
Integrating Software-
Architecture-Centric Methods
into the Rational Unified Process

Rick Kazman
Philippe Kruchten (University of British Columbia)
Robert L. Nord
James E. Tomayko

July 2004

TECHNICAL REPORT
CMU/SEI-2004-TR-011
ESC-TR-2004-011

Pittsburgh, PA 15213-3890

Integrating Software-
Architecture-Centric Methods
into the Rational Unified Process

CMU/SEI-2004-TR-011
ESC-TR-2004-011

Rick Kazman
Philippe Kruchten (University of British Columbia)
Robert L. Nord
James E. Tomayko

July 2004

Software Architecture Technology Initiative

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Joint Program Office
HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

Christos Scondras
Chief of Programs, XPK

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2004 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie Mel-
lon University for the operation of the Software Engineering Institute, a federally funded research and development center.
The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the work,
in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the copy-
right license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

http://www.sei.cmu.edu/publications/pubweb.html

CMU/SEI-2004-TR-011 i

Table of Contents

Acknowledgments... vii

Abstract .. ix

1 Introduction ... 1

2 Software Architecture and the RUP ... 5
2.1 Example: An ATM System ... 5

2.1.1 Eliciting Requirements ... 5
2.1.2 Creating and Evaluating a Design.. 7

2.2 The ATM Example Revisited ... 8
2.2.1 Eliciting Scenarios ... 8
2.2.2 Creating and Evaluating a Design.. 9

2.3 Summary... 12

3 Requirements Identification ... 13
3.1 The QAW .. 13

3.2 The QAW and the RUP Life Cycle... 14

3.3 The QAW as an Activity in the RUP Requirements Discipline................. 15

3.4 Reflections .. 17

4 Architecture Design .. 19
4.1 The ADD Method... 19

4.2 ADD and the RUP Life Cycle... 19

4.3 ADD as an Activity in the RUP Analysis and Design Discipline............... 21

4.4 Reflections .. 23

5 Architecture Evaluation with the ATAM/CBAM.. 25
5.1 The Integrated ATAM/CBAM ... 25

5.2 The ATAM/CBAM and the RUP Life Cycle... 26

5.3 The ATAM and CBAM as Activities in the RUP Analysis and Design
Discipline... 26

5.4 Reflections .. 30

ii CMU/SEI-2004-TR-011

6 Architecture Evaluation with ARID ...31
6.1 ARID..31

6.2 ARID and the RUP Life Cycle ..32

6.3 ARID as an Activity in the RUP Analysis and Design Discipline32

6.4 Reflections...34

7 Summary ..35

References ...37

CMU/SEI-2004-TR-011 iii

List of Figures

Figure 1: The Unified Process.. 3

Figure 2: Life-Cycle Activities of Architecture-Centric Development 4

Figure 3: ATM Use Case Diagram (Notation: UML).. 6

Figure 4: A Candidate Architecture – Deployment View (Notation: UML) 7

Figure 5: A Revised Candidate Architecture – Deployment View (Notation: UML) 11

Figure 6: QAW Inputs, Outputs, and Participants ... 13

Figure 7: The QAW as a RUP Activity .. 16

Figure 8: The ADD Method’s Inputs, Outputs, and Participants............................ 19

Figure 9: The ADD Method as a RUP Activity .. 22

Figure 10: The Combined ATAM/CBAM Inputs, Outputs, and Participants 25

Figure 11: The ATAM as a RUP Activity ... 27

Figure 12: The CBAM as a RUP Activity .. 28

Figure 13: ARID’s Inputs, Outputs, and Participants .. 31

Figure 14: The ARID Method as a RUP Activity ... 33

iv CMU/SEI-2004-TR-011

CMU/SEI-2004-TR-011 v

List of Tables

Table 1: The Architecture-Centric Methods as RUP Activities 35

vi CMU/SEI-2004-TR-011

CMU/SEI-2004-TR-011 vii

Acknowledgments

We thank Grady Booch, Bruce Macisaac, and John Smith from IBM Rational, and
Felix Bachmann, Paulo Merson, and Linda Northrop from the Software Engineering Institute
for reviewing an earlier draft of this report.

viii CMU/SEI-2004-TR-011

CMU/SEI-2004-TR-011 ix

Abstract

The Rational Unified Process (RUP) is used broadly by software developers. This technical
report fits the Carnegie Mellon Software Engineering Institute’s (SEI’s) architecture-centric
methods into the framework of the RUP. These methods include the Architecture Tradeoff
Analysis Method, the SEI Quality Attribute Workshop, the SEI Attribute-Driven Design
method, the SEI Cost Benefit Analysis Method, and SEI Active Reviews for Intermediate
Design. Since the key process milestone of the Elaboration Phase of the RUP is a completed
architecture, the architecture-centric methods appear early in the process during the first two
phases (i.e., Inception and Elaboration). This report presents a summary of the RUP and then
examines the potential uses of the SEI’s architecture-centric methods.

x CMU/SEI-2004-TR-011

CMU/SEI-2004-TR-011 1

1 Introduction

For the past 10 years, the Software Architecture Technology Initiative1 at the Carnegie Mel-
lon Software Engineering Institute (SEI) has developed and promulgated a series of archi-
tecture-centric methods, starting with the SEI Software Architecture Analysis Method
(SAAM) [Kazman 96], continuing with the Architecture Tradeoff Analysis Method
(ATAM) [Kazman 00], the SEI Quality Attribute Workshop (QAW) [Barbacci 03], the SEI
Attribute-Driven Design (ADD) method [Bass 03], the SEI Cost Benefit Analysis Method
(CBAM) [Kazman 02], and SEI Active Reviews for Intermediate Designs (ARID) [Clements
02a]. At the same time, the SEI has disseminated a wealth of architectural knowledge and
practical expertise via its books [Bass 03, Clements 02b, Clements 02a] and papers. These
efforts have now culminated to the point where the SEI is pursuing their integration by (1)
combining related methods [Kazman 03, Nord 03] so they work more synergistically, and (2)
fitting the architecture-centric methods into popular processes of software development. One
of these processes is the Unified Process (UP).

The UP is often known as the Rational Unified Process (RUP) because Rational Software
Corp. was the most successful vendor of UP. (The corporation was acquired by International
Business Machines [IBM] in February 2003). To be specific, we will use the RUP 2003 ver-
sion of UP as depicted by Kroll [Kroll 03], Kruchten [Kruchten 04], and the RUP software
product [IBM 04]. References to the RUP in the remainder of this report refer to RUP 2003.

The SEI’s architecture-centric methods have long demonstrated that they can shed consider-
able light on important characteristics of architectures and the quality attribute requirements
that shape them. Until now, such considerations have been relegated to a separate “supple-
mentary requirements” document in the RUP. Also, business drivers, long a key part of SEI
methods, have just recently found a place in the RUP.

During the same period that the SEI’s architecture-centric methods were being developed and
tested, the RUP was being devised and promulgated. The RUP is an object-oriented devel-
opment framework. It provides guidelines, templates, and examples for all aspects and stages
of a software-intensive system’s life cycle, although it treats software architecture obliquely.

1 The Software Architecture Technology Initiative was formerly called the Architecture Tradeoff

Analysis Initiative.
 Carnegie Mellon, ATAM, and Architecture Tradeoff Analysis Method are registered in the U.S.

Patent and Trademark Office by Carnegie Mellon University.

2 CMU/SEI-2004-TR-011

As shown in Figure 1, the RUP defines four phases—Inception, Elaboration, Construction,
and Transition—each with their respective milestones. The names of the milestones were first
seen in the article by Boehm [Boehm 96].

• The Inception Phase addresses the project’s scope and objectives. At the end of this phase
is the Life-Cycle Objective Milestone.

• The Elaboration Phase addresses major risks, builds an architecture, and evolves project
plans. At the end of this phase is the Life-Cycle Architecture Milestone.

• The Construction Phase addresses detailed design, implementation, and testing. At the
end of this phase is the Initial Operational Capability Milestone.

• The Transition Phase addresses fine-tuning functionality, performance, and overall qual-
ity. At the end of this phase is the Product Release Milestone.

The phases are made up of iterations of core disciplines associated with the key technical ac-
tivities of software development: requirements, analysis and design, implementation, testing
and assessment, deployment, and some other disciplines that are supporting in nature (con-
figuration management, change management, project management, and the provision of an
appropriate environment). We concern ourselves with the technical core disciplines in this
report.

Jacobson [Jacobson 99] refers to the Unified Development Process (as he called the RUP at
that time) as “iterative,” “use case driven,” and “architecture-centric.” We briefly provide
examples of each of these characteristics.

