 
stochastic events will execute at one of two priorities: foreground (i.e., normal) or back-
ground.6 An aperiodic task will execute at foreground priority if the sporadic server has not 
exhausted its execution budget (Sss in Table 1 on page 4). If the budget has been exhausted, 
the aperiodic task is restricted to background priority. A sporadic server that has been re-
stricted to background priority is not restored to foreground priority or reactivated until its 
execution budget is replenished. 

The execution budget is a nonzero parameter used in the management of the sporadic server. 
This budget is assigned when the server is created and either decreased or increased over the 
lifetime of the sporadic server while never exceeding its initial value. The budget is decreased 
each time the sporadic server handles an event in foreground priority. Further, each time the 
budget is decreased, a replenishment event is scheduled based on the time the aperiodic event 
arrived to the sporadic server and the replenishment period (Tss in Table 1). The replenish-
ment period is also a nonzero parameter of the sporadic server. The replenishment event, 
then, is a future point in time when the budget for the sporadic server is scheduled to be in-
creased.  

In general, the SSSA can be implemented in an OS’s scheduler (e.g., kernel mode) [Shi 01] or 
within an application (e.g., user mode) [Gonzalez Harbour 91]. When implemented in an 
OS’s kernel, measures of actual CPU execution time used by a process or thread permit more 
precise accounting and finer manipulation of the sporadic server’s execution budget over its 
lifetime. 

The application-level SSSA makes no assumptions about support for sporadic servers in any 
given OS, lending easy adaptation to a variety of platforms. Comparisons between the appli-

                                                 
6   For this report, foreground priority is assumed to be higher than the ceiling of all periodic tasks; 

likewise, background priority is assumed to be less than the floor of all periodic tasks. 
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cation-level sporadic server and the full-featured, OS-supported sporadic server show that 
worst-case performance is the same (except for additional overhead) and the average-case 
performance can be almost the same when the actual process or thread execution time ap-
proaches the worst-case estimation [Gonzalez Harbour 91]. 

Figure 2 is an example, adapted from Gonzalez Harbour’s work [Gonzalez Harbour 91], that 
depicts the general behavior of an application-level sporadic server. 

10 17 21 23 26 30

18

18

Tss = 18

Tp = 25

t

SS foreground

Periodic

SS background

SS budget (Sss) = 10; replenishment (Tss) = 18

Replenishment

Aperiodic event

10 17 21 23 26 30

18

18

Tss = 18

Tp = 25

t

SS foreground

Periodic

SS background

SS budget (Sss) = 10; replenishment (Tss) = 18

Replenishment

Aperiodic event

Replenishment

Aperiodic event

 

Figure 2: Example of a Sporadic-Server-Controlled Task 

In this example, each aperiodic event takes 5 units of time to be serviced. The first two aperi-
odic requests arrive at t=5 and t=12 and are serviced immediately because, at t=5, the execu-
tion budget of the sporadic server is decreased by 5 units of time. That decrease still leaves a 
remaining execution budget of 5 units that permits the sporadic server to execute at fore-
ground priority. Also at t=5, a replenishment event is scheduled for t=23 (i.e., 23 = event oc-
curring at 5 + replenishment period 18). At t=12, the execution budget is again reduced by 5 
units of time, the replenishment is scheduled for t=30, and the sporadic server can still exe-
cute at foreground priority. After t=12, the execution budget is exhausted, and when the next 
aperiodic event arrives at t=18, the sporadic server is restricted to execute at background pri-
ority. The additional execution budget for 5 units of time is replenished at the scheduled 
times of t=23 and t=30, respectively, for the first two requests, thereby restoring the execu-
tion budget of the sporadic server. 

To implement the SSSA at the application level (i.e., without explicit OS-level support), only 
two key features of the implementation environment are necessary: 

1. some form of synchronous, interprocess, or interthread communication 
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2. the ability for one process or thread to read and change another process or thread priority 

The sporadic server manager, or SSmanager, is a user-level thread that operates at system 
high priority. The purpose of the SSmanager is to manage one or more sporadic server tasks, 
or SStasks, each of which processes aperiodic events. An aperiodic task can be converted into 
an SStask by including two synchronous service requests to the SSmanager: request() 
and arm(). 

SSmanager.request() is a method called by the SStask as soon as the SStask receives 
an aperiodic event (see Figure 3).  

// SStask handling aperiodic events
Do while (not done)

SSmanager.arm (MyThreadID)

// Wait for aperiodic event request

OS.wait (event)

SSmanager.request (MyThreadID, Sa)

// Do Aperiodic Work

done = doWork(event);

End Do  

Figure 3: Pseudocode for SStask 

On invocation, SSmanager.request() decides whether to permit the SStask to run at 

foreground priority based on the budget allocated to that SStask and the execution time re-
quested out of that budget (i.e., Sa). If sufficient budget is available, the budget for the SStask 
is decreased by the requested amount, a replenishment event is scheduled for a later time, and 
the SStask’s priority is set to foreground priority. Otherwise, the request for an execution 
budget is placed on a pending queue of requests, and the SStask’s priority is set to back-
ground priority (see Figure 4). 
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void SSmanager::arm(&SSTask) {

SetPriority (SSTask.ID, SYSTEM.MAX)
}

void SSmanager::request(&SSTask, request_Sa) {

If SStask.budget >= request_Sa {
Decrease SStask.budget by request_Sa
Replenishment (SStask, now()+SStask.Tss, Sa)
SetPriority (SSTask.ID,  SSTask.foreground)

}
Else {
SavePendingRequest (SSTask, request_Sa)
SetPriority (SSTask.ID,  SSTask.background)

}
End if

}

void SSmanager::arm(&SSTask) {

SetPriority (SSTask.ID, SYSTEM.MAX)
}

void SSmanager::request(&SSTask, request_Sa) {

If SStask.budget >= request_Sa {
Decrease SStask.budget by request_Sa
Replenishment (SStask, now()+SStask.Tss, Sa)
SetPriority (SSTask.ID,  SSTask.foreground)

}
Else {
SavePendingRequest (SSTask, request_Sa)
SetPriority (SSTask.ID,  SSTask.background)

}
End if

}   

Figure 4: Pseudocode for SSmanager.request() and SSmanager.arm() 

SSmanager.arm() is also used by the SStask to communicate that the processing of the 
aperiodic event is complete and that SStask is ready to process another aperiodic request. 
SSmanager.arm() then places the SStask at a system high priority, allowing the latter to 
wait at a high priority for the aperiodic event. Placing SStask at this priority is necessary 
(specifically for the application-level SSSA) to allow SStask and SSmanager to acquire and 
compute the replenishment origin (i.e., now()+SStask.Tss in Figure 4) in SSman-
ager.request() based on a time as close as possible to when the aperiodic event arrived 
at the SStask. 

SSmanager::replenishment_timer(&SStask, request_Sa) {

Increase SStask.budget by request_Sa

If GetPriority(SStask.ID == SStask.background and

SStask.budget >= GetPendingRequest(SSTask)

Decrease SStask.budget by GetPendingRequest(SSTask)

Replenishment (SStask, now()+SStask.Tss,
GetPendingRequest(SSTask))

SetPriority (SSTask.ID,  SSTask.foreground)

End if

}
 

Figure 5: Pseudocode for SSmanager.replenishment_timer() 

Replenishment of the SStask’s budget occurs in the SSmanager, usually via an OS-supported 
timer event. The timer handler simply increases the execution budget for the SStask based on 
the last honored request for execution time (i.e., Sa). Additionally, the timer handler will 
check the current priority of the managed SStask. If it’s at background priority, the SStask is 
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still processing, in background, some aperiodic event for a request that could not previously 
be honored due to the lack of an execution budget.7  If the previous request can now be hon-
ored (i.e., a sufficient budget now exists) and SStask is processing in background, the previ-
ous request is honored following the same steps in SSmanager.request(). 

