

A Process for COTS Software
Product Evaluation

Santiago Comella-Dorda
John Dean
Grace Lewis
Edwin Morris
Patricia Oberndorf
Erin Harper

July 2004

TECHNICAL REPORT
CMU/SEI-2003-TR-017
ESC-TR-2003-017

Pittsburgh, PA 15213-3890

A Process for COTS Software
Product Evaluation

CMU/SEI-2003-TR-017
ESC-TR-2003-017

Santiago Comella-Dorda
John Dean
Grace Lewis
Edwin Morris
Patricia Oberndorf
Erin Harper

July 2004

Integration of Software-Intensive Systems Initiative

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Joint Program Office
HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

Christos Scondras
Chief of Programs, XPK

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2004 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie Mel-
lon University for the operation of the Software Engineering Institute, a federally funded research and development center.
The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the work,
in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the copy-
right license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

CMU/SEI-2003-TR-017 i

Table of Contents

Abstract...vii

1 Fundamentals of COTS Software Product Evaluations..................................1
1.1 COTS Products and COTS-Based Systems: Definitions.............................1

1.2 Why a COTS Product Evaluation Process?...3
1.2.1 Common Evaluation Mistakes ..4

1.3 What Makes Evaluations Difficult ...5
1.3.1 COTS Product Evaluation in the COTS-Based System Context6
1.3.2 Strategies for Effective Evaluation..9

1.4 The PECA Process ...11
1.4.1 Evaluation Inputs ..12
1.4.2 Evaluation Outputs..13
1.4.3 Introduction to Evaluation Techniques ...14

2 Planning the Evaluation ...15
2.1 Forming Evaluation Teams ...15

2.2 Creating the Charter ...15
2.2.1 Creating the Charter: Example ...16

2.3 Identifying Stakeholders..17

2.4 Picking the Approach ..17
2.4.1 Depth of the Evaluation ..18
2.4.2 First Fit vs. Best Fit ...18
2.4.3 Using Filters ..19
2.4.4 Picking the Approach: Example..19

2.5 Estimating Resources and Schedule ...20

3 Establishing Criteria ...21
3.1 Requirements vs. Criteria ...21

3.2 Defining Evaluation Requirements ...22
3.2.1 Sources of Evaluation Requirements ...22
3.2.2 Classes of Evaluation Requirements..25

3.3 Defining Evaluation Criteria ..27
3.3.1 Characteristics of Good Evaluation Criteria27
3.3.2 Techniques for Defining Evaluation Criteria28

ii CMU/SEI-2003-TR-017

3.3.3 Measurement: Common Problems...29
3.4 Establishing Priorities..32

3.4.1 Techniques for Weighting Criteria ..32

4 Collecting Data ..35
4.1 Results of Collecting Data...35

4.2 Techniques for Data Collection ...36
4.2.1 Literature Reviews ..36
4.2.2 Vendor Appraisals...37
4.2.3 Hands-on Techniques...37

5 Analyzing Results..43
5.1 Consolidating Data..43

5.2 Techniques for Consolidating Data...43
5.2.1 All-to-Dollars Technique ...44
5.2.2 Weighted Aggregation ..44

5.3 Techniques for Analyzing Data ...45
5.3.1 Sensitivity Analysis ...45
5.3.2 Gap Analysis ...46
5.3.3 Cost of Fulfillment ...48

5.4 Making Recommendations ...51
5.4.1 Documenting Recommendations ...51

6 Conclusion ...55

Appendix A Step by Step Description of the PECA Process.............................57

Appendix B Product Dossier Template ..59

Appendix C Evaluation Record Template ..61

Appendix D Criteria Classification..63

Appendix E Generic Organizational Checklist...66

Acronym List ..68

Glossary..70

Bibliography ...74

Deleted: 174444444545464647495252555759616
365676973

CMU/SEI-2003-TR-017 iii

List of Figures

Figure 1: A Spectrum of COTS-Based Systems ..3

Figure 2: The Fundamental Change..7

Figure 3: A Good CBS Process ...8

Figure 4: PECA – A Recommended Process ...12

Figure 5: Scoring Ranges and Functions ..31

Figure 6: Pair-Wise Comparison..34

Figure 7: Test Bed..39

Figure 8: Weighted Aggregation ...44

Figure 9: Sensitivity Analysis ...46

Figure 10: Gap Analysis – 1...47

Figure 12: Cost of Fulfillment – 1...49

Figure 13: Cost of Fulfillment – 2...50

iv CMU/SEI-2003-TR-017

CMU/SEI-2003-TR-017 v

List of Tables

Table 1: Common Evaluation Mistakes..4

Table 2: Charter Example...16

Table 3: Example of an Organizational Checklist ..24

Table 4: Example of a Requirement, Capability Statement, and Measurement
Method ..27

Table 5: Example of the Goal Question Metric Technique.....................................29

vi CMU/SEI-2003-TR-017

CMU/SEI-2003-TR-017 vii

Abstract

The growing use of commercial software products in large systems makes evaluation and
selection of appropriate products an increasingly essential activity. However, many organiza-
tions struggle in their attempts to select appropriate software products for use in systems. As
part of a cooperative effort, the Software Engineering Institute and National Research Coun-
cil Canada have defined a tailorable commercial off-the-shelf (COTS) software product
evaluation process that can support organizations in making carefully reasoned and sound
product decisions. The background fundamentals for that evaluation process, as well as steps
and techniques to follow, are described in this report.

viii CMU/SEI-2003-TR-017

CMU/SEI-2003-TR-017 1

1 Fundamentals of COTS Software Product
Evaluations

Using commercial off-the-shelf (COTS) software products in large systems provides many bene-
fits, including the potential of rapid delivery to end users, shared development costs with other
customers, and the opportunity to expand capacity and performance as improvements are made
in the products. For systems that depend on COTS products, the evaluation and selection of ap-
propriate products is essential to the success of the entire system. Yet many organizations strug-
gle during the evaluation and selection process.

1.1 COTS Products and COTS-Based Systems: Definitions

Although the meaning of COTS may seem obvious, in practice determining what is COTS and
what is not can be complex. The definitions in this report are by design imprecise, since the
COTS market continues to define and redefine itself.

We define a COTS product as one that is

• sold, leased, or licensed to the general public

• offered by a vendor trying to profit from it

• supported and evolved by the vendor, who retains the intellectual property rights

• available in multiple, identical copies

• used without modification of the internals

Some products are COTS-like, but, based on our definition, are not pure COTS products. Free-
ware and open source products, for example, are available to the public, but no vendor is trying
to profit directly from selling the product; in the case of open source, the community acts like a
vendor in enhancing the product. Products that are available for sale to approved organizations
or governments but not the general public are also COTS-like, as are software products devel-
oped for internal uses but opportunistically offered for sale to a particular customer. The Defense
Commissary Information System (DCIS) program warns against such “opportunities.” The
DCIS found that a company that has not created a product with the intention of making money
from it is unlikely to support and evolve that product the way normal vendors would.

 CMU/SEI-2003-TR-017 2

The point of this definition is to capture the characteristics that most people have in mind when
they say “COTS.” Deviations from this definition simply change the corresponding set of expec-
tations and risks. The evaluation principles and process described herein apply equally to COTS
products and those that are COTS-like.

Although our definition of a COTS product does not include products that are modified inter-
nally, a particularly difficult distinction exists between tailoring and modifying a COTS product.
We consider tailoring to mean changes to COTS software product functions along parameters
the vendor has predetermined. We consider modification to mean changes to the internal capa-
bilities of a product that are not part of the vendor’s original intent; generally, this means any
change to the vendor’s source code. However, many COTS products provide only a core capa-
bility, with vendor or third party support for extensive tailoring of product functions. In these
cases, often only the core capability is considered COTS. In general, the degree to which the
tailored capability has moved away from pure COTS is roughly indicated by the magnitude of
the management, handling, and potential retrofitting of changes required when new releases of
the core product are installed in the deployed system.

COTS-Based Systems

Our definition of a COTS-based system (CBS) is any system partially or completely constructed
using COTS software products as integral components. This definition is primarily aimed at
software systems but does not specifically exclude hardware. The term “integral” is important
because it highlights the tight relationship that the COTS product has with the rest of the system.
The system would not function or would be incomplete without the product.

Measures like “percent of system composed of COTS products” or even “percent of functions
provided by COTS products” are not part of our definition of a COTS-based system. While these
and similar concepts might be heard elsewhere, they are misleading because they fail to capture
the extent to which COTS products are central to fulfilling the mission of the system. The per-
centages are also difficult to measure because there is no clear basis for calculating them, and
even when they can be measured, they offer little value.

A broad spectrum of COTS-based systems exists, ranging from COTS-solution systems to
COTS-aggregate systems. A COTS-solution system is a single product or suite of products, usu-
ally from a single vendor, that can be tailored to provide the system’s functionality. Vendors of-
fer such solutions if a consistent and well-bounded range of end-user needs exists throughout a
broad community, justifying the vendors’ costs for developing the products or suites of products.
Significant tailoring is required to set up and use these products, and the ability and willingness
of an organization to understand and adopt the processes supported by the products are often key
factors in success or failure. COTS-solution systems are commonly found in such well-
established domains as personnel management, financial management, manufacturing, payroll,
and human resources. Typical software vendors in this area include PeopleSoft, Oracle, and SAP.

CMU/SEI-2003-TR-017 3

COTS-aggregate systems are systems in which many disparate products (from different and
sometimes competing vendors) are integrated to provide a system’s functionality. Such systems
are created if operational procedures are sufficiently unique to preclude the possibility of a sin-
gle COTS product solution, if the constituent technologies are immature, if the scale of the sys-
tem is large enough to encompass several domains, or simply because different products provide
distinct pieces of functionality to form the complete system. Systems with these characteristics
include software support environments, large information systems, and command-and-control
systems. Often, the COTS products and other components are combined in ways or to degrees
that are unprecedented. Figure 1 shows this spectrum of COTS-based systems.

Figure 1: A Spectrum of COTS-Based Systems

1.2 Why a COTS Product Evaluation Process?

All organizations faced with the prospect of constructing major software systems from COTS
products must evaluate the available commercial products to determine their suitability for use
in a particular system. Yet, as we study the experiences of some of these organizations, we find
one of the hard lessons of COTS product evaluation: reasonable people doing reasonable things
still have problems that can be traced to the quality of their evaluation process.

One system we studied was initially conceived in the 1980s as a custom computer-based re-
placement for an old supply system. However, planning for the system was overtaken by rapid
changes in computing and communications technology and the system was redirected to ac-
commodate a burgeoning number of interfaces with related systems. The resulting “stovepipe”
system proved expensive to sustain, and a few years later the direction changed again. This time
the use of a particular COTS enterprise resource planning (ERP) product was mandated without
being evaluated. The selected product was incompatible with the system design and the project
was ultimately cancelled.

COTS-Solution Systems

One substantial product or suite
of products used (and sometimes
tailored) to provide significant
system functionality

• tailoring focus

• vendor maintained

COTS-Aggregate Systems

Multiple products from multiple
suppliers integrated to collectively
provide system functionality

• integration focus

• project maintained

COTS-Solution Systems

One substantial product or suite
of products used (and sometimes
tailored) to provide significant
system functionality

•

•

COTS-Aggregate Systems

Multiple products from multiple
suppliers integrated to collectively
provide system functionality

•

•

COTS-Solution Systems

One substantial product or suite
of products used (and sometimes
tailored) to provide significant
system functionality

• tailoring focus

• vendor maintained

COTS-Aggregate Systems

Multiple products from multiple
suppliers integrated to collectively
provide system functionality

• integration focus

• project maintained

COTS-Solution Systems

One substantial product or suite
of products used (and sometimes
tailored) to provide significant
system functionality

•

•

COTS-Aggregate Systems

Multiple products from multiple
suppliers integrated to collectively
provide system functionality

•

•

 CMU/SEI-2003-TR-017 4

In another system, the program office selected a product proposed by four out of seven integra-
tion bidders, assuming that it meant the product represented the best solution.1 No independent
evaluation was performed. Many problems came to light after the system was installed. For ex-
ample, end users were required to manually enter data that the legacy system handled automati-
cally, and required capabilities had to be added to the product. After a few years of trying to
make the product fit, the program abandoned the effort and COTS products in general and
started all over again with a largely custom system.

1.2.1 Common Evaluation Mistakes

The mistakes shown in Table 1 were found to occur again and again in many of the projects we
studied. It is not easy to prioritize these mistakes, since all are potentially “project killers.”

Table 1: Common Evaluation Mistakes
Mistake Description

Inadequate level of effort For example, critical products are selected using
only an informal Internet search.

“Once and done”

New product releases or changes in the system
context are not reevaluated.

Non-contextual

Consumer reports or “best of breed” lists are used
as the only source of information.

Limited stakeholder involvement

Requirements are defined by engineers without
consulting end users.

No hands-on experimentation

Marketing data are accepted as facts without fur-
ther checking.

By applying the principles and recommendations identified in this report, organizations can
avoid these (and other) pitfalls and be more successful in their COTS product evaluations and
their COTS-based system (CBS) development efforts. To be successful, evaluators need to

• understand the impact of COTS software products on the system development process

• determine evaluation requirements for COTS software

• develop COTS software evaluation criteria

• select COTS software evaluation techniques

• employ a COTS software evaluation process that addresses the inherent tradeoffs

1 Among the reasons that eventually came to light was that the bidders knew how much fourth genera-

tion language (4GL) code would need to be written and saw an opportunity for a large amount of paid
work.

CMU/SEI-2003-TR-017 5

1.3 What Makes Evaluations Difficult

Evaluation means different things to different people, and organizations use COTS product
evaluations in different ways. For example, the type of evaluation carried out by an accountant
concerned with cost will be different from one carried out by an engineer concerned with system
architecture and design. Some evaluations of COTS software products are carried out by parent
organizations to identify products that can be endorsed for use by their subsidiaries, while other
evaluations are carried out solely to gain a feel for the marketplace.

This report focuses on COTS product evaluations conducted for the purpose of selecting prod-
ucts to meet a known need in a system (that is, to select products for use). To determine if a
product is fit for use in a system, ask such questions as

• Does it provide adequate functionality?

• Is it capable of operating with other components?

• Can it be adapted to satisfy my needs?

• Is it appropriate for my business strategy?

Evaluation is a complex operation in which individual products are not evaluated in isolation,
but in the context of intended use. Part of the evaluation must be conducted in concert with other
system components, and possibly at the same time as evaluations of other COTS products that
are being considered for use in the system. Determining their fitness for use involves more than
just meeting technical criteria. Criteria can also include the fitness of the vendor (such as repu-
tation and financial health), the technological direction of the marketplace, the expectations
placed on support staff, and a wide range of other concerns.

Evaluation is inevitably difficult. Often, COTS products must be chosen before the system archi-
tecture is defined and before requirements are completely understood. Added to the difficulty of
understanding the system is the inevitable conflict of interest between stakeholders. For exam-
ple, while the end users typically want as much capability as they can get, software designers
and engineers often prefer a simpler solution. Fortunately, evaluation helps to resolve conflicting
interests while simultaneously leading to more complete system understanding.