The iterative nature of the RUP is illustrated in Figure 1. The software is “grown” in a set of
small iterative activities, not merely “developed” in one shot. The weight of the various dis-
ciplines (enumerated on the left side of Figure 1) is different in each phase and each iteration.
This iterative process permits different things to be implemented in each pass through the
disciplines. For instance, about 80 percent of the use cases are developed by the end of the
Elaboration Phase after several iterations, leaving some requirements (captured eventually as
added use cases) for later phases. Thus, change, especially additional requirements, is recog-
nized as a needed and natural part of software development.

The RUP is a use-case-driven process. Use cases are used to express the functional require-
ments of the system in a way that is understandable to the stakeholders.

CMU/SEI-2004-TR-011 3

Figure 1: The Unified Process2

A final important point to be made about the RUP is that it is architecture-centric. There is no
definition of this fact in the RUP literature (except for the architecture development chart in
the book by Kruchten [Kruchten 04]), so we use the list of characteristics of architectural
centricity developed by Bass, Clements, and Kazman [Bass 03] and reproduced in Figure 2.
In the RUP, Jacobson and Kruchten define an architecture definition milestone by the end of
the Elaboration Phase [Jacobson 99, Kruchten 04]. This means that much of the architecture
is designed and analyzed in the Elaboration Phase, so as to be ready for the Construction
Phase. For this reason, all SEI architecture-centric methods belong in the first two phases of
the RUP: Inception and Elaboration.

2 Reproduced by permission based on material from Rational Unified Process, Version

2003.06.01.04,  Copyright 1987-2003 by International Business Machines Corporation. All
rights reserved.

Project
Management

Business Modeling

Implementation

Test &
Assessment

Analysis &
Design

Preliminary
Iteration(s)

Iter.
#1

Phase
sCore Disciplines

Iteration

Supporting Disciplines

Iter.
#2

Iter.
#n

Iter.
#n+1

Iter.
#n+2

Iter.
#m

Iter.
#m+1

Deployment

Configuration & Change
Mgmt

Requirements

Elaboration TransitionInception Construction

Business Modeling

Requirements

Analysis & Design

Implementation

Test & Assessment

Deployment

Configuration & Change Management

Project Management

Environment

Project
Management

Business Modeling

Implementation

Test &
Assessment

Analysis &
Design

Preliminary
Iteration(s)

Iter.
#1

Phase
sCore Disciplines

Iteration

Supporting Disciplines

Iter.
#2

Iter.
#n

Iter.
#n+1

Iter.
#n+2

Iter.
#m

Iter.
#m+1

Deployment

Configuration & Change
Mgmt

Requirements

Elaboration TransitionInception Construction

Project
Management

Business Modeling

Implementation

Test &
Assessment

Analysis &
Design

Preliminary
Iteration(s)

Iter.
#1

Phase
sCore Disciplines

Iteration

Supporting Disciplines

Iter.
#2

Iter.
#n

Iter.
#n+1

Iter.
#n+2

Iter.
#m

Iter.
#m+1

Deployment

Configuration & Change
Mgmt

Requirements

Elaboration TransitionInception Construction

Business Modeling

Requirements

Analysis & Design

Implementation

Test & Assessment

Deployment

Configuration & Change Management

Project Management

Environment

4 CMU/SEI-2004-TR-011

Architecture-centric development involves iteratively

• creating the business case for the system

• understanding the requirements

• creating or selecting the software architecture

• documenting and communicating the software architecture

• analyzing or evaluating the software architecture

• implementing the system based on the software architecture

• ensuring that the implementation conforms to the software architecture

Figure 2: Life-Cycle Activities of Architecture-Centric Development

In Section 2 of this report, we look at how the RUP describes software architecture and some
shortcomings related to software architecture. In this section, we also introduce a case study
for an automated teller machine as a means of exemplifying the RUP in use. Section 3 looks
at the core discipline of requirements identification and suggests how the Quality Attribute
Workshop might play a role in the RUP. In Section 4, we look at the core discipline of analy-
sis and design, and we examine the potential place of the ADD method in that discipline. Sec-
tion 5 describes the potential role of the ATAM and CBAM at various places in the Elabora-
tion Phase, and Section 6 describes the use of ARID within this phase. In each case, we
attempt to describe all the SEI architecture-centric methods as RUP activities. Section 7 con-
cludes this report with some reflections on the usefulness of augmenting the RUP in this fash-
ion.

CMU/SEI-2004-TR-011 5

2 Software Architecture and the RUP

In this report, we use an example of an automated teller machine (ATM) to illustrate the dif-
ferences between the Rational Unified Process and the SEI’s architecture-centric methods and
to illustrate how they might complement each other.

2.1 Example: An ATM System

Let us first examine this example purely from the perspective of the RUP. In the RUP, a sys-
tems analyst would elicit and record the required system functionality in the Inception Phase
and early in the Elaboration Phase in the requirements workflow. The requirements are em-
bodied in the use cases, the special requirements property of use cases, and the supplemen-
tary specifications.

2.1.1 Eliciting Requirements

A use case is a sequence of actions a system performs that yields an observable result of
value to a particular actor. An actor is someone or something outside the system (typically a
human, although not necessarily) that interacts with the system [Kruchten 04]. For example,
use cases from the perspective of the “ATM customer” actor would include activities such as
using the ATM to withdraw money, deposit money, transfer money between accounts, or
check the balance of a bank account. These capabilities can be represented as use cases, as
shown in Figure 3.

Of course, there will be other actors as well (such as ATM service personnel, bank branch
employees, and auditors), and they will also have use cases represented in the diagram. The
collection of use cases constitutes the complete functionality of the system.

6 CMU/SEI-2004-TR-011

Figure 3: ATM Use Case Diagram (Notation: UML)

However, there are other important qualities of the system in addition to its functionality (for
example, performance requirements specifying that the customer must get a response from
the system in less than 10 seconds). There are also availability requirements stating that the
system must be available 24 hours a day and 7 days a week, with the exception of a 15-
minute “service time” window each day, and that the system must be able to recognize and
report faults within 30 seconds of their occurrence. There are security properties dictating
that the transaction must be properly authorized and communicated securely to the bank’s
database. In addition, there are modifiability properties dictating that the system must be eas-
ily modified to take advantage of new platform capabilities (for example, it must not be tied
to a single database or to a single kind of client hardware or software) and that it must be ex-
tensible to allow the addition of new functions and new business rules.

From the collected use cases, an analysis process is entered that results in a class diagram for
the system and other design models (such as sequence diagrams, activity diagrams, and state
charts). But these artifacts specify primarily the system’s functionality and are insufficient to
specify an architecture for the ATM system that will address the system’s quality attributes.
These attributes, or nonfunctional requirements as the RUP refers to them, are captured in
properties of the use cases as well as in the supplementary specifications.

The special requirements property of a use case is a textual description that collects all the
requirements (such as quality requirements) on the use case that are not considered in the use
case model, but that need to be taken care of during design or implementation. Performance
properties such as the latency of an operation (such as an ATM withdrawal) can be captured
as a timing property that annotates the use case describing the functionality of the with-
drawal.

Withdraw Funds

Deposit Funds

Transfer Funds

Check Balance

Withdraw Funds

Deposit Funds

Transfer Funds

Check Balance

CMU/SEI-2004-TR-011 7

The RUP Supplementary Specification artifact captures system requirements that are not
readily noted in behavioral requirements artifacts such as use case specifications. The sup-
plementary specifications are an important complement to the use case model, because to-
gether they capture all the software requirements (functional and nonfunctional) that need to
be described to serve as a complete software requirements specification [Kruchten 04].

2.1.2 Creating and Evaluating a Design

In the RUP, an architect or architecture team designs the architecture in the Inception and
Elaboration Phases following the “Perform Architectural Synthesis,” “Define a Candidate
Architecture,” and “Refine the Architecture” workflow details of the analysis and design dis-
cipline. An architectural proof-of-concept may be defined in the Inception Phase.

A candidate architecture (such as that exemplified in Figure 4) is produced early in the Elabo-
ration Phase. The candidate architecture is an initial sketch of the system architecture that
defines an initial set of architecturally significant elements to be used as a basis for analysis,
an initial set of analysis mechanisms, and the initial layering and organization of the system
[Kruchten 04].

Figure 4: A Candidate Architecture – Deployment View (Notation: UML)

A candidate architecture might be posited by the architect based on his or her experience and
structured using the repository and three-tiered client-server styles. The ATM is, thus, a client
of a transaction-processing system.

An executable architecture is produced during the Elaboration Phase as the architecture is
refined. An executable architecture is a partial implementation of the system, built to demon-
strate that the architectural design will be able to support the key functionality and, more im-
portantly, to exhibit the right properties in terms of performance, throughput, capacity, reli-
ability, scalability, and other “-ilities” [Kruchten 04].