High-level sequence diagrams covering the sequence of events between the SStask, SSman-
ager, and the host OS are shown in Figure 6 (for SSmanager.request() and SSman-
ager.arm()) and in Figure 7 (for the replenishment timer). 

loop 0,*

[  else  ]

alt [  execution budget available  ]
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events
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CPU work
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SS task priority = background

SS task priority = MAXloop 0,*

[  else  ]

alt [  execution budget available  ]

Source of 
aperiodic 

events
SS task

SS 
manager

OS

aperiodic event

wait for aperiodic event

wait for request

and decrease budget

request service time

Schedule replenishment event
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SS manager

respond service time request

CPU work

“arm” to capture 
next aperiodic event

Notation:
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diagrams

SS task priority = background

SS task priority = MAX

 

Figure 6: UML 2.0 Sequence Diagram of Application-Level SSSA: Request and 
Arm 

 

                                                 
7  If the SStask is at foreground priority, there is no need to increase its priority. If the SStask is at 

system high priority, the SStask is armed waiting on an aperiodic event and is not currently proc-
essing one. 
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loop 0,*

SS 
manager

OS

wait for replenishment event

Notation :
UML 2.0 notation 
for sequence 
diagrams

replenishment 
period 
elapsed

[ execution budget available &&
SS task still in background  ]

alt

Increase budget

SS task priority = foreground 

and decrease budget
Schedule replenishment event

loop 0,*

SS 
manager

OS

wait for replenishment event

Notation :
UML 2.0 notation 
for sequence 
diagrams

Notation :
UML 2.0 notation 
for sequence 
diagrams

replenishment 
period 
elapsed

[ execution budget available &&
SS task still in background  ]

alt

Increase budget

SS task priority = foreground SS task priority = foreground 

and decrease budget
Schedule replenishment event

and decrease budget
Schedule replenishment event

 

Figure 7: UML 2.0 Sequence Diagram of Application-Level SSSA: Replenishment 
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4 Reasoning About the Average Latency of 
Aperiodic Tasks Managed by  
Application-Level Sporadic Servers 

The previous section discussed the SSSA for blending aperiodic and periodic processing in a 
controlled manner. The goal of this section is to show how queueing theory can be applied to 
predict the average latency of aperiodic events managed by a sporadic server. 

We start by discussing an assembly that has a single aperiodic stream of events with interarri-
val times governed by an exponential probability distribution and constant service times. 
Such a situation is known as an M/D/18 queueing problem. The aperiodic events are proc-
essed under the control of a sporadic server. The assembly also has a single periodic stream 
of events. The sporadic server executes at the highest priority and allows the aperiodic events 
to execute whenever the needed budget is available. Otherwise, periodic events execute. Ape-
riodic events also exploit any available idle time left over from the periodics, that is, back-
ground time.  

Assumptions. In summary, here are the governing assumptions for this section: 

• There is a single stream of aperiodic arrivals. They arrive according to an exponential 
distribution with mean Ta—that is, if X is a random variable denoting the time interval 
between successive arrivals, the cumulative probability distribution is 

x
TaexX
1

1)Pr(
−

−=≤  

• The execution time is constant, Sa. 

• A single application-level sporadic server is used. Its budget is equal to the constant ape-
riodic service time, Sss=Sa. Aperiodics exploit background time, if it is available. 

• The assemblies have one or more periodic tasks that run at a lower priority than the spo-
radic server. (We will focus initially on the special case in which there is a single periodic 
task with execution time Sp and period Tp.) 

                                                 
8  M/D/1 is conventional queueing-theory shorthand denoting queueing systems with an exponential 

interarrival distribution—M stands for “Markovian”—and a constant execution time—D stands 
for deterministic. 
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In this section, our goal is to predict the average latency for the aperiodic events being ser-
viced by a sporadic server. 

4.1 Observations About Average Latency When 
Using a Sporadic Server 

One outcome of our work to date is an understanding of which parameters are important for 
controlling average latency. Looking at Equation (2), it is evident that Sa and Ta (which are 
implicit in ρ = Sa/Ta) are important. The replenishment period (Tss) and the budget (Sss) of the 
sporadic server are also important. The utilization of the periodic events (Up) is important, 
and, perhaps most surprisingly, the period of the periodic events (Tp) is also an important pa-
rameter. 

To visualize the impact of varying the aforementioned parameters, we ran several simulations 
and plotted the results shown in Figure 8. The situation being simulated included one aperi-
odic and one periodic task. The average interarrival interval for the aperiodic is Ta=200; the 
constant execution time was Sa=10. The period of the periodic task is different for each curve 
(see the legend in Figure 8). Each curve plots the average latency for the aperiodic events, 
E[W], as a function of periodic utilization, Up. For all curves, the budget and replenishment 
period of the sporadic server are Sss=10 and Tss=100, respectively. 
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Figure 8: E[W] = f(Tp, Up) for Ta=200, Sa=Sss=10, and Tss=100 
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Some observations about the curves in Figure 8 follow: 

• Given a period of the periodic (Tp), the average latency of the aperiodic task depends on 
the periodic utilization. The intuition for that statement is that the opportunity to run in 
background diminishes as the utilization of the periodic task, Up, increases. 

• The curve for the smallest periodic period looks like a standard queueing curve (see 
Figure 1). The curve with the largest period looks like it aspires to be a straight line, sug-
gesting that, as the period of the periodic decreases, queueing-theoretic effects are domi-
nating. As the period increases, we are seeing a linear combination of end effects.  

• The curves start and eventually reach the same maximum. The intuition for that statement 
is that when the periodic utilization is 0, the difference in period is immaterial. Further-
more, all the curves eventually reach a point at which there is no longer an opportunity to 
run in background. This point may be reached at different utilizations for different curves 
(i.e., different values of Tp).  

Next, we explore in more detail the effect of varying these parameters and develop detailed 
insight for some of the cases and empirically based insight for other cases. First, in Section 
4.2, we look at the special case when periodic utilization is zero; effectively, there are no pe-
riodics. Then, in Section 4.3, we examine the other extreme where the utilization of the peri-
odics is sufficiently high so that the aperiodic only executes when the needed budget is avail-
able from the sporadic server. Finally, in Section 4.4, we examine the case in which the 
period of the periodic is very small and apply queueing theory to give us insight into the na-
ture of the curves in Figure 8. 

4.2 Special Case of No Periodics 

When there are no periodics, the CPU is totally available to the aperiodic task. It is exactly 
the same as a classical queueing problem, so Equation (2) is applicable (which is duplicated 
below for convenience). 
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Using the example from Figure 8 where Sa = 10, Ta = 200, and ρ = Sa/Ta =.05 and substitut-
ing into the formula, we get the following solution: 
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The solution above is very close to what is shown in Figure 8—10.25 for Up = 0. For given 
values of Sa and Ta (which are 10 and 200 in this case), all the curves are “anchored” at this 
point.  

4.3 Special Case of No Background 

When the periodic tasks consume enough of the CPU such that there is no background avail-
able for the aperiodic events to exploit, all of the aperiodic task’s processing must be per-
formed within the budget of the sporadic server. In our example (that is, Sss=10 and Tss=100), 
only 10 ms9 of time running at foreground priority is available every 100 ms through the spo-
radic server. 

To help explain further, we provide the following analogy. Imagine customers queueing up to 
a teller’s window in a bank. In the no-periodics case, the teller continuously processes cus-
tomer requests. In the no-background case, the teller takes care of one customer (recall that 
the customer request exactly matches the sporadic server’s budget of 10 ms) and then does 
other non-customer work (e.g., paperwork) for 90 ms, while the next customer impatiently 
waits. From the point of view of customers in the queue, each customer seems to be taking 
100 ms. (Let’s pretend that customers in the queue cannot distinguish between real customer 
work and paperwork.) The only saving grace is that customers are pleasantly surprised to find 
out that once they reach the teller, their request only takes 10 ms. Consequently, from the 
point of view of customers in the queue, Sa = 100; from the point of view of the customer 
being serviced, Sa = 10. To reflect this in the formula, we denote the service time from the 
queueing perspective as Sq, service time from the server perspective as Ss, and traffic inten-
sity from the queueing perspective as ρq. This more general formula is 
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Again, using the example from Figure 8 where Ss = 10, Sq = 100, Ta = 200, and ρq = Sq/Ta =.5 
and substituting into the formula, we get the following solution: 

 6010
200
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=WE  (7) 

The solution above is also very close to what is shown in Figure 8—62.4 ms.  