Another complexity involves identifying and considering the interactions (both favorable and
unfavorable) between products. Products often provide functions that overlap with those pro-
vided by other products (such as data storage and version management). Overlapping functions
can lead to conflicts when a product attempts to perform a task while other products are per-
forming that same task. Normally, you cannot see how COTS products are engineered, which
limits your ability to understand the assumptions embedded within the products. If these as-
sumptions are not discovered by evaluators and engineers, they can prove disastrous in systems.

 CMU/SEI-2003-TR-017 6

Unfortunately, many of the most important attributes of a product are subject to assumptions that
are difficult to assess.

Evaluations are also limited by how quickly COTS products change. Many vendors release new
versions of products more than once per year. If you are fortunate, new releases will not invali-
date your plans for using the product. However, even with the best vendors and most stable
products, unanticipated technology advances can affect product viability (consider the rapid im-
pact of browser technology on the user interface).

1.3.1 COTS Product Evaluation in the COTS-Based System Context

Successful COTS product evaluation is part of a larger process of architecting, designing, build-
ing, and sustaining a COTS-based system. This section places COTS product evaluation within
the context of a larger process for developing COTS-based systems defined by the Carnegie
Mellon Software Engineering Institute (SEI). The COTS-based system process presented here
is only one of many possible. You do not need to follow this particular contextual process to
make effective use of the COTS product evaluation process presented in this report. You can
find details of a process framework in the SEI technical report Basics for an Assembly Process
for COTS-Based Systems (APCS) [Carney 03]. An instance of the APCS process framework can
be found in the technical report Evolutionary Process for Integrating COTS-Based Systems
(EPIC) [Albert 02].

 The Fundamental Change

If you try to follow the traditional custom-development approach when you implement a COTS-
based system, you are likely to encounter the following scenario:

• You define your requirements (taking into account your system context).

• You or your contractor defines an architecture and design to satisfy the defined require-
ments.

• You or your contractor explores the marketplace to find products that will provide the func-
tionality needed and fit within the defined architecture.

• You find no appropriate COTS products.

The fundamental change necessary with a COTS-based systems approach is the simultaneous
exploration of the system context, potential architectures and designs, and available products in
the marketplace (see Figure 2). “System context” represents requirements (functional and non-
functional), end-user processes, business drivers, operational environment, constraints, policy,

 Carnegie Mellon is registered in the U.S. Patent and Trademark office.

CMU/SEI-2003-TR-017 7

cost, and schedule. “Architecture2 and design” represents the software and system architecture
and design, and “marketplace” represents available and emerging COTS technology and prod-
ucts, non-developmental items (NDI), and relevant standards.

Traditional
Development Approach

Required COTS Approach

System Context

Architecture
& Design

Implementation

Simultaneous
Definitions

and Tradeoffs

Implementation

Architecture
& Design

System
Context

Traditional
Development Approach

Required COTS Approach

System Context

Architecture
& Design

Implementation

Simultaneous
Definitions

and Tradeoffs

System Context

Architecture
& Design

Implementation

Simultaneous
Definitions

and Tradeoffs

Implementation

Architecture
& Design

System
Context

Figure 2: The Fundamental Change

A COTS-based approach requires a carefully reasoned selection of alternatives from among the
various options and tradeoffs. Engineering activities must support this concept, and its effects
permeate everything you do. As a result, the acquisition strategy, contractual activities, and busi-
ness activities must all support this approach too.

The conceptual COTS-based approach developed by the SEI is iterative. Typically you go
through the process below several times, gathering more information and eliminating or adding
alternatives each time, until a viable solution remains. The steps in the process are as follows:

1. Assess and plan. This step includes developing effort estimations, setting goals, identifying
stakeholders, and other typical planning activities. At the end of each iteration, accom-
plishments are assessed to set the goals for the next iteration.

2. Gather information. This step includes defining requirements, learning about COTS prod-
ucts, and understanding design constraints and risks.

3. Analyze. This step includes considering the entire body of knowledge that has been gath-
ered about the products and the system, noting emerging compatibilities and identifying
conflicts.

4. Negotiate. This step includes reaching an accepted understanding among the various parties
involved in the system by resolving divergent expectations and points of contention.

2 Architecture is the structure of components, their interrelationships, and the principles and guidelines

governing their design and evolution over time [Garlan 95].

 CMU/SEI-2003-TR-017 8

5. Construct. This step includes implementing the selected solution for the current iteration.
This can be any sort of model, partial implementation, or implementation subject to further
analysis.

Figure 3 places COTS product evaluation within the context of this conceptual CBS process.

Figure 3: A Good CBS Process

This process is highly iterative. Expect to make multiple passes prior to defining the system to
be delivered and even after system delivery. COTS product evaluation plays an important role in
several steps, most obviously the “gather information” step. However, evaluation is often neces-
sary during the “analyze” step to support understanding of alternatives and during the “negoti-
ate” step to respond to stakeholder concerns regarding the alternatives. The overall process—and
COTS product evaluation—continues for the entire system life cycle. A good evaluation is nec-
essary but not sufficient for COTS-based systems success!

Building a COTS-based system is like completing a puzzle. Filling each hole in the puzzle re-
quires an evaluation. The shape and size of the remaining hole changes each time a piece is
added, and the choice of appropriate pieces becomes more constrained as pieces are selected.
Finding the right pieces (products) to build a COTS-based system, however, is more difficult
because the puzzle (the overall system) has no definite form or single solution. The shapes of the

CMU/SEI-2003-TR-017 9

required puzzle pieces (the needed product characteristics) also change as your understanding of
the system changes. The changing nature of the COTS marketplace adds another complication:
the puzzle pieces, and therefore the holes themselves, change over time.

COTS product evaluation is performed at many points in a CBS project. When a project is first
starting, there are many unknowns and few constraints and commitments. At this early stage, the
primary goal of evaluation is to discover information about a class of products and relate that
information to the system at hand. However, as the project progresses, more decisions are made
that constrain product selections. At later stages of a project, evaluation tends to involve match-
ing products against well-known objectives. This journey from many unknowns to many com-
mitments continues even after the system has been built.

1.3.2 Strategies for Effective Evaluation

There are six strategies that are often employed in successful evaluations.

Effective Evaluators Consider the Context

Because each system is unique, it is not sufficient to select a COTS product simply because it
appears on a pre-approved list of acceptable products, is in someone's opinion the best product,
or worked well in the context of another system. The more closely the evaluation reflects the
actual usage of a product, the more accurate it will be.

The context of an evaluation encompasses the conditions under which evaluation of a COTS
product is carried out. The results of an evaluation carried out in an environment that models the
system will be more trustworthy than the results of an evaluation that involves a paper exercise
or faith in a product because it is generally considered to be the “best of breed.”

Remember that other COTS products form part of the system context. While this is particularly
important when products are intended to work closely together, it also can be important when
products are intended to work independently. As you perform evaluations and pick products and
other system components, your understanding of the system context will change. By selecting
one COTS product, you are sometimes making other important product decisions, because the
selected product works best with (or works only with) certain other products. The set of products
that are used together is called an ensemble. An ensemble should be evaluated as a unit.

Effective Evaluators Account for Uncertainty

Regardless of how cautiously a COTS product evaluation is completed, the potential for error
still exists. The system context might not be completely understood when the evaluation begins,

 CMU/SEI-2003-TR-017 10

or the criteria and data gathering techniques used might be faulty. Since the potential for error
cannot be eliminated, the evaluation must accommodate uncertainty.

The use of a traditional risk management approach, applied to the COTS-based system evalua-
tion, can help manage such uncertainty. Possible risks must be documented and mitigation
strategies outlined as appropriate.

Effective Evaluators Conduct Comprehensive Evaluations

Evaluating the functional capabilities of a product is not enough. Other factors to evaluate in-
clude business aspects, vendor qualifications, quality attributes, and integration compatibility.
Just as it is unwise to buy a house based solely on price or square feet, it is also unwise to select
a COTS product based on a single characteristic or an overly limited number of characteristics.
On the other hand, it is impractical to evaluate all the possible qualities and characteristics of
complex COTS products, so a sufficient but practical set of criteria must be defined.

Defining broad and sufficient criteria, however, does not help in meeting the goal unless enough
resources are committed to measure products against those criteria. Many projects fall short of
their goals because they do not expend enough effort in evaluation.

Effective Evaluators Know That Evaluation Is Continuous

Evaluation is not “once and done.” Technologies advance and change. Products are upgraded.
Requirements change. Most engineers know that expectations placed on systems change over
time—what engineer has not bemoaned changing requirements? These factors make COTS
product evaluation an important activity at many points in the system life cycle.

The back and forth nature of continuing evaluations may seem tedious for some people. If some-
thing is done right the first time, why should it be repeated? The answer is that if everything is
known from the start, then the evaluation can be done right the first time. If there are uncertain-
ties at the start (as is almost always the case with COTS products and COTS-based systems),
then it is very difficult to get all the necessary information on the first attempt. Repeating tasks
as necessary is not a waste of time, since each repeated step increases the evaluators’ under-
standing of the product, the system, and the evaluation activity, moving them closer to their goal.

Effective Evaluators Are Guided by Facts

Opinions and impressions are useful but not sufficient. Far too often a COTS product evaluation
is a mixture of unverified assumptions and hunches, which is completely unacceptable in any
other engineering discipline.

CMU/SEI-2003-TR-017 11

The only way to achieve predictability in selecting COTS products is to base decisions on veri-
fied facts. This means that evaluations must be facts-centric, as opposed to “marketing-data-
centric” or “my-hunch-centric.” In the words of W. Edwards Deming, “In God we trust, all oth-
ers must bring data.”

Effective Evaluators Follow a Defined Process

Whether the task is frying eggs, building ships, or evaluating COTS products, consistently good
results can be achieved only by following a consistent process. This does not mean that product
evaluations require a highly complex, exquisitely documented process (although sometimes they
do), but it does mean that without some kind of consistent process, evaluation results will vary.

A good evaluation process should be

• cost-effective, yielding maximum results with a reasonable amount of effort

• iterative, to address the evolving nature of the COTS marketplace

• inclusive of multiple criteria, so different aspects of products and systems can be addressed

• simple, to be attractive to users

1.4 The PECA Process

An evaluation process defined by the SEI and National Research Council Canada (NRC), called
PECA (Plan, Establish, Collect, Analyze), helps organizations make carefully reasoned and
sound product decisions. The process can be tailored by each organization to fit its particular
needs, and is flexible enough to be used within many organizations and with many COTS-based
development processes.

Although the PECA process was derived in part from ISO 14598 [ISO 99], the process was
freely adapted to fit the needs of COTS software product evaluation. The process begins with
initial planning for an evaluation of a COTS product (or products) and concludes with a recom-
mendation to the decision maker. The decision itself is not considered part of the evaluation
process—the aim of the process is to provide all of the information necessary for a decision to
be made.

PECA was named for the four main activities that make up the process:

• Planning the evaluation

• Establishing the criteria

• Collecting the data

• Analyzing the data

 CMU/SEI-2003-TR-017 12

As illustrated in Figure 4, the elements in the PECA process are not always executed sequen-
tially. Evaluation events, such as a need for new criteria to distinguish products, unexpected dis-
coveries that lead to the start of a new iteration, or inadequacy of collected data, will direct the
process flow. One of the hallmarks of the PECA process is this flexibility to accommodate the
realities of COTS-based systems. The process is flexible enough to be used within many COTS-
based development processes, but is particularly suited to the process described on page 7. The
steps of the PECA process are explained in detail in Sections 2, 3, 4, and 5, and a summary of
the PECA process can be found in Appendix A.

Plan the
evaluation

Establish
criteria

Analyze
data

Collect
data

New criteria may be
needed to distinguish

products

Unexpected
discoveries
may require
reevaluation

New
understanding
leads to further
evaluation

Data may reveal weaknesses
in the experiments

Plan the
evaluation

Establish
criteria

Analyze
data

Collect
data

New criteria may be
needed to distinguish

products

Unexpected
discoveries
may require
reevaluation

New
understanding
leads to further
evaluation

Data may reveal weaknesses
in the experiments

Plan the
evaluation

Establish
criteria

Analyze
data

Collect
data

New criteria may be
needed to distinguish

products

Unexpected
discoveries
may require
reevaluation

New
understanding
leads to further
evaluation

Data may reveal weaknesses
in the experiments

Figure 4: PECA – A Recommended Process

1.4.1 Evaluation Inputs

Two primary inputs to the process are the set of products that will be considered and the system
requirements that must be met. However, system requirements alone are not sufficient for mak-
ing an appropriate choice from among the products because they do not include many important
characteristics of COTS products and vendors, such as underlying technology, quality of reputa-
tion, and support services offered.

Also, stakeholders may have expectations and assumptions that are not fully documented in the
system requirements. For example, users often expect to interact with a product in a certain way,
and developers expect to be able to tailor a product in a certain way. Reengineered end-user
processes might not be represented in the original requirements either. Almost inevitably, COTS
software solutions require particular business processes that affect the way end-users work. For

CMU/SEI-2003-TR-017 13

example, using ERP packages has huge process implications. While highly tailorable, these
packages inevitably impose new processes and constrain the existing processes of end users. The
processes actually used by people in an organization are rarely the ones found in available
documentation, so it will probably be necessary to find out what the users are really doing and
why. For more information about business process reengineering—the analysis and redesign of
workflow within and between enterprises—see the Electronic College of Process Innovation
[DoD 04].

Evaluation Guide

The evaluation guide, which is actually both an input and an output, is where an organization
captures its “know how” about performing evaluations. It describes how to perform an evalua-
tion and includes descriptions of processes and techniques. Each COTS product evaluation adds
to the organization’s knowledge about evaluation, and new information should be recorded in
the evaluation guide.

1.4.2 Evaluation Outputs

The type and detail of required documentation depend on the goals of the evaluation. The main
outputs of the PECA process are the product dossier, the evaluation record, and the summary
with recommendations, although all evaluations do not require all of these documents. These
documents are described briefly below; more detailed information can be found in Section 5.4.1,
“Documenting Recommendations.”

• Product dossier. This document acts as a repository of software documentation and includes
discovered facts, assessment results, classifications, and other explanatory material about a
specific product. (See also Appendix B.)

• Evaluation record. This record contains a description of the evaluation process. It provides
information about the steps used, including effort expended, and lists evaluators’ references
and expertise. (See also Appendix C.)

• Summary/recommendation. This document includes a summary of the evaluation activity
and the resulting findings, along with any messages the evaluation team wants to transmit to
the decision maker.

Beneficial Side Effects of Evaluation

Documents are not the only result of evaluations, and might not even be the most important re-
sults. During the evaluation, the evaluation team gains deep insights into the system impacts of
using COTS products. Ideally, this insight will have a significant impact on perceptions about
the system. For example, unrealistic expectations held by stakeholders should be detected, clari-
fied, and negotiated. Requirement and system engineers should use this insight to refine the sys-

 CMU/SEI-2003-TR-017 14

tem requirements. Finally, architects and integrators should apply this insight to correct design
flaws and adapt the system to work in a COTS product world.

Improving Future Evaluations

Gathering data about successes and failures during a COTS product evaluation process is the
best way to improve future evaluations.