The 4+1 approach provides some guidance in terms of the artifacts that need to be produced
[Kruchten 95]. Functionality is a primary driver of the architecture’s structure.

The architecture is reviewed at the end of the “Refine the Architecture” workflow detail.

ATM (Client)
Transaction Server
(Business Rules/

Presentation)
Database Server

8 CMU/SEI-2004-TR-011

2.2 The ATM Example Revisited

Let us now revisit our example with the aim of showing how the SEI’s architecture-centric
methods can enhance the RUP. A candidate architecture, such as the (primitive) one given in
Figure 4, is a product of the architecturally relevant use cases that have been identified. But
this architecture is dependent, for its shape and its quality, on the experience of the architec-
ture team. The SEI architecture-centric methods can inform and regularize this process. The
QAW can help elicit quality attribute requirements in the form of quality attribute scenarios.
The ADD method defines a software architecture by basing the design process on the quality
attributes that the software must fulfill. The ADD method documents a software architecture
in a number of views: most commonly, a module decomposition view, a concurrency view,
and a deployment view [Clements 02a].3 The ADD method depends on an understanding of
the system’s constraints, as well as its functional and quality requirements, which are repre-
sented as six-part scenarios. The ATAM, CBAM, and ARID provide detailed guidance on
analyzing the resulting design.

2.2.1 Eliciting Scenarios

The QAW can help elicit quality attribute requirements in the form of quality attribute scenar-
ios.4 A quality attribute scenario is a quality-attribute-specific requirement [Bass 03] that
consists of six parts:

1. stimulus: This is a condition that needs to be considered when it arrives at a system.

2. source of the stimulus: This is the entity (an actor) that generated the stimulus.

3. artifact stimulated: Some system artifact is stimulated by the stimulus. This artifact may
be the entire system or some portion of it.

4. environment: The stimulus occurs within a specified context. For example, the system
may be in a normal state, a degraded mode, or in an overload condition when the stimu-
lus occurs.

5. response: The response is the activity undertaken upon the arrival of the stimulus.

6. response measure: When the response occurs, it should be measurable in some fashion
so the quality attribute requirement can be tested.

Scenarios, as elicited and elaborated in the architecture-centric methods, are very similar to
use cases: they indicate what must be present, what is done, and what the outcome will be.
Therefore, use cases and scenarios can and should be developed simultaneously. Essentially,

3 Clements and colleagues [Clements 02a] illustrate how these views relate to the 4+1 views

[Kruchten 95] often used as an example within the RUP.
4 Note that UML has its own notion of a scenario (an instance of a use case) that is used in the RUP;

for the purposes of this report, we use the term scenario as shorthand for the quality attribute sce-
nario.

CMU/SEI-2004-TR-011 9

the scenarios inspire and are inspired by use cases. The difference is that scenarios always
include the six elements above and, hence, are always focused on the elicitation and docu-
mentation of quality-attribute-specific information. Scenarios may mention functionality, but
that is not their point.

The point of the scenarios is that the set of elements is an embodiment of the quality attribute
requirements, and it is these requirements that inspire and shape an architecture. Simply put,
the architecture is determined by the quality attribute requirements, not by the functionality.
Returning to our example, a quality attribute (performance) scenario that corresponds to the
use case for an automated teller machine is as follows: “The user can withdraw a limit of
$300 from an account that has sufficient funds in less than 10 seconds.” There are two func-
tional requirements and one performance requirement in this scenario. One function is a with-
drawal, and one is a limit (a constraint of $300 if it is in the account). There’s also a perform-
ance constraint of “less than 10 seconds,” which is a quality attribute. Typically, a use case
would not include such a performance constraint.

The SEI’s architecture-centric methods provide several techniques for eliciting scenarios. The
QAW, for example, is a facilitated method that engages system stakeholders early in the life
cycle to discover the driving quality attributes of a software-intensive system and for re-
cording these quality attributes in the form of scenarios in the six-part documentation struc-
ture outlined above. In addition to the brainstorming activity in the QAW, the architecture-
centric methods elicit and capture quality attribute scenarios in two other waysby using
general-scenario-generation tables and utility trees. These are described by Bass and col-
leagues [Bass 03].

2.2.2 Creating and Evaluating a Design

One quality attribute requirement mentioned earlier is that the system must be easily modi-
fied to take advantage of new platform capabilities (such as a new database or client), and it
must be extensible to allow new functions and new business rules to be added. Through the
process of the QAW, this vague requirement would be refined into several six-part scenarios.
For example, the following modifiability scenarios would be typical of an ATM:

• A developer wishes to add a new auditing business rule at design time and makes the
modification, without affecting other functionality, in 10 person-days.

• A developer wishes to change the relational schema to add a new view to the database,
without affecting other functionality, in 30 person-days.

• A system administrator wishes to employ a new database and makes the modification,
without affecting other functionality, in 18 person-months.

• A developer wishes to add a new function to a client menu, without side effects, in 15
person-days.

10 CMU/SEI-2004-TR-011

• A developer needs to add a Web-based client to the system, without affecting the func-
tionality of the existing ATM client, in 90 person-days.

To achieve these modifiability requirements, one or more architectural tactics will need to be
employed. An architectural tactic is a means of satisfying a quality-attribute-response meas-
ure (such as average latency or mean time to failure) by manipulating some aspect of a qual-
ity attribute model (such as performance queuing models or reliability Markov models)
through architectural design decisions [Bachmann 02]. In this way, tactics provide a generate-
and-test model of architectural design. The ADD method defines a software architecture by
basing the design process on the quality attribute requirements of the system. The ADD ap-
proach follows a recursive decomposition process where, at each stage in the decomposition,
architectural tactics and patterns are selected to satisfy a chosen set of high-priority quality
scenarios.

In the case of modifiability, relevant architectural tactics include Localize Changes and Use
an Intermediary. The Localize Changes tactic suggests that the business rules, database, and
client should be localized into components, and the Use an Intermediary tactic suggests that
each of these components should be separated to insulate them from potential changes in
each other. The three-tier client-server model, shown in Figure 4, would emerge from the ap-
plication of the Localize Changes tactic, since this architecture allocates the client, database,
and business rules to their own tiers and, hence, localizes the effects of any changes to a sin-
gle tier. The Use an Intermediary tactic suggests that the communication between the tiers be
mediated by some abstract interface (such as a data access layer that uses Open DataBase
Connectivity [ODBC] between the business rules and the database) and a translation layer
between the business rules and the client that understands the Extensible Markup Language
(XML). The existence of such intermediaries makes it simple to add new databases or clients.
For example, a developer can now add a Web-based client and server as a simple addition to
the architecture, without affecting the ATM client.

To achieve the quality attribute requirement of a “10 second latency on a withdrawal” in the
ADD method, a different set of architectural tactics are employed. Performance tactics are
divided into three categories: resource demand, resource management, and resource arbitra-
tion. Since we cannot control resource demand with an ATM (or, more precisely, because do-
ing so would be bad for business), we must look towards managing and/or arbitrating the use
of resources to meet performance goals. Some resource management tactics that are poten-
tially applicable here are Introducing Concurrency, Maintaining Multiple Copies of Either
Data or Computations, and Increasing Available Resources. By employing the Introducing
Concurrency and Increasing Available Resources tactics, we may choose to deploy additional
database servers and business rule servers or to make any of these servers multithreaded so
they may execute multiple requests in parallel. Once we have multiple resources, we will
need some way of arbitrating among them. Thus, we choose to introduce a new component–a
load balancer–that will employ one of the resource arbitration tactics, such as Fixed-Priority

CMU/SEI-2004-TR-011 11

Scheduling or First-In First-Out Scheduling. This component will ensure that the processing
load is distributed among the system’s resources according to a chosen scheduling policy.

This leads us to the design shown in Figure 5: a slightly revised and elaborated version of the
architecture initially presented in Figure 4. Obviously, both of these architectures are still
simple, and much more work needs to be done to turn them into complete design specifica-
tions for development. The purpose of this example is not to show the entirety of a sophisti-
cated architecture being developed, but rather to emphasize the difference in how we arrived
at the architectures of Figure 4 and Figure 5. In Figure 4, the architecture was created out of
the architect’s experience and knowledge. When using ADD, on the other hand, tactics and a
structured set of steps provided design guidance for the creation and nature of each tier. In
this way, each architectural structure is created via an engineering process, rather than simply
being adopted out of habit, intuition, or experience.

Figure 5: A Revised Candidate Architecture – Deployment View (Notation: UML)

In this view, we have not yet specified the precise degree of replication of any of the de-
ployed clients or servers, or the size of the thread pool in each of them. This more detailed
specification is the next step in the design process. Once these characteristics have been
specified, the latency characteristics of the architecture can be evaluated via a performance
queuing model. However, architectural decisions are complex and they interact. For example,
the degree to which changes in the database schema will affect the business rules, Web
server, or client software also needs to be analyzed. Each of the abstraction layers (XML and
ODBC) will mask some class of changes and expose others. And each layer will impose a
performance cost. Similarly, the addition of a load-balancing component will create addi-
tional computation and communication overhead, but will provide the ability to distribute the
load among a larger resource pool.

