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Abstract

This is the first in a series of reports that illustrate the use of model problems in the design of a 
system. The problem considered is measurement-to-track association. A “track” represents the 
state data about an object in the environment, and has a set of associated attributes. “Measure-
ment-to-track association” is the process of determining the relation between a measurement 
and an existing track. In this process, tracks that meet particular attribute criteria can be 
selected via filters. This report examines the development and application of filters that can be 
used as selector mechanisms. The report also presents an initial design of the model problem, 
by using concepts and constructs from Unified Modeling Language (UML), Executable UML 
(xUML), and Object-Oriented Analysis (OOA). Also covered are possible extensions to this 
work, related to performance considerations, additional filter types, and the distribution of fil-
ter information.
CMU/SEI-2003-TR-020 ix
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1 Introduction

There are many issues in the development of large, complex, distributed systems. There are 
just as many approaches to dealing with these problems. In this report we start to develop a 
model problem that is representative of an important problem for a particular class of systems. 
The problem considered is measurement-to-track association and the development (and appli-
cation) of filters that can be used as a selector mechanism. These filters must be sufficiently 
general that they can be constructed, and applied to, an arbitrary class/object combination. 

This is the first in a series of reports that illustrate the use of model problems in the design of a 
system. This report focuses on the specification of the problem and an initial design. The 
choice of a final design is influenced by many factors. In this case, we are especially interested 
in performance properties of the system. Hence, subsequent work will illustrate the use of a 
qualitative performance model, as well as quantitative aspects of that model to yield a solu-
tion. Performance considerations can often drive a solution approach and there are iterations 
between a design and information concerning the performance of that design. 

This report is organized in the following manner: In Section 2 we describe the role of model 
problems in general, and then specialize that discussion to the problem at hand. A Unified 
Modeling Language representation of the problem appears in Section 3. Possible extensions of 
this work can be found in Section 4. A brief summary of the report appears in Section 5. A 
number of appendices accompany this report which describe details associated with use cases, 
classes, sequence diagrams, and a potential alternate design for the model problem. 

We acknowledge discussions with Holly Hamilton and Brad Leon during the development of 
this report.
CMU/SEI-2003-TR-020 1
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2 Model Problem

2.1 Model Problem Selection Criteria

It is appropriate to briefly describe how we use the term model problem. In assessing the selec-
tion of a model problem we are concerned with several factors, among them

• Is the model problem common to the design of a system? Although there are many aspects 
of the design of a system, there are cases where such aspects have a recurring theme. 
Because such themes may appear in many aspects of the solution, the more common they 
are, the more likely a solution to them will have value. That is, one hopes that the solution 
to a particular model problem can be reused across the design of the system.

• Does the model problem help mitigate a risk? There are many potential risks associated 
with the design of a system. We are concerned with problems that present a risk whose 
consequences could adversely affect some aspect of system operation. In particular, the 
aspects we are concerned with are those related to system performance, reliability, or other 
quality attributes. 

• Does the solution of the model problem lend itself to reuse in other contexts? For example, 
suppose one wishes to develop a performance model of a system. If it is possible to 
develop a performance characterization of the model problem, then the understanding of 
that performance characterization may be applied to other contexts as well. 

Various characteristic problems inherent in a system may exhibit different aspects, related to 
the above. Of course, when a model is characterized by multiple characteristics, it assumes 

even more importance to the successful development of a system solution.1

2.2 Model Problem Definition

The overall context for the model problem treated in this report is track management. We 
define a track to represent the state data about an object in the environment. A track has a set 

1. Note that in no way do we use the term model problem to be synonymous with a toy problem.
Toy problems are used for discovery or familiarization and are usually meant to be thrown away.
Model problems, on the other hand, are focused on solving a particular problem and the results
are documented to guide design and implementation.
CMU/SEI-2003-TR-020 3



of associated characteristics, or attributes. For example, an aircraft might have position and 
speed as attributes. The context for the overall problem appears in Figure 1.

The processing suggested in Figure 1 includes the following:

• There is a set of tracks in the environment.

• Sensors provide measurements about tracks. Sensors may be of different types.

• Platforms contain one or many sensors.

We do not seek to identify all the details associated with the basic processing shown in Figure 
1. For example, a significant problem is the distribution of information (such as track data or 
sensor measurements) among multiple platforms. There clearly is a difference between a plat-
form-centric view of the environment and a multi-platform view of the environment!

An interesting aspect of track management deals with association as defined below:

association: the process of determining the relation between a measurement 
and an existing track. 

We will call this type of association measurement-to-track association. During measurement-
to-track association, initially there is a set of tracks. At a time t a sensor performs a measure-

ment of the environment which results in performing the following operational thread:2

1. [Input] The data collected by the sensor is reported to the system through a communica-
tions link. The sensor may report values such as the latitude and longitude of contact infor-
mation.

Figure 1: Overall Context for Model Problem

2. This operational thread assumes the existence of tracks that have been created over time as a
result of the received measurements. At system initialization there are no tracks.

TracksSensorsPlatforms
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2. [Validation and Pre-Processing] The reported data is first validated. For example, there 
may be acceptable ranges of data and these are checked to make sure that the reported data 
is not corrupted. Then the data has to be adjusted to account for any bias in the sensor 
itself.

3. [Distribution] The sensor measurement data may be distributed to other systems, some of 
which may reside on different platforms than the platform providing the sensor measurement. 

4. [Transformation] The measurement data may have to be transformed so that it is consis-
tent with track data. For example, some form of coordinate conversion may have to be 
applied to the measurement data.

5. [Filtering] From the set of all tracks, a subset of tracks is chosen as a candidate match for 
the measurements. For example, the criteria for filtering tracks may be based on nearest-
neighbors: Only those tracks that are within a certain distance of the position of the mea-
surement are considered. This aspect involves development and application of a filter. 
Note that the filter is created dynamically (during runtime) based on the position of the 
measurement data reported. 

6. [Propagation] The candidate tracks have associated state data that is valid at times other 
than the reported measurement time t. Hence, the candidate tracks are propagated in time 
so that the track data is extrapolated to the time of the measurement data. 

7. [Re-Filtering] The propagated tracks have to be re-filtered to make sure that they are still 
within the initial filtering criteria; it is possible that an initial candidate track is propagated 
out of the filter.

8. [Evaluation] Algorithms are applied to the propagated track data and the reported mea-
surement to determine the likelihood that the measurement should be associated with an 
existing track. Comparison of the appropriate track attributes are made between the candi-
date tracks and the attributes provided by the measurement. The evaluation algorithms 
may vary depending upon the type of measurement.

9. [Decision] Based upon some selection criteria it is determined if the measurement report 
should be associated with one of the candidate tracks. Several options are possible:

- If any of the filtering steps returns no tracks, or if all candidates tracks have an associ-
ation value that is below some acceptable threshold, an algorithm is applied. This 
determines if the measurement provides additional data so that one can decide, from 
looking at the set of yet unassociated measurements, if there is enough information for 
a new track to be created. If there is enough information, a new track is created based 
on the reported measurement data plus the set of related unassociated measurements.

- For the candidate track whose association value is larger than some acceptable thresh-
old, track data is updated with the reported measurement data and the measurement is 

associated with that track.3 
CMU/SEI-2003-TR-020 5



The above appears simple and straightforward, but it is not; for example, the algorithm to eval-
uate measurements against tracks is non-trivial. Further, there are performance implications 
for the end-to-end processing of a measurement. 

2.3 Model Problem Selection

The selected model problem is the association of a measurement report from a sensor to a 
track—measurement-to-track association. The model problem design and implementation will 
be presented in the context of a specific modeling and code generation tool. 

Measurement-to-track association as described in Section 2.2 raises a number of issues. 

• Filtering and Re-Filtering: There are several questions regarding filtering that must be 
answered as part of the measurement-to-track association process. For example, what is 
returned by the application of a filter when it produces a set of filtered tracks? Possibilities 
include that

- a list of the identifiers of the tracks satisfying the filter criteria is returned 

- a list with copies or “clones” of the matching tracks is returned 

There are also general questions about the character of the filter that is applied. A filter 
could represent a general query corresponding to certain values of the track attributes. It is 
a general query in that the filter can be applied to attributes on a one-to-one basis. How-
ever, other forms of a query are possible. For example, if one wishes to construct a filter 
that can be applied to determine a candidate set of tracks within a specified range of a 
given point, such a filter would be based on an algorithm whose parameters are attributes 
of the object. In the case of the range, the algorithm would involve a computation of dis-
tance. We can also envision cases where a composition of filters may be applied. 