                                                 
9  Using milliseconds is arbitrary but a little more concrete than saying “units of time.” 



CMU/SEI-2004-TR-017 19 

4.4 Special Case of Continuous Background 

The two previous sections discussed two special cases: Up=0 and Up=.9, no periodics and no 
background, respectively. Our next challenge is to understand the “curves” between these two 
extremes. We chose to study what we have been calling the “continuous background” case. 
This case is unrealistic but useful because it reveals much of the problem’s queueing-
theoretic structure. 

When the sporadic server has exhausted its budget, the only way for aperiodics to execute is 
in background. If Sp=5 and Tp=10, background becomes available in chunks of 5; if Sp=.5 and 
Tp=1, background becomes available in chunks of .5; if Sp=.05 and Tp=.1, background be-
comes available in chunks of .05, and so forth. The smaller the period, the more “continu-
ously” background is available. Continuing to reduce Sp and Tp in this manner results in 
background being very frequently available in infinitesimal quantities—a situation we call 
continuous background.  In this case, background processing is equivalent to being continu-
ously processed in a degraded processor. For example, when Up=.5, background processing 
in the continuous case is equivalent to executing in a CPU that is half the speed of a full 
processor. This equivalence to a degraded processor is what makes this an interesting and 
illuminating special case.10 

A Sample Timeline. It’s helpful to consider a sample timeline to see the different types of 
time experienced by aperiodic events in this case of continuous background. 

Immediately prior to the beginning of the timeline shown in Figure 9, assume that the proces-
sor is idle and the sporadic server is loaded with its entire budget of execution time. When the 
first aperiodic event occurs at t = 100, it is immediately served by the sporadic server. We 
assume that Sss = Sa = 20, Tss = 145, Up=.5 and that Tp is infinitesimally small. Since the spo-
radic budget is equal to the aperiodic service time (remember we constrain our assemblies to 
adhere to this restriction), the aperiodic that starts at t=100 completes within the sporadic 
server’s budget of 20 at t=120.  

                                                 

10  On more than one occasion when we described this special case, we were asked, “What about the 

deadlines of the periodic processes, aren’t they being missed?” Or, “If a rate monotonic priority 

assignment is being used, why does the sporadic server execute at a higher priority?” First, we 

could pretend that the deadlines are very long and we are using a deadline monotonic priority as-

signment. However, we are actually ignoring the periodics. The whole point of considering this 

case is to gain some understanding of the curves in Figure 8. In fact, by treating background proc-

essing as a degraded processor, the periodics effectively disappear. 
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Figure 9: Sample Timeline 

“Backlog” Time. While the sporadic server is working, a backlog of undone periodic work is 
accumulating. At t=120, this backlog is equal to Sa*Up = 20*.5 = 10. However, while con-
tinuously working on this backlog of 10 units of periodic work, more undone periodic work 
accumulates—in this case, 10*.5. This accumulation continues until the work is finished. The 
following expression is how long it takes from the time the aperiodic event arrives at t=100 
until both it and the backlog have completed: 
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For our sample timeline, Sa/(1-Up) = 20/(1-.5) = 40, which means the backlog interval com-
pletes at time t=140. 

Equation (8) gives us insight into how to generalize the no-background result. Recall that for 
the no-background case, Sq = Tss. However, the more general result for arbitrary values of Up 
is Sq = Sa/(1-Up). Notice that since Sa = Sss, when Up = 1-Sss/Tss (that is, the periodic utiliza-
tion is 1 minus the sporadic server utilization), E[Sq] = Tss.  

Degraded Background Processing. Next, we focus our attention on the block of processing 
that starts at t=155. That block represents an aperiodic arrival that is completely executed in 
background. In effect, it is completely executed in a degraded processor. In this example, Up 
= .5. As a result, the processor is degraded by 50%, and consequently, we would expect the 
20 ms service time to take 40 ms. In general, we would expect the Sa service time to take 
Sa/(1-Up). Notice that the degraded service time (when executing completely in background) 
is equal to the service time plus backlog time when executing within a sporadic server. 
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“Hybrid” Processing. Next, we consider the processing that starts at time t=225 in Figure 9. 
In this case, service starts in background. Then, when it is partially complete, the sporadic 
server’s budget is replenished, and the remainder of the processing is done in the sporadic 
server. The case depicted by the timeline shows that half of the service is completed in back-
ground, and half is completed in the sporadic server. Note that we are studying the applica-
tion-level sporadic server, so whatever budget is not used is lost. In our example, five units of 
time remain to be processed in the sporadic server. Therefore, the five units of remaining ca-
pacity are lost. 

The background processing requires (.5*Sa)/(1-Up), and the sporadic server and backlog time 
also require (.5*Sa)/(1-Up). As a result, the total is Sa/(1-Up); this is true regardless of the frac-
tion that completes in background. 

4.4.1 Computing Average Queueing Time (E[Q])  

Above, we argued that it does not matter whether an aperiodic arrival starts and completes 
within the sporadic server (i.e., the execution budget was sufficient to process the aperiodic 
event), gets processed completely in background (i.e., no execution budget is available), or is 
a hybrid (i.e., the execution budget was replenished prior to completion of the aperiodic 
event). The customers in the queue always see a delay of Sa/(1-Up) for each customer served. 
This fact enables us to compute the average time in the queue, which under a heavy load is 
usually a major contributor to average latency (see Figure 1 on page 7). To predict the queue-
ing time, we can use Equation (3) as follows: 
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, where Sq=Sa/(1-Up) and ρq=Sq/Ta (9) 

For the situation in which Tp=1 and Ta=50, 250, and 500, Figure 10 shows 6 curves;11 three 
curves show predicted queueing time and three show actual results from a simulation. 

                                                 
11   Note that the predicted and actual lines in Figure 10 are so close, their respective curves are diffi-

cult to distinguish. 



22  CMU/SEI-2004-TR-017 

E[Q] vs Up

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

0.00 0.20 0.40 0.60 0.80 1.00

Prediction Ta=50

 Prediction Ta=250

 Prediction Ta=500

Actual Ta=50

Actual Ta=250

Actual Ta=500

 

Figure 10: Predicting E[Q] 

4.4.2 Computing Average Service Time (E[Ss]) 

Figure 11 below highlights the actual service times for the timeline shown above in Figure 9. 
Note that while Sq in Equation (6) is the same regardless of whether an arrival is processed in 
the sporadic server, in background, or as a hybrid, the actual execution, Ss, varies depending 
on the situation. 

 100 120 140 155 195 225 245 255 265 

 

Figure 11: Differing Service Times for the Aperiodic Arrivals 

The service time for the arrival serviced at high priority by the sporadic server is Sa. The arri-
val that is executed completely in background has an execution time of Ss = 

)1(ˆ
paa USS −= . The arrival that executes as a hybrid (where a fraction, α, of its execution 

time completed in background and the rest with the sporadic server) has an execution of Ss = 

aa SS )1(ˆ αα −+ . 

These differing service times pose a challenge for deriving an exact formula for predicting 
average latency. The challenge is to determine the probability associated with each case 
above.  
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Overall Approach. The three different situations shown in Figure 11 above can be distin-
guished by where their busy periods12 start relative to when replenishment occurs and then by 
the length of their busy periods. For example, if the following conditions are true, the busy 
period will consist of one service time of duration Sa (for the first job, which executed within 

the sporadic server) followed by n-1 service times of length aŜ : 

• Replenishment occurs during an idle period. 

• Sometime later, a busy period starts. 

• The busy period has n jobs. 

• The busy period completes before the next replenishment time. 

Another busy period might start before the point of replenishment, continue past the point of 
replenishment, and have a duration less than Tss. In this case, the busy period might comprise 

n-1 jobs of length aŜ and one job of length aa SS )1(ˆ αα −+  (where 1≤α ). 

E[Ss] depends on the amount of time from the beginning of the busy period until the point of 
replenishment (or what we call the time to replenishment) and on the length of the busy pe-
riod. Because of that, our approach is to determine the distribution function describing the 
time to replenishment for the start of a busy period and use that value in conjunction with the 
distribution function for the length of the busy period as the basis for computing E[Ss]. 