It is clear that design decisions interact. For this reason, we need an organized method for
understanding the interaction of the many decisions that are made in creating a complex sys-
tem architecture. The ATAM provides software architects with a framework for understand-
ing the technical tradeoffs and risks they face as they make architectural design decisions. In
addition, the CBAM helps software architects consider the return on investment (ROI) of any
architectural decision and provides guidance on the economic tradeoffs involved. Finally,

ATM Client

Transaction Server
(Business Rules)

Database
Server

<<ODBC>>

Web Client

Web Server
(Presentation)

Load
Balancer

<<XML>>

12 CMU/SEI-2004-TR-011

ARID evaluates whether the design can be used by the software engineers who must work
with it.

2.3 Summary

The SEI architecture-centric methods can provide explicit and detailed guidance on eliciting
the architectural requirements, designing the architecture, and analyzing the resulting design:

• The architecture-centric methods place an emphasis on quality attributes rather than func-
tionality.

• The architecture-centric methods help fill gaps in the RUP design process by providing
specific advice on

− the elicitation and documentation of quality attribute requirements
− which design operation will achieve a desired quality attribute response
− how to analyze the result to understand and predict the consequences of the design

decisions in terms of risks, tradeoffs, and ultimately the ROI

• The architecture-centric methods all use common concepts: quality attributes, architec-
tural tactics, and a “views and beyond” approach to documentation that leads to more ef-
ficient and synergistic use [Clements 02b]. Note that the topic of incorporating the
“views and beyond” approach to documentation as activities and artifacts into the RUP is
beyond the scope of this technical report.

Next, we look at each method in more detail.

CMU/SEI-2004-TR-011 13

3 Requirements Identification

A Quality Attribute Workshop (QAW) can be held early in the Inception Phase to elicit and
analyze the required quality attributes of any candidate architecture. To be successful, this
workshop needs to gather a wide group of stakeholders from the business organization. Sce-
narios developed during the QAW can be further refined into use cases, and they can help to
develop the test plan. The QAW contains activities found in the requirements discipline.

3.1 The QAW

The QAW is a facilitated method that engages system stakeholders early in the life cycle to
discover the driving quality attributes of a software-intensive system. The QAW has its roots
in, and was developed to complement, the ATAM. The QAW provides a way to identify im-
portant quality attributes and clarify system requirements before the software architecture has
been created. The QAW elicits, collects, and organizes software quality attribute require-
ments in the form of scenarios.

Figure 6 provides a summary of the inputs, outputs, and participants of the QAW. This figure
is based on a functional modeling notation [IEEE 98] where inputs flow in from the left, out-
puts flow out to the right, and the participants of the method are noted below. More details
about the QAW are available in the report by Barbacci and colleagues [Barbacci 03].

Figure 6: QAW Inputs, Outputs, and Participants

QAW Business drivers
Architectural plan

Business goals
Scenarios
Scenario prioritization
Refined scenarios

Analysis team
Stakeholders

14 CMU/SEI-2004-TR-011

3.2 The QAW and the RUP Life Cycle

The RUP has a workflow defined for requirements that ultimately leads to the definition of
the system requirements of the system gathered in the software requirements specification
(SRS) artifact. The requirements task is one of the important disciplines of the RUP’s Incep-
tion and Elaboration Phases. A substantial amount of effort in the Inception Phase is given to
the discipline of requirements elicitation, capture, documentation, and analysis. Other impor-
tant activities in the Inception Phase include creating the business case and finding a candi-
date architecture.

The systems analyst is responsible for the use case model and leads and coordinates require-
ments elicitation and use-case modeling by outlining the system’s functionality and delimit-
ing the system. The requirements specifier is responsible for the SRS and specifies the details
of one or more parts of the system’s functionality.

The RUP provides well-defined activities and guidelines for producing the use case model,
such as those for holding a requirements workshop as a means of eliciting stakeholder re-
quests. Later, these requests can be refined into use cases during a use case workshop. The
emphasis is on functionality, but any requirements that cannot be captured as a use case are
recorded and to later form the basis for the supplementary specifications.

Nonfunctional requirements are captured during the Inception Phase and early in the Elabora-
tion Phase. There are, within the RUP, some guidelines and placeholders for the inclusion of
nonfunctional requirements. Such placeholders include properties of use cases and the sup-
plementary specifications.

• Use cases have a property called “special requirements” that is defined as “a textual de-
scription that collects all requirements, such as nonfunctional requirements, on the use
case that are not considered in the use case model but that need to be taken care of during
design or implementation.”

• Supplementary specifications include nonfunctional requirements. One example that the
RUP provides for categorizing them is with the FURPS+ model [Grady 92]. That model
describes the major categories as functionality, usability, reliability, performance, and
supportability. The “+” is for additional requirements such as design constraints and im-
plementation, interface, and physical requirements.

A QAW can clearly enhance this process. A QAW would be appropriate for the Inception
Phase and aid in meeting objective 2 of the Inception Phase: “Identify the key system func-
tionality” [Kroll 03]. The QAW would thus provide input to the activities for meeting the
next objective of the Inception phase: “Determine at least one possible solution.”

CMU/SEI-2004-TR-011 15

A QAW could be held again in the Elaboration Phase as a follow-on activity to a QAW that
was held in the Inception Phase. For example, a guideline could be written to hold a QAW
after the requirements workshop. Such a workshop could be held in parallel with the use case
workshop to provide a more focused understanding of the requirements. Or, workshops could
be held for one or more subsystems in a complex system of systems. Instead of a workshop
format, the activities of scenario elicitation and refinement could be performed iteratively by
the requirements specifier, as the SRS is refined.

3.3 The QAW as an Activity in the RUP
Requirements Discipline

The QAW could be modeled as an activity in the requirements discipline (see Figure 7). The
participants, inputs, outputs, and function from Figure 6 correspond to the role, input arti-
facts, resulting artifacts, and steps in Figure 7. The QAW analysis team members play the
role of systems analyst in the RUP.

The inputs to the QAW can come from other RUP artifacts. Business drivers come from the
business vision artifact within the business-modeling discipline. The architectural plan con-
tains information about architecture development plans, including known technical con-
straints such as an operating system (OS), hardware, or middleware prescribed for use; other
systems with which the system must interact; key technical requirements that will drive ar-
chitectural decisions; and existing context diagrams, high-level system diagrams, and de-
scriptions (e.g., Command, Control, Communications, Computer, Intelligence, Surveillance,
and Reconnaissance [C4ISR]). Some of this information comes from the RUP vision docu-
ment artifact [Leffingwell 00]. Other sources of this information may include, for example,
existing systems, legacy systems, and documentation of commercial off-the-shelf (COTS)
products, if they are applicable. These other sources are not produced by the RUP, but rather
are external inputs to the RUP process.

The outputs from the QAW feed into other RUP activities and/or refine other artifacts. For
example, business goals are refined during the QAW and could be fed back to the RUP busi-
ness vision. The scenarios can help determine what is in/out of the system’s scope and can
lead to the creation or refinement of the system context diagram or its equivalent. Scenario
generation can also lead to the creation of use cases. There is no explicit RUP artifact that
corresponds to QAW scenarios, but the information they contain about quality attributes can
be captured as properties of use cases or in the supplementary specification.

16 CMU/SEI-2004-TR-011

Elicit Quality Attribute Scenarios Using the Quality Attribute Workshop (QAW)

Purpose: The Quality Attribute Workshop (QAW) is a facilitated method that engages system stakeholders early

in the life cycle to discover the driving quality attribute requirements of a software-intensive system. The key

points about the QAW are that it is system-centric, stakeholder focused, and used before the software architecture

has been created.

Role: Systems analyst [Analysis team]

Frequency: This activity occurs as required, typically once per iteration in the Inception Phase and once in the

Elaboration Phase.