• Evaluation: The algorithms for evaluation are very complex and computation-intensive. 
What are the performance consequences of this intensive and complex computation that is 
performed many times?

• Data structure design: It is common for tracking systems to use specialized structures and 
algorithms for the storage and manipulation of data such as track data. For example, hash 
coding schemes and algorithms are often used as a way to increase search performance. 
However, if one wished to adhere to a purely object-oriented approach and the constructs 
of a chosen implementation language, what are the implications for data storage and 
manipulation?

3. We assume that a measurement associates to only one track.
6 CMU/SEI-2003-TR-020



Given these issues and recognizing the need for an end-to-end problem in the context of a sin-
gle platform, it is worth assessing the combination of filtering, propagation, evaluation, and 
decision as a model problem in light of the criteria specified in Section 2.1. In particular,

• The use of data filtering and propagation is very common to the system under consider-
ation. 

• There is a risk associated with the use of filters as described in the tentative design. In par-
ticular, if the time to create and apply a filter to a system that contains a large number of 
tracks is prohibitive, then it may warrant consideration of a different design approach. The 
complexity of the algorithms for evaluation (and some of the decision making) could also 
require large amounts of computation. Furthermore, because of the amount of measure-
ment data that is received, the association process is performed many, many times.

• If there is performance data about the elements of the design (such as the time to create a 
filter or to perform propagation and evaluation) then that information may be integrated to 
yield a performance model of a thread of the system (in this case, we define a thread to be 
the sequence of operations described in Section 2.2 on page 3). Thus, we can reuse the 
solution approach to the model problem in the context of a performance model. 

The validation, pre-processing, distribution, and transformation aspects of measurement-to-
track association will not be considered part of this model problem. Validation, pre-process-
ing, and transformation are relatively straightforward and should be implemented outside of 
measurement-to-track association so that only valid measurements are provided for associa-
tion. Distribution is a different problem of sufficient importance that it should be treated in a 
general context. In particular, one is concerned with the manner in which state data about the 
system is distributed among its constituent elements. 

Taken together, the preceding discussion illustrates the value of model problems to the design 
of a system. Model problems can help answer important questions such as: If there is a system 
with a very large number of objects, what are the performance implications for a given design 
approach? Is each measurement-to-track association operation going to be a separate thread? 
What is the time to process a measurement vs. the arrival rates of measurements? What if data 
starts coming in faster than the thread can process? What is the real end-to-end performance of 
the system? Can all these questions be addressed in the context of the selected modeling and 
code generation tool? All these questions must be addressed in order to develop a successful 
implementation.
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3 Modeling of the Measurement-to-Track 
Association Model Problem Using UML

3.1 Approach

In this section we illustrate the measurement-to-track association model problem using Uni-
fied Modeling Language (UML) and concepts from Executable UML (xUML) [Mellor 02] 
and Object-Oriented Analysis (OOA) [Shlaer 92].

Briefly, the process used involves the

• identification of use cases related to measurement-to-track association

• partitioning of the measurement-to-track association problem into domains

• development of sequence diagrams corresponding to the domain interaction to satisfy the 
execution paths listed in the use case descriptions

• development of a class diagram for each domain

• development of sequence diagrams corresponding to the object interaction to satisfy the 
execution paths listed in the use case descriptions

• development of a class collaboration diagram for each domain

At this level of analysis we do not address concurrency issues. These issues will be addressed 
during detailed design. 

The main modeling tool used in this report is iUML by Kennedy Carter, Ltd. (http://
www.kc.com). Rational Rose by IBM (http://www.rational.com/products/rose/index.jsp) is 
used for some of the modeling that is not supported by the iUML tool.

3.2 Use Case Diagrams

A use case represents a coherent unit of functionality provided by a system, a subsystem, or a 
class. A use case diagram shows the relationship among use cases within a system and its 
actors. Actors are external entities (people or other systems) who interact with the system to 
achieve a desired goal .

The use cases related to measurement-to-track association are represented in the use case dia-
gram in Figure 2.
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The main use case in the diagram is Measurement-to-Track Association. The actor that inter-
acts directly with this use case is the communications link. Sensors communicate with the sys-
tem through the communications link to provide measurements to be potentially associated 
with a track. The Measurement-to-Track Association use case includes two additional use 
cases: Filter Tracks and Propagate Tracks. The Filter Tracks use case searches a set of tracks 
for those matching the set of criteria provided by the filter and the Propagate Tracks use case 
propagates the characteristics (e.g. velocity, position) of a set of given tracks in time. These 
two use cases have been specified separately because we believe that they are of sufficient 
generality that they might apply to other use cases outside of measurement-to-track associa-
tion.

There are a number of generally accepted formats for use case description [Booch 99, Cock-
burn 00]. The elements we will use are

• name: name of use case

• purpose: brief description of the purpose of the use case

• precondition: conditions that must exist before the use case takes place

Figure 2: Measurement-to-Track Association Use Case Diagram
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• requirements satisfied: requirements satisfied by the use case (usually requirement number 
from requirements document)

• basic course: captures normal behavior associated with the use case

• alternate courses: capture unusual behavior such as exception handling and error behavior

• includes: use cases included by this use case

• included by: use cases that include this use case

• extends: use cases extended by this use case

• extended by: use cases that extend this use case

• communicates with: external entities (actors) participating in the use case

• performance specifications (optional)

- trigger: external unsolicited event that initiates execution of the use case

- periodicity: nature of trigger event, periodic or aperiodic

- rate: periodic frequency if event is periodic, or average and/or maximal arrival rate if 
event is aperiodic

For the basic course and each of the alternate courses the following information is provided:

• course name: name for the course

• description: set of steps that take place during the course

• postcondition: conditions that exist after the steps outlined in the course are executed

• performance specifications (optional):

- response

- required response time

- response type: hard or soft deadline

- source of requirement: source of the performance requirement

The Measurement-to-Track Association use case is described in Figure 3 and the basic 
course—Create New Track—is described in Figure 4. 
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Figure 3: Measurement-to-Track Association Use Case
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Figure 4: Create New Track—Basic Course for the Measurement-to-Track 
Association Use Case

The alternate courses for the Measurement-to-Track Association use case and the Filter Tracks 
and Propagate Tracks use cases are described in Appendix A on page 43.
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3.3 Domains

Domains represent the different subject matter areas that we must understand to build a system 
[Mellor 02]. For the measurement-to-track association model problem there are two domains 

of interest: Track Management and Communications Interface.4

• Track Management: Provides the track storage as well as the track association, filtering, 

and propagation functionality.5

• Communications Interface: Receives and translates measurements received from sensors 
through the communications link.

Figure 5 shows the domain model for the measurement-to-track association model problem. 
The Track Management domain has a dependency on the Communications Interface domain. 
These domains most likely will include functionality to support other use cases. We are only 
interested in the functionality to support the measurement-to-track association use case. There 
are surely other domains of relevance to the whole system, but these are not included in the 
domain model because they are outside the scope of the model problem.

4. In Object-Oriented Analysis, domains are classified into four types according to the role each
plays in the finished system: application domains, service domains, architectural domains, and
implementation domains [Shlaer 92]. In this case, Track Management is an application domain
and Communications Interface is a service domain.

5. It is also possible to separate the storage functionality from the association, filtering, and propa-
gation functionality into different domains. For the purposes of this model problem, it does not
make a difference and therefore we will consider them as part of the same domain.
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An alternative approach that considers locating measurement-to-track association in the Sen-
sor Management domain is presented in Appendix D.

3.4 Sequence Diagrams for Domain Interaction 
Analysis

A sequence diagram presents the temporal interaction between objects as a set of exchanged 
messages. A sequence diagram has two dimensions. The vertical dimension represents time 
and the horizontal dimension represents the different objects that participate in the interaction. 
Normally time proceeds downward.