Let Tr be the random variable denoting the time to replenishment at the beginning of busy 
periods. Our goal is to compute 

∫ ==
],0[

)(]|[][
Tss

Trss tdFtTrSESE  (10) 

where E[Ss | Tr=t] is the conditional expectation of Ss, given that the time to replenishment is 
Tr=t and FTr(t) is the cumulative distribution function (CDF) for the time to replenishment. 
Given that Tr can be neither negative nor greater than the replenishment period, t can only 
take values in the interval [0, Tss]. The CDF is the probability that Tr is less than or equal to t 
(represented as Pr(Tr≤t) ).  

To gain insight into the nature of the distribution of Tr, we ran several simulations and plotted 
the histogram shown in Figure 12 for one of them. The parameters for this simulation were 
Sss=10, Tss=100, Up=.60, Sa=10, Ta=200, and Tp=1.  

                                                 
12  A busy period is a continuous interval of time during which the server (or processor) is busy. 
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Each bar except the first bar represents the average probability density over the interval cal-
culated by taking the proportion of samples falling within the interval divided by the length 
of the interval. The first bar is the proportion of samples whose busy period starts at Tr=0. 
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Figure 12: Histogram of Tr 

Notice that Tr has what appears to be a uniform density between Tr>0 and approximately 75, 
has a much higher density (approximately 0.716) at Tr=0, and has a density that tails off from 
75 to 100. Therefore, it appears that fTr(t), the density function of time to replenishment, has 
the form 
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where a is a constant and u0(t) is the Dirac delta function [Kleinrock 75]. This result moti-
vated us to break Equation (10) into two terms: one for Tr=0 and one for Tr>0 as shown in 
Equation (12) below. 
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Evaluating Pr(Tr=0). To understand how to compute Pr(Tr=0), consider Figure 13 below. 
The x-axis is time, and the y-axis is time to replenishment (Tr). Time to replenishment starts 
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at Tr=0 and then stays at that level until a busy period starts due to an aperiodic arrival. At 
that moment, the sporadic server’s budget is consumed, and the next replenishment is sched-
uled to occur one replenishment period later, making Tr=Tss. Tr then decreases at a rate of one 
until it reaches zero, and then replenishment occurs. Replenishment can occur either during a 
busy period—a dark region on the bottom timeline—or during an idle period. If it occurs dur-
ing a busy period, Tr is once again immediately set equal to Tss and starts to decrease. If re-
plenishment occurs during an idle period, Tr remains at zero until the next arrival occurs. 
When that happens, Tr is set equal to Tss and starts decreasing. 

 

Figure 13: Time to Replenishment and Busy Periods 

The question is, how do we characterize the proportion of time in which the system is in the 
Tr=0 state? First, note that several busy periods can occur during the period of time from 
Tr=Tss to Tr=0. In fact, our current analysis depends on the replenishment period being large 
enough for several busy-idle cycles to occur during one replenishment period. However, at 
most, one of those busy periods can be preceded by an interval in which Tr=0. And such an 
interval (of Tr=0) only occurs when the previous replenishment occurs during the idle inter-
val that immediately precedes the busy period. 

To compute Pr(Tr=0), we will associate one busy period with each time a replenishment oc-
curs. If replenishment occurs during an idle period, we will associate it with the first busy 
period after the replenishment. If the replenishment occurs during a busy period, that period 
will be associated with it (see Figure 13 above). Therefore the interval denoted by Xi in 
Figure 13 always begins during (or at the beginning of) a busy period associated with a re-
plenishment. 

Tr=0 occurs when a busy period has a replenishment associated with it and when the replen-
ishment occurs during an idle interval. Assuming these two events are independent, Pr(Tr=0) 
= pI*pR where pR = Pr(the busy period is associated with a replenishment) and pI = 
Pr(replenishment occurs during an idle period). To calculate pI and pR, we will use some re-
sults from renewal theory.  

A Result from Renewal Theory. A renewal process is defined as a stochastic process that 
counts the number of arrivals of events, N(t), that occur in the interval [0,t] where the time 
between arrivals is determined by a sequence of nonnegative, independent, identically dis-
tributed random variables {Xi, i=1, 2, …}.  Xi is the time between arrivals i-1 and i [Ross 96]. 
N(t) can then be defined in terms of Xi. 

Tss 

Tr Xi 
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An alternating renewal process is defined as a sequence of random vectors (Zi, Yi) where Z1 
occurs, followed by Y1, followed by Z2, followed by Y2, and so on. You can think of a system 
as being in one of two states: it is in state “on” for an interval of length Z1, followed by state 
“off” for an interval of lengthY1, and so forth. The Zis are independent and identically dis-
tributed, as are the Yis. We will use the following theorem from Ross where Pon(t) is the 
probability that the system is “on” at time t [Ross 96]. 

Theorem: If Pon(t) = Pr(system is on at time t) and E[Zi+Yi] is finite (and the distribution of 
Zi+Yi is nonlattice13) then 
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This theorem says that the limiting probability the system will be “on” is equal to the propor-
tion of time that it is “on” during an average on-off cycle. 

Calculating pI. We can view an on-off cycle as an idle interval, Ii, followed by a busy period, 
Bi. If we consider the idle interval as “on time” and use the above theorem, we get the follow-
ing equation: 
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Calculating pR. Recall that pR is the probability that a busy period is associated with replen-
ishment. We can define a renewal as the time at which the sporadic server’s budget is con-
sumed and Xi (Figure 13) as the time between such renewals. To compute pR, we must deter-
mine the average number of cycles that can occur during an interval between renewals, where 
a cycle is Ci=Bi+Ii: 

][

][][

i

ii
R XE

IEBE
p

+=  (16) 

If the cycle associated with replenishment is thought of as an “on interval” and the other cy-
cles during Xi are thought of as an “off interval,” Equation (16) can be viewed as another ap-
plication of Equation (14). Therefore, to determine pR, we first need to determine E[Xi]. 

                                                 
13  A nonnegative random variable is said to be lattice if it takes on values only at points that are mul-

tiples of some nonnegative number, d [Ross 96]. 
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Calculating E[Xi]. Note two things: 

1. Xi is equal to Tss if the ith replenishment occurs during a busy period. 

2. Xi is equal to Tss plus the remaining portion of an already started idle period, if the ith 
replenishment occurs during an idle period. 

Therefore, we need to understand the distribution of the remaining portion of idle time to de-
termine the distribution for Xi. I denotes idle time. Since we assume that the arrival distribu-
tion is exponential and the exponential distribution is memoryless,14 the idle time distribution 
must also be exponential [Kleinrock 75].  

Let IR(t) denote the remaining idle time at time t. This time is known as the residual time or 
the forward recurrence time. 

The limiting distribution for IR(t) is  

][/)()Pr(
0

IEdFxI
x

IR ∫=≤ ξξ  (17) 

where )(xFI  = 1-FI(x)  [Ross 96]. Since I is exponentially distributed with mean Ta, the 

“memoryless” property of an exponential distribution would suggest that IR is also exponen-
tially distributed with the same mean. Using Equation (17) to compute the distribution of IR 
confirms this.  

Using the distribution of IR and letting pB = 1-pI we can compute the distribution for Xi as fol-
lows: 

IiBii pIdlexXpBusyxXxX )|Pr()|Pr()Pr( ≤+≤=≤ 15  for ssTx ≥  

0)Pr( =≤ xX i  for ssTx <  

Since we know that Xi is Tss when replenishment occurs during a busy period, the first term is 
simply 1*pB. The second term represents the case in which replenishment occurs during an 
idle interval and comprises Tss plus some remaining idle time. Therefore 

IRssBi pxITpxX )Pr()Pr( ≤++=≤   for ssTx ≥   (18) 

Figure 14 below shows the shape of the cumulative distribution function, FXi(t), for Xi. 