• Information about cost and schedule breakdowns can improve future estimations.

• Measures of the effectiveness of criteria can aid in the generation of better criteria.

• Measures of the effectiveness of techniques for evaluating criteria can aid in the develop-
ment of better evaluation approaches.

1.4.3 Introduction to Evaluation Techniques

While a good process is imperative for the consistent evaluation of COTS products, a successful
evaluation relies on more than just a process. In addition, a set of techniques is needed to com-
plete each step in the evaluation. While the evaluation process is a high-level description of what
we need to do, techniques are low-level descriptions of how to do it.

Some steps in the PECA process require techniques that might be familiar to you. For example,
requirements elicitation is a technique used to draw out stakeholders’ expectations, and Gantt
charts are a technique used for scheduling [Modell 96]. Other activities require less well-known
techniques: scenario-based evaluation can be used for data collection, and the analytical hierar-
chical process (AHP) can be used for consolidation and analysis.

This report does not include all the techniques that exist, but instead focuses on lesser-known
techniques that are more specific to COTS product evaluation. Techniques are included with the
step at which we think they will be most useful, although many of the techniques can be used in
other steps of the evaluation process as well.

CMU/SEI-2003-TR-017 15

2 Planning the Evaluation

The first step in the PECA process is planning the evaluation. Planning for each COTS product
evaluation is different because the evaluation may involve different types of products (from sim-
ple to extremely complex) and different system expectations placed on the product (from trivial
to highly demanding). Tasks that might be completed during this step include forming the
evaluation team, creating a charter, identifying stakeholders, and picking the approach.

2.1 Forming Evaluation Teams

The importance of an effective evaluation team should not be underestimated, since without an
effective team, an evaluation cannot succeed. We have unfortunately seen situations where the
most junior engineer, with little support from anyone else, was assigned to evaluate products. A
lone engineer does not usually have the range of skills necessary to perform a broad-based
COTS product evaluation. A good balance of power is also important for a good team. In one
situation we observed, the most senior employee (the company president) sat on the evaluation
team and biased the results toward his or her preference.

An evaluation team should include people with diverse skills, such as

• technical experts

• domain experts

• contracts personnel

• business analysts

• security professionals

• maintenance staff

• end users

2.2 Creating the Charter

Some very general questions should be answered before an evaluation task begins. These ques-
tions include

• What is the evaluation expected to achieve?

 CMU/SEI-2003-TR-017 16

• What are the attributes of the evaluation team? Do they have decision authority?

• What are the responsibilities of each member of the team?

• In what ways is the system context flexible?

• How will the evaluation team measure success?

• When should the evaluation finish?

• What constraints must the evaluation team adhere to?

Often, this basic information is not documented, even though the slightest misunderstanding can
doom a project. Moreover, people tend to be more productive when they have a clear picture of
the ultimate goals of the project. A charter, created by the evaluation team to define the scope
and constraints of the evaluation, can record the answers to these questions. The charter should
contain

• goals of the evaluation

• scope of the evaluation

• names of team members and their roles

• statement of commitment from both evaluators and management

• summary of factors that limit selection

• summary of decisions that have already been made

2.2.1 Creating the Charter: Example

An example of a simple charter is shown in Table 2. A family might create a charter like this
when selecting a new camcorder.

Table 2: Charter Example

Scope of evaluation The ten best-selling digital non-professional camcorders.

Statement of evaluation goals Select by consensus a camcorder within budget that ful-
fills stated needs.

Team members and roles Sally and Bob are evaluators and decision makers.

Explicit statement of
commitment

The new camcorder will be purchased before the birth of
the family’s new baby.

Summary of factors that limit
selection

Budget = $800. Time frame = 9 weeks.

Summary of decisions that have
already been made

Camcorder must be digital, miniDVD, and pocket size.

CMU/SEI-2003-TR-017 17

2.3 Identifying Stakeholders

Evaluation stakeholders are individuals or groups with a vested interest in the results of a COTS
product evaluation, including all individuals or groups that will be affected by the selection of a
particular COTS product in a significant way.

While there are no rules for identifying evaluation stakeholders, errors of inclusion (including
additional individuals or groups) are less risky than errors of exclusion (omitting legitimate
stakeholders), since errors of exclusion can lead to rejection of the system. Errors of inclusion,
however, may make it harder to identify an appropriate COTS product because more people
must agree. Practical experience suggests that the main stakeholder group should be limited to
approximately seven or eight individuals. If there is a larger number of stakeholders, multiple
sessions and management of various groups may be necessary.

Potential stakeholders include

• end users

• system administrators

• operators

• maintainers

• integrators

• architects

• sponsors

• program managers

• vendors

The stakeholders for a particular evaluation might not be a subset of the stakeholders identified
for the entire system, since the concerns and expectations relevant to a specific component,
COTS product, and vendor are often different from the concerns and documented expectations
for the whole system.

2.4 Picking the Approach

During the planning stage, the basic characteristics of the evaluation activity are determined.
Some of the parameters of the approach selected include the depth or rigor of the evaluation, the
basic strategy for selection, and the filters needed to reduce the number of candidate products.

 CMU/SEI-2003-TR-017 18

2.4.1 Depth of the Evaluation

Different situations demand deeper or more superficial evaluations. Some situations require an
extremely rigorous evaluation of COTS products; in other situations, an inappropriate product
selection carries little risk. Two factors help determine the depth:

• complexity of the evaluation. How likely is it the wrong product will be selected?

• risk of failure. What would be the system impact of making the wrong selection? For exam-
ple, would it involve significant financial or environmental damage?

If the COTS product being considered will have relatively low technical risk for the system and
little involvement with strategic or critical end-user processes, the focus of the evaluation can be
on cost and the speed of implementation. A set of low-impact COTS product evaluation criteria
can be established and reused (with appropriate tailoring) for all of an organization’s COTS
products and systems that share these characteristics. The product can then be selected based on
an informed decision—for example, a decision made after conducting unstructured product re-
search, such as reading marketing brochures.

If the COTS product will have a pervasive impact on the system or support strategic or critical
business processes, it should be chosen using a methodic selection process, which is preferred in
most situations. The PECA process is a good example of a methodic selection process.

If the COTS product could cause the entire business to fail if not executed properly, then a
mathematically formal methodology should theoretically be used to select the product. In reality,
however, this approach is viable only in a limited number of situations and is difficult to use.

2.4.2 First Fit vs. Best Fit

You must also decide whether you will choose the first product you evaluate that satisfies your
needs or if you will consider the entire group of products before making a selection.

First fit can be applied at any level of evaluation rigor and should be used when the goal is sim-
ply to fulfill a minimum set of needs—when additional “goodness” of a product is unimportant
or it is not cost effective to evaluate to determine additional goodness. First fit considers mini-
mum requirements and answers the question “Is it good enough?” This does not imply that the
criteria by which products are assessed are any less complete. Although the first adequate candi-
date is selected without comparison to other candidates’ capabilities, all requirements must still
be met.

CMU/SEI-2003-TR-017 19

Best fit should be used when there is an appreciable gain in getting more than the minimal
amount of some characteristic. For example, in many situations a minimum performance is
specified, but better performance adds significant value to a product within the context of the
system. Best fit is also the approach to use in situations where no product has all the capabilities
being sought in a particular evaluation. Best fit answers the question “How good is it?”

2.4.3 Using Filters

Sometimes it is not reasonable to perform a thorough evaluation on all candidate products be-
cause the number of candidates is too large. The goal of filtering is to narrow the range of prod-
ucts that must be further evaluated by developing progressively more selective filters. By start-
ing with a coarse filter that is easy and cheap to use, products that are a poor fit can be
eliminated quickly. The remaining products can be evaluated using increasingly discriminating
filters. Using this process, the most complex and expensive filters will be used on the smallest
number of products.

Filters that focus on easily measured criteria can provide a useful mechanism for winnowing the
list of products under consideration. Product price is a coarse filter focusing on easily measured
criteria. Market share is another. As the number of candidates to consider is reduced, filters may
become increasingly discriminating and complex. A complex filter may involve building a test
harness for multiple products to determine which products respond to erroneous inputs in the
manner most appropriate for the system.

2.4.4 Picking the Approach: Example

In the example introduced earlier of a camcorder purchase, some issues that might influence the
depth of the evaluation include the following:

• A camcorder is an important, long-term investment.

• Buying a “lemon” has an important risk associated: the family might stop using the camcor-
der, and the investment would be lost.

• The family has no particular expertise in camcorders.

Because of these concerns, the camcorder should be chosen using a methodical selection proc-
ess. Although a camcorder could easily be selected at random from a store display, a camcorder
is a large, important investment, which makes its selection an important decision that requires
careful evaluation.

The approach chosen should follow these steps:

• Collect information about features, brands, and models (market survey, discovery mode).

 CMU/SEI-2003-TR-017 20

• Reduce the number of camcorders to three or four (filtering).

• Try each of those camcorders to find the best (best fit).

2.5 Estimating Resources and Schedule

Expert opinion, analogy, decomposition, and cost modeling are classic and well understood
techniques used for cost evaluation in engineering disciplines. Unfortunately, there are few tech-
niques available specifically for estimating resources and schedules for COTS product evalua-
tions. The Constructive COTS Model (COCOTS) is one of the few attempts to specifically ad-
dress the costs associated with building a COTS-based system [Abts 97]. The technique does not
separately address the costs associated with COTS product evaluation, however. An earned value
management approach can be used in an evaluation context; an example is given in Using EVMS
with COTS-Based Systems [Staley 01].

Some factors that may affect cost estimation include the following:

• level of rigor and risk involved. In general, the more rigorous the evaluation, the greater the
short-term cost. However, rigorous evaluations may lower long-term costs in building the
system because data obtained during the evaluation effort is useful during system archi-
tecting, design, and integration. In addition, a rigorous evaluation may head off the greatest
cost of all: a failed system.

• number of candidates being evaluated. The more candidates evaluated, the higher the overall
cost.

• evaluators’ levels of experience. Evaluation costs are often higher when evaluations are per-
formed by more experienced evaluators because they tend to perform more rigorous evalua-
tions. However, use of experienced evaluators can be expected to reduce costs down the
road.

In general, the resources commonly allocated to COTS product evaluation are insufficient. This
is particularly the case for COTS products that are at the core of complex systems.

CMU/SEI-2003-TR-017 21

3 Establishing Criteria

Evaluation criteria are the facts or standards by which the fitness of products is judged. Perhaps
the most critical step in the entire COTS evaluation process is establishing appropriate criteria.
The criteria selected will determine whether you ask the right questions regarding the viability of
the product in your system. This chapter provides a simple three-step process, recommenda-
tions, and techniques for transforming a set of requirements into a set of product evaluation cri-
teria that can be applied in a COTS product evaluation and selection process. The three steps are

1. Define evaluation requirements.

2. Define evaluation criteria.

3. Prioritize criteria.

These steps are defined in detail below.

3.1 Requirements vs. Criteria

The starting point for virtually all software development efforts is a set of requirements that rep-
resent at some level the expectations of those that have a stake in the system. If the organization
is considering the use of COTS products as system components, it is natural and appropriate to
look first to these requirements as a basis for evaluating and selecting the right products. Unfor-
tunately, for some organizations, an initial focus on system requirements leads them to believe
that generating the actual criteria for COTS evaluation is trivial—each requirement is directly
transformed into a criterion. However, our experience suggests that this simple transformation is
not likely to achieve the desired result—selection of an appropriate COTS product—because of
the following:

• System requirements are normally written at an abstract level in order to allow sufficient
flexibility for choosing multiple technical solutions. Unfortunately, criteria derived directly
from such requirements are too abstract to serve as a way of evaluating products. For exam-
ple, a requirement such as “The system shall be easy to use” is too abstract to judge whether
a product is or is not easy to use. A less abstract and more useful requirement might be “The
system follows the Windows interface standard” or “The learning curve for the system shall
not exceed two weeks.”

• System requirements are stated in terms of needs, whereas criteria should be stated in terms
of capabilities to satisfy those needs. For example, a requirement such as “Information trans-
fer shall be protected from unauthorized access” might be transformed into a criterion such

 CMU/SEI-2003-TR-017 22

as “Support for secure sockets or equivalent security mechanism,” which is the expected
concrete capability.

• Criteria should be obviously measurable, whereas system requirements are often stated in a
manner such that it is not immediately obvious how to measure them. Criteria should in-
clude the way in which the expected capability is to be determined in order to facilitate the
evaluation process. Such a criterion might be “System will accurately process 500 transac-
tions an hour. This will be verified using a performance testing tool.”

• System requirements tend to be incomplete, hardly ever stating every expectation placed on
a COTS product. Often qualities of the component other than required functionality are
overlooked. For example, a system requirement regarding the level of effort necessary to
apply appropriate tailoring to new releases of a product is rare.

3.2 Defining Evaluation Requirements

Because the expectations placed on a COTS product are not just a subset of the system require-
ments, the first step in defining evaluation criteria is to establish evaluation requirements. Be-
cause COTS products rarely align exactly with anticipated system functions (some products
combine functions, use different vocabularies, etc.), the mapping between product functions and
system functional requirements may not be obvious or straightforward. In addition, COTS
products add an entirely new class of concerns regarding licenses, testing, rapid deployment, and
control of the content of upgrades that are often not addressed by system requirements.

3.2.1 Sources of Evaluation Requirements

There are many sources of legitimate evaluation requirements that are derived from the context
in which a COTS product will execute but are not always addressed by system requirements.
These sources include

• Architecture/interface constraints: COTS product decisions are often constrained by other
decisions that have already been made. These constraints become evaluation requirements
when choosing a COTS product. For example, if a decision has been made to use a certain
middleware mechanism, it makes little sense to buy a product that is clearly going to conflict
with this technology.

• Programmatic constraints: Time, money, available expertise, and many other programmatic
factors may be sources of evaluation requirements that are not captured in system functional
requirements. For example, availability of trained staff adept at using a product can be a
useful criterion when choosing products, but is not likely to appear in system requirements.

• Operational environment: Not all aspects of the operational environment are included as sys-
tem requirements. For example, information about the organization that will perform main-
tenance on the system is frequently omitted. Thus, the operational environment may be a
source of additional evaluation requirements.

• Stakeholder expectations: People place additional expectations on products that are not clear
from system requirements. For example, users may have a strong preference about the style
of the user interface to a product. These expectations are often not captured in system re-

CMU/SEI-2003-TR-017 23

quirements, in part because it is assumed that the user interface can be tailored to expecta-
tions. However, the user interface of a COTS product is not as flexible as that provided by
custom code. Therefore, it is more important to determine the acceptability of the interface.

All of the previously listed sources are specific to the system under construction. There are also
a number of sources that provide lists of potential evaluation requirements that are not system
specific.3 These sources can provide insight into a diverse range of COTS product and vendor
characteristics, but no requirement identified from these sources should be used without careful
consideration of relevance to the situation at hand. Sources of non-specific requirements include

• product feature checklists

• organizational checklists

• previous evaluations for other systems

• marketplace

Product feature checklists are a standard fare for product comparisons. While they are only as
reliable as the source, they are widely used—and misused—in COTS software evaluation. The
basic capability provided by a product feature checklist is an itemized list of the features of a
class of products. This list is often used as a basis for comparing different products.