Another use for sequence diagrams is in Domain Interaction Analysis. Domain Interaction 
Analysis is a complementary technique that allows a project team to analyze the dynamics of 
the complete system of domains. These sequence diagrams are used to model the interactions 
between selected domains in order to satisfy the behavior specified in a particular use case 
[Kennedy 02].

The sequence diagrams at this level are extremely simple for the selected model problem, as 
can be seen in Figure 6. In this case the horizontal dimension represents domains instead of 
object instances. These would be more useful if we were modeling the whole system, where 
there is a greater level of interaction expected between domains. Section 3.6 presents sequence 
diagrams at a greater level of detail for object interaction analysis. 

Communications
Interface

Track Management

Figure 5: Domain Model
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3.5 Class Diagram

A class represents a concept within the system being modeled. Classes contain data structure 
and behavior. A class diagram shows the static structure of the model, as a set of classes and 
relationships between classes and other elements of the model.

A number of classes were identified as part of the design process for the Track Management 
domain that handles the association of a measurement to a track. In the context of defining the 
model problem it is not important to correctly define all attributes for all classes.

A brief description of the classes in alphabetical order follows. It is important to note that even 
though the model problem only requires the application of filters to tracks, it is possible to 
apply filters to measurements as well. Because of this, the problem has been extended to 

observation management, where an observation refers either to a Track or a Measurement.6 

• Associated Measurement: A measurement that has been associated to an existing track.

• Candidate Observation: When a filter is first applied either to a set of tracks or a set of 
measurements, a Candidate Observation is created for each track or measurement that 
matches the filter criteria. It is important to note that the Candidate Observation does not 
need to contain all the attributes of a measurement or track, only those that are necessary 
to make the association.

• Filter: Base class for all filters. At this point only one type of filter will be considered, but 
as will be seen in Section 4, other types of filters are possible.

• Measurement: All measurements provided by a sensor or communications interface and 
received by the Observation Manager. The attributes in this class have not been fully 
defined.

Figure 6: Sequence Diagram for the Measurement-to-Track Association Use Case

6. These two classes also have a large number of attributes in common.
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• Observation: Object data managed within the Track Management domain—measurements 
and tracks.

• Observation Manager: Handles the sequence and setup of all the measurement-to-track 
association operations. 

• RBE Filter: Given a relative position defined by range, bearing, elevation, and a radius, 
this type of filter will define a spherical volume. Application of the filter will then identify 
the tracks or measurements that lie within the volume determined by the filter.

• Track: State data about a track object. The attributes in this class have not been fully 
defined.

• Track History: History associated to a specific track.

• Unassociated Measurement: A measurement that has not yet been associated to an exist-
ing track.

The main class in the Track Management domain is Track. The Track class is a sub-class of the 
Observation class. This means that Track inherits all attributes and operations from Observa-
tion. A description of the Track class can be found in Table 1.

A description of the rest of the classes can be found in Appendix B on page 53. 

Based on the classes identified previously, these can be combined in a class diagram. The class 
diagram in Figure 7 represents the classes and relationships necessary to implement the func-
tionality required by the Track Management domain in reference to the Measurement-to-Asso-

ciation use case.7 

The class diagram contains two basic constructs. These are

• Classes: These are denoted by the rectangular boxes in the diagram. Each box is divided 
into three parts. The top part contains the class name, the middle part contains the 
attributes that have been defined for the class, and the bottom part contains the operations 
that can be performed on instances of this class.

• Relations: The lines connecting the classes are relations. Relations are labeled by the mod-
eling tool as R#. There are special types of relations, such as R2, that represent a super-
class to sub-class relation (inheritance). Relations also show multiplicity and roles. Multi-
plicity represents the number of instances of each class that form part of the relation. Roles 
are the name of the part that each class plays in the relation.

As an example of how to interpret the diagram in Figure 7, the Track class is a subclass of the 
Observation class, as expressed by relation R2. The R1 relation applies to the Track class 

7. For diagram simplicity, all constructors and all operations that just “set” and “get” attribute values
are omitted.
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through the Observation class. The way to read R1 is “An Observation Manager manages one 
or many Tracks; a Track is managed by one Observation Manager.” Similarly, R9 is read “A 

Track maintains zero or many Track Histories; a Track History is maintained by one Track.8 
Relation R11 is read “A Track is associated to one or many Associated Measurement; an Asso-
ciated Measurement is associated to one Track.” During implementation, these one or many 
and zero or many relations can be translated into an associated list or some other data structure 
that represents this type of relationship between classes. For example, the Track class could 
have an additional attribute of type List that indicates the current relationship between Track 
and Track History. This List would contain elements of type Track History. Another way to 
represent this relation is as an attribute in the “one-or-many-side” class that refers to the “one-
side” class. For example, Associated Measurement could have an attribute TrackId that repre-
sents the identification number of the associated track.

8. “Track maintains zero or more Track History” translates to “Each Track maintains zero or more
instances of Track History.”
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Table 1: Description of the Track Class

Class Name Track

Description State data about a track object

Attributes

Name Description Type

id (from Observation) Unique identification number 
for track

TrackIDa

time 
(from Observation)

Time of latest observation 
associated with the track

Time of Day

latitude 
(from Observation)

Latitude of track Real

longitude 
(from Observation)

Longitude of track Real

altitude 
(from Observation)

Altitude of track Real

velocity Velocity for the track object Real

type Type of track; i.e. air, surface, 
ballistic, etc.

TrackTypeb

Operations

Name Description Parameters Return 
Type

delete 
(from Observation)

Deletes a track None None

update Updates a track with informa-
tion from a given measurement

measurement: Mea-
surement

None

create Creates a track with informa-
tion from a given measurement

measurement: Mea-
surement

None

moveToHistory Creates a copy of the track in 
Track History with its current 
values

None None

a. TrackID is a user-defined type that needs to be specified.

b. TrackType is a user-defined type that needs to be specified.
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Figure 7: Class Diagram for the Track Management Domain
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3.6 Sequence Diagrams for Object Interaction 
Analysis

As previously expressed, a sequence diagram presents the interaction between objects as a set 
of exchanged messages. A sequence diagram has two dimensions: the vertical dimension rep-
resents time, and the horizontal dimension represents the different object instances that partic-
ipate in the interaction. Normally time proceeds downward.

The sequence diagrams in this section are at a different level of abstraction from those in Sec-

tion 3.4.9 The sequence diagram in Section 3.4 represents the interaction between domains to 
satisfy the behavior outlined by the Measurement-to-Track Association use case as well as a 
subset of the steps outlined in Section 2.2. The sequence diagrams in this section represent the 
interaction between objects in the Track Management domain to satisfy the different courses 
in the Measurement-to-Track Association use case. Figure 8 represents the basic course—Cre-
ate New Track—and Figure 9 represents one of the alternate courses—Update Track.

Because all constructors and operations that just “set” and “get” values have been omitted 
from the class diagram, calls to these operations are represented as text over the arrow mes-
sages that represent the operation(s) that take place. For example, Get Track Data would trans-
late into calls to all the necessary “get” operations.

The sequence diagrams for the rest of the alternate courses can be found in Appendix C on 
page 63.