                                                 
14  Memoryless means that the amount of idleness that has already occurred does not affect how much 

idleness is left for any given idle interval. 
15  Busy means replenishment during a busy period, and idle means replenishment during an idle pe-

riod. 
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Figure 14: CDF for Xi 

The expectation of Xi can be calculated by conditioning on whether Xi occurs in an idle or 
busy period, that is 

IRssIRssBssIiBii pIETpIETpTpIdleXEpBusyXEXE ][])[(]|[]|[][ +=++=+=  (19) 

Substituting the expression for E[Xi] from Equation (19) into Equation (16) results in this 
equation: 
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+=  (20) 

which is equal to the probability that a cycle is associated with a replenishment. Since 
Pr(Tr=0) = pI*pR, the following equation applies: 
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Evaluating E[Ss | Tr=0]. Just as a reminder, our goal is to use Equation (12) to compute 
E[Ss]. We are still calculating the first term of Equation (12). We have worked out Pr(Tr=0), 
and now we turn our attention to E[Ss| Tr=0]. 

To compute E[Ss| Tr=0], we condition on the number of arrivals in a busy period. In our case, 
the distribution for the number of arrivals, BP, in an M/D/1 busy period16 is the following 
[Kleinrock 75]:  
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 where 
a

a
q T

Ŝ=ρ  (22) 

                                                 
16  We are justified in using this since the previous section argued that, from a queueing perspective, 

Sq is equal to Sa/(1-Up) regardless of whether it executes within a sporadic server, in background, 
or as a hybrid. 

Tss 

Fxi(x) 
1 

pB 

Fxi(x) 

Tss 
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When Tr=0, the busy period always starts with an arrival that is “greeted by” a fully loaded 
sporadic server. This first arrival will have a service time of Sa. Depending on how large Tss is 

relative to aŜ , the busy period continues with some number of additional arrivals that execute 

in background and consequently have service times of aŜ . If the busy period is long enough, 

it might contain one or more “hybrid” service times as well.  

For now, we will ignore the hybrid services (in which case, our estimate will be on the high 
side). Later, we will show an algorithm that accounts for the hybrid case. The following ex-
pression is a pessimistic approximation of the duration of a busy period of length i, given that 
Tr=0:  

aa SiS ˆ)1( −+  (23) 

This equation is pessimistic since it approximates a hybrid’s execution—which is 

aa SS )1(ˆ αα −+ —using simply aŜ . We use this approximation to compute an approxima-

tion for E[Ss| Tr=0]. 

Given a very large number of busy periods (denoted as N) and the strong law of large num-
bers [Ross 96], there are approximately Pr(BP=i)*N busy periods of length i [Cinlar 97]. 
Equation (23) expresses that for each busy period of length i, there is one arrival with a ser-

vice time of Sa and i-1 with service times of aŜ . Therefore 
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which reduces to 
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where Pr(BP=i) is defined in Equation (22) and E[BP]=1/(1-ρ). 

Therefore, an approximation for the first term in Equation (12) is 
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Calculating ∫ =
],0(

)(]|[
Tss

Trs dttftTrSE .    Our next step is to consider the case in which Tr is 

greater than zero. To do this, we need to determine the cumulative distribution function for 
Tr, FTr(t). 

Recall that Tr is a random variable denoting the time to replenishment for the beginning of a 
busy period. To compute )Pr( tTr ≤ , we condition on whether Tr equals zero or is greater 

than zero. Recall that 

))0Pr(1)(0|Pr()0Pr()0|Pr()Pr( =−>≤+==≤=≤ TrTrtTrTrTrtTrtTr  (26) 

The first term reduces to Pr(Tr=0); Equation (21) addresses this case. 

Tr>0 occurs when XA,17 the time since the last renewal (known as the age or the backward 
recurrence time), is less than Tss. Therefore, )0|Pr( >≤ TrtTr  is equivalent to 

)|Pr( ssA TXtTr <≤ , however 

)|Pr(1)|Pr()|Pr( ssAssAssAAssssA TXtTXTXtXTTXtTr <−<−=<≤−=<≤  (27) 

Since the limiting distributions of the forward and backward recurrence times of a renewal 
process are the same, we can use Equation (17) to compute )Pr( tX A ≤ [Ross 96]: 
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Using Equation (28) and conditional probability and referring to Figure 14 
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Therefore 

ssss

ss
ssAssA T

t

T

tT
TXtTXTrtTr =−−=<−<−=>≤ 1)|Pr(1)0|Pr(  

which is a uniform distribution over [0, Tss]. The cumulative distribution function for Tr is  

                                                 
17  The letter “A” in XA stands for “age.” If one considers a renewal to be a birth, XA represents the 

time since the last renewal. This should not be confused with Xi, which represents the time be-
tween successive renewals. 
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))0Pr(1()0Pr()Pr( =−+==≤ Tr
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and the density function for Tr is 
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which is similar in form to Equation (11). 

This results in 
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Accounting for “blackout.” Figure 12 showed that Tr is not actually uniformly distributed 
over the entire interval [0, Tss] but instead is uniformly distributed over the shorter interval [0, 
Tss-h]. This distribution makes sense since each renewal occurs either during or at the begin-
ning of a busy period. By definition, the next busy period cannot begin until the current one 
ends, resulting in a “blackout” period, H, for Tr from Tss-H to Tss. Let H be a random variable 
denoting the duration of this blackout period. 

Assume that H=h. Due to this blackout period, )0|Pr( >≤ TrtTr  is not actually equivalent 

to )|Pr( ssA TXtTr <≤ . Rather, it is equivalent to )|Pr( ssA TXhtTr <≤≤ . This differ-

ence changes Equation (29) to 
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and Equation (30) to 

∫∫
− −

=−===
],0(],0(

)0Pr(1
]|[)|(]|[

hTss ss
s

Tss

Trs dt
hT

Tr
tTrSEdthtftTrSE  

For H=h, fTr(t | h) has the form 
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where d(t) in Equation (11) is actually 0 for any given H=h. Now we must account for the 
fact that H is a random variable; therefore, we must determine fTr(t): 
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Letting P=Pr(Tr=0) and Q=1-P, we have 
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where fH(h) is the density function for H. To determine the distribution function for H, we 
condition on whether the first busy period in the renewal interval is one that starts within the 
sporadic server (SS) or is a hybrid (hybrid). Note that 

)Pr()|()Pr()|()( hybridhybridhfSSSShfhf H +=  (33) 

where Pr(SS)=pI and Pr(hybrid)=1-pI. 

First, we will focus on )|( SShf . In this case, replenishment has occurred in the idle interval 

before the busy period starts. The busy period (and hence the blackout period, H) starts when 
the next arrival occurs. H can take on only a finite set of values.18 When the duration of the 

busy period is less than or equal to Tss, )1Pr()|ˆPr( === BPSSSH a , 

)2Pr()|ˆ2Pr( === BPSSSH a , and so forth. However, when the duration of the busy pe-

riod is greater than Tss, H can take on other values—in general, those in the following set:  
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For example, if aŜ =30 and Tss=100, H can be equal to 30, 60, 90, 20, 50, 80, 10, 40, 70, and 

0. The probability function for this can be expressed as 

                                                 
18 Assuming aŜ  is rational. 
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Now, we will focus on )|( hybridhf . In this case, replenishment occurs during a busy period 

of which the blackout period is a subinterval. When the busy period is less than Tss in dura-
tion, we assume that replenishment is equally likely to occur at any time during that busy pe-
riod. Therefore, the time from replenishment to the end of the busy period is uniformly dis-
tributed over the length of the busy period, that is  
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When the length of the busy period exceeds Tss, the first replenishment must be within Tss of 
the busy period’s beginning. If the first replenishment is exactly at the beginning of the busy 

period, the blackout period is ssa TSim modˆ= .  As the replenishment moves away from the 

beginning of the busy period, h decreases until it is 0, jumps to Tss, and then decreases until 
its value becomes m again when the replenishment occurs at Tss. Therefore, when the busy 
period is greater than or equal to Tss, the probability density function of its length, H, is given 
by 
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19  Recall that u0(x) is the Dirac delta function. Therefore, u0(x-a) has a nonzero (actually infinite) 

value when x=a and is zero everywhere else. 
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Note that we have made the assumption that the distribution governing BP does not depend 
on whether the busy period starts within a sporadic server or starts with a hybrid. 