Steps in the QAW:

1. QAW Presentation and Introductions

2. Business/Programmatic Presentation

3. Architectural Plan Presentation

4. Identification of Architectural Drivers

5. Scenario Brainstorming

6. Scenario Consolidation

7. Scenario Prioritization

8. Scenario Refinement

Input Artifacts:

• business case [business drivers]

• vision document [architectural plan]

Resulting Artifacts:

• business case [QAW refines the business goals,

which provide feedback to the business case]

• supplementary specifications [as repository of

scenarios]

Tool Mentors: None

More Information: [Barbacci 03]

Workflow Details:

• Requirements

• Understand Stakeholder Needs

Figure 7: The QAW as a RUP Activity5

5 Correspondence to SEI terms is included in square brackets.

CMU/SEI-2004-TR-011 17

3.4 Reflections

The RUP fills a need in the SEI’s architecture-centric methods by placing the QAW in a life-
cycle context. One issue that needs to be addressed is how scenarios produced in a QAW can
be used by a software architecture design method such as the ADD method or used by a sub-
sequent evaluation method such as the ATAM. The QAW scenarios tend to be at the system
level, whereas the ADD method scenarios are at the software level. The RUP for System En-
gineering (RUP SE), which is a variant of RUP, has a notion of use case flow down [Cantor
03]. This concept might apply to scenarios, where the initial scenarios generated in the QAW
are partitioned among the software, hardware, people, and data that make up the system, and
those allocated to software flow down to the ADD method or ATAM.

The QAW fills a need in the RUP by providing an explicit method for gathering quality at-
tribute scenarios from stakeholders and a six-part template for representing scenarios. The
RUP has placeholders for this kind of information in the properties of use cases and the sup-
plementary specifications. The QAW approach would favor augmenting use cases with qual-
ity attribute information in the six-part scenario format. This format could be captured as a
RUP guideline for structuring what otherwise would be unstructured text descriptions of non-
functional requirements. These scenarios would also be used as architecturally significant
requirements when defining the candidate architecture.

Not only does this approach give the systems analyst guidelines for being more precise about
the meaning of quality attributes, but it also brings more prominence to the quality attributes
and their role in shaping the architecture.

In addition to the more immediate benefits cited above, the scenarios continue to provide
benefits during later phases of development. Refined scenarios can be documented as se-
quence diagrams or collaboration diagrams to capture the behavior of elements in the archi-
tecture. Stakeholders’ concerns and any other rationale information that is captured should be
recorded individually in a form that can be included in the appropriate architecture documen-
tation. Scenarios provide input for analysis throughout the life of the system and can be used
to drive test-case development during implementation testing.

18 CMU/SEI-2004-TR-011

CMU/SEI-2004-TR-011 19

4 Architecture Design

The Attribute-Driven Design (ADD) method defines a software architecture by basing the
design process on the quality attributes that the software must fulfill; thus it can create a
“candidate architecture” as defined in the RUP. The ADD method can and should be held
early in the Elaboration Phase to set the stage for a more complete architecture design.
Among the exit criteria for the Elaboration Phase is a software architecture.

4.1 The ADD Method

The ADD method creates and documents a software architecture in a number of views: most
commonly, a module decomposition view, a concurrency view, and a deployment view. The
ADD method depends on an understanding of the system’s constraints and its functional and
quality requirements. Figure 8 provides a summary of the method’s inputs, outputs, and par-
ticipants. More details about the ADD method are available in the book by Bass and col-
leagues [Bass 03].

Figure 8: The ADD Method’s Inputs, Outputs, and Participants

4.2 ADD and the RUP Life Cycle

The RUP has a workflow defined for analysis and design that ultimately leads to the software
architecture. Architecture design is addressed primarily in the Inception and Elaboration
Phases of the RUP. The RUP software architect is responsible for the software architecture,
which includes the key technical decisions that constrain the design and implementation of
the project. The software architect might also construct an architectural proof-of-concept dur-
ing the RUP’s Inception Phase. A candidate architecture is defined early in the Elaboration
Phase, and later refined.

ADD
Decomposition
 of the architecture
Refined scenarios

Software Architect

Constraints
Functional requirements
Quality requirements

ADD
Decomposition
 of the architecture
Refined scenarios

Software Architect

Constraints
Functional requirements
Quality requirements

20 CMU/SEI-2004-TR-011

The milestone that concludes the Elaboration Phase is the Life-Cycle Architecture (LCA)
Milestone. The artifacts associated with this milestone include the software architecture
document organized along a set of views, chosen from the “4+1” set (logical, implementa-
tion, process, deployment, and use case) or any other suitable set of views for the project, an
executable architectural prototype, and the architectural mechanisms. The architecture is used
by the stakeholders and could be modified in subsequent phases. Even though the architec-
ture is produced as part of this phase, it may be revisited in later phases as more use cases,
and thus requirements, are known.

Architecture is first addressed in the RUP Inception Phase during the workflow detail “Per-
form Architectural Synthesis.” One of the outcomes is the production of an architectural
proof-of-concept, the purposes of which are to get feedback from the customer, so the team
can better document what the customer wants, and to get a better understanding of the tech-
nology and associated risks. The proof-of-concept may take the form of a list of known tech-
nologies (e.g., frameworks, patterns) that seem appropriate to the solution; a sketch of a con-
ceptual model of a solution using a notation such as the Unified Modeling Language (UML);
a simulation of a solution; or an executable prototype. The team might implement bits of the
technology or begin to make decisions about what to purchase.

An initial sketch of the architecture is defined early in the Elaboration Phase. This initial
sketch is known as the candidate architecture. The architecture is next addressed in the RUP
Elaboration Phase during the workflow detail “Refine Architecture.” It is documented in the
software architecture document (SAD) and implemented as an evolving executable architec-
ture.

ADD can enhance this process; it is an activity performed by the software architect that con-
tributes to the initial software architecture design known as the candidate architecture. It is a
specific design method with a detailed set of steps aimed at producing an architecture that
both satisfies the desired quality and business goals and provides the framework for realizing
the desired functionality.

Activities of the ADD method can enrich some of the workflow details in the RUP analysis
and design discipline, specifically, “Define a Candidate Architecture” and “Analyze Behav-
ior.” In the “Define a Candidate Architecture” detail, the focus is on identifying the architec-
tural drivers and producing an initial structure of the architecture that satisfies these qualities.
The ADD Method uses architectural tactics associated with quality attribute scenarios to help
guide this activity.

In the “Analyze Behavior” detail, behavioral descriptions provided by the requirements are
transformed into a set of elements. The ADD method provides steps for allocating functional-
ity (from the other requirements) to the structure identified in the candidate architecture. The
other workflow details (“Refine the Architecture,” “Design Components,” and “Design the
Database”) begin where ADD ends.

CMU/SEI-2004-TR-011 21

The architecture created as an output of ADD is a representation of the most important design
choices. It describes a system as containers for functionality and interactions among them.
Because it is the first articulation of the architecture during the design process, it is necessar-
ily coarse grained.

The outputs of the ADD method are the first several levels of a module decomposition view
of an architecture and other views as appropriate. The method typically uses the following
views to document the software architecture: a module view that contains responsibilities of
design elements and the data interactions among those elements; a concurrency view that
contains threads of control and the synchronization relationships among design elements; and
a deployment view that shows the allocation of design elements to processors. These views
are described in the “views and beyond” approach to documenting software architectures
[Clements 02a], which also describes a process for choosing appropriate views based on the
stakeholders and their documentation needs.

During the subsequent design steps (which are not part of the ADD method), the containers
for functionality are specified in more detail. These steps involve producing a more formal
specification of the behavior of containers (modeled by state charts and interaction diagrams)
and a more formal specification of interactions (signatures and protocols).

4.3 ADD as an Activity in the RUP Analysis and
Design Discipline

The ADD method could be modeled as an activity within the Analysis and Design discipline
of the RUP (see Figure 9). The participants, inputs, outputs, and function from Figure 8 cor-
respond to the role, input artifacts, resulting artifacts, and steps in Figure 9. The software ar-
chitect in the ADD method corresponds to the software architect role in the RUP.

The inputs to the ADD method, shown in Figure 8, come from other RUP artifacts. The con-
straints, functional requirements, and quality requirements correspond to artifacts from the
requirements discipline. Constraints are also documented in the architectural proof-of-
concept. Functional requirements are documented in the use case model as use cases. Also, as
mentioned in the prior discussion of the QAW, quality requirements are documented in the
supplementary specifications and in properties of the use cases. The ADD method mandates
that these quality requirements be expressed as scenarios.

22 CMU/SEI-2004-TR-011

Design the Software Architecture Using the Attribute-Driven Design (ADD) Method

Purpose: The Attribute-Driven Design (ADD) Method is an approach to defining software architectures by bas-

ing the design process on the architecture’s quality attribute requirements. It follows a recursive decomposition

process where, at each stage in the decomposition, architectural tactics and patterns are chosen to satisfy a set of

quality attribute scenarios.

Role: Software architect [Software architect]

Frequency: This activity is optional in the Inception Phase. It should occur in the first iteration of the Elaboration

Phase and can recur in later iterations if substantial changes or additions to the software architecture need to be

explored.