9. The iUML tool selected by the customer does not use sequence diagrams within a domain. In-
stead, it uses one class collaboration diagram per domain, as presented in Section . We believe
that sequence diagrams are useful for analysis at this level, which is why they were developed
using Rational Rose and are included in this report.
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Figure 8: Sequence Diagram for the Measurement-to-Track Association Use Case 
Basic Course—Create New Track

 : Candidate 
Observation

 : Communications 
Link

 : Observation 
Manager

 : Unassociated 
Measurement

 : RBE Filter  : Track  : Associated 
Measurement

measurement
associateMeasurementToTracks( )

create (range, bearing, elevation,radius)

apply (listOfTracks)

*: Get Track Data

[if track satisfies filter criteria] create( )

*: propagate(time)

reApply (listOf CandidateTracks)
*: Get Candidate Track Data

[if candidate track does not satisfy filter criteria] delete( )

*: associate( )

[if enough data to create track] create(measurementData)

*: applyFormula( )

applyFormula( )

create(measurementData)

[ if no tracks where assoc iationValue >= associationThreshold] formTrack( )

*: Get Measurement Data

*: moveToAssoc iated( )

*: create(measurementData)

*: delete( )

*: linkToTrack(trackID)

These operat ions occur for all  the unassociated 
measurements that contributed to the forming of the 
track.
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3.7 Class Collaboration Diagram

A class collaboration diagram is a graphical summary of the interactions between the classes 

in a domain.10 Messages with half arrowheads represent asynchronous signals from one state 
machine to another. Messages with full arrowheads represent synchronous operation invoc-

Figure 9: Sequence Diagram for the Measurement-to-Track Association Use Case 
Alternate Course—Update Track

10. In traditional UML, a collaboration diagram represents the interaction between objects to satisfy
a particular use case—similar to a sequence diagram but less tightly organized and with less em-
phasis on temporal sequence. Nonetheless, you can represent sequence and concurrency in a
UML collaboration diagram. In the iUML tool a collaboration diagram is a more static view of what
the responsibilities and interfaces of each class are and how classes will interact.

 : Track
 : Communications 

Link

 : Observation 
Manager

 : Measurement  : RBE Filter  : Candidate 
Observation

 : Track History

measurement
associateMeasurementToTracks( )

create (measurementData)

*: propagate(time)

*: associate( )

create (range, bearing, elevation,radius)

apply (listOfTracks)

*: Get Track Data

[if track satisfies filter criteria] create( )

reApply (listOf CandidateTracks)
*: Get Candidate Track Data

[if candidate track does not satisfy filter criteria] delete( )

*: [if associationValue >= associationThreshold] moveToHistory( )

update( )

copyTrack( )

These two operations also 
only take place if 
associationValue >= 
associationThreshold for 
that particular track.

applyFormula( )

applyFormula( )
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tions. Terminators are used to represent an abstraction of something outside the domain 
[Kennedy 02]. 

Figure 10 is the class collaboration diagram for the Track Management domain. Comm Inter-
face is a terminator that represents another domain in the system that provides measurements 

asynchronously to the Observation Manager class.11 All other classes communicate synchro-
nously. For example, the diagram shows that the Observation Manager class can synchro-

nously invoke the following operations on the Track class: update, create, moveToHistory.12

The material presented thus far offers an initial design of the model problem. It has been pre-
sented in the context of an object-oriented approach. We emphasize that the material presented 
here is an initial design. The determination of a final design is dependent upon many factors. 
In the present case we are interested in performance characteristics of the design. As noted ear-
lier, performance properties will be viewed from two perspectives, namely qualitative and 
quantitative. The results of a performance model can then be used to assess the elements of the 
design described here. Such information will guide the final choice of a design for measure-
ment-to-track association. It is important to note that this design and performance model for 
measurement-to-track association must be integrated into the context for a system solution.

11. The Observation Manager class is marked as a state machine because the iUML tool requires a
class to be represented by a state machine in order to receive asynchronous messages.

12. Although a sub-class that inherits from a super-class inherits all its operations, the iUML tool
does not allow it to show a class invoking inherited operations. For example, even though Track
inherits the delete operation from Observation, it is not possible to show an invocation of the de-
lete operation on Track.
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Figure 10: Class Collaboration Diagram for the Track Management Domain
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4 Candidate Extensions

This section outlines several topics that can be further investigated as candidate extensions to 
the model problem.

4.1 Relation to Performance Considerations

We noted in Section 1 that this is the first in a series of reports dealing with a model problem. 
Our ultimate goals are two-fold. We want to develop a performance model of the design for the 
model problem of measurement-to-track association. The approach is outlined in Figure 11. 

For a given model problem, one may construct a design for its solution. An example of such a 
design is presented in Section 3 of this report. From a candidate design, one may construct a 
qualitative performance model. Such models are analytic in presentation and are intended to 
shed light on the performance behavior of the proposed solution. One can then elicit quantita-
tive measurements and use them to assess the degree to which the design satisfies the problem 
at hand. A very important aspect of Figure 11 is the feedback from the quantitative perfor-
mance model to the design process. In particular, it may be the case that quantitative results 
require some aspect of the design to be reconsidered. This implies that an iterative approach is 
essential to the development of a solution.

Note that the information contained in Figure 11 is presented in the context of a particular 
model problem. It does not show the fact that there can be many operations performed in the 
overall system. A systems-level performance model can be viewed as an integration of smaller 
performance models. 

Figure 11: Overall Model Problem and Solution Context

Model
Problem

Definition
Design

Qualitative
Performance

Model

Quantitative
Performance

Model
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It is here that the choice of a model problem is of particular importance. Some general criteria 
for the selection of a model problem were discussed in Section 2.1. Of special importance is 
the degree to which the model problem may be reapplied in other contexts. For example, if 
there are many model problems that are similar in structure and function, though not necessar-
ily in detail, to the model problem considered here, hopefully the same approach may be 
applied to other problems. Then, one would like to apply the performance models to these 
additional problems. Hence, a solution to a well chosen model problem can be applied to mul-
tiple instances of that model problem. We are, in effect, reusing a performance model by 
instantiating it in a different, though related context. 

4.2 Other Filter Types

4.2.1 Geographic Filters

The RBE filter illustrated in Section 3.5 is an example of a geographic filter, but there are 
many other types of geographic filters. A simple example of another geographic filter is an 
LLE (latitude, longitude, elevation) filter, shown in Figure 12.

An LLE filter would determine the set of all objects of a particular type (such as tracks or mea-
surement reports) that lie a certain distance from a specified absolute point. Notice that the 
LLE filter, described above, is similar, but not identical to the RBE filter, discussed earlier. In 
the case of the LLE filter, the volume of space defined by the filter is ellipsoidal, while the 
RBE filter defined a spherical volume of space. Another difference between the two types of 
filters is that the RBE filter defines a range about a relative point in space, while the LLE filter 
defines a range about an absolute point in space.

The representation shown in Figure 12 lends itself to the specification of a class of LLE filters. 
A description of such a class is shown in Figure 13.

Figure 12: Example of an LLE Filter
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The LLE filter class has nine attributes that serve as filter criteria: latitude, longitude, eleva-

tion, semiMajorA, semiMajorB, semiMajorC, xRotation, yRotation, and zRotation.13 Specifi-
cation for the Degrees user-defined type is in Figure 14 and specification for the Data Miles 
user-defined type is in Figure 15. The create operation takes as parameters the values for the 
criteria and sets the respective attributes. The applyFormula operation applies the criteria to a 
given observation and returns a Boolean value indicating if the observation meets the criteria.

Figure 13: Class Specification for LLE Filter

13. We include the attributes x, y and z rotations as attributes to support an arbitrary position of the
ellipsoid.

Figure 14: Specification for the Degrees User-Defined Type

LLE Filter

latitude : Degrees
longitude : Degrees
elevation : Data Miles
semiMajorA : Data Miles
semiMajorB : Data Miles
semiMajorC : Data Miles
xRotation : Degrees
yRotation : Degrees
zRotation : Degrees

create()
applyFormula()
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As another example of a geographic filter, consider the annular filter illustrated in Figure 16. 

The application of such a filter is to request all objects that are resident inside the annular area, 
as indicated by the shading in the filter. It may also possible to request all objects that are resi-
dent outside this annular area. 

The representation shown in Figure 16 lends itself to the specification of a class of annular fil-
ters. A description of such a class is shown in Figure 17.

The annular filter class has six attributes that serve as filter criteria: latitude, longitude, eleva-
tion, innerRadius, outerRadius, and constraint. Specifications for the Degrees type, the Data 

Figure 15: Specification for the Data Miles User-Defined Type

Figure 16: Example of an Annular Filter
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Miles type, and the Annular Filter Constraint type are in Figure 14, Figure 15, and Figure 18 
respectively. The create operation takes as parameters the values for the criteria and sets the 
respective attributes. The applyFormula operation applies the criteria to the given observation 
and returns a Boolean value indicating if the observation meets the criteria.

4.2.2 Generic Filters

The discussion of filters thus far has been focused on geographic filters. There are other types 
of filters that can be used; one type that we will introduce is a generic filter. 