In some market segments, organizations have formed a niche market by identifying a set of gen-
erally preferred features and characteristics and evaluating products against this set. The most
notable example of this approach is Consumer Reports, which monthly evaluates consumer
items and provides recommendations for preferred products [Consumer 00]. However, in the
COTS software domain, the context in which the software will be used is not nearly as consis-
tent as the various contexts for which Consumer Reports makes recommendations. Thus, an
effective Consumer Reports for the COTS product marketplace does not exist today and is not
likely in the near term.

Some firms, however, regularly assess products that make up particular market segments; exam-
ples of these are Gartner and Ovum [Gartner 98, Ovum 00]. In addition, trade magazines often
publish product feature checklists. One should guard against accepting at face value product
feature checklists that appear in trade magazines. These are sometimes produced by vendors
specifically to present their product in the best light or to highlight some feature that distin-
guishes their product from those of competitors. It is also important to keep in mind that no ge-
neric list can reflect all of the requirements that need to be considered—a generic list will in-
clude some features that are irrelevant for the system and other important features will be
missed. These lists should not be used as the only evaluation requirements for COTS products.

3 ISO 14598 includes the concept of “evaluation modules” that are reusable packages containing re-

quirements and other data about an evaluation. In theory, these modules can be reused in different
settings. This approach is similar to the reuse of evaluation requirements described here.

 CMU/SEI-2003-TR-017 24

Other sources of “reusable” evaluation requirements are organizational checklists that represent
a consistent way to ensure that corporate interests are addressed in the evaluation and selection
of COTS products. Organization checklists may maintain relevant information about corporate
policies, preferred architectures, and expected engineering practices and can provide some uni-
formity and predictability in selecting products.

In general, corporate need for such checklists is not driven solely by technical considerations:
many other concerns are reflected as well, such as legal considerations (e.g., “due diligence” in
managing financial assets) and issues of scale (many organizations, many projects, many evalua-
tors). Table 3 identifies the categories of criteria covered in an organizational checklist built by
a large aerospace contractor. Appendix E provides a larger compendium of several lists we’ve
encountered. In addition to the requirements covered in these categories, the actual checklist
provides a 70-step process for evaluation and selection.

 Table 3: Example of an Organizational Checklist

Organizational Checklist for COTS Products
Compatibility with other COTS products in use
Adaptability, flexibility, reliability, maintainability
Impact on system integrity
Impact on system integration
Vendor support
Training
Documentation
Licenses

Evaluations that the members of the team (or the wider organization) have performed for similar
purposes are also sources of evaluation requirements. While these requirements are likely to re-
flect some of the context-specific nature required, it is a mistake to consider them equally appro-
priate for the new evaluation context as they were for the old. This mistake is reflected in state-
ments such as: “We looked at Product X before and it was pretty good. It will be good for the
new system also.” A variant of this problem is represented by selecting “pre-approved” products
from a product list without further analysis. In essence, such choices indicate that the require-
ments for COTS products in “this” system are sufficiently close to that of a “benchmark” system
and therefore no product evaluation process is warranted—a very bold and risky position.

Finally, a source for evaluation requirements is the marketplace itself. Risk-Driven Generation is
a technique that looks at what the COTS marketplace can offer and focuses on the risk intro-

CMU/SEI-2003-TR-017 25

duced by or reduced by product and vendor features4 [Wallnau 01]. This approach derives a set
of potential evaluation requirements from the features of products rather than from system re-
quirements. This set of requirements is pruned by analyzing the risk to the system should the
product provide or not provide a particular feature. The steps involved in Risk-Driven Genera-
tion are straightforward:

1. Identify interesting product features.

2. Assert risk to the system of a product not exhibiting a feature.

3. Categorize and quantify risk (optional).

4. Identify mitigations (optional).

The overall effect is that expectations regarding system needs are “adjusted” to agree with prod-
uct capabilities. By focusing on risk, the approach also helps to combat “gold plating” of re-
quirements and “featuritis.” If little or no risk results from absence of a product feature, then the
feature is not required of products under consideration. Note that this approach may also gener-
ate negative requirements—features that the product should not have.

3.2.2 Classes of Evaluation Requirements

A problem when evaluating COTS products is to treat the majority of requirements as providing
no leeway for negotiation. Stakeholders are the common source of this problem because they
are most familiar and comfortable with the end-user processes, user interfaces, and capabilities
provided by existing systems and have high expectations that the new system will provide all of
these plus the latest “whizz-bang” technologies. This is almost inevitably a mistake because
virtually all COTS products are compromises suited to multiple organizations and will very
probably work in a way that is different from the way to which stakeholders have grown accus-
tomed. In the most severe case, this approach will render all COTS products unacceptable, since
none can meet the expectations and specifications5 desired by users. If the organization is com-
mitted to using COTS products, it should strive for achieving sufficient flexibility in require-
ments.

In reality, identified evaluation requirements will fall in one of two general classes or categories:

1. Hard requirements that are mandatory—if the product does not meet these requirements,
then the product or the system must be augmented in some way or the product is unsuitable.
The augmentation could take the form of external custom code that handles functionality

4 The Risk-Driven Generation approach identified in Building Systems from Commercial Components by Wallnau et al.

refers to criteria. However, the use of the term criteria in the document is consistent with our use of the term requirement.

5 In some cases, where organizations are dead set against the use of COTS products, this approach is often intentional.

 CMU/SEI-2003-TR-017 26

the COTS product does not provide or the selection of another product that provides the
missing capability.

2. Negotiable requirements that are flexible—if a product does not demonstrate the preferred
characteristic, then it is not automatically excluded. The options in this case are to adjust
the requirement to some degree or to tailor the product or the other components in the sys-
tem to address the requirement.

We expect that the majority of requirements fall somewhere towards the center of a spectrum
between totally inflexible and completely flexible, where there is some room for negotiation but
in the end the requirement (or some version of it) must somehow be met. In many cases, the
implementation expressed by the COTS product, though it may not completely match the origi-
nal need, will be an acceptable requirement. This has even been shown in several cases involv-
ing requirements that were thought to be controlled by legislative mandate (laws). In these
cases, the driving force behind the requirement was the "traditional" approach of manual proc-
esses or legacy systems, rather than the actual letter of the law. Several state and federal organi-
zations have suggested to the SEI that many laws have more leeway than people who have
grown accustomed to current procedures tend to believe. In all cases, the organization should
carefully research any perceived legislative mandates to determine whether the letter of the law
(rather than some traditional interpretation) is the limiting factor.

Errors Compiling Evaluation Requirements

There are two types of errors that can occur when compiling evaluation requirements: errors of
inclusion and errors of exclusion. Errors of inclusion are caused when non-applicable require-
ments are included in the evaluation requirement set. Errors of inclusion have two unfortunate
effects. First, they tend to reduce the total amount of time and effort that is focused on the
evaluation of the product against necessary and important requirements. Thus, the organization
may focus its evaluation efforts on determining whether a product supports a feature of ques-
tionable value, while spending less effort determining whether a product’s vendor can appropri-
ately support the product in a certain context. Second, errors of inclusion can eliminate suitable
COTS products simply because they do not support the unnecessary and unimportant “require-
ment.” Perhaps the best example of an error of inclusion is the tendency to want every “cool”
capability—even if the capability does not add any appreciable value in the present context. A
good technique to combat this tendency is to consider the risk to the system mission should the
feature be absent or provided in a different manner (e.g., risk-driven requirements generation, as
covered in Section 3.2.1, pages 24-25). If there is no risk or it is minimal, then the requirement
may be unnecessary.

Errors of exclusion involve omitting evaluation requirements that are crucial to the fitness of the
product and vendor within the system context. The main danger of errors of exclusion is that
they can lead to the selection of an unsuitable product. For example, neglecting to consider the
vendor’s ability to support a product within a certain context may lead to the selection of an un-

CMU/SEI-2003-TR-017 27

supportable product. Errors of exclusion are often caused by insufficient understanding and an
oversimplification of the problem. An iterative approach to building COTS-based systems can
help mitigate this risk. As understanding about the problem grows, it is almost inevitable that
requirements that were initially overlooked will be identified.

3.3 Defining Evaluation Criteria

Completed evaluation requirements represent what is needed from a COTS product. However,
these requirements are not normally phrased in a manner that leads to straightforward and un-
ambiguous analysis of products. Prior to beginning the actual evaluation of products, evaluation
criteria must be generated from evaluation requirements. Evaluation criteria are the manifesta-
tion of the practical approach chosen for determining whether a COTS product has the character-
istics that are required for the system.

3.3.1 Characteristics of Good Evaluation Criteria

A good criterion for evaluation and selection of a COTS product consists of two elements:

1. A clearly measurable statement of the capability necessary to satisfy a need—called a capa-
bility statement

2. A means for assessing and assigning a value to the product’s level of compliance with the
capability—called a measurement method

A good criterion needs both the capability statement and a measurement method. However, in
some cases the details of the measurement method may not be fully known when the criterion is
first defined. In this case, these details must be filled in as they become known. Table 4 contains
an example of a fully defined criterion for the evaluation of vendor support.

Table 4: Example of a Requirement, Capability Statement, and Measurement Method

Several additional characteristics should be considered when forming criteria:

Requirement
• The COTS vendor shall provide extensive support for the COTS product.

Capability statement
• COTS vendor support shall include

- 24x7 help desk
- On-site installation/training support
- Online error reporting

Measurement method
• A product support survey will be provided to potential COTS vendors. Support claims

will be verified by exercising help facilities where possible and by contacting current
product users to determine the quality of vendor support.

 CMU/SEI-2003-TR-017 28

• Assessability: If data cannot be gathered to support the measurement method selected, then
the criterion is not good. For example, “quality of engineering” is not a good criterion if
there is no way to gather data indicating whether the product is well architected, designed,
and implemented.

• Ability to discriminate: If all COTS products display a required characteristic, then the char-
acteristic is not useful in identifying which products are superior. For example, the presence
of a graphical user interface will not normally discriminate between modern word proces-
sors.

• Non-overlapping: If criteria overlap, then the associated product characteristics can be fac-
tored into deliberations multiple times. This can lead to misleading results and possibly
wasted effort.

• Significance: If a criterion is not valuable in the context of the system, then it should not be
used. For example, the long-term stability of a vendor is irrelevant if the product will only
be used as a short-term or interim solution.

3.3.2 Techniques for Defining Evaluation Criteria

Perhaps the most common approach to generating evaluation criteria is through straightforward
decomposition of evaluation requirements. Each evaluation requirement is decomposed into one
or more evaluation criteria until the performance of a COTS product can be directly and unam-
biguously measured.

There are a variety of sources for pre-existing decompositions of important software characteris-
tics that potentially can serve as the basis for criteria. Among the more common are decomposi-
tions found in organizational checklists and in the software literature. Other good sources are
the various ISO and IEEE standards that address particular concerns about software. For exam-
ple, ISO provides a list of software quality characteristics (e.g., functionality, reliability, usabil-
ity) and suggests a potential decomposition of the quality characteristics into constituent parts
[ISO 91]. The standard also provides suggestions for measurement methods. Appendix D pro-
vides a summary of such characteristics.

Of course, no general list can reflect all of the criteria you need to consider—a general list will
include some criteria that are irrelevant and will miss other criteria that are important. The Goal
Question Metric (GQM) technique provides an approach that assures system specificity by de-
composition of requirements into capability statements and associated measurement methods
[Briand 94]. With GQM, the user develops a triad containing

1. the goal, which in this case is to fulfill an evaluation requirement

2. the question, which is a capability statement

3. the metric, which is the standard of measurement, determined either by direct measurement
or decomposition into other GQM triads

CMU/SEI-2003-TR-017 29

GQM has been adopted by a number of product evaluation techniques, including PORE [Ncube
99] and OTSO [Kontio 96]. Table 5 provides an example of GQM.

Table 5: Example of the Goal Question Metric Technique

Goal (Requirement) Minimum impact of learning curve on end-user per-
formance.

Questions (Capability statement) • Are the text and graphics visible?

• Is there an intuitive interface?

• Are the training materials effective?

Metrics (Measurement standard) • Readability of data by user with aging eyesight

• Reaction of user to a sample set of common tasks

• Retention of information via a formal exam

3.3.3 Measurement: Common Problems

Several common problems must be addressed in defining measures for criteria. These include
selecting the measurement method, minimizing bias and error, and normalizing measurement
scales.

Selecting a Measurement Method

For any realistic COTS evaluation scenario, the need for context-specific and detailed informa-
tion must be balanced against budget and schedule concerns. This problem is reflected in a vari-
ety of ways, but in almost all evaluation situations, a decision must be made between hands-on
analysis of COTS products and analysis of various forms of documentation (either provided by
the vendor or by a third party).

Hands-on inspection is by far the preferred way of determining what the software product really
does (as opposed to what the vendor claims it does) and how well the COTS software will fit
into the system. For all but the most rudimentary evaluations, we believe hands-on experiments
should be performed and data gathered. However, hands-on inspection is far more difficult,
time-consuming, and expensive than document inspection. It can involve procuring hardware as
well as additional software and the construction of evaluation harnesses to mimic portions of the
executing systems.

Another critical decision involves the type of data to be gathered. For a given capability to be
measured, either qualitative measurements (such as bad, fair, good) or quantitative measure-
ments (such as 2.34 miles, 4.64 nanoseconds) might be appropriate. There is sometimes a ten-

 CMU/SEI-2003-TR-017 30

dency to believe that quantitative measures are “better” than qualitative ones, but the reality is
that both can provide useful information for a COTS decision. The choice of qualitative vs.
quantitative depends on a range of factors, including the specific capability, its relative impor-
tance, and the resources available for its measurement.

Reducing Bias and Error

The goal of measurement is to produce fair, unbiased results and to frame those results in a way
that supports the ability to reason about them. Unfortunately, even with the best criteria, meas-
urement bias or error can affect the quality of the decisions made about COTS products.

One form of measurement bias is the result of unintended influences on measurement from fac-
tors outside product characteristics. For example, with qualitative measurement, individual
evaluators may have preexisting bias against one vendor, causing them to view all characteristics
of the vendor’s products in a poor light. A more subtle case involves differences between indi-
viduals in interpreting qualitative scales. For example, to one individual, fair may be an accept-
able rating for a product, while to another individual rating the same product, fair may mean the
product is totally unacceptable.

One way to increase consistency across individuals rating products against qualitative criteria is
to provide clear guidelines that

• emphasize the need to judge all criteria separately and without bias

• directly state what various qualitative ratings mean (e.g., bad is unacceptable, fair is margin-
ally acceptable, and good is fully acceptable)

A second form of error results from quantitative measurements that are systematically or ran-
domly biased or invalidated. For example, a common flaw emerges when a single run of a
benchmark is performed and a slight variance in the timing of input data significantly alters the
performance measured. This could lead to a false impression that one product is superior to an-
other. In general, poor setup of the evaluation environment (e.g., the way in which the sys-
tem/environment/product is configured) and poor selection of test data lead to this form of
measurement error. This problem is normally addressed by developing consistent evaluation en-
vironments, sufficiently accurate test harnesses, and multiple test executions.