Steps:

1. Choose the module to decompose.

2. Refine the module according to these steps:

a. Choose the architectural drivers.

b. Choose an architectural pattern that satisfies

the architectural drivers.

c. Instantiate modules and allocate functionality

from the use cases. Represent the results using multiple views.

d. Define interfaces of the child modules.

e. Verify and refine the use cases and quality scenarios

and make them constraints for the child modules.

3. Repeat the above steps for the next module.

Input Artifacts:

• vision [constraints]

• architectural proof-of-concept

[constraints]

• use case model [functional requirements, quality

requirements]

• supplementary specifications

[quality requirements]

Resulting Artifacts:

• software architecture document [decomposition

of the architecture expressed in module, concur-

rency, and deployment views]

Tool Mentors: None

More Information: [Bass 03]

Workflow Details:

• Analysis and Design

• Define a Candidate Architecture

• Perform Architectural Synthesis

Figure 9: The ADD Method as a RUP Activity6

6 Correspondence to SEI terms is included in square brackets.

CMU/SEI-2004-TR-011 23

The outputs from the ADD method feed into other RUP activities and refine other artifacts.
For example, the decomposition of the architecture corresponds to (part of) the design model
artifact and the set of views captured in the software architecture document artifact in the
RUP. The refined scenarios are made into or discovered as part of detailed use cases.

4.4 Reflections

The RUP fills a need in the SEI methods by placing the ADD method in a life-cycle context.
The ADD method produces a course-grained architecture, and the RUP provides more guid-
ance on how to proceed to detailed design and implementation. Incorporating the ADD
Method into the RUP involves modifying the steps dealing with the high-level design of the
architecture and then following the process as described by the RUP.

Similarly, ADD fills a need within the RUP: it provides a step-by-step approach for defining
a candidate architecture or a more detailed architecture that can be evaluated by the ATAM or
used as a blueprint for implementation. The ADD method could be modeled as an activity
within the Analysis and Design discipline of the RUP (see Figure 9). Scenarios and architec-
tural tactics are critical to architecture design. The ADD method differs from the RUP guide-
lines by its emphasis on addressing quality attribute requirements in an explicit way using
architectural tactics. The quality attributes shape the structure of the architecture, with func-
tionality being allocated to that structure.

The ADD method also differs from the RUP guidelines in that it provides more abstract no-
tions of concurrency and deployment views early in the architecture design. These abstrac-
tions allow the architect greater flexibility and the opportunity to defer making more detailed
decisions to a more opportune time. The candidate architecture defines, among other things,
the initial layering and organization of the system, which provides a sort of module view as
prescribed by the ADD method. The concurrency view prescribed by the ADD method shows
conceptual threads of control and synchronization relationships among design elements that
are more abstract than the notion of active classes; however, these conceptual threads are not
called out in the candidate architecture. The RUP runtime architecture addresses concurrency
at the more detailed level of processes and system threads. The deployment view prescribed
by the ADD method shows the allocation of responsibilities to the deployment environment.
Again, these responsibilities are not called out in the candidate architecture. The deployment
view of the “4+1” views approach shows deployment at the more detailed level of task allo-
cation to physical nodes.

24 CMU/SEI-2004-TR-011

CMU/SEI-2004-TR-011 25

5 Architecture Evaluation with the
ATAM/CBAM

A combined Architecture Tradeoff Analysis Method (ATAM) and Cost Benefit Analysis
Method (CBAM) as described by Nord [Nord 03] is best done late in the Elaboration Phase
to ensure that the architecture is complete, or at the end of the Transition Phase to prepare for
the next evolution cycle. This activity also highlights the risks that might be faced by further
development, maintenance, and evolution.

5.1 The Integrated ATAM/CBAM

The ATAM provides software architects with a framework for understanding the technical
tradeoffs and risks they face as they make design decisions. It does not provide any guidance
for understanding economic tradeoffs. The CBAM helps software architects consider the ROI
of any architectural decision and provides guidance on the economic tradeoffs involved. The
CBAM takes the architectural decision analysis performed during an ATAM evaluation and
helps make it part of a strategic roadmap for software design and evolution by associating
priorities, costs, and benefits with each architectural decision.

Figure 10 provides a summary of the inputs, outputs, and participants of the combined
ATAM/CBAM method. More details about the method are available in the report by Nord
and colleagues [Nord 03].

Figure 10: The Combined ATAM/CBAM Inputs, Outputs, and Participants

ATAM/CBAM

Evaluation team
Project decision makers
Architecture stakeholders

Business drivers
Architectural documentation

Business goals
Scenarios
Prioritization of scenarios
Architectural approaches
Prioritization of approaches
Risks
Non-risks
Sensitivity points
Tradeoffs
Risk themes
Return on investment
Quantification of risk

26 CMU/SEI-2004-TR-011

5.2 The ATAM/CBAM and the RUP Life Cycle

The RUP’s “Review the Architecture” activity can occur at different portions of the develop-
ment life cycle (as can an ATAM evaluation).

• At the end of the Inception Phase in an initial development cycle, there is usually not
much of a concrete architecture in place. However, a review may uncover some unrealis-
tic objectives, missing pieces, missed opportunities for reusing existing products, and so
forth.

• The most natural place for a software architecture evaluation is at the end of the Elabora-
tion Phase. (It is even possible to have a small evaluation at the end of each iteration in
this phase.) This phase is focused primarily on exploring the requirements in detail and
baselining an architecture. An architecture review is mandated by the RUP at this mile-
stone. During this phase, a broad range of architectural qualities is examined.

• More focused evaluations may take place during the Construction Phase to examine spe-
cific quality attributes, such as performance or safety, and at the end of the Construction
Phase to identify any lingering problems that may make the product unfit for delivery to
its end users.

• Damage-control evaluations may take place late in the Construction or even Transition
Phases, when there have been major problems (for example, construction does not com-
plete or an unacceptable number of problems arises in the installed base during the transi-
tion).

• An evaluation may take place at the end of the Transition Phase, in particular to inventory
reusable assets for an eventual new product or evolution cycle.

The ATAM is in keeping with the types of reviews categorized by the RUP: representation
driven, information driven, and scenario driven. The CBAM prepares for the next mainte-
nance iteration by considering costs and benefits, ultimately leading to a determination of the
ROI. The RUP business case documents the economic value of the product, and CBAM-type
reasoning can contribute to this evaluation.

5.3 The ATAM and CBAM as Activities in the RUP
Analysis and Design Discipline

The RUP has a workflow defined for the Analysis and Design discipline that includes activi-
ties for reviewing the architecture. The ATAM and CBAM can be modeled as RUP activities
(see Figure 11 and Figure 12).

CMU/SEI-2004-TR-011 27

Evaluate the Software Architecture Using the Architecture Tradeoff Analysis Method (ATAM)

Purpose: The purpose of the ATAM is to assess the consequences of architectural decisions in light of quality

attribute requirements and business goals.

Role: Technical reviewer [Evaluation team]

Frequency: This activity occurs at least once per iteration, especially during the Elaboration Phase.

Steps:

1. Present the ATAM.

2. Present business drivers.

3. Present architecture.

4. Identify architectural approaches.

5. Generate quality attribute utility tree.

6. Analyze architectural approaches.

7. Brainstorm and prioritize scenarios.

8. Analyze architectural approaches.

9. Present results.

Input Artifacts:

• business case, vision [business drivers]

• software architecture document [architectural

documentation]

• supplementary specifications [scenarios]

Resulting Artifacts:

• review record [supplemented with risk themes

and the impact they have on achieving the busi-

ness goals]

• software architecture document [annotated with

sensitivity points and tradeoffs]

Tool Mentors: None

More Information: [Bass 03]

Workflow Details:

• Analysis and Design

• Refine the Architecture

Figure 11: The ATAM as a RUP Activity7

7 Correspondence to SEI terms is included in square brackets.

28 CMU/SEI-2004-TR-011

Evaluate the ROI of Architectural Approaches Using the Cost Benefit Analysis Method (CBAM)

Purpose: The aim of the CBAM is to explicitly associate costs, benefits, and uncertainty with architectural deci-

sions, as a means of optimizing the choice of such decisions.

Role: Technical reviewer [Evaluation team]

Frequency: This activity is coupled with the ATAM.

Steps:

1. Collate scenarios.

2. Refine scenarios.

3. Prioritize scenarios.

4. Assign intra-scenario utility.

5. Develop architectural strategies and determine quality-attribute-response levels.

6. Determine the utility of the expected quality-attribute-response levels by interpolation.

7. Calculate the total benefit obtained from an architectural strategy.

8. Choose architectural strategies based on return on investment (ROI).

9. Confirm results with intuition.

Input Artifacts:

• business case [business drivers]

• supplementary specification [scenarios]

• software architecture document [supplemented

with architectural strategies]

Resulting Artifacts:

• supplementary specification [including refined

scenarios]

• software architecture document [annotated with

ROI determinations]

Tool Mentors: None

More Information: [Bass 03]

Workflow Details:

• Analysis and Design

• Refine the Architecture

Figure 12: The CBAM as a RUP Activity8

The participants, inputs, outputs, and function from Figure 10 correspond to the role, input
artifacts, resulting artifacts, and steps in Figure 11 and Figure 12.