Annular Filter

latitude : Degrees
longitude : Degrees
elevation : Data Miles
innerRadius : Data Miles
outerRadius : Data Miles
constraint : Annular Filter Constraint

create()
applyFormula()

Figure 17: Class Specification for Annular Filter

Figure 18: Specification for the Annular Filter Constraint User-Defined Type
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We define a generic filter to be one based on a vector defined by the triplet <attribute, operator, 
value>. The generic filter is relevant to a class specification, and may therefore be applied to 
an object, in the sense shown in Figure 19. 

The choice of operators is dependent upon the data type of an attribute.14 For example, for 
numeric data types, the usual operators of “equal,” “not equal,” “greater than,” and so on, 
apply. However, the values may also consist of character strings of various lineage (e.g., 
ASCII, ISO-10646, etc.). Furthermore, it is possible that an attribute could be a set, and that 
the operators are now those from set theory such as membership, or subset relation. 

There is also the matter by which the elements of the tuples are connected. A simple approach 
might be to use a logical AND operator. Certainly other choices could be made and the choice 
of generality of permitted structure would no doubt depend on intended use. 

To illustrate the application of a generic filter, suppose we wanted to determine all tracks such 
that their altitude is greater than 1000 miles. This is equivalent to the triple defined by

<attribute=altitude, operator=greater_than, value=1000)

The construction of a filter thus becomes one of identifying the elements of the tuple 
<attribute, operator, value>. The class specification for a generic filter appears in Figure 20.

Figure 19: Relation of <Attribute, Operator, Value>

14. An interesting occasion arises when we try to describe this problem in a formal manner. In par-
ticular, we have a set that contains values. It is clear that the set may contain values of different
data types; for example, it may contain numeric types, or character types, or even sets. When
describing the problem formally, we are faced with the need to describe a set whose members
may be various data types. This is a departure from traditional set-theoretic approaches. Other
work, not described here, is related to a formal specification approach that permits a set of mixed
types. The approach is geared toward the description of dynamic systems and will be reported
elsewhere. 

Attribute Operator ValueClass
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The specification for the user-defined type Generic Filter Operator is in Figure 21. This user-
defined type determines the operator in the <attribute, operator, value> triplet.

The setCriterion() operation in this class takes as parameters an attribute/criterion of the user-
defined type Filter Criterion, an operator of type Generic Filter Operator, and a value of the 
type of the criterion that is being set. The specification for the Filter Criterion user-defined 
type is in Figure 22.

For example, if a criterion for the filter is to identify those tracks whose altitude is greater than 
1000 miles, the operation would be called setCriterion(ALTITUDE, GREATER, 1000.0). The 
setCriterion operation would then set the attribute byAltitude to True, the attribute altitudeOp-
erator to GREATER, and the attribute altitudeValue to 1000.0. 

Figure 20: Class Specification for Generic Filter
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Figure 21: Specification for the Generic Filter Operator User-Defined Type

Figure 22: Specification for the Filter Criterion User-Defined Type
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This operation has to be overloaded so that there is a setCriterion() operation for each type of 
value (float, integer, string, etc.). Multiple criteria can be set by successive calls to the setCri-
terion operation. After all the criteria have been set, the apply() operation is invoked and 
applies the criteria to a set of observations.

The resulting class hierarchy for all filter types is shown in Figure 23.

4.2.3 Composition of Filters

A natural question to ask is the degree to which individual filters may be applied in succession. 
For example, Figure 24 shows the application of an annular filter, followed by the application 
of a rectangular filter. Each filter returns a set of values; in this case shown in Figure 24. We 
may represent the composition of filters as:

F = FANNULAR ∩ FRECTANGULAR

In other words the composition operator represents the intersection of the two filters. Other 
operators could be chosen; for example, instead of set-intersection, we could use set-union as 
the joining operator. 

f

Annular Filter

latitude : Degrees
longitude : Degrees
elevation : Data Miles
innerRadius : Data Miles
outerRadius : Data Miles
constraint : Annular Filter Constraint

create()
applyFormula()

Filter

apply()
reApply()

Geographic Filter

RBE Filter

range : Data Miles
bearing : Degrees
elevation : Data Miles
radius : Data Miles

create()
applyFormula()

Generic Filter

byTime : Boolean
timeOperator : Generic Filter Operator
timeValue : Time of Day
byLatitude : Boolean
latitudeOperator : Generic Filter Operator
latitudeValue : Real
byLongitude : Boolean
longitudeOperator : Generic Filter Operator
longitudeValue : Real
byAltitude : Boolean
altitudeOperator : Generic Filter Operator
altitudeValue : Real
byVelocity : Boolean
velocityOperator : Generic Filter Operator
velocityValue : Real
byType : Boolean
typeOperator : Generic Filter Operator
typeValue : Text

setCriterion()
applyFormula()

LLE Filter

latitude : Degrees
longitude : Degrees
elevation : Data Miles
semiMajorA : Data Miles
semiMajorB : Data Miles
semiMajorC : Data Miles
xRotation : Degrees
yRotation : Degrees
zRotation : Degrees

create()
applyFormula()

Figure 23: Class Hierarchy for Filters
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The ability to apply multiple filters is recognized as having value. However, we do not believe 
that it represents any conceptual increase in the scope of the problem. Stated differently, the 
model problem of filtering can easily be extended to address the case of composition of filters.

4.2.4 Distribution of Filter Information

The scope for the work in this report is a distributed system of multiple platforms. Therefore, 
one might naturally question the ability to distribute filters among constituents of the larger 
system. For example, an RBE filter may be created in one context, and it is desirable to distrib-
ute that filter to some other context. We use context to refer to a process/processor combina-
tion. 

We approach the distributed problem in terms of two dimensions. First, we are interested in the 
scope of distribution. In particular, we must consider system issues, and distribution across 
process and processor boundaries as defined by the context. The various contexts are shown in 
Figure 25.

Figure 24: Composition of Annular and Rectangular Filter

Figure 25: Contexts for Object Distribution

Same Process,
Same Machine

Different Processes,
Same Machine

Different Processes,
Different Machines

denote different objects
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Second, we are interested in various mechanisms by which filters can be distributed. For dis-
tribution mechanisms we consider

• an object identifier, usually referred to as an object reference

• a message containing the relevant information about a filter

• a message containing a request for object creation

The resulting two-dimensional categorization is shown in Table 2.

As illustrated in Table 2, there are a variety of cases for object distribution. We will illustrate 
some of these cases, with a focus on the means of object distribution.

For distribution of objects in the same process on the same machine (such as between threads), 
a common approach is to use an identifier, or object reference, for the object of interest. Thus, 
one thread may pass an identifier to some object to a different thread, all within the same pro-
cess on the same machine. The receiving thread may then invoke operations on the object. 

However, when we move to the case where we wish to distribute some object across different 
machines, we are faced with potential challenges. For example, the underlying technology 
supporting the object system may not permit an object reference to be distributed (and subse-
quently accessed) across different processes, even in the same machine context. One way out 
of this difficulty is to use a message for the means of object distribution. The sequence of oper-
ations between a sender and a receiver of a filter, using a message-based approach might be 
the following:

• Sending System

- invokes a method to create a message, based on the name of the class, and the values 
of the filter’s attributes

- initiates a communication with a receiving system

• Receiving System

- unpacks and validates contents of the filter message 

Table 2: Category of Problems for Object Distribution

Distribution Mechanism

Scope of Distribution
Object
Reference

Message Object 
Creation

Same process, same 
machine

Not expected

Different processes, 
same machine

Different processes, 
different machines
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- instantiates an object of the specified class (in this case a filter) with the received 
information

Following the above sequence of operations, the receiving system may perform operations on 

the filter.15 The operations are those specified in the class description. However, bringing in 
communication via messaging has opened up a number of questions such as quality of service, 
use of timeouts, and so on. 

What happens if the receiving system does not have knowledge of the class? In this case, we 
must not only distribute attributes of a specified class, but all the relevant information about 
the class. We are, in effect, considering dynamic class creation. This is highly speculative and 
brings into question the use of mobile code and all its attendant issues. 