Managing Multiple Scales: Normalization

As already indicated, data in its “natural” form has different units of measurement and different
scales. For example, the quality of a vendor’s product support may be measured using terms
such as poor, fair, good, or excellent, while the cost of the product is measured in dollars. How-
ever, in order to understand the total picture and compare products that perform at different lev-

CMU/SEI-2003-TR-017 31

els on different criteria, a consistent scale must be assigned. The process that converts all crite-
ria measurements to the same scale (e.g., a common measure of fitness) is called normalization.

Figure 5 illustrates two approaches to converting continuous data to a normalized “fitness” scale.
In the top part of the figure, various ranges within the continuous data field are converted to fit-
ness values (e.g., 0, 0.3, 0.8, and 1). This means, for example, that products performing at 250
KBytes/sec and 400 KBytes/sec are identically fit (fitness = 0.3 for both products). In the bottom
of the figure, there is a continuous relationship shown between performance and fitness. Thus, a
product performing at 400 KBytes/s (kilobytes per second) is more fit than one performing at
250 KBytes/s. A product performing at greater than 800KBytes/sec receives the same maximum
score.

A: Discrete Scoring Ranges

B: Continuous Scoring Ranges

Figure 5: Scoring Ranges and Functions

A common mistake organizations make in using normalized data involves violations of the basic
premises of measurement scales6 [Fenton 91]. Organizations sometimes try to convert ordinal
data (that is, data in which only the order is significant) to interval data (that is, data where the
interval between units is equivalent). For example, they convert price using a mapping similar
to the following:

• More than $1200 is poor, which equates to 1.

• Less than or equal to $750 is fair, which equates to 2.

6 Fenton provides an excellent discussion of this topic in particular and the fundamentals of software

metrics in general.

Scoring for Bandwidth

• Range: 0 - ∞ KBytes/s

• Scoring: <250 KBytes/s = 0; 250 –400 KBytes/s = 0.3;

 400 – 800 KBytes/s = 0.8; >800 KBytes/s = 1

Fitness function for bandwidth

1

0
250 KBytes/sec 1000

F
itn

es
s

800

Fitness function for bandwidth

1

0
250 KBytes/sec 1000

F
itn

es
s

800

 CMU/SEI-2003-TR-017 32

• Less than or equal to $500 is good, which equates to 3.

• Less than or equal to $350 is excellent, which equates to 4.

While the mapping itself is perfectly valid as long as it is recognized that the new scale (1,2,3,4)
is still ordinal, it is invalid to make assumptions that treat the result as interval data (e.g., in this
case, assuming a rating of 4 is twice as good as 2). This commonly occurs when organizations
try to perform mathematical operations on ordinal data that has been converted into a numeric
representation. For example, evaluators may try to determine the mean of the data, but the opera-
tion is meaningless for ordinal data.

3.4 Establishing Priorities

Normally, some COTS product evaluation criteria (i.e., those derived from negotiable require-
ments) are more important than others. In order to reflect this relative importance, priorities must
be assigned to criteria to allow reasoning about products that have different strengths and weak-
nesses.

Unfortunately, there is no simple formula for identifying the priority of a given criterion. The
actual priority assigned tends to reflect a composite of many different factors. For example, the
value assigned to a criterion may reflect its relevance when compared to others, the expense of
meeting the criterion in another way if the COTS product does not provide a solution, and the
risks to the system if the criterion goes unmet.

A common way of expressing priority is by assigning weights to the criteria. Weights express the
relative importance of normalized values of different criteria, answering questions such as,
“How many units of this criterion would we trade for a unit of this other criterion?”

3.4.1 Techniques for Weighting Criteria

A variety of techniques can be used to assign weights to criteria. All involve making a judgment
based on understanding of the system. Three popular approaches include

• unstructured weighting. One or more people determine weights based on their common un-
derstanding of the system and their experience. This is probably the most popular method,
but not necessarily the best.

• Delphi technique. Individuals use their own approach for deriving initial weights. The Del-
phi technique helps the team converge on a single weight and is a popular method for gain-
ing team consensus [Dalkey 63, Linstone 75].

• pair-wise comparison. A judgment is performed by comparing pairs instead of whole sets of
criteria. Criteria are ordered in pairs, and the team agrees on the relative importance of the
criteria in each pair. Pair-wise comparison is at the core of the Analytic Hierarchy Process

CMU/SEI-2003-TR-017 33

(AHP) [Saaty 80]. Tools such as Expert Choice [EC 00] support AHP and pair-wise com-
parison by computing weights for each criterion from the total set of pair-wise comparisons.

The Delphi technique and Pair-wise comparison are described in more detail in the following
sections.

Delphi Technique

In the Delphi technique, a questionnaire is given to several people, asking their informed opin-
ions on the subject. Replies are tabulated, and the questionnaire is distributed again, this time
with all the opinions attached to the questionnaire. People read each other's opinions and answer
the questions again. This process might continue for three or four cycles [Linstone 75]. As in-
formation is exchanged, people incorporate each others’ perspectives and information into their
thinking and collectively arrive at a fairly accurate understanding of the critical issues to con-
sider in their decision-making process. The following steps make up the basic method:

1. Clarify what information you need and why you need it.

2. Determine who the participants will be. The Delphi should be sent to multiple levels within
the organization, since diversity tends to lead to more comprehensive information that is
more accurate.

3. Determine a time line for the process.

4. Design the questionnaire. Include the purpose, a description of the process, the time line,
and precisely worded questions.

5. Send out the questionnaire.

6. Compile the information.

7. Repeat as needed, with the responses to the questions included with the questionnaire.

Should there be several rounds with no consensus, the group position may be determined by
averaging.

Pair-Wise Comparison

A technique that has gained some popularity is pair-wise comparison. Pair-wise comparison is
at the core of the Analytical Hierarchy Process (AHP), which provides a means of making deci-
sions or choices among alternatives, particularly where multiple criteria are involved. In pair-
wise comparison, the relative importance of each criterion against every other criterion is deter-
mined, often in a group session that was preceded by individual “homework.” In the case where
criteria are grouped into categories, such as when one does criteria decomposition, each criterion
is compared to the other criterion in its group. The process is repeated for every level in the hier-
archy. Figure 6 diagrams the pair-wise comparison process for a set of four criteria (color, speed,

 CMU/SEI-2003-TR-017 34

security, warranty). As a rating for each possible pairing is determined, a formula is applied that
identifies inconsistencies (e.g., color two times as important as speed, speed two times warranty,
but warranty two times color). Finally, when no inconsistencies remain, weights for the criteria
are computed.

From pairwise comparisons, AHP computes weights for the four criteria:
Color .12 Speed .25 Security .06 Warranty .57

The team estimates relative importance:

Color is 1/2 as important as Speed
Color is 2 times ... Security
Color is 1/3 ... Warranty
Speed... Security
Speed … Warranty

Security … Warranty

There are six ways
to pick pairs from
four items

From pairwise comparisons, AHP computes weights for the four criteria:
Color .12 Speed .25 Security .06 Warranty .57

The team estimates relative importance:

Color is 1/2 as important as Speed
Color is 2 times ... Security
Color is 1/3 ... Warranty
Speed... Security
Speed … Warranty

Security … Warranty

There are six ways
to pick pairs from
four items

Figure 6: Pair-Wise Comparison

In general, a group whose members have done their individual homework can confer on up to 40
pairs an hour. However, when identifying the relative importance of criterion pairs, it is critical
that the imperative to assign a value does not overwhelm the more important discussion of the
factors that should be considered in establishing weights.

CMU/SEI-2003-TR-017 35

4 Collecting Data

Much of this report so far has dealt with deciding what data to collect. This section deals with
actually collecting the data—the third step in the PECA process. Collecting data provides a basis
for analysis. Good data collection is simple, repeatable, measures what it was intended to meas-
ure, and captures information in a form suitable for analysis. Accurate data collection is one of
the keys to successful COTS software evaluation, yet the act of collecting data is full of sur-
prises—a few good ones and more than a few bad ones. This is one reason for applying an itera-
tive approach to building COTS-based software systems.

Remember that the quality of the evaluation (and the resulting selection) is only as good as the
data collected. Confidence in the final results can be improved by ensuring that the data collec-
tion methodology is as accurate as possible.

4.1 Results of Collecting Data

The most obvious result of collecting data is the discovery of how products stand against the
criteria. However, this is by no means the only result, and in some situations may not even be the
most important result. For example, improved understanding of the COTS product marketplace
and the system context is invaluable and should be documented.

COTS product evaluation data collection has some similarities with software testing. In software
testing the goal is to discover whether the software behaves as expected. Sometimes, the meas-
ures taken during COTS product evaluation are exactly the same and help you verify that a
COTS product does something in the expected way. However, in other situations there is no
concept of expected behavior. In these situations, you might want to discover how well a product
can complete a task or what the product is capable of doing. Here, measurements are less de-
fined and more open-ended than those in software testing.

As products are tested and data is collected, you realize how far your understanding was from
reality. Some unpleasant discoveries might include

• actual product capabilities different from your expectations

• unexpected interactions and architectural mismatches

• weak vendor responsiveness

 CMU/SEI-2003-TR-017 36

• products that don’t even install

A new evaluation iteration may be needed to accommodate changes in your assumptions. Typi-
cally, these realizations arise more often in the first iteration of a COTS product evaluation proc-
ess. As long as the team members expect to find surprises and have mechanisms to deal with
them, the evaluation can advance. One very successful program that employed dozens of COTS
products adopted the adage, “Pick a (COTS) horse and ride it until the legs fall off—but be pre-
pared to switch horses.”

4.2 Techniques for Data Collection

Different criteria and situations require different data collection techniques. The techniques you
choose will be determined in part by the degree of confidence you need in your results. For ex-
ample, the technique for determining the value of a critical criterion will likely be more rigorous
than one used to determine the value of a requirement that carries with it little risk.

The closer the data collection technique comes to the execution of the COTS component in your
specific system context, the higher the degree of confidence you can have about how the product
will perform in your actual system. You might want to use multiple data collection techniques
for a single criterion. For example, data collection techniques for “transactions per second”
might include

• trusting the provided documentation

• extrapolating from pre-existing benchmarks

• performing a specific experiment in the operational environment

This report classifies data collection techniques into three categories: literature reviews, vendor
appraisals, and hands-on experiments.

4.2.1 Literature Reviews

Just as it sounds, techniques in this category involve the review of literature about specific prod-
ucts. This information can be gathered from many sources. The Internet is a good way to find a
plethora of information. User newsgroups and Web pages can be invaluable sources for discov-
ering product strengths and weaknesses. However, Internet information is often inaccurate, so
beware of unchecked gossip and rumor, and assess the source and context of the information.

Reports from outside evaluators are also extremely popular sources of information. These re-
ports can be found in magazines and newsletters devoted to the product’s market segment. While
there is often value in those reports, they do not address the particular context of your system.

CMU/SEI-2003-TR-017 37

Therefore, the data provided and conclusions reached at best can provide you with only some of
the information you will need, and at worst might not apply to your context at all.

Vendors also provide information about products through user manuals, marketing brochures,
release notes, version histories, and vendor references. When reviewing these materials, beware
of misleading marketing-oriented terminology. For example, two products we studied claimed to
implement the SQL standard, but SQL scripts written for one were not compatible with the
other. It is also a good idea to follow up on references. We have seen situations in which alleged
users were not really involved with the product beyond having requested an evaluation copy.

4.2.2 Vendor Appraisals

Characteristics and capabilities of the vendor must be considered in the evaluation because they
affect the use of COTS products. Just as you must live with the characteristics of the selected
COTS product (both good and bad), you must also live with the characteristics of its vendor. A
vendor appraisal is the analysis of a vendor organization’s processes, personnel, and organiza-
tional capabilities in the context of how they affect the COTS product.

Sources of information for use in vendor appraisals might include

• vendor business and capability information gathered from interviews, vendor literature, or
capability evaluations

• independent financial analyses, such as Standard & Poor’s

• strategic information and lists of users provided in trade journals and by vendors

• customer compliments and complaints, found on Web sites or in user groups

4.2.3 Hands-on Techniques

Unless the product you are evaluating is trivial, you will need to use hands-on techniques to
evaluate it.

Hands-on techniques are beneficial because they can help to

• verify claims

• determine interactions with other components

• determine feasibility of proposed architectures and designs

• determine performance, reliability, and other characteristics in your context

• identify assumptions made by the product

Beware of “hands-on” evaluations that are devised by the vendor. They tend to reflect processes
that work particularly well and avoid processes that are not so smooth—in any case they are not

 CMU/SEI-2003-TR-017 38

your processes. Determining what the basic product contains and what features require tailoring
beyond the basic capacity is also difficult. At the very least, such evaluations should be done
against real data you provide.

Some hands-on techniques include test beds, product probes, prototypes, and scenario-based
evaluations.

Even if information about a product gathered in this phase does not directly relate to how well
the product meets the criteria, it should be recorded. This information might include the architec-
ture and design implications of the product, the limitations or conditions placed on its use, or
new options for using the product. Evaluators should also note the degree of confidence they
have in their data and list any deficiencies in their assessment methods, evaluation requirements,
or criteria.

Test Beds

A test bed is the infrastructure required to conduct hands-on experiments. Using a test bed is par-
ticularly important when multiple COTS products will be integrated into a larger system. In
these cases, evaluations entail more than one product or one set of products. The test bed can be
used to mix and match products to determine how they interact.

The test bed should recreate the target system to the greatest extent feasible, with real system
components used whenever practical. If real components are not available, simulations may be
necessary. Test beds also require support tools, such as test generators, debuggers, performance
monitoring software/hardware, test harnesses, and “sniffers.” A test bed complements many
other techniques identified in this section.

CMU/SEI-2003-TR-017 39

Actual
Altitude
RadarSimulated

Inertial Unit

Test
Harness

Test Bed

...
Resting: For(x = 1; x< n; x++)

rest;
If Still tired

goto Resting
. ..

...
If Java
Start Garbage Collector
Stop

If C++
Produce memory leak

. ..

Product 3
Navigation
Software
Product 2
Navigation
Software
Product 1
Navigation
Software

Actual
Altitude
RadarSimulated

Inertial Unit

Test
Harness

Test Bed

...
Resting: For(x = 1; x< n; x++)

rest;
If Still tired

goto Resting
. ..

...
If Java
Start Garbage Collector
Stop

If C++
Produce memory leak

. ..

Product 3
Navigation
Software

Product 3
Navigation
Software
Product 2
Navigation
Software

Product 2
Navigation
Software
Product 1
Navigation
Software

Product 1
Navigation
Software

Figure 7: Test Bed

The diagram in Figure 7 illustrates a test bed used for testing COTS software packages for navi-
gation. The test bed is composed of some real components (altitude radar), some simulated com-
ponents (inertial unit), and code to control the execution of the test bed (test harness).

Ideally, different navigation software packages should be “plugged” into the test bed to compare
their characteristics. In practice, such “plug and play” is uncommon, and the test bed will have
to be modified to accommodate each navigation software package.

Product Probes

In a product probe, specific features of a product are investigated through guided experimenta-
tion to illuminate critical performance characteristics. For example, a probe could be conducted
to find out how a product reacts to invalid data or a large volume of data.