Combining Equations (33), (34), and (35), we have 
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Combining Equations (32) and (36), we have 
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Integrating Equation (37), we have 
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where 
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Now that we have fTr(t), we are ready to evaluate the right-hand side of Equation (10): 
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Evaluating E[Ss | Tr=t]. To complete our analysis, we need an algorithm to compute  
E[Ss| Tr=t]. Recall that we offered a pessimistic estimate above. A more general form of 
Equation (24) is given by 
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where Vi(t) is the total duration of i service times, starting at Tr=t. Calculating Vi(t) requires 
calculating how many hybrids will occur during the busy period and what the service time is 
for each of those hybrids. 

The number of hybrids in the busy period is given by 
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A hybrid has one part that occurs before replenishment and one that occurs after it. The dura-
tion of the part that occurs before replenishment for the jth hybrid is 
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4.4.3 Areas of Ongoing Work 

In Section 4.4.1, we made several simplifying assumptions that we are in the process of re-
laxing: 

• In computing Pr(Tr=0), we assumed there would be many busy-idle cycles over the 
course of a replenishment period. In other words, we assumed that (E[B]+E[I])/Tss < 1. 
When Tss is small or the traffic intensity is high enough to cause E[B] to exceed Tss, this 
assumption is violated. Such a violation can cause inaccuracy in our prediction of 
Pr(Tr=0) and, in turn, an inaccurate weighted average of E[Ss| Tr=0] and E[Ss| Tr>0]. 

• When computing the blackout time for the hybrid case, we assumed that the first replen-

ishment of a busy period is equally likely to occur anywhere in [0, ),ˆmin( ssa TSi ]. How-

ever, the length of the blackout period might be constrained after a busy period occurs. 
For example, when one busy period ends very close to replenishment and the next one 
starts shortly thereafter, there is a constraint on how short the blackout period can be. 
Figure 15 shows an example of that situation. The busy period BP1 was hit by a replen-
ishment at time 460, creating a blackout h1=40 for when the following busy period could 
start. We can see that the blackout h2 created by BP2 is 30, but even if BP2 started right 
after BP1 finished at time 500, the blackout h2 could be no less than 20.  

• In computing E[Ss| Tr=0] and E[Ss| Tr=t], when t>0 we condition on the number of arri-
vals in the busy period and then uncondition using the M/D/1 busy period distribution 
(see Equation (22)). However, due to an effect known in renewal theory as length biasing 
[Ross 96], there is a bias toward replenishments occurring in relatively long busy periods. 
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In other words, the distribution of the lengths of hybrid busy periods is different from the 
distribution of all the busy periods; the probability is shifted toward longer busy periods. 

 

Figure 15: Tr Blackout Dependency on Previous Blackout 

We are currently looking into generalizing the theory to account for the cases in which our 
assumptions are not appropriate.  

4.4.4 Empirical Evidence 

In this section, we offer two examples of using the theory developed in the previous section. 
Figure 16 shows a histogram showing the predicted and simulated probability density for 
time to replenishment. 

The spike shown at the beginning of Figure 16 for the prediction curve represents Pr(Tr=0), 
and the remainder of the curve is fTr(t). 
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Figure 16: fTr(t) Predicted Versus that Observed Through Simulation 

The next three figures (using the same parameters as Figure 8 where Tp is set to 1) show pre-
dictions versus simulations for the average latency (E[W]), average queuing time (E[Q]), and 
average service time (E[Ss]) respectively. The predictions for the average queuing time ap-
pear to be fairly accurate. The predictions for average service time appear to be accurate until 
Up exceeds 0.65. As discussed in Section 4.4.3, as the average duration of the busy period 
increases (which happens as Up increases) and starts to approach Tss, our approach for calcu-
lating Pr(Tr=0) becomes less accurate, which, in turn, affects the accuracy of E[Ss]. 
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Predicted vs. Actual E[W], Varying Up for Tp=1 and 
Ta=200
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Figure 17: E[W] Predicted Versus that Observed Through Simulation 

Predicted vs. Actual E[Q], Varying Up for Tp=1 and 
Ta=200
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Figure 18: E[Q] Predicted Versus that Observed Through Simulation 
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Predicted vs. Actual E[S], Varying Up for Tp=1 and Ta=200
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Figure 19: E[Ss] Predicted Versus that Observed Through Simulation 

4.5 Single-Subtask Assemblies 

In this section, we look at assemblies with three periodic tasks and an aperiodic task managed 
by a sporadic server. Anticipating applying our theory to more general assemblies, we make 
some observations about multitask assemblies. 

Varying utilization equally. For this case, there is an aperiodic task and multiple periodic 
tasks between which the periodic utilization is evenly divided. The average latency for the 
multi-periodic case should fall within the extremes of the single periodic cases. The parame-
ters for this graph are Ta=200, Sa=Sss=10, and Tss=100, while Tp and Up vary accordingly. 
This case is shown in Figure 20 except for when Up is large: we intend to investigate this fur-
ther. 
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Figure 20: Multi-Periodic Example—Utilization Evenly Divided 

Varying utilization unequally. In the previous case, there was a single aperiodic task and 
three periodic tasks. However, in this case, the total utilization of the periodics (which varies 
from 0 to .9) is spread unevenly among the three periodic tasks. In the legend of Figure 21, 
“.8 .1 .1” means that for a utilization level of Up,  .8* Up is accorded to the task whose period 
is 100,  .1* Up is accorded to the task whose period is 250, and .1*Up is accorded to the task 
whose period is 350. Additionally, we plot the single periodic case for Tp=100 and Tp=350. 
Again, except for relatively large values of Up, the single periodic cases create an envelope 
around the multi-periodic cases. 



42  CMU/SEI-2004-TR-017 

 

Utilization Spread Unevenly Between Several 
Periodics

0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Up

E
[W

]

.8, .1, .1

.1 .8 .1

.1 .1 .8
Just 100
Just 350

Utilization Spread Unevenly Between Several 
Periodics

0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Up

E
[W

]

.8, .1, .1

.1 .8 .1

.1 .1 .8
Just 100
Just 350

 

Figure 21: Multi-Periodic Example—Utilization Unevenly Divided 

4.6 Multi-Subtask Assemblies 

We took the multi-periodic case shown in Figure 20 and turned each periodic task into one 
that had multiple subtasks with arbitrary priorities. The graph in Figure 22 shows the results. 
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Figure 22: Multi-Periodic Example with Multiple Subtasks 
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Notice that the graphs in Figure 22 and Figure 20 are identical. As long as the system is work 
conserving (i.e., it continues to do available work without idling), the periodics’ priority and 
subtask structures do not influence the average latency of the aperiodics. This lack of influ-
ence occurs because the periodic subassembly’s priority and subtask structure do not influ-
ence when background is available.  

This allows an arbitrarily complex periodic task to be simplified to an equivalent periodic 
single-subtask task. 

4.7 Observations on the No-Background Case 

Notice that in Figure 8, Figure 21, and Figure 22, the length of the periodic task’s period in-
fluences when the aperiodic task’s average latency reaches the point of so-called “no back-
ground.” To understand this situation, consider the two extreme cases: infinitesimal periods 
(continuous background) and very large periods.  

In the continuous background case, Sq approaches Tss as Up increases. When Up=1-Sss/Tss,  

Sq (which is equal to aŜ ) is equal to Tss. This is the maximum possible value for Sq (as guar-

anteed by the sporadic server). Therefore, the continuous background case reaches a state of 
“no background” when Up=1-Sss/Tss. Notice that while the aperiodic events cannot execute in 
background, the processor is not necessarily fully utilized. For example, if Sss=10, Tss=100, 
Sa=10, Ta=200, and Up=.9, then Sq=Tss=100 and ρ=Sq/Ta=100/200=0.5. This means that, on 
average, only half of the “degraded processor” is actually being utilized. In other words, only 
half of the unused periodic utilization is used by the aperiodic task. 