The ATAM/CBAM evaluation team members play the role of the RUP technical reviewer,
who is responsible for contributing feedback to the review process by reviewing require-
ments, architecture, design, and code. The ATAM/CBAM project decision makers correspond
to the RUP project manager and software architect. The ATAM/CBAM architecture stake-

8 Correspondence to SEI terms is included in square brackets.

CMU/SEI-2004-TR-011 29

holders correspond to workers in the various disciplines and a business team. These stake-
holders include the systems analyst and the requirements specifier for the requirements disci-
pline, and the software architect, designer, user-interface designer, database designer, capsule
designer, and test designer in the Inception Phase. The systems analyst produces the require-
ments management plan, the glossary, quality attributes, use case models, supplementary
specifications, stakeholder requests, the vision document, and a user-interface prototype, ei-
ther by storyboard or code. The requirements specifier is in charge of use cases for the soft-
ware requirements specification, a use case package, and the software requirements docu-
ment. In the Elaboration Phase, the architect produces the deployment model, software
architecture document, analysis model, design model, architectural proof-of-concept, and
reference architecture, and the interface, signals, events, and protocols for real-time systems.
The capsule designer produces the timing capsule, if needed; the designer produces the de-
tailed design of the architectural components.

The inputs to the combined ATAM/CBAM come from other RUP artifacts. The
ATAM/CBAM business drivers describe the system’s most important functions (any relevant
technical, managerial, economic, or political constraints; the business goals and context as
they relate to the development project; and the major stakeholders) and the architectural driv-
ers (that is, the major quality attribute goals that shape the architecture). This information can
come from the RUP business vision artifact (from the business-modeling discipline) and the
software requirements specification (consisting of use cases and the supplementary specifica-
tion).

The ATAM/CBAM architectural documentation describes the driving architecture require-
ments and important architectural information: a context diagram; module or layer view;
component-and-connector view; deployment view; and the architectural approaches, patterns,
or tactics employed, including which quality attributes are addressed and how. These re-
quirements come from the RUP’s software architecture document and are supported by the
guidelines for using architectural views.

The outputs from the combined ATAM/CBAM may feed into other RUP activities and/or re-
fine other artifacts. For example, business goals are elicited or reviewed during the ATAM
and could be fed back to the RUP business vision. The scenarios can help refine the supple-
mentary specifications. Sensitivity points, tradeoffs, and the ROI provide enhanced documen-
tation for the architecture. Risks and risk themes can provide feedback to the business goals
and the project management activities. All of these outputs from the combined ATAM/CBAM
provide feedback to the architect to make educated design decisions.

30 CMU/SEI-2004-TR-011

5.4 Reflections

The RUP fills a need in the architecture-centric methods by placing the ATAM/CBAM in a
life-cycle context. It places the ROI computed by the CBAM in the larger context of project
and product costs and benefits as documented in the business casea project management
artifact used to make go/no-go decisions at key milestones, such as the Life-Cycle Objective
and Life-Cycle Architecture Milestones.

The ATAM is an architecture evaluation method that fits in with the RUP by defining a step-
by-step approach to evaluating a software architecture. The RUP has a review record artifact
that records problems and acts as a placeholder for the risks uncovered by the ATAM. But the
ATAM adds additional value in producing risk themes and showing the impact they have on
achieving the business goals. The ATAM makes the evaluation of decisions to accommodate
quality attribute requirements explicit. The ATAM also contributes artifacts not necessarily
found in the review record. Sensitivity points and tradeoffs provide enhanced documentation
for the architecture, concentrating on areas where risk is potentially highest. Scenarios pro-
vide feedback for existing and future requirements. These ATAM artifacts all contribute to-
ward improving the architecture.

The CBAM provides more details on the business consequences of architecture decisions
implied by the architecture, allowing the architect to make informed choices among architec-
tural options.

CMU/SEI-2004-TR-011 31

6 Architecture Evaluation with ARID

Software architectures often consist of complicated subdesign problems. If these intermediate
designs are inappropriate, the architecture can be undermined. Active Reviews for Intermedi-
ate Designs (ARID) is a lightweight evaluation approach that can be used to examine a de-
sign as it is developed and before it is released. For example, it may be used in the Elabora-
tion Phase as the overall architecture is being designed to determine the design’s viability.

6.1 ARID

ARID is a scenario-based, stakeholder-centric review of a portion of a software architecture,
typically, a coherent software-invocable service. ARID blends Active Design Reviews [Par-
nas 01] with the ATAM, creating a technique for investigating partially completed designs.
The review is focused on whether the design is sufficient to support the software developers
who will use it. ARID helps to find issues and problems that hinder the successful use of the
design as it has been conceived.

Figure 13 provides a summary of ARID’s inputs, outputs, and participants. Clements de-
scribes ARID in more detail [Clements 00].

Figure 13: ARID’s Inputs, Outputs, and Participants

ARID
Design briefing
Scenarios
Coded scenarios
Issues

Seed scenarios
Design of available services

Evaluation team
Project decision makers
Architecture stakeholders

ARID
Design briefing
Scenarios
Coded scenarios
Issues

Seed scenarios
Design of available services

Evaluation team
Project decision makers
Architecture stakeholders

32 CMU/SEI-2004-TR-011

6.2 ARID and the RUP Life Cycle

The RUP has a workflow defined for analysis and design that includes activities for review-
ing the architecture. ARID is used for reviewing components of that architecture; it represents
a combination of analysis approaches: representation driven, information driven, and scenario
driven. It could occur as a form of architecture review during an iteration within the Elabora-
tion Phase. An ARID could also occur at the end of the Elaboration Phase following an
ATAM evaluation for more detailed analysis. Finally, ARID could occur as part of a design
review in the Construction Phase.

6.3 ARID as an Activity in the RUP Analysis and
Design Discipline

ARID is modeled as an activity within the analysis and design discipline of the RUP (see
Figure 14). The participants, inputs, outputs, and function from Figure 13 correspond to the
role, input artifacts, resulting artifacts, and steps in Figure 14.

Workers such as the designers and system architects are the primary stakeholders for the re-
view. The inputs to ARID come from other RUP artifacts, such as parts of the candidate or
executable architecture. The outputs from ARID feed into other RUP activities, such as defin-
ing or refining the executable architecture and/or refining other artifacts.

CMU/SEI-2004-TR-011 33

Evaluate Architectural Service Using Active Reviews for Intermediate Designs (ARID)

Purpose: ARID is a scenario-based, stakeholder-centric review of a portion of an architecture, typically, a coher-

ent software-invocable service. The review is focused on whether the design is sufficient for the software devel-

opers who will use it.

Role: Technical reviewer [Evaluation team, Architecture stakeholder]

Frequency: This activity occurs at least once per iteration, especially during the Elaboration Phase. It is optional

during the Construction Phase for detailed analysis of the interface specifications.

Steps:

1. Identify the reviewers.

2. Prepare the design briefing.

3. Prepare the seed scenarios.

4. Prepare the materials.

5. Present ARID.

6. Present the design.

7. Brainstorm and prioritize scenarios.

8. Apply the scenarios.

9. Summarize.

Input Artifacts:

• software architecture document [design of avail-

able services]

• supplementary specifications [seed scenarios]

Resulting Artifacts:

• review record [annotated with issues]

Tool Mentors: None

More Information: [Clements 02a]

Workflow Details:

• Analysis and Design

• Refine the Architecture

• Analyze Behavior

Figure 14: The ARID Method as a RUP Activity9

9 Correspondence to SEI terms is included in square brackets.

34 CMU/SEI-2004-TR-011

6.4 Reflections

The RUP fills a need in the architecture-centric methods by placing ARID in a life-cycle con-
text. ARID provides an architectural evaluation method, but only for the specific components
of the architecture that are investigated in greater detail.

CMU/SEI-2004-TR-011 35

7 Summary

In this report, we have summarized the RUP and shown where specific SEI architecture-
centric methods can help to produce artifacts required in different RUP phases. Table 1 shows
the highlights.