Types of guided experimentation that might be used during a product probe include

• error testing

• stress testing

• data stream fault insertion

• testing of reactions at or near the boundaries

Guided experimentation has much in common with system testing. In fact, software-testing tools
(such as those that interrupt data streams and inject erroneous data) can be used in guided ex-

 CMU/SEI-2003-TR-017 40

perimentation. Discovery activities, which can also be used in a product probe, are far less struc-
tured. They involve using the product to “see what happens.” Discovery can be made repeatable
(and therefore more useful) if the sequence of activities and events is recorded. Even “playing
around” is not really playing—you do it for a purpose and need to apply some discipline.

Prototypes

A prototype is a small-scale version of a system used to demonstrate critical features and design
decisions. Prototypes are extremely useful in evaluating COTS products because they allow ex-
perimentation with products in the context in which they will be used.

Prototypes can be used to observe

• interactions between major components of the system

• interactions between users and the system

• performance of critical product features

• product or system behavior in areas of high technical risk (for example, integration with leg-
acy systems or interoperability with external sources)

For product evaluation, prototypes are often focused on a relatively small set of specific charac-
teristics. We use the phrase model problems to refer to these narrowly focused prototypes where
the consumer is usually the designer or architect [Wallnau 01].

Scenario-Based Evaluations

A scenario is a step-by-step description of a function that a system must perform. Scenario-based
evaluation is an ideal way to focus a product evaluation on the system context, since each sce-
nario is derived from a function that the system must accomplish and can be initially defined
without reference to product capabilities.

Scenarios are defined based on use cases, which are sequences of interactions between an actor
and the system. An actor is an external entity (person or other system) that communicates with,
but is external to, the system. The use case describes the sequence of interactions between the
actor and the system necessary to deliver the service that satisfies the goal. It also includes pos-
sible variations of this sequence, such as alternate sequences for satisfying the goal or sequences
that may lead to failure [Malan 99]. Use cases (and the actors) see the system as a “black box,”
as illustrated in the following excerpt from An Example of Object-Oriented Design: An ATM
Simulation [Bjork 98].

A session is started when a customer inserts an ATM card into the card
reader slot of the machine. The ATM pulls the card into the machine and

CMU/SEI-2003-TR-017 41

reads it. (If the reader cannot read the card due to improper insertion or a
damaged stripe, the card is ejected, an error screen is displayed, and the ses-
sion is aborted.) The customer is asked to enter his/her PIN, and is then al-
lowed to perform one or more transactions, choosing from a menu of possi-
ble types of transaction in each case. After each transaction, the customer is
asked whether he/she would like to perform another. When the customer is
through performing transactions, the card is ejected from the machine and
the session ends. If a transaction is aborted due to too many invalid PIN en-
tries, the session is also aborted, with the card being retained in the machine.
The customer may abort the session by pressing the Cancel key when enter-
ing a PIN or choosing a transaction type.

A scenario must reflect a task without including the technical details of how the task should be
accomplished. For example, a scenario might suggest that one step in the task would be the per-
manent storage of data, but should not state that the data will be stored in a database. A single
scenario will normally spawn multiple test cases and procedures.

A five-step process for conducting scenario-based evaluations is provided below.

Step 1: Define a scenario by isolating a particular process or subprocess. The scenario
might involve multiple use cases.

Step 2: Define specific test procedures for the scenario. Include expected outcomes.

Step 3: Establish an environment that simulates the area of inspection.

Step 4: Insert a product into the environment.

Step 5: Run tests and record results.

Other Techniques

Many other techniques can be used to collect data. Benchmarking, product insertion, and dem-
onstration are three that should be used with caution.

Benchmarks are commonly associated with the measurement of performance, although other
types of benchmarks are also available. Unfortunately, benchmarks provided by vendors are no-
toriously unreliable.

Product insertion is a useful technique when the COTS product will be used with little or no in-
tegration with other system components. In such cases, the COTS product can be deployed to a

 CMU/SEI-2003-TR-017 42

limited and controlled subset of the users. Product insertion is particularly useful as a technique
to analyze the impact of the product on end-user processes.

Demonstration is used by vendors eager to show off their products. Vendor demonstrations are
normally free, but rarely touch on product limitations or weak points. Perceptive customers can
sometimes infer product weaknesses by observing areas that the vendor avoids. A useful strategy
is to ask the vendor to perform the demonstration on data that you provide.

CMU/SEI-2003-TR-017 43

5 Analyzing Results

The fourth step in the PECA process is analyzing the results. Data collection typically produces
a large number of facts, checklists, and other types of data. This raw data must be consolidated
into information that can then be analyzed, since analysis is required for reasoning about the data
collected.

5.1 Consolidating Data

Raw data can be transformed into information that can be analyzed by abstracting and consoli-
dating it. Consolidation means that some detailed information inevitably will be lost. A balance
must be struck between the need for easy understanding, which requires a high level of consoli-
dation, and the risk of losing too much information. For example, applying a weighted aggrega-
tion technique to condense values for all criteria into a single overall fitness score risks losing
the data that suggests strengths and weaknesses with respect to an individual criterion. With high
levels of consolidation, two very different products can appear to be virtually identical. Consoli-
dation does not compare products—it simply makes sense of data.

When consolidating data, don’t be fooled by the apparent formalism. Sometimes, the apparent
mathematical surety of aggregated scores fools evaluators into believing that the results repre-
sent immutable facts (“Product A is the best”). However, even a numerical score is not necessar-
ily a fact, and the results must be viewed from a variety of perspectives. Fitness is necessarily a
judgment—in scores, weights, and normalization. This is not a bad thing, since human judgment
is often critical to the completion of the most complex tasks. But keep in mind that most of your
data is ultimately based on judgment.

5.2 Techniques for Consolidating Data

Selection of a product should never be based solely on data consolidated using a single tech-
nique, since consolidation masks details and says nothing about individual requirements. Two
techniques for consolidating data are all-to-dollars and weighted aggregation.

 CMU/SEI-2003-TR-017 44

5.2.1 All-to-Dollars Technique

The all-to-dollars technique treats every piece of data as adding to or subtracting from the bot-
tom line. Product deficiencies are converted into costs, and product excesses are converted into
benefits. Thus, there is some cost associated with a problem (such as poor performance) and
some value associated with meeting a requirement. Determining values and costs is tricky and
often requires you to think about the cost of alternative ways of delivering needed services.

5.2.2 Weighted Aggregation

Weighted aggregation is an extremely popular technique adopted from quantitative decision-
making. See Figure 8 for an example of weighted aggregation.

Figure 8: Weighted Aggregation

Observe that the sum of weights at each level of the hierarchy is equal to one. In general, the
score of a parent criterion is the sum of the scores of the child criteria times the weights of the
child criteria.

 score parent = Σ (score child * weight child)

Remember that the score and weight of a child criterion are often subjective; therefore the an-
swer may be quantitative, but fitness is still subjective.

Criteria

admin

thruput

respons

concurr

repute

curren

helpdsk

manual

install
samples

Scores

1

.3

.7

.8

.2

.4

1

.4

.7

.1

.3

0

.770

.120

.110

.109

.582

.309

.455

.090

.455

.110

.235

.655
Aggregated Values

func

perf

vend

docu

.883

.327

.809

.081

Fitness

child
criteria weight

child
score

calculated
parent
score

parent
criteria

ORB2.0
services

Criteria

admin

thruput

respons

concurr

repute

curren

helpdsk

manual

install
samples

Scores

1

.3

.7

.8

.2

.4

1

.4

.7

.1

.3

0

.770

.120

.110

.109

.582

.309

.455

.090

.455

.110

.235

.655
Aggregated Values

func

perf

vend

docu

.883

.327

.809

.081

.883

.327

.809

.081

Fitness

child
criteria weight

child
score

calculated
parent
score

parent
criteria

ORB2.0
services

CMU/SEI-2003-TR-017 45

5.3 Techniques for Analyzing Data

Analysis is a creative task, and the best technique is simply sound and careful reasoning. How-
ever, there are techniques that can help to guide and support this reasoning. This section outlines
three helpful techniques: sensitivity analysis, gap analysis, and cost of fulfillment. Each deals
with a particular aspect of the analysis, and these techniques can be applied together.

5.3.1 Sensitivity Analysis

Every evaluation is subject to uncertainty. You might wonder, “Are my measured values accu-
rate? What if my assumptions concerning weights are invalid? How dependent are the results on
a particular criterion?” This uncertainty creates risk.

Sensitivity analysis is a valuable but unfortunately underused technique for analyzing results. It
involves determining the impact of changing assumptions on resulting scores. For example, if
you have reason to believe that measurements are not completely accurate, you can investigate
what would happen to the overall fitness of the product if other plausible scores were assigned.
Even more commonly, relative weights of criteria may not be exact or may need to be changed
with changing circumstances (for example, if the maintenance organization decides to outsource
maintenance work on the system). By varying weights, you can determine the impact of these
changes on overall product fitness.

By performing sensitivity analysis, genuine insight into the decision being made can be ob-
tained. In addition, conflicts between various stakeholders that have been previously set aside
can be analyzed in an objective fashion.

 CMU/SEI-2003-TR-017 46

Product 3

Product 2

Product 1

.2 .3 .7.6.5.4 .8.1

.2

.4

.3

.5

Weight for
a single criterion

Product Fitness

Changes in weights do
not alter the outcome
in this range.

Product 3

Product 2

Product 1

.2 .3 .7.6.5.4 .8.1

.2

.4

.3

.5

Weight for
a single criterion

Product Fitness

Changes in weights do
not alter the outcome
in this range.

Figure 9: Sensitivity Analysis

In the example shown in Figure 9, the weights applied to a particular criterion have been varied
and the resulting change in the overall fitness of the three products has been graphed. Note that
if the weight applied to the criterion is reduced below approximately .36, then the product that
was more fit at higher weights (Product 1) becomes less fit than a previously inferior product
(Product 2). If the weight applied to the criterion is reduced enough, Product 1 becomes the least
fit product.

In the real world, weights applied to criteria may change for many reasons: requirements for the
system may change, the maintenance strategy for the system may be modified, or the weighting
of the experts may become suspect if bias is discovered.

5.3.2 Gap Analysis

Gap analysis compares the measured values associated with criteria to the required values. It
provides a sense of “best” and helps to identify significant issues in trying to meet the corre-
sponding requirement.

One important use of gap analysis is to determine the differences between end-user processes
and the processes assumed by each COTS product. Major failures have resulted from insuffi-
cient effort to determine the gap between as-is and COTS-supported processes.

CMU/SEI-2003-TR-017 47

A gap analysis typically uses a matrix with candidates listed across the top and criteria down the
side. Cells can be filled with text describing how well a product feature provides the function.
The resulting matrix shows how well a product fulfills the criteria.

As an example, this kind of matrix can help you understand the impact of different choices on
end-user processes. First, document the as-is processes. Next, understand the process imposed
by each candidate COTS product. Finally, understand the differences using the matrix. Placing
competitors side by side in this sort of comparison can help evaluators reason about relative
weaknesses and strengths. It can also illuminate overall patterns and provide some sense of
global superiority.

A “Yes/No” matrix provides broad understanding of where gaps exist between the product and
the required capabilities (see the matrix on the left in Figure 10). However, an understanding of
the consequences of the gap must also be developed. A matrix that contains some measure of
fitness (shown on the right in Figure 10) can provide a useful starting point. Additional informa-
tion is still needed to identify the effort required to bridge the gap—the “cost of fulfillment.”

Note the sparseness of the matrix on the left.

Product

Criteria

Yes/No

P1 P2 P3

C1 √ √
C2

C3 √

C4 √

C5 √

Product

Criteria

0.30 1.00 1.00

0.80 0.10 0.00

0.95 0.03 1.00

1.00 0.20 0.99

1.00 0.90 0.10

Fitness

P1 P2 P3

C1

C2

C3

C4

C5

Product

Criteria

Note the sparseness of the matrix on the left.

Product

Criteria

Yes/No

P1 P2 P3

C1 √ √
C2

C3 √

C4 √

C5 √

Product

Criteria P1 P2 P3

C1 √ √
C2

C3 √

C4 √

C5 √

Product

Criteria

0.30 1.00 1.00

0.80 0.10 0.00

0.95 0.03 1.00

1.00 0.20 0.99

1.00 0.90 0.10

Fitness

P1 P2 P3

C1

C2

C3

C4

C5

Product

Criteria

0.30 1.00 1.00

0.80 0.10 0.00

0.95 0.03 1.00

1.00 0.20 0.99

1.00 0.90 0.10

Fitness

P1 P2 P3

C1

C2

C3

C4

C5

Product

Criteria

Figure 10: Gap Analysis – 1

The most useful matrix would be one that provided some information on the actual level of ful-
fillment of the criteria. Figure 11 shows a third matrix that provides this kind of information. Note
that the entries are textual; that is, they do not have to be numerical scores. This data allows us to
base our calculation of cost of fulfillment on specific information gleaned during evaluation.

 CMU/SEI-2003-TR-017 48

Figure 11: Gap Analysis – 2

5.3.3 Cost of Fulfillment

Cost of fulfillment involves determining the implications to the system if a product is selected
by considering the work that must be done to the system to fulfill deficits in the product. In this
case, deficit does not necessarily refer to a product flaw; it may be a capability that is required in
the system that the product does not demonstrate. A deficit may also be caused by an overabun-
dance of features (because users must be protected from extraneous features) as well as a paucity
of features. “Cost” is not necessarily stated in terms of dollars; it could be in time (delays) or in
shifted risks. Cost of fulfillment is analogous to cost of repair in Building Systems from Com-
mercial Components [Wallnau 01].

Understanding the cost of fulfillment requires assumptions about the use of the product in the
system, including such elements as

• architecture and design

• impact on maintenance

• business considerations

This requires expertise outside the scope of evaluation. Evaluators must team with others to de-
termine possible approaches to the fulfillment and their estimated costs. Figure 11 shows three
potential situations that might occur as a result of an evaluation of a product.