As the length of the periodic tasks’ period increases, the aperiodic task is able to use this un-
used capacity. When the period of the periodic tasks is very large, the aperiodic task can exe-
cute both within the sporadic server and in the large windows of periodic idleness. 
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5 Application of the Theory 

In this section, we describe a collection of heuristics that encompass much of the observa-
tions and analysis performed in Section 4. We then describe a model problem from the do-
main of robotics and show how to apply these heuristics derived from the property theory to 
the robotics model problem. 

5.1 Reasoning Heuristics 

Much of this report has focused on providing a theoretical foundation for the continuous 
background case with a single periodic task. However, important conclusions can also be de-
rived from empirical evidence. Sections 4.5 and 4.6 showed that with some targeted simula-
tions we can get a good understanding of aperiodic latency for a very general periodic task 
set. Based on our theoretical and empirical understanding, we generated the following list of 
heuristics: 

• H1: For a given aperiodic service time (Sa) and interarrival interval (Ta), the best-case 
average latency occurs when there are no periodics (Up=0). The latency for this case is 
predictable by Equation (4). 

• H2: For a given aperiodic service time and interarrival interval, the worst-case average 
latency occurs when the periodic utilization is large enough so that aperiodics execute 
only within the sporadic server (no-background case). The latency for this case is pre-
dictable by Equation (6), where ssq TS = . 

• H3: For the continuous background case, given Up, E[Q] can be predicted accurately by 

using Equation (9) and letting aq SS ˆ= . E[Ss] can be approximated by realizing that it is 

a weighted average of Sa and aŜ  and therefore is between those two extremes. As Up gets 

larger, aŜ  starts to approach Tss, so there is very little room for background processing. 

In this case (even though E[Q] increases), E[Ss] approaches Sa. H3 applies to cases in 
which Up is greater than 0 and less than 1-Sss/Tss. 

• H4: For very large periodic periods, average latency as a function of Up appears to be 
approximately the convex combination of the no-periodics (NP) and no-background (NB) 
cases. H4 applies to cases in which Up is greater than 0 and less than 1-ρ. Therefore, in 
this case 
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The observations gleaned from the curves generated for average-case latency for aperiodic 
events served by a sporadic server (see Figure 8) provided significant understanding of the 
timing-related behavior of such events. Figure 23 below represents an abstraction of Figure 8 
with the heuristics overlaid to illustrate how these heuristics support predicting aperiodic la-
tency. 
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Figure 23: Heuristics Applied to the Curves 

Notice in Figure 23, H1 (the best-case average latency) and H2 (the worst-case average la-
tency) serve to bound the aperiodic average latency, E[W]. Also notice that for a specific 
value of Up, H3 and H4 seem to provide bounds for E[W]. E[W], then, will fall between the 
best-case and worst-case average latency dictated by H1 and H2, within the region further 
defined by H3 and H4 for a specific Up. 

In the next section, we apply these heuristics to a model problem. 
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5.2 A Robotics-Based Model Problem 

To demonstrate the analytical and empirical foundations established in this paper, we apply 
them to a model problem [Hissam 04] representative of a design problem posed for the ABB 
industrial robotics product line. 

The model problem expresses the high-level task structure used to convey robot movement 
commands through a series of queues to ultimately control the various axes of a robot’s 
arm(s). The model problem permits the incorporation of additional end-user tasks (or exten-
sions) in the controller similar to the addition of a third-party device driver in an OS. It is this 
extensibility that motivates the use of this performance theory. That is, an extension will be 
either periodic or aperiodic by nature. The reasoning framework discussed by Hissam and 
colleagues [Hissam 02] can be applied to predict the average latency of periodic extensions 
(see Section 2.2). The analytical and empirical foundations introduced in this report can be 
applied to predict the timing behavior of aperiodic extensions. 

In summary, the robotics-based model problem has 

• periodic and aperiodic tasks  

• tasks with hard deadlines and average-case latency requirements 

• tasks (for example, controller extensions) whose behavior must be both predictable and 
predictably invasive on other periodic tasks with hard deadlines 

• requirements for predicting deadline miss rates 

In the remainder of this section, we apply the performance theory in this paper to predict the 
average-case latency of an aperiodic task within the robotics-based model problem. 

5.2.1 Tasks in the Model Problem 

Figure 24 provides a schematic of the open robotics model problem. In this discussion, we 
simplify the model further by concentrating on only one task set—A-B-C (controlling a robot 
with only one arm)—and one “plug-in”—task M. 
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Figure 24: Tasks in the Robotics Model Problem 

Tasks A, B, and C each convey commands through a series of queues. Task M represents a 
third-party task extension to the robotics controller. 

Table 2 shows the applicable task performance specifications of the tasks in Figure 24.  

Table 2: Performance Description of Model Problem Tasks 

Task Priority Arrivals Execution Time 
A1 Low Exponentially distributed 

with mean 
75 ms 

Exponentially dis-
tributed with mean  
9 ms 

B1 High Constant 
24ms 

Uniform 
1-2 ms 

C Very 
High 

Constant 4ms Uniform  
0.5-1 ms 

M Med Exponentially distributed 
with mean 
100 ms 

Uniform 
15-25 ms 

5.2.2 Analysis Setup 

We are interested in two questions in particular: 

1. Will including Task M cause Tasks A, B, and C to miss their deadlines? 

2. What is the average-case latency of events handled by Task M? 

To answer these questions, we take a closer look at Tasks A, B, and C. 



CMU/SEI-2004-TR-017 49 

Task A is a low-priority task that is handling a stream of aperiodic arrivals. Each aperiodic 
arrival is broken down into a sequence of subitems and placed on the queue between Task A 
and B. 

Task B continues to periodically process a subitem from the Task A-B queue, further decom-
poses that subitem, and places the resulting decompositions on the queue between Tasks B 
and C. 

The period of Task B (i.e., 24 ms) is 6 times the period of Task C (i.e., 4 ms). That is true be-
cause for every subitem processed by Task B (generating 6 microcoordinates), Task C will 
consume a microcoordinate from the Task B-C queue and send it to the Axis computer 
(which itself takes about 1 ms). Task C then can consume all six microcoordinates on the 
Task B-C queue within the period of Task B. 

Ideally, Task A should never allow the queue between Task A and B (i.e., the Task A-B 
queue) to empty. Unfortunately, Task A is only given low priority in the controller because, 
under certain conditions, Task A may take an inordinate amount of CPU time to perform its 
item decomposition. If Task A were assigned a higher priority relative to Task B or Task C, 
Task A could cause either of those tasks to miss its deadline. At low priority, Task A is as-
sured not to interfere with the deadlines of Tasks B and C. However, with the inclusion of an 
extension to the controller, Task A could be starved to the point that it could inadvertently 
starve the Task A-B queue.  

To solve this conundrum and ensure that Task A does have the opportunity to put at least one 
subitem on the Task A-B queue within the period of Task B, Task A can be converted to use 
the SSSA.20 In this case, Task A can be given just enough execution time to prevent the Task 
A-B queue from being emptied. Further, given that Task A is following the SSSA, Task A can 
now be treated like a periodic task. 

Understanding the interactions between Tasks A, B, and C and treating Task A as a periodic 
task allow us to apply the results of Section 4.5 that deal with single-subtask assemblies. This 
analysis asserts that assemblies with multiple periodic tasks can be analyzed by considering 
single-task assemblies whose utilization (Up) is the same as that of more complex assemblies 
and by varying the periods between the smallest and largest periodic periods.  

                                                 
20  This point is another design issue that Hissam and Klein address in another report [Hissam 04]. 
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This means that the task set (A-B-C) in Figure 24 can be combined into a single periodic task 
for which Tp = 24 ms (Task B’s period) and the execution time is approximately 10 ms.21 
Figure 25 shows the final periodic single subtask created to support the analysis of the robot-
ics model problem. 
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Figure 25: Analytic Representation of the Robotics Model Problem 

The performance parameters for the extension (i.e., Task M) can be taken mostly from Table 
2. Task M is an aperiodic task managed by the SSSA. Its interarrival interval (Ta) is 100 ms. 
The replenishment period for Task M is not specified; however, Tss must be ≥ Tp, otherwise 
the aperiodic task might be able to preempt the periodic task more than once during its period 
and put the periodic’s deadline at risk. Tss, then, can (at best) take on the value of 24 ms. 