Method Role Discipline Workflow Detail Artifacts Affected

QAW Systems
analyst

Requirements Understand Stakeholder Needs • Business case

• Supplementary
specifications

ADD Software
architect

Analysis &
Design

Define a Candidate Architecture
Perform Architectural Synthesis

Software
architecture
document

ATAM/
CBAM

Technical
reviewer

Analysis &
Design

Refine the Architecture • Review record

• Software
architecture
document

ARID Technical
reviewer

Analysis &
Design

Refine the Architecture
Analyze Behavior

Review record

Table 1: The Architecture-Centric Methods as RUP Activities

We have also shown how specific SEI methods can enhance the activities and artifacts of the
RUP, thus enhancing the value of the RUP as a design process. The benefit of including the
SEI methods is to address quality attributes in an explicit, methodical, engineering-principled
way. We believe that quality attribute requirements drive the software architecture and that
architecture-centric activities (with an explicit focus on quality attributes) drive the software
system life cycle.

The RUP artifacts from the Initiation and Elaboration Phases can benefit the most from the
application of SEI methods. This fact implies that the architecture-centric methods can be
done early in the RUP life cycle (which we have always claimed). However, as with all such
methods, the RUP, augmented with architecture-centric methods, is a “garbage-in, garbage-
out” process. The willing participation of the appropriate stakeholders is crucial to the suc-
cess of such methods. Properly managed, the architecture-centric methods can be a low-cost
addition to the RUP that will dramatically increase the quality of the systems and products
developed.

36 CMU/SEI-2004-TR-011

CMU/SEI-2004-TR-011 37

References

URLs are valid as of the publication date of this document.

[Bachmann 02] Bachmann, F.; Bass, L.; & Klein, M. Illuminating the Fundamental
Contributors to Software Architecture Quality (CMU/SEI-2002-TR-
025, ADA407778). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2002.
http://www.sei.cmu.edu/publications/documents/02.reports
/02tr025.html

[Barbacci 03] Barbacci, M. R.; Ellison, R.; Lattanze, A. J.; Stafford, J. A.; Wein-
stock, C. B.; & Wood, W. G. Quality Attribute Workshops (QAWs),
Third Edition (CMU/SEI-2003-TR-016, ADA418428). Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon University,
2003. http://www.sei.cmu.edu/publications/documents/03.reports
/03tr016.html

[Bass 03] Bass, L.; Clements, P.; & Kazman, R. Software Architecture in
Practice, Second Edition. Boston, MA: Addison-Wesley, 2003.

[Boehm 96] Boehm, B. “Anchoring the Software Process.” IEEE Software 13, 4
(July 1996): 73-82.

[Cantor 03] Cantor, M. “Rational Unified Process for Systems Engineering.”
Rational edge: the e-zine for the rational community (September
2003). http://www-106.ibm.com/developerworks/rational
/library/content/RationalEdge/sep03/m_systemarch_mc.pdf

[Clements 00] Clements, P. Active Reviews for Intermediate Designs (CMU/SEI-
2000-TN-009, ADA383775). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 2000.
http://www.sei.cmu.edu/publications/documents/00.reports
/00tn009.html

http://www.sei.cmu.edu/publications/documents/02.reports
http://www.sei.cmu.edu/publications/documents/03.reports
http://www-106.ibm.com/developerworks/rational
http://www.sei.cmu.edu/publications/documents/00.reports

38 CMU/SEI-2004-TR-011

[Clements 02a] Clements, P.; Kazman, R.; & Klein, M. Evaluating Software Archi-
tectures: Methods and Case Studies. Boston, MA: Addison-Wesley,
2002.

[Clements 02b] Clements, P.; Bachmann, F.; Bass, L.; Garlan, D.; Ivers, J.; Little,
R.; Nord, R.; & Stafford, J. Documenting Software Architectures:
Views and Beyond. Boston, MA: Addison-Wesley, 2002.

[Grady 92] Grady, R. Practical Software Metrics for Project Management and
Process Improvement. Englewood Cliffs, NJ: Prentice-Hall, 1992.

[IBM 04] IBM. Rational Unified Process. http://www-306.ibm.com
/software/awdtools/rup/ (July 2004).

[IEEE 98] Institute of Electrical and Electronics Engineers. IEEE Standard for
Functional Modeling Language (IEEE Std 1320.1-1998). New
York, NY: IEEE Computer Society, 1998 (ISBN 0-738-10340-3).

[Jacobson 99] Jacobson, Ivar; Booch, Grady; & Rumbaugh, James. The Unified
Software Development Process. Boston, MA: Addison-Wesley,
1999.

[Kazman 96] Kazman, R.; Abowd, G.; Bass, L.; & Clements, P. “Scenario-Based
Analysis of Software Architecture.” IEEE Software 13, 6 (Nov.
1996): 47-55.

[Kazman 00] Kazman, R.; Klein, M.; & Clements, P. ATAM: Method for Archi-
tecture Evaluation (CMU/SEI-2000-TR-004, ADA382629). Pitts-
burgh, PA: Software Engineering Institute, Carnegie Mellon Uni-
versity, 2000. http://www.sei.cmu.edu/publications
/documents/00.reports/00tr004.html

[Kazman 02] Kazman, R.; Asundi, J.; & Klein, M. Making Architecture Design
Decisions: An Economic Approach (CMU/SEI-2002-TR-035,
ADA408740). Pittsburgh, PA: Software Engineering Institute, Car-
negie Mellon University, 2002. http://www.sei.cmu.edu
/publications/documents/02.reports/02tr035.html

http://www-306.ibm.com
http://www.sei.cmu.edu/publications
http://www.sei.cmu.edu

CMU/SEI-2004-TR-011 39

[Kazman 03] Kazman, R.; Nord, R. L.; & Klein, M. A Life-Cycle View of Archi-
tecture Analysis and Design Methods (CMU/SEI-2003-TN-026,
ADA421679). Pittsburgh, PA: Software Engineering Institute, Car-
negie Mellon University, 2003.
http://www.sei.cmu.edu/publications/documents/03.reports
/03tn026.html

[Kroll 03] Kroll, Per & Kruchten, Philippe. The Rational Process Made Easy:
A Practitioner’s Guide to the RUP. Boston, MA: Addison-Wesley,
2003.

[Kruchten 95] Kruchten, P. “The 4+1 View Model of Architecture.” IEEE Soft-
ware 12, 6 (November 1995): 42-50.

[Kruchten 04] Kruchten, P. The Rational Unified Process: An Introduction, Third
Edition. Boston, MA: Addison-Wesley, 2004.

[Leffingwell 00] Leffingwell, Dean & Widrig, Don. Managing Software Require-
ments. Boston, MA: Addison-Wesley, 2000.

[Nord 03] Nord, R.; Barbacci, M.; Clements, P.; Kazman, R.; O’Brien, L.; &
Tomayko, J. Integrating the Architecture Tradeoff Analysis Method
(ATAM) with the Cost Benefit Analysis Method (CBAM)
(CMU/SEI-2003-TN-038, ADA421615). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2003.
http://www.sei.cmu.edu/publications/documents/03.reports
/03tn038.html

[Parnas 01] Parnas, D. & Weiss, D. Ch. 17, “Active Design Reviews,” 337-351.
Software Fundamentals: Collected Papers by David L. Parnas.
Boston, MA: Addison-Wesley, 2001.

http://www.sei.cmu.edu/publications/documents/03.reports
http://www.sei.cmu.edu/publications/documents/03.reports

40 CMU/SEI-2004-TR-011

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

July 2004

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Integrating Software-Architecture-Centric Methods into the Rational
Unified Process

5. FUNDING NUMBERS

F19628-00-C-0003

6. AUTHOR(S)

Rick Kazman, Philippe Kruchten, Robert L. Nord, James E. Tomayko
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2004-TR-011

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

ESC-TR-2004-011

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

The Rational Unified Process (RUP) is used broadly by software developers. This technical report fits the
Carnegie Mellon Software Engineering Institute’s (SEI’s) architecture-centric methods into the framework of
the RUP. These methods include the Architecture Tradeoff Analysis Method, the SEI Quality Attribute Work-
shop, the SEI Attribute-Driven Design method, the SEI Cost Benefit Analysis Method, and SEI Active Reviews
for Intermediate Design. Since the key process milestone of the Elaboration Phase of the RUP is a completed
architecture, the architecture-centric methods appear early in the process during the first two phases (i.e., In-
ception and Elaboration). This report presents a summary of the RUP and then examines the potential uses
of the SEI’s architecture-centric methods.

14. SUBJECT TERMS

architecture-centric methods, Architecture Tradeoff Analysis Method,
ATAM, Active Reviews for Intermediate Design, ARID, Attribute-
Driven Design method, ADD method, Cost Benefit Analysis Method,
CBAM, Rational Unified Process, RUP

15. NUMBER OF PAGES

50

16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Integrating Software- Architecture-Centric Methods into the Rational Unified Process
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	1 Introduction
	2 Software Architecture and the RUP
	3 Requirements Identification
	4 Architecture Design
	5 Architecture Evaluation with the ATAM/CBAM
	6 Architecture Evaluation with ARID
	7 Summary
	References