Gap Information

P1 P2 P3

C1 Complete
solution

C2

C3

C4

C5

Product

Criteria

No Math engine

Vendor
Canadian

Windows onlyLinux platform
required

Vendor out
of country

No reliability
figures available

Precision only
to 2 decimals

Inaccurate math

10% < required
reliability

Limited Java
support

Complete
solution

Complete
solution

Complete
solution

Complete
solution

Gap Information

P1 P2 P3

C1 Complete
solution

C2

C3

C4

C5

Product

Criteria

No Math engine

Vendor
Canadian

Windows onlyLinux platform
required

Vendor out
of country

No reliability
figures available

Precision only
to 2 decimals

Inaccurate math

10% < required
reliability

Limited Java
support

Complete
solution

Complete
solution

Complete
solution

Complete
solution

Gap Information

P1 P2 P3

C1 Complete
solution

C2

C3

C4

C5

Product

Criteria

No Math engine

Vendor
Canadian

Windows onlyLinux platform
required

Vendor out
of country

No reliability
figures available

Precision only
to 2 decimals

Inaccurate math

10% < required
reliability

Limited Java
support

Complete
solution

Complete
solution

Complete
solution

Complete
solution

Gap Information

P1 P2 P3

C1 Complete
solution

C2

C3

C4

C5

Product

Criteria

No Math engine

Vendor
Canadian

Windows onlyLinux platform
required

Vendor out
of country

No reliability
figures available

Precision only
to 2 decimals

Inaccurate math

10% < required
reliability

Limited Java
support

Complete
solution

Complete
solution

Complete
solution

Complete
solution

CMU/SEI-2003-TR-017 49

Evaluation
Requirement(s)

Candidate’s
Capabilities

Cost of
Fulfillment

Cost of
Fulfillment

Evaluation
Requirement(s)

Candidate’s
Capabilities

Evaluation
Requirement(s) Cost of

Fulfillment

Candidate’s
Capabilities

Evaluation
Requirement(s)

Candidate’s
Capabilities

Cost of
Fulfillment

Cost of
Fulfillment

Evaluation
Requirement(s)

Candidate’s
Capabilities

Evaluation
Requirement(s) Cost of

Fulfillment

Candidate’s
Capabilities

Figure 11: Cost of Fulfillment – 1

The diagram at the top describes a situation where the product capabilities and the requirements
match exactly. In this case there is no cost of fulfillment. This situation is highly unlikely. The
diagram in the lower left describes a situation where the product does not fully meet the re-
quirements. The only cost involved here is the cost required to meet the remaining portion of the
requirements.

The diagram in the lower right describes a situation where a product does not completely meet
the requirements but also provides capabilities that are outside of the boundaries of the require-
ments. In this situation there will be two types of costs involved:

• the cost required to meet the requirement

• the cost required to handle (that is, manage, hide, etc.) non-required functionality

In one approach to determining cost of fulfillment, the following steps are to be repeated for
each product:

Step 1: Identify each gap.

Step 2: For each gap, determine

a. one or more fulfillment strategies (e.g., negotiate with the vendor, modify
 other system components, add custom code, negotiate requirements)

b. the cost to implement each strategy (costs include architecture/design,
 maintenance, process changes, etc.)

Step 3: Select the preferred set of fulfillment strategies.

 CMU/SEI-2003-TR-017 50

Step 4: Calculate total cost of fulfillment for the product.

Based on this analysis, select the preferred product for recommendation.

Keep in mind that the cost to fulfill a deficit has many facets. Not only must new capabilities,
wrappers, and filters be created, but also the total cost will likely include training, process
change, documentation, updated maintenance strategies, and many other individual costs. Also
note that a “deficiency” may actually entail features that the product provides that must be hid-
den or protected against.

Each evaluation matrix shows the deficiencies for that particular set of products and criteria. For
each product in the set, you must calculate the cost of fulfillment strategies. There will probably
be a number of different strategies for each product.

As an example of the effort required to undertake a cost of fulfillment calculation for one
evaluation, consider the matrix in Figure 12.

Figure 12: Cost of Fulfillment – 2

Each highlighted cell requires at least one cost of fulfillment determination, and multiple fulfill-
ment strategies could be investigated for each cell as well. In addition, your solution may be af-
fected by interactions between potential components and conflicts between different fulfillment
strategies.

P1 P2 P3

C1 Complete
solution

C2

C3

C4

C5

Product

Criteria

No Math engine

Vendor
Canadian

Windows onlyLinux platform
required

Vendor out
of country

No reliability
figures available

Precision only
to 2 decimals

Inaccurate math

10% < required
reliability

Limited Java
support

Complete
solution

Complete
solution

Complete
solution

Complete
solution

P1 P2 P3

C1 Complete
solution

C2

C3

C4

C5

Product

Criteria

No Math engine

Vendor
Canadian

Windows onlyLinux platform
required

Vendor out
of country

No reliability
figures available

Precision only
to 2 decimals

Inaccurate math

10% < required
reliability

Limited Java
support

Complete
solution

Complete
solution

Complete
solution

Complete
solution

P1 P2 P3

C1 Complete
solution

C2

C3

C4

C5

Product

Criteria

No Math engine

Vendor
Canadian

Windows onlyLinux platform
required

Vendor out
of country

No reliability
figures available

Precision only
to 2 decimals

Inaccurate math

10% < required
reliability

Limited Java
support

Complete
solution

Complete
solution

Complete
solution

Complete
solution

P1 P2 P3

C1 Complete
solution

C2

C3

C4

C5

Product

Criteria

No Math engine

Vendor
Canadian

Windows onlyLinux platform
required

Vendor out
of country

No reliability
figures available

Precision only
to 2 decimals

Inaccurate math

10% < required
reliability

Limited Java
support

Complete
solution

Complete
solution

Complete
solution

Complete
solution

CMU/SEI-2003-TR-017 51

5.4 Making Recommendations

Making a recommendation requires much more than a simple statement like “Product A is the
best for our goals.” The goal of a recommendation is to provide enough information to a decision
maker to help them select a product. Each decision maker is different, and evaluators need to pro-
vide all the information decision makers might want or need to make an informed decision.

The information required can vary according to the type of organization and the characteristics
of the decision makers. For example, a bank has fiduciary responsibility for people’s money. The
emphasis placed on an evaluation by one bank’s decision makers was on the demonstration of
due diligence so that any decision made could be supported and justified to bank investors. This
emphasis “flavored” the recommendations.

Evaluators learn many lessons about the use of a product in a system during an evaluation. They
also develop highly informed opinions about system architecture and strategies for tailoring,
wrapping, testing, and maintenance. All of this information should be documented, even though
it might not be possible to recommend any of the evaluated products.

In cases where the recommendation is to reject all products, evaluators often learn critical in-
formation regarding alternate strategies for the system. This information might suggest custom-
building portions of the system, or it might identify changes to requirements that would allow
COTS products to be used. It is the evaluator’s responsibility to document and convey this in-
formation as well.

5.4.1 Documenting Recommendations

As stated in Section 1.4.2, the primary outputs used to document recommendations for decision
makers are the product dossier, the evaluation record, and the summary with recommendations.

Creating a Product Dossier

The information necessary to understand and use a product is collected in the product dossier.
Appendix B provides a template for this document. A dossier should be started for each product
when it is first considered for evaluation. As more information about the product is collected, the
product dossier is extended. Since the product dossier represents the growing record of a prod-
uct’s consideration, the dossier for a product rejected early may contain only preliminary infor-
mation, while a dossier for the chosen product may be quite detailed.

For products that are rejected, the product dossier documents the rationale for rejection. This
information is useful during subsequent product evaluations for the same system, and is invalu-

 CMU/SEI-2003-TR-017 52

able should the product be considered again during future evaluations. For products that are se-
lected, the dossier maintains the rationale for the selection, but also serves as a central source of
information for the team that will architect, design, and build the system around the product, and
for those tasked with integrating the product into the system.

The product dossier should include the following information:

• product and vendor information

– documentation, sources of information, points of contact

• product limitations

– limitations on use of the product, including features not to use
– design strategies that make best use of products and compensate for limitations

• discovered facts

– differences between product and documentation
– interactions and behavior
– observed product features

• information about use of product

– procedures for installing, configuring, and maintaining the product
– ramifications of product use on system architecture

Creating an Evaluation Record

An evaluation record is an essential item for project tracking, preservation of historical data, and
process improvement. See Appendix C for an evaluation record template. The evaluation record
describes what the evaluation team has done. The evaluation record should include the following
information:

• evaluation plans

• names of personnel responsible for the evaluation

• dates and details of meetings and evaluation tasks

• environment or context in which a product is evaluated

• detailed information about product versions, configurations, and customizations

• results of all of the evaluation activities

• rationale for decisions made

• lessons learned that may be useful for subsequent evaluations

CMU/SEI-2003-TR-017 53

Creating a Summary with Recommendations

Evaluators should present their results in a summary with selection recommendations. Some
possible topics to cover in the evaluation summary include

• analysis of fitness

– observed product features and limitations
– performance against criteria for all candidates
– behavior and interactions with other components
– results of gap analysis, fulfillment strategies, and fulfillment costs
– results of sensitivity analysis

• analysis of evaluation deficiencies

– need for further evaluation
– confidence in results

• discovered facts

– differences between product and documentation, for example

The analysis of fitness describes how well candidate products fit into the intended context. It
might also include an analysis of performance against criteria for all candidates and an analysis
of gaps and fulfillment strategies. It might also identify lessons learned about appropriate system
architecture and design strategies relative to the products.

The analysis of evaluation deficiencies describes the limitations of the evaluation and the data
gathered. It might also identify the degree of confidence in the results and whether any further
evaluation should be carried out. In some cases, discovered facts of particular importance may
be highlighted in the evaluation summary.

Some possible topics to cover in the evaluation recommendations include

• recommended products or alternate solutions, with rationale and system implications

• if the recommendation is to buy, recommendations regarding

– architecture, design, implementation
– tailoring or wrapping
– integration and system testing
– maintenance and support

• if the recommendation is not to buy

– alternatives (such as build, change requirements, etc.)

 CMU/SEI-2003-TR-017 54

CMU/SEI-2003-TR-017 55

6 Conclusion

Some individuals believe that following any documented process is ill advised, particularly
when the end goal is to save time and money. Our experience in analyzing troubled programs is
that too often highly informal COTS product evaluation processes share the blame for failure.
The process described in this report is a means of performing COTS product evaluations and not
an end in itself. Expect to tailor this process to fit your own situation, and do not let it limit your
options in getting good data and making an informed recommendation.

Regardless of the COTS product evaluation process you adopt, remember that evaluation is an
ongoing activity. Your organization will need to evaluate new product versions and potentially
identify product replacements over the life of your system. If you have a foundation of good
evaluation processes and practices, along with good documentation of the characteristics of
products and the rationale for decisions, you have a good start at making COTS products work
for you.

 CMU/SEI-2003-TR-017 56

CMU/SEI-2003-TR-017 57

Appendix A Step by Step Description of the
PECA Process

1. Plan the Evaluation (p. 15)

1.1. Define Charter (p. 15)

a. Form the evaluation team.

b. Obtain commitment of both the evaluators and management.

c. Create a charter for the current evaluation effort.

d. Plan the evaluation.

1.2. Identify Evaluation Stakeholders (p. 17)

a. Locate the relevant evaluation stakeholders.

b. Identify their expectations.

1.3. Establish Level of Depth (p. 18)

a. Identify the component’s criticality.

b. Identify evaluation complexity.

c. Define the level of depth that will govern the evaluation.

1.4. Identify Approach and Resources (p. 20)

a. Pick a general approach and candidates for the evaluation.

b. Estimate resources required for the evaluation.

c. Develop schedule based on previous estimations.

2. Establish Criteria (p. 21)

2.1. Compile/Negotiate Evaluation Requirements (p. 21)

a. Find subset of system requirements relevant to this evaluation.

b. Normalize the language.

c. Distinguish between negotiable and non-negotiable requirements.

2.2. Define Criteria (p. 27)

a. Create and document a set of criteria sufficient to enable selection.

 CMU/SEI-2003-TR-017 58

b. Prioritize criteria.

3. Collect Data (p. 21)

3.1 Select measurement techniques.

3.2 Design measurements.

3.3 Obtain data about the products by executing the planned measurements.

4. Analyze Results (p. 43)

4.1. Consolidate Data (p. 43)

a. Translate raw data into a basis for recommendation.

4.2. Analyze and Document Results (p. 51)

a. Provide the decision-maker with foundations to choose a product.

b. Document lessons learned for future evaluations.

c. Transfer product facts to system integrators.

CMU/SEI-2003-TR-017 59

Appendix B Product Dossier Template

1. Product Identification

a. Name

b. Version number, rev number, patches installed, etc.

2. Vendor Contact Information

3. Product Description

[Summary of what the product does and what it is being considered for/how it is used in
the system.]

4. Product Status

[Current state of decisions made regarding use of the product, whether it has been se-
lected, is being used, actively maintained, or being replaced/retired.]

5. State of Evaluation, Testing, Certification

6. Vendor Data (includes raw and processed information)

a. Financial

b. Business

c. Engineering

7. Product Data (includes raw and processed information)

a. Basic characteristics

b. Standards

c. Hardware/software configuration required

d. Functional capabilities

e. Nonfunctional capabilities

[usability, supportability, interoperability, reliability, security, etc.]

f. Interactions and behavior

g. Performance

h. Documentation

i. Licensing

j. Architecture

k. Noted discrepancies between the product and its documentation

 CMU/SEI-2003-TR-017 60

8. Product Limitations

a. Product deficiencies

b. Limitations on product use

9. System Relationships, Tailoring, and Modifications (includes raw and processed in-
formation)

a. System configuration

b. System adaptation

c. System integration

d. Product and system tailoring and modification

e. Design strategies for using product

10. Product Usage History

a. Dates considered, used, retired

b. Bugs/problems reported

c. Disposition of bugs/problems

d. Queries to vendor or third parties for support

e. Changes/updates to configurations and tailoring

[capture rationale, changes, and results]

f. Preventative/other maintenance performed

11. Dossier Usage History

a. Who, what, and why record of access to Dossier components

b. Errata or inconsistencies found

 [additional information required]

CMU/SEI-2003-TR-017 61

Appendix C Evaluation Record Template

1. Charter

1.1. Background

 a. Date of effort

 b. Evaluation team members and qualifications

 c. Facilities and resources used

1.2. System Stakeholders

Stakeholder
 R

eq
ui

re
m

en
ts

 S
po

ns
or

sh
ip

,
 a

dm
in

is
tr

at
io

n
 C

on
tr

ac
tu

al

 in
fo

rm
at

io
n

 T
ec

hn
ic

al

 in
fo

rm
at

io
n

 O
th

er

1.3. Approach

 a. Depth

 — complexity

 — risk of failure

 b. First fit vs. best fit

c. Number and type of filters

d. Other

 CMU/SEI-2003-TR-017 62

2. Criteria Record

Criterion Negotiability
Non applicable
Very negotiable
Negotiable
Barely Negotiable
Hard Requirement

Capability Statement Measurement Method

3. Results Record

<product1 name> <product2 name>

 Criterion
Measurement

Results
Repair

Strategy(s)
and Cost of
Fulfillment

Measurement
Results

Repair
Strategy(s) and

Cost of
Fulfillment

4. Assessment of Evaluation Effort

a. Limitations or deficiencies

b. Rationale for all decisions made

CMU/SEI-2003-TR-017 63

Appendix D Criteria Classification

 CMU/SEI-2003-TR-017 64

Vendor Characteristics
Organizational stability
Financial stability
Nationality
Ease of access
Independence
Reputation
Support infrastructure
Engineering approach
Maintenance approach
History

Product Characteristics
First shipment date
Install base
Market share
Market trend
Customer references
End-of-life plans
Availability of training
Access to hotline
Availability of consultants
Delivery method

Hardware Configuration
Type
Memory requirements
Disk requirements
Other storage media
Communications

Standards
DoD standards
Industry standards
Organizational standards
Confidence in adherence to
 standards

Software Configuration
Operating system
Communications
Database
Related applications
Known compatibility
 problems

Functionality
Suitability
Accuracy
Security

Usability
Intended use and users

General operability
Skill level required
Responsiveness
Robustness
Help capabilities
Error assist/recovery
Understandability
Learnability