The approach here has been viewed as a two-dimensional problem. In fact, it is possible to 
expand the scope to also include the underlying technology used to support objects and 
classes. In the simplest case, there may be interactions between two identical implementations, 
such as common object request broker architecture (CORBA). But there is also interest in a 
heterogeneous system where different implementations may be present. In such a case, one 
might be interested in interchange between a CORBA implementation and some other imple-
mentation. 

Each of the preceding cases for object distribution constitutes a different level of approach to 
dealing with objects in a distributed system. Closely related to the design choices are those 
assumptions on the system partitioning that will be a constraint on any design approach. An 
example such as this is a potentially viable choice for a model problem in its own right!

4.3 Doctrine: An Example of Filter Application

We use the term doctrine to mean a set of rules that describe the behavior of some system. 
Such rules are important to the extent that they govern the system. In cases where doctrine is 
automated, without human intervention, it is especially important; one is turning over the 
behavior of a system to a machine. 

Apart from machine execution of doctrine statements, such statements have utility from the 
perspective of changing the behavior of a system. For example, if an operator (either on the 
platform, or on some other platform) is able to change a doctrine statement, this can be repre-
sented as the change in the specification of the behavior. There is certainly value in the ability 

15. Current systems achieve the equivalent behavior described here, although not in the context of
an object-oriented approach. For example, given the attributes of a filter, they send a message
to another system containing those attributes, and then the “filter” can be applied.
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to dynamically change the behavior of some system without performing a software upgrade, 
for example. 

As an illustration of a doctrine statement, with an eye toward the application of automated 
doctrine, consider the following:

If there is a TRACK
range is less than 100 miles
speed is greater than 600 miles/hour
altitude is less than 100 feet
type is unknown.

Then
<perform_action>.

The preceding represents a doctrine statement simply as an if-then condition.16 The text 
<perform_action> represents some action(s) that the system should take in the event that 
the if-clause is true. The details of the actions are not relevant to the remainder of this discus-
sion and will be therefore omitted. 

The if-clause represents a set of tests that are performed against a track. Note that the tests are 
based on attributes of a track (in this case, the track range, speed, altitude, and type). What is 
important to note is that the doctrine statement can be represented as a composition of two fil-
ters, namely

• a range filter, as discussed in connection with Figure 12 on page 28

• a generic filter based on track attributes speed, altitude, and type, as specified in Figure 20

We conclude that the if-clause of a doctrine statement can be considered as an application of a 
range filter and a generic filter. Recognizing this fact has two important consequences. First, it 
serves to illustrate the generality of the use of filters as part of a system design. Second, it fur-
ther illustrates the generality of the model problem we have considered in this report. That is, 
to the extent that the model problem can be considered as the construction and application of a 
filter, so too does the problem apply to a subset of the processing performed for the application 
of doctrine. 

4.4 Use of Object Query Language

The filters that have been described in this report have all been constructed in the context of an 
object-oriented development. That is, we have created classes for the filters, identified their 

16. Notice that the overall time to process the query depends on the ordering of the search criteria.
Query optimization is a common topic and concern for databases.
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attributes, and illustrated ways that the filters can be applied. Filters are required to implement 
an operation called applyFormula that applies filter criteria to a given track.

It is worth noting that there is an alternative approach to applying the filter criteria to a set of 
tracks. We refer specifically to the Object Query Language (OQL) [ODMG 98]. OQL is a 
specification developed by the Object Data Management Group (ODMG) that allows one to 
perform queries on objects. It is an SQL-like declarative language with support for objects. It 
can be used in two different ways, either as an embedded function in a programming language 
or as an ad hoc query language. OQL works with programming languages for which ODMG 
has defined bindings, such as C++, Java, and SmallTalk. The advantage gained by using OQL 
is that it returns objects matching types in the specific programming language so that these 
objects can be easily manipulated.

Given the selected modeling tool, a question arises regarding how to include external libraries 
within the simulation environment and how to link generated code to external code. A mecha-
nism is provided by the tool to interface to C programs. Further investigation would be 
required to determine if the tool can link to libraries in other languages different than C.

The topic of the use of OQL for track filtering, as opposed to direct creation and application of 
filter functions, is sufficiently broad to warrant consideration in its own right.
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5 Summary

This report is the first in a series that illustrates the use of model problems to the design of a 
system. The selected model problem is measurement-to-track association and the development 
(and application) of filters as a selector mechanism. By using concepts and constructs from 
UML, Executable UML [Mellor 02], and Object-Oriented Analysis [Shlaer 92], the report pre-
sents an initial design of the model problem, as well as candidate extensions related to perfor-
mance considerations, additional filter types, and the distribution of filter information. The 
next report in the series will explore performance properties of the initial design, namely qual-
itative and quantitative. The results of that performance model can then be used to assess the 
elements of the design described in this report.
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Appendix A Additional Use Cases

This appendix contains the descriptions of the alternate courses for the Measurement-to-Track 
Association use case and the Filter Tracks and Propagate Tracks use cases.

Figure 26: Update Track—Alternate Course for the Measurement-to-Track 
Association Use Case
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Use Case : 1 : Measurement-To-Track Association
Course : Filter Applied to Initial Tracks Returns

 No Tracks and Track is Created

Figure 27: Filter Applied to Initial Tracks Returns No Tracks and Track is 
Created—Alternate Course for the Measurement-to-Track 
Association Use Case
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Use Case : 1 : Measurement-To-Track Association
Course : Filter Applied to Propagated Tracks Returns

No Tracks and Track is Created

Figure 28: Filter Applied to Propagated Tracks Returns No Tracks and Track is 
Created—Alternate Course for the Measurement-to-Track Association 
Use Case
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Figure 29: Create Unassociated Measurement—Alternate Course for the 
Measurement-to-Track Association Use Case
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Figure 30: Filter Applied to Initial Tracks Returns No Tracks and Track is Not 
Created—Alternate Course for the Measurement-to-Track Association 
Use Case

Use Case : 1 : Measurement-To-Track Association
Course : Filter Applied to Initial Tracks Returns No 

 Tracks and Track is Not Created
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Figure 31: Filter Applied to Propagated Tracks Returns No Tracks and Track is Not 
Created—Alternate Course for the Measurement-to-Track Association 
Use Case

Use Case : 1 : Measurement-To-Track Association
Course : Filter Applied to Propagated Tracks Returns No

Tracks and Track is Not Created
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Figure 32: Filter Tracks Use Case
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e 
Figure 33: Filter Tracks and Create Copies of Matching Tracks—Basic Course for the 
Filter Tracks Use Case

Figure 34: Refilter Tracks and Remove Non-Matching Tracks—Alternate Course for th
Filter Tracks Use Case
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Figure 35: Propagate Tracks Use Case

Figure 36: Propagate Tracks—Basic Course for the Propagate Tracks Use Case
CMU/SEI-2003-TR-020 51



52 CMU/SEI-2003-TR-020



Appendix B Details of Classes

This appendix contains the description of the classes in the Track Management domain in 
alphabetical order.

Table 3: Description of the Associated Measurement Class 

Class Name Associated Measurement

Description A measurement that has been associated to an existing track

Attributes

Name Description Type

id (from Observation) Unique identification number 
for measurement

MeasurementIDa

a. MeasurementID is a user-defined type that needs to be specified.

time (from 
Observation)

Time measurement was made Time of Day

latitude (from 
Observation)

Latitude of measurement Real

longitude (from 
Observation)

Longitude of measurement Real

altitude (from 
Observation)

Altitude of measurement Real

sensorId (from 
Measurement)

Identification of the sensor that 
received the measurement

SensorIDb

b. SensorID is a user-defined type that needs to be specified.

Operations

Name Description Parameters Return Type

delete (from 
Observation)

Deletes a measurement None None

create (from 
Measurement)

Creates a measurement with 
the received measurement 
data

One parameter per 
measurement 
attribute

None

linkToTrack Links the associated 
measurement to the given 
track

track:Track None
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Table 4: Description of the Candidate Observation Class 

Class Name Candidate Observation

Description
When a filter is first applied either to a set of tracks or a set of 
measurements, a Candidate Observation is created for each track 
or measurement that matches the filter criteria.