The last two performance parameters for Task M are Sss (budget) and Sa (execution time). 
The upper limit for Sss (given that Tss=24 ms) is determined by the total utilization of the two 
tasks in Figure 25. The highest value for Sss must be 14 ms, resulting in a total utilization for 
Task M being 14/24 (Sss/Tss). Finally for Sa, Section 4 states in the governing assumptions 
that Sa=Sss; we will assume that Task M’s execution time is a constant 14 ms and perform our 
analysis from this point. 

5.3 Preserving Periodic Deadlines 

The first question is whether Task M will cause the A-B-C task set to miss its deadline. This 
set executes for 10 ms every 24 ms with a deadline at the end of its period. In the worst case, 

                                                 
21  Assuming the worst case, execution times for Tasks B and C are 2 ms and 6 ms, respectively 

(from Table 2—recall that Task C will execute for 1 ms, 6 times during Task B’s 24-ms period); 
Task A’s execution time is based on the time it takes to produce 1 subitem from its input stream: 
approximately 1-2 ms. The sum of these approximate times is just under 10 ms. 



CMU/SEI-2004-TR-017 51 

Task M will preempt the A-B-C task set once for 14 ms, implying a worst-case latency of 24 
ms for the task set and, hence, guaranteeing the set’s deadline. 

5.4 Predicting Average-Case Latency 

The second question is to predict the average-case latency of the aperiodic extension (Task 
M). In this section, we apply heuristics from Section 5.1. 

Heuristic H1—best-case average latency: Sa = 14; Ta = 100; ρ = Sa / Ta = 14/100 = 0.14. 
Solving for Equation (4), we get the following: 
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Heuristic H2—worst-case average latency: E[Sq] = Tss; E[Ss] = Sa; ρq = Sq / Ta = 24/100 = 
0.24. Solving for Equation (6), we get the following: 
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Heuristic H3—bound on average-case latency for continuous background for a specific Up: 
Since Up=1 – (Sss / Tss) in this model problem, H3 cannot be used.  

Heuristic H4—bound on average-case latency for large Tp for a specific Up: ρ = Sa / Ta = 
14/100 = 0.14. Using the equation from H4, we get the following: 
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For E[WNP], we can use the result calculated for H1 above: E[WNP] = 15.13953. For E[WNB], 
we can use the result calculated from H2 above: E[WNB] = 17.78947. Then, solving for E[W], 
we get the following: 
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Heuristic H1 tells us that for the model problem, we can expect the average latency to be no 
better than 15.13953 ms. Further, H2 tells us that we can expect the average latency to be no 
worse than 17.78947 ms. We can refine the lower bound for Up = 10/24 = 0.4166 (see Figure 
26) by applying H4; the result is 16.42342 ms. 

By overlaying the results from the heuristics just computed to a plot of curves representing 
latencies observed through simulation, it is possible to check the heuristics. Figure 26 was 
created through simulation. All the performance parameters from Figure 25 were used in the 
simulation except for Tp and Up, which varied. The simulation was run for 13 values of Up 
(specifically 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, and 0.95) for each Tp 
shown in the legend of the figure. The average latency for the aperiodic Task M was com-
puted, recorded, and plotted based on the specific Up and Tp for that simulation. 
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Plot of E[W] for Model Problem by Up for Various Tp
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Figure 26: Latency Observed for the Model Problem for Various Tp Values 

As described in Section 4.7, the no-background state is reached at different periodic utiliza-
tions for different periodic periods. For this model problem, the no-background state is 
reached at a much smaller utilization for very small periods than for very large ones. The net 
effect is that the above graph almost looks like an inverted version of Figure 8. 

Table 3 shows the side-by-side comparisons of the heuristics calculated and the averages ob-
served through simulation in Figure 26. 

Table 3: Comparison of Prediction Heuristics and Simulation Curves 

 Computed Heuristic 
(in ms) 

Observed in Simulation 
(in ms) 

H1: Best-Case Average Latency 15.13953 15.10088 

H2: Worst-Case Average Latency 17.78947 17.78476 

H4: Bound for Large Tp 16.42342 16.35977 

Because the model problem represents an extreme case where Up = 1 – Sss / Tss (i.e., the no-
background case), the heuristic H2 should offer an accurate prediction. The value computed 
for H2 was compared to the average latency observed in many simulations of the model prob-
lem. These results are reported in Table 4. The prediction of 17.78947 ms was found to be 
within 2 standard errors of the observed latency of 17.79473 ms. 
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Table 4: Predicted and Actual Average-Case Latency for Task M 

Basic Statistics Value 

Samples (n) 1035 

Average Aperiodic Latency Observed 17.79473 ms 

Standard Deviation (σ)  0.12574 ms 

Predicted Aperiodic Latency (E[W]) 17.78947 ms 

Error  0.00526 

Standard Error  0.00391 

2 x Standard Errors  0.00782 
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6 Conclusions 

This report documents the development and application of a theory for predicting the average 
latency of aperiodic tasks that execute under the management of a sporadic server. The notion 
of a sporadic server was invented many years ago, but this is the first time a detailed queue-
ing-theoretic analysis has been performed. Such analysis represents a step in the direction of 
creating a comprehensive set of performance reasoning frameworks that includes using RMA 
for a deterministic deadline analysis, queueing theory for average latency analysis, and a new 
theory known as real-time queueing theory (RTQT) [Doytchinov 01] for probabilistic analy-
sis of deadline miss rates. 

This report focused on task sets with the following characteristics: 

• The assemblies are confined to a single processor. 

• Each periodic event, whether clock or message based, is handled by one task (or a se-
quence of tasks). Each periodic task has an associated period and an execution time (or 
sequence of execution times). 

• All aperiodic events are funneled through a sporadic server. 

• The sporadic server runs at the highest priority in the system and is characterized by an 
execution budget and a replenishment period. 

• The service time for each aperiodic event is constant and equal to the execution budget of 
the sporadic server. 

• The aperiodic arrivals arrive according to an exponential distribution with a specified 
mean interarrival interval. We only consider a single stream of aperiodic events. 

• Aperiodic events are allowed to use the CPU when either the sporadic server has suffi-
cient budget or the periodics are idle. 

The analytical and empirical results described in this paper are applicable to a very large 
spectrum of assemblies. In fact, the periodic assemblies can be arbitrarily complex. 

6.1 Future Work 

While we have gained many insights from examining a specific class of assemblies, our ob-
jectives are to solidify the theoretical foundations for what we have discussed in this paper 
and to relax the assumptions, investigating a more general set of assemblies. 
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• We would like to gain a better understanding of the “middle period cases.” We under-
stand much about the cases where the period of the periodics is very small (relative to Sss) 
and very large. However, we have only just begun to understand the midrange periods. 

• We need to experiment with multi-periodic assemblies with a larger number of tasks. We 
suspect that we can create situations in which the average latency of the aperiodics is 
even better than the lower bound we observed in multi-periodic cases discussed in this 
report. 

• We have enumerated several places where our mathematical modeling needs to be im-
proved including accounting for length biasing, refining our blackout distributions, and 
accounting for when many replenishments occur during a busy period. 

• We intend to combine RTQT with the sporadic server for predicting the probability of 
missing deadlines. 

• Currently, arrivals and service time distributions are constrained to exponential and con-
stant distributions, respectively. Heavy traffic approximations might allow us to acquire 
an analytic understanding while relaxing these restrictions. In any case, we will perform 
empirical studies. 

• Currently the sporadic server is confined to Sss = Sa, Sa is confined to being constant, and 
the sporadic server must execute at the highest priority. We will investigate relaxing these 
restrictions and whether, with a more general sporadic server capability, we may have 
more control over the average latency of the aperiodics. 

• So far, we have only investigated the uniprocessor case. In the future, we plan to investi-
gate the distributed problem. 

• Earlier, we briefly investigated applying RTQT in a fixed-priority setting. We will con-
tinue that investigation. 

• We plan to implement an earliest deadline first (EDF) capability in our runtime infra-
structure—a natural setting for applying RTQT. 

We plan to pursue the above areas with an eye towards their practical application. 
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