Supportability
Self diagnostics
Disclosure of subcontractors
Effort of upgrade
History of upward
 compatibility
Site installation support
Site operation support
Tool support required
Analyzability
Installability
Replicability
Preventive maintenance

Interoperability
Data model/format
Support for data access
Support for control by
 other applications
Infrastructure utilized
Infrastructure commonality

Reliability
Test regimen
Test coverage
Types/frequency of faults
Recovery from faults
Mean time between failures

Performance
Benchmarking results
Time-related behavior
Resource behavior
Surge capacity

Adaptability/Flexibility
Customization approach
Customization effort
Portability
Scalability

Documentation
Availability of design and

 maintenance documents
Customization
Quality

Training
Materials
Courses
Customization
Policy on reproduction

Licenses
Standard use and maintenance
 licenses
Site licensing
Quantity discounts
Transferability of license
Development/runtime
 licensing
License bases (per seat, CPU,
 other)
Data rights
Escrow
Rights granted on discontinua-
 tion of product

CMU/SEI-2003-TR-017 65

 CMU/SEI-2003-TR-017 66

Appendix E Generic Organizational Checklist

1. Vendor Contact Information

2. Vendor Financial Evaluation

3. Product Background

4. Product Standards

5. General Business Application

a. Logical model of business functions

b. Data dictionary

c. Online features

d. External information

e. Training

f. Testing

g. Documentation

6. Product Configurations

7. Physical Characteristics

8. Environment Factors

9. Product Usability

10. Product Customizations

11. Product Reliability

12. Product Supportability

13. Integration

14. Presentation Integration

a. Appearance and behavior

b. Interaction paradigm

15. Data Integration

a. Interoperability

b. Non-redundancy

c. Data consistency

d. Data exchange

e. Synchronization

CMU/SEI-2003-TR-017 67

16. Control Integration

a. Provision

b. Use

17. Process Integration

a. Process step

b. Process event

c. Process constraint

18. Platform Integration

a. Hardware coupling

b. Operating system coupling

19. Fees and Terms

 CMU/SEI-2003-TR-017 68

Acronym List

4GL fourth generation language

AHP Analytical Hierarchical Process

ATM automated teller machine

BPR business process reengineering

C3/C4 command, control and communications/
 command, control, communications, and computers

CBS COTS-based system

CORBA Common Object Request Broker Architecture

COTS commercial off-the-shelf

DCIS Defense Commissary Information System

DoD Department of Defense

ERP enterprise resource planning

GQM Goal Question Metric

KBytes/s kilobytes per second

MBV Model-Based Verification
MRP Manufacturing Resource Planning
NDI non-developmental item

NRC National Research Council, Canada

OTSO Off-the-Shelf Option

PECA Plan/Establish (criteria)/Collect (data)/Analyze

CMU/SEI-2003-TR-017 69

PIN personal identification number

PORE Procurement Oriented Requirements Engineering

RDCG Risk-Driven Criteria Generation

RMC Canadian Forces Military College
SEI Software Engineering Institute

SQL Structured Query Language

SSL Secure Socket Layer

TLS Transport Layer Security

 CMU/SEI-2003-TR-017 70

Glossary

Aggregation

Collection of particulars into a whole mass or sum.

Acquirer

An organization that acquires or procures a system, software product, or software service from a
supplier (ISO definition). As used in this paper, it also refers to an individual person within such
an organization who participates in acquisition or procurement.

Commercial off-the-shelf (COTS)

Available commercially and directly off-the-shelf.

Commercial off-the-shelf (COTS) product

A product that is

• sold, leased, or licensed to the general public

• offered by a vendor trying to profit from it

• supported and evolved by the vendor, who retains the intellectual property rights

• available in multiple, identical copies

• used without modification of the internals

Consolidation

The transformations applied to raw data in order to condense it and extract useful information.

Cost of fulfillment

The effort required to bridge the gap between the evaluation criteria and the capabilities of the
products being evaluated.

COTS-aggregate system

A system composed of multiple COTS products from multiple suppliers, integrated to collectively
provide system functionality.

COTS-based system

CMU/SEI-2003-TR-017 71

Any system partially or completely constructed using COTS products as integral components.

COTS product evaluation

The examination of COTS products for the purpose of determining the products’ fitness for use in
a particular context.

COTS-solution system

A system composed of one substantial COTS product or product suite from one vendor, tailored to
provide significant system functionality.

Criteria

The factors or standard by which the fitness of products is judged. Criteria are derived from
evaluation requirements.

Custom code

Code that has been created by and/or is under the control of the acquirer.

Decision maker

Person or team responsible for selecting a particular COTS product based on the results of the
COTS product evaluation.

Depth (of evaluation)

The level of detail, accuracy, and comprehensiveness of an evaluation.

Document (for literature review)

Written material relevant to COTS products, such as product documentation, Web-based reports, etc.

Ensemble

A unit or group of complementary parts that contribute to a single effect.

Evaluation requirements

Requirements that apply to the current COTS product evaluation; they are derived mainly from
the system requirements.

Evaluator

A person responsible for executing some or all of the COTS product evaluation process.

End users

Those who will use the COTS-based system in the intended operational environment.

 CMU/SEI-2003-TR-017 72

Fitness

The degree to which a COTS product meets the needs of a system.

Market Survey

Initial and often informal exploration of the COTS marketplace or market segment in order to
locate a set of suitable COTS products and vendors for further evaluation.

Modification

Changes to the internal capabilities of a COTS product that are not part of the vendor’s original
intent; for a software product, this is generally any changes to the vendor’s source code.

Negotiability of a requirement

Degree to which a particular requirement can be weakened or removed when the requirement
cannot be fulfilled. A negotiable requirement can be altered, weakened, or removed; a non-
negotiable requirement must be fulfilled as stated.

Operational Environment

The physical, political, and business environment within which the deployed system must func-
tion.

Requirement

A need or necessity. A requirement may be negotiable or non-negotiable.

Risk

Exposure to the chance of injury or loss; the potential for a situation or set of circumstances to
develop into a problem.

Sponsor

The individual or office providing the funding for the development of the COTS-based system.

Stakeholder

Someone with vested interest in the results of a COTS product evaluation or on whom the selec-
tion of a particular COTS product will have an appreciable effect. It includes but is not limited to
end users, system integrators, acquirers, sponsors, and decision makers.

Supplier

An enterprise (not necessarily commercial) whose purpose in producing a product may or may
not include making it commercially available for the use of others; examples of suppliers include

CMU/SEI-2003-TR-017 73

government, academic institutions, shareware providers, and not-for-profit enterprises, in addition
to vendors.

System context

Those entities, parties, or circumstances that place requirements and constraints upon the COTS
products to be integrated: denoting such factors as requirements (functional and non-functional),
end-user processes, business drivers, operational environment, constraints, policies, budgets,
schedule limitations, and stakeholders.

System integrator

An enterprise, not necessarily commercial, whose purpose is to compose various components into
a system. In the case of COTS-based systems, this could entail such activities as installation and
tailoring of COTS products and creation of “glue code” to make components integrate properly.

System requirement

A need or necessity that the finished system must fulfill or a trait it must exhibit. A system re-
quirement may be negotiable or non-negotiable.

Tailoring

Changes to COTS software product functions along parameters that are predetermined by the
vendor. In particular, tailoring is distinguished from modification, as it does not change the basic
product or its capabilities in any way unintended by the vendor.

Vendor

A commercial enterprise whose purpose in producing a product is to offer it for sale, lease, or
license in the marketplace.

 CMU/SEI-2003-TR-017 74

Bibliography

[Abts 97] Abts, Christopher M. & Boehm, Barry. COCOTS (Constructive COTS) Soft-
ware Integration Cost Model: An Overview (USC-98-520). Los Angeles, CA:
USC Center for Software Engineering, University of Southern California.
http://sunset.usc.edu/publications/TECHRPTS/1998/1998_main.html.

[Bjork 98] Bjork, R. C. An Example of Object-Oriented Design: An ATM Simulation.
(CS320 Course Notes). Wenham, MA: Gordon College, 1998.
http://www.math-cs.gordon.edu/courses/cs320/ATM_Example/default.html.

 [Briand 94] Briand, L.; Morasca, S.; & Basili, V. R. Goal-Driven Definition of Product
Metrics Based on Properties. (CS-TR-3346, UMIACS-TR-94-106) Univer-
sity of Maryland, Computer Science Technical Report, December 1994.
http://www2.umassd.edu/SWPI/ESEG/cs-tr-3346.pfd.

[Brownsword 00] Brownsword, L. & Place, P. Lessons Learned Applying Commercial off-the-
Shelf Products: Manufacturing Resource Planning II Program. (CMU/SEI-
99-TN-015 ADA 379746). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2000.
http://www.sei.cmu.edu/publications/documents/02.reports/02tr005.html.

[Cambridge 95] Cambridge International Dictionary of English. Cambridge, UK: Cam-
bridge University Press, 1995.

[Carney 03]

Carney, D.; Place, P.; & Oberndorf, P. Basics for Assembly Process for
COTS-Based Systems (APCS) (CMU/SEI-2003-TR-010, ADA 413706).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University,
2003.
http://www.sei.cmu.edu/publications/documents/03.reports/03tr010.html.

[Consumers 00] Consumers Union of U.S. Inc. Consumer Reports.
http://www.consumerreports.org/ (2000).

CMU/SEI-2003-TR-017 75

[Constantine 00] Constantine, L. L. & Lockwood, L. A. D. “Structure and Style in Use Cases
for User Interface Design.” Published in M. van Harmelen (ed.), Object
Modeling and User Interface Design, New York, NY: Addison-Wesley,
2000. http://www.foruse.com/articles/structurestyle2.htm.

[CORBA 96] The Common Object Request Broker: Architecture and Specification, Ver-
sion 2.0. Framingham, MA: Object Management Group, 1996.
http://www.omg.org.

[Dalkey 63] Dalkey, N. C. & Helmer, O. “An Experimental Application of the Delphi
Method to the User of Experts.” Management Science 9, 3 (April 1963):
458-467.

[DoD 04] Department of Defense, Business Process Reengineering (BPR). Informa-
tion available through: http://www.defenselink.mil/nii/bpr/bprcd/ (2004).

[EC 00] Expert Choice, Inc. Expert Choice 2000 Quick Start Guide and Tutorials.
Pittsburgh, PA: Expert Choice, Inc., 2000.

[Fenton 00] Fenton, Norman E. Software Metrics: A Rigorous Approach. London, UK:
Chapman and Hall, 1991.

[Garlan 95] Garlan, David & Perry, Dewayne. “Introduction to the Special Issue on
Software Architecture.” IEEE Transactions on Software Engineering, April
1995.

[Gartner 98] Gartner Group, New Bern, NC. http://www.thegartnergroup.com/ (1998).

[ISO 91] International Organization for Standardization (ISO). ISO/IEC 9126:1991 –
Information Technology – Software Product Evaluation – Quality Charac-
teristics and Guidelines for Their Use. Geneva, Switzerland: ISO/IEC,
1991.

[ISO 99] International Organization for Standardization (ISO). ISO/IEC 14598-
1:1999 – Information Technology – Software Product Evaluation. Geneva,
Switzerland: ISO/IEC, 1999.

 CMU/SEI-2003-TR-017 76

[ISO 00] International Organization for Standardization (ISO). ISO 9000:2000 –
Quality Management Systems – Fundamentals and Vocabulary. Geneva,
Switzerland: ISO, 2000.

[Kontio 96] Kontio, J. “A Case Study in Applying a Systematic Method for COTS Se-
lection,” Proceedings of the International Conference on Software Engi-
neering. Berlin, Germany, March 25-29, 1996. Washington, D.C.: IEEE
Computer Society, 1996.

[Linstone 75] Linstone, H. A. & Turoff, M. The Delphi Method: Techniques and Applica-
tion. New York, NY: Addison-Wesley, 1975.

[Malan 99] Malan, R. & Bredemeyer, D. Functional Requirements and Use Cases, draft
white paper, 1999. http://www.bredemeyer.com/pdf_files/functreq.pdf.

[Meyers 01] Meyers, B. C. & Oberndorf, P. A. Managing Software Acquisition: Open
Systems and COTS Products. New York, NY: Addison-Wesley, 2001.

[Modell 96] Modell, Martin E. A Professional's Guide to Systems Analysis, 2nd. Ed. Co-
lumbus, OH: McGraw Hill, 1996.

[Ncube 99] Ncube, C. & Maiden, N. A. M. “PORE: Procurement Oriented Require-
ments Engineering Method for the Component-Based Systems Engineering
Development Paradigm.” Proceedings of the 2nd International Workshop on
Component-Based Software Engineering. Los Angeles, CA, May 6-22,
1999. Pittsburgh PA: Software Engineering Institute, Carnegie Mellon
University, 1999. http://www.sei.cmu.edu/cbs/icse99/papers/11/11.htm.

[Ovum 04] Ovum, Boston, MA. http//:www.ovum.com (2004).

[Saaty 80] Saaty, T. L. The Analytic Hierarchy Process. New York, NY: McGraw-Hill,
1980.

[Staley 01] Staley, M. J.; Oberndorf, P.; & Sledge, C. Using EVMS with COTS-Based
Systems. (CMU/SEI-2002-TR-022, ADA403815). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2001.
http://www.sei.cmu.edu/publications/documents/02.reports/02tr022.html.

CMU/SEI-2003-TR-017 77

[Wallnau 01] Wallnau, Kurt; Hissam, Scott; & Seacord, Robert. Building Systems from
Commercial Components. New York, NY: Addison-Wesley, 2001.
http://www.sei.cmu.edu/cbs/bscc/bscc.htm.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

July 2004

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

A Process for COTS Software Product Evaluation

5. FUNDING NUMBERS

F19628-00-C-0003
6. AUTHOR(S)

Santiago Comella-Dorda, John Dean, Grace Lewis, Edwin Morris, Patricia Oberndorf, Erin Harper
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2003-TR-017

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

ESC-TR-2003-017

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

 The growing use of commercial software products in large systems makes evaluation and selection of appro-
priate products an increasingly essential activity. However, many organizations struggle in their attempts to
select appropriate software products for use in systems. As part of a cooperative effort, the Software Engi-
neering Institute and National Research Council Canada have defined a tailorable commercial off-the-shelf
(COTS) software product evaluation process that can support organizations in making carefully reasoned and
sound product decisions. The background fundamentals for that evaluation process, as well as steps and
techniques to follow, are described in this report.

14. SUBJECT TERMS

COTS, CBS, PECA, commercial off-the shelf, COTS-based system,
evaluation, criteria

15. NUMBER OF PAGES

90

16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	A Process for COTS Software Product Evaluation
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	1 Fundamentals of COTS Software Product Evaluations
	2 Planning the Evaluation
	3 Establishing Criteria
	4 Collecting Data
	5 Analyzing Results
	6 Conclusion
	Appendix A Step by Step Description of the PECA Process
	Appendix B Product Dossier Template
	Appendix C Evaluation Record Template
	Appendix D Criteria Classification
	Appendix E Generic Organizational Checklist
	Acronym List
	Glossary
	Bibliography