Attributes

Name Description Type

id (from Observation) Unique identification number 
for the candidate observation

ObservationIDa

time (from 
Observation)

In case of measurement, time 
observation is received; in 
case of track, time of latest 
observation associated with 
the track

Time of Day

latitude (from 
Observation)

Latitude of observation Real

longitude (from 
Observation)

Longitude of observation Real

altitude (from 
Observation)

Altitude of observation Real

associationValue Association value between an 
observation and a given 
measurement

Real

Operations

Name Description Parameters Return Type

delete (from 
Observation)

Deletes a candidate 
observation

None None

propagate Propagates a candidate 
observation to time t and 
updates attribute values 
accordingly

t: Time Of Day None

associate Associates a candidate 
observation to a given 
measurement and updates the 
associationValue attribute

measurement: 
Measurement

None

create Creates a candidate 
observation by creating a copy 
of the given observation

observation: 
Observation

None

a. ObservationID is a user-defined type that needs to be specified.
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Table 5: Description of the Filter Class 

Class Name Filter

Description Base class for all filters. A filter applies a set of criteria to a set of 
observations to determine if they meet the filter criteria.

Attributes

Name Description Type

Operations

Name Description Parameters Return Type

apply Applies a filter to a set of 
observations and creates a set 
of candidate observations by 
copying those that match the 
criteria

listOfObservations: 
Observation

listOfCandi-
dateObser-
vations: 
Candidate 
Observation

reapply Applies the filter to a set of 
candidate observations and 
deletes those that do not sat-
isfy the filter criteria

listOfCandidateOb-
servations: Candi-
date Observation

newListOf-
Candida-
teObservati
ons: Candi-
date Obser-
vation
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Table 6: Description of the Measurement Class 

Class Name Measurement

Description All measurements provided by a sensor or communications inter-
face and received by the Track Management domain

Attributes

Name Description Type

id (from Observation) Unique identification number 
for measurement

MeasurementIDa

time (from 
Observation)

Time measurement was made Time of Day

latitude (from 
Observation)

Latitude of measurement Real

longitude (from 
Observation)

Longitude of measurement Real

altitude (from 
Observation)

Altitude of measurement Real

sensorId Identification of the sensor that 
received the measurement

SensorIDb

Operations

Name Description Parameters Return Type

delete (from 
Observation)

Deletes a measurement None None

create Creates a measurement with 
the received measurement 
data

One parameter per 
measurement 
attribute

None

a. MeasurementID is a user-defined type that needs to be specified.

b. SensorID is a user-defined type that needs to be specified.
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Table 7: Description of the Observation Class 

Class Name Observation

Description Object data managed within the Track Management domain—
measurements and tracks

Attributes

Name Description Type

id Unique identification number 

for the observationa
ObservationID

time In case of measurement, time 
observation is made; in case of 
track, time of latest observation 
associated with the track

Time of Day

latitude Latitude of observation Real

longitude Longitude of observation Real

altitude Altitude of observation Real

Operations

Name Description Parameters Return Type

delete Deletes an observation None None

a. This attribute is overridden by the id attribute in its subclasses: Measurement, Track, Track History.
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Table 8: Description of the Observation Manager Class 

Class Name Observation Manager

Description
Handles the sequence and setup of all the measurement-to-track 
association operations

Attributes

Name Description Type

associationThreshold Threshold association value for 
determining whether a 
measurement is associated to 
a track

Real

Operations

Name Description Parameters Return Type

associateMeasuremen
t ToTracks

Handles the sequence and 
setup of the operations that 
take place is measurement-to-
track association

measurementData: 

Undefineda
None

formTrack Determines if there is enough 
information in the set of 
unassociated measurements 
that can be combined with the 
received measurement to form 
a track

None None

a. The type of parameter measurementData will depend on how the signal containing the measurement data is structured.
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Table 9: Description of the RBE Filter Class 

Class Name RBE Filter

Description
Given a position defined by range, bearing, and elevation, this type 
of filter will define a volume about that position.

Attributes

Name Description Type

range Range criteria for filter Data Milesa

bearing Bearing criteria for filter Degreesb

elevation Elevation criteria for filter Data Miles

radius Radius criteria for filter Data Miles

Operations

Name Description Parameters Return Type

apply (from Filter) Applies the RBE filter to a set 
of observations and creates a 
set of candidate observations 
by copying those that match 
the criteria

listOfObservations: 
Observation

listOfCandi
dateObserv
ations: 
Candidate 
Observation

reapply (from Filter) Applies the filter to a set of 
candidate observations and 
deletes those that do not 
satisfy the filter criteria

listOfCandidateObse
rvations: Candidate 
Observation

newListOfC
andidateOb
servations: 
Candidate 
Observation

create Creates an RBE filter by 
setting the range, bearing, 
elevation, and radius attributes 
with the given values

range: Data Miles, 
bearing: Degrees, 
elevation: Data 
Miles, radius: Data 
Miles

None

applyFormula Applies the filter specific for-
mula to a given observation

observation: Obser-
vation

meetsCrite-
ria: Boolean

a. The Data Miles user-defined type is specified in Section 4.2, Figure 15.

b. The Degrees user-defined type is specified in Section 4.2, Figure 14.
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Table 10: Description of the Track Class 

Class Name Track

Description State data about a track object

Attributes

Name Description Type

id (from Observation) Unique identification number 
for track

TrackIDa

time (from 
Observation)

Time of latest observation 
associated with the track

Time of Day

latitude (from 
Observation)

Latitude of track Real

longitude (from 
Observation)

Longitude of track Real

altitude (from 
Observation)

Altitude of track Real

velocity Calculated velocity for the track 
object

Real

type Type of track; i.e. air, surface, 
ballistic, etc.

TrackTypeb

Operations

Name Description Parameters Return Type

delete (from 
Observation)

Deletes a track None None

update Updates a track with 
information from a given 
measurement

measurement: 
Measurement

None

create Creates a track with 
information from a given 
measurement

measurement: 
Measurement

None

moveToHistory Creates a copy of the track in 
Track History with its current 
values

None None

a. TrackID is a user-defined type that needs to be specified.

b. TrackType is a user-defined type that needs to be specified.
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Table 11: Description of the Track History Class 

Class Name Track History

Description State data about an object

Attributes

Name Description Type

id (from Track) Identification number of 
associated track

TrackID

time (from 
Observation)

Time of observation associated 
with the track

Time of Day

latitude (from 
Observation)

Latitude of track Real

longitude (from 
Observation)

Longitude of track Real

altitude (from 
Observation)

Altitude of track Real

sequence Marks the sequence of the 
track in its history

Real

Operations

Name Description Parameters Return Type

delete (from 
Observation)

Deletes a track from its history None None

copyTrack Copies the given track 
information to the track history 
and assigns a sequence 
number

track: Track None
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Table 12: Description of the Unassociated Measurement Class 

Class Name Unassociated Measurement

Description
A measurement that has not yet been associated to an existing 
track

Attributes

Name Description Type

id (from Observation) Unique identification number 
for measurement

MeasurementIDa

time (from 
Observation)

Time measurement was made Time of Day

latitude (from 
Observation)

Latitude of measurement Real

longitude (from 
Observation)

Longitude of measurement Real

altitude (from 
Observation)

Altitude of measurement Real

sensorId (from 
Measurement)

Identification of the sensor that 
received the measurement

SensorIDb

Operations

Name Description Parameters Return Type

delete (from 
Observation)

Deletes a measurement None None

create (from 
Measurement)

Creates a measurement with 
the received measurement 
data

One parameter per 
measurement 
attribute

None

moveToAssociated Converts the unassociated 
measurement to an associated 
measurement

None None

a. MeasurementID is a user-defined type that must be specified.

b. SensorID is a user-defined type that must be specified.
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Appendix C Additional Sequence 
Diagrams

This appendix contains the sequence diagrams for the following Measurement-To-Track Asso-
ciation use case alternate courses:

• Filter Applied to Initial Tracks Returns No Tracks and Track is Created

• Filter Applied to Propagated Tracks Returns No Tracks and Track is Created

• Create Unassociated Measurement

• Filter Applied to Initial Tracks Returns No Tracks and Track is Not Created

• Filter Applied to Propagated Tracks Returns No Tracks and Track is Not Created
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Figure 37: Sequence Diagram for the Measurement-to-Track Association Use Case 
Alternate Course—Filter Applied to Initial Tracks Returns No Tracks and 
Track Is Created

 : RBE Filter : Communications 
Link

 : Observation 
Manager

 : Unassociated 
Measurement

 : Track  : Candidate 
Observation

 : Associated 
Measurement

These operations occur for all the unassociated 
measurements that contributed to the forming of the 
track.

measurement

associateMeasurementToTracks( )

[if listOfCandidateTracks is empty] formTrack( )

create(measurementData)

*: Get Measurement Data

*: moveToAssoc iated( )

*: delete( )

create (range, bearing, elevation, radius)

apply (listOfTracks)

*: applyFormula( )

*: Get Track Data

[if enough data to create track] create(measurementData)

[if track satisfies filter criteria] create( )

*: create(measurementData)

*: linkToTrack(trackID)
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Figure 38: Sequence Diagram for the Measurement-to-Track Association Use Case 
Alternate Course—Filter Applied to Propagated Tracks Returns No Tracks 
and Track Is Created

 : Communications 
Link

 : Observation 
Manager

 : Unassociated 
Measurement

 : RBE Filter  : Track  : Candidate 
Observation

 : Associated 
Measurement

These operations occur for all the unassociated 
measurements that contributed to the forming of the 
track.

measurement

associateMeasurementToTracks( )

[if listOfCandidateTracks is empty] formTrack( )

create(measurementData)

*: Get Measurement Data

*: moveToAssoc iated( )

*: delete( )

create (range, bearing, elevation, radius)

apply (listOfTracks)

reApply (listOf CandidateTracks)

*: applyFormula( )

applyFormula( )

*: Get Track Data

[if enough data to create track] create(measurementData)

[if track satisfies filter criteria] create( )

*: propagate(time)

*: Get Candidate Track Data

[if candidate track does not satisfy filter criteria] delete( )

*: create(measurementData)

*: linkToTrack(trackID)
CMU/SEI-2003-TR-020 65



Figure 39: Sequence Diagram for the Measurement-to-Track Association Use Case 
Alternate Course—Create Unassociated Measurement

 : Track : Communications 
Link

 : Observation 
Manager

 : Unassociated 
Measurement

 : RBE Filter  : Candidate 
Observation

Use case stops here because there is not enough 
data to create a new track.

measurement
associateMeasurementToTracks( )

[if no tracks where associationValue >= associationThreshold] formTrack( )

create(measurementData)

*: Get Measurement Data

create(range, bearing, elevation, radius)

apply  (listOfTracks)

reApply (listOf CandidateTracks)

*: applyFormula( )

applyFormula( )

*: Get Track Data

[if track satisfies filter criteria] create( )

*: propagate(time)

*: Get Candidate Track Data

[if candidate track does not satisfy filter criteria] delete( )

*: associate( )
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Figure 40: Sequence Diagram for the Measurement-to-Track Association Use Case 
Alternate Course—Filter Applied to Initial Tracks Returns No Tracks and 
Track Is Not Created

 : Candidate 
Observation

 : Track : Communications 
Link

 : Observation 
Manager

 : Unassociated 
Measurement

 : RBE Filter

measurement

associateMeasurementToTracks( )

[ if listOfCandidateTracks is empty] formTrack( )

create(measurementData)

*: Get Measurement Data

create (range, bearing, elevation, radius)

apply (listOfTracks)

*: Get Track Data

reApply (listOf CandidateTracks)

*: applyFormula( )

applyFormula( )

[ if track satisfies fi lter criteria] create( )

*: propagate(time)

*: Get Candidate Track Data

[if candidate track does not satisfy filter criteria] delete( )

Use case stops here because there is not enough 
data to create a new track.
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Figure 41: Sequence Diagram for the Measurement-to-Track Association Use Case 
Alternate Course—Filter Applied to Propagated Tracks Returns No Tracks 
and Track Is Not Created

 : Track : Communications 
Link

 : Observation 
Manager

 : Unassociated 
Measurement

 : RBE Filter  : Candidate 
Observation

measurement

associateMeasurementToTracks( )

[ if listOfCandidateTracks is empty] formTrack( )

create(measurementData)

*: Get Measurement Data

create (range, bearing, elevation, radius)

apply (listOfTracks)

reApply (listOf CandidateTracks)

*: applyFormula( )

applyFormula( )

*: Get Track Data

[ if track satisfies fi lter criteria] create( )

*: propagate(time)

*: Get Candidate Track Data

[if candidate track does not satisfy filter criteria] delete( )

Use case stops here because there is not enough 
data to create a new track.
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Appendix D Measurement-to-Track 
Association in the Sensor 
Management Domain

The measurement-to-track association functionality in the model problem has been assigned to 
the Track Management domain because of the tight coupling between this function and the 
track and measurement data. There has been some discussion as to whether the measurement-
to-track association should be assigned to the Sensor Management domain. The rationale for 
this alternative is that the algorithms for association are expected to be dependent on the type 
of sensor and therefore it would be better to maintain these algorithm differences in the Sensor 
Management domain. The problem with this approach is the access to track data that would 
still reside in the Track Management domain.

This appendix discusses the potential changes to the design of the model problem as well as 
the consequences of placing measurement-to-track association in the Sensor Management 
domain.

D.1 Changes to the Design of the Model Problem
The changes to the design of the model problem are minimal since domains are essentially sets 
of closely related objects that are treated as a unit for purposes of analysis. In other words, they 
correspond to the way that the project has decided to divide and allocate functionality in a sys-
tem. The changes to the design of the model problem would be

1. Move the classes that contain the measurement-to-track association functionality in the 
Track Management domain to the Sensor Management domain.

2. Define the relationships between the newly moved classes and the classes that already 
exist in the Sensor Management domain.

3. Decide on the mechanism for accessing track data and make the appropriate changes to the 
model.

This last point is critical and will be the focus of the next section.
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D.2 Consequences of Measurement-to-Track Associ-
ation in the Sensor Management Domain

The separation between the measurement-to-track association functionality and the track data 
introduces a design problem for which there are two alternatives:

1. Keep the track data in the Track Management domain and have the Sensor Management 
domain communicate with the Track Management domain every time it needs access to 
data.

2. Maintain copies of the track data in the Sensor Management domain.

D.2.1 Track Data in Track Management

This option has the advantage of not having to maintain replicated track data, but has a poten-
tial for performance problems if the Track Management domain and the Sensor Management 
domain reside on different machines. These potential performance problems are caused by the 
tight coupling between track data and measurement-to-track association, as can be seen in the 
sequence diagrams in Section 3.6 and Appendix C.

If this is the option selected, the domain model would have to be updated to include the com-
munication between the Track Management and Sensor Management domains, and the 
sequence diagrams and class collaboration diagram would also have to be updated to show this 
communication.

D.2.2 Track Data Replicated in Sensor Management

This option has the advantage of keeping track data local to the measurement-to-track associa-
tion functionality but has challenges introduced by replication, such as data consistency. If a 
copy of the track data is going to be maintained in Sensor Management, a decision must be 
made as to how and how often this copy will be updated. If a pull mechanism is used, then the 
Sensor Management domain would have to poll the Track Management domain for changes in 
track data and retrieve those changes. If a push mechanism is used, then the Track Manage-
ment domain would have to send track data changes to the Sensor Management domain, which 
would then have to apply these changes to its copy of the track data. Replication introduces 
performance issues (as this is yet another process that would have to be performed in the sys-
tem) as well as data contention issues (as track data would probably have to be locked as this 
process is performed).

If this is the option selected, the design of the model problem would not have to change 
beyond what was expressed earlier, but then the functionality for updating track data, which is 
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outside of measurement-to-track association, would have to be added to the appropriate 
domain(s).

D.3 Summary
The problem of allocating functionality to domains is a part of Object-Oriented Analysis. In 
this appendix we have discussed an alternative for the allocation of measurement-to-track-
association, as well as pros and cons of different approaches. The bottom line, we find, is that 
the allocation of functionality to domains is not only a function of the functional model, but 
also a function of non-functional models such as performance. 
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