
Interactions Among
Techniques Addressing
Quality Attributes

Hernan R. Eguiluz, Carnegie Mellon School

of Computer Science

Mario R. Barbacci, Software Engineering
Institute

June 2003

TECHNICAL REPORT
CMU/SEI-2003-TR-003
ESC-TR-2003-003

Pittsburgh, PA 15213-3890

Interactions Among
Techniques Addressing
Quality Attributes

CMU/SEI-2003-TR-003
ESC-TR-2003-003

Hernan R. Eguiluz, Carnegie Mellon School of
Computer Science

Mario R. Barbacci, Software Engineering Institute

June 2003

Architecture Tradeoff Analysis Initiative

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Joint Program Office
HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

Christos Scondras
Chief of Programs, XPK

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2003 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

CMU/SEI-2003-TR-003 i

Table of Contents

Abstract..vii

1 Introduction ...1
1.1 Limitations ...2
1.2 Intended Audience...2
1.3 Outline of This Report..3

2 The Idea of Interacting Techniques ..5
2.1 Promoting Dependability ...5
2.2 Promoting Modifiability ..8

3 Techniques Used ...13
3.1 Definitions of Promotion Techniques..13

3.1.1 Security..13
3.1.2 Performance ..14
3.1.3 Dependability ...14
3.1.4 Modifiability ..14

3.2 Definitions of Detection Techniques...15
3.2.1 Security..15
3.2.2 Performance ..15
3.2.3 Dependability ...15
3.2.4 Modifiability ..16

3.3 Definitions of Correction Techniques..16
3.3.1 Security..16
3.3.2 Performance ..17
3.3.3 Dependability ...17
3.3.4 Modifiability ..17

4 Results and Further Work ...19
4.1 Promotion Matrix Summary ...20
4.2 Detection Matrix Summary ..23
4.3 Correction Matrix Summary ...26
4.4 Further Work ...28

5 Summary of Appendices...29

Appendix A – Promotion Techniques Matrices..31

ii CMU/SEI-2003-TR-003

Appendix B – Detection Techniques Matrices .. 55

Appendix C – Correction Techniques Matrices... 65

References... 81

CMU/SEI-2003-TR-003 iii

List of Figures

Figure 1: Key for Examples ..5

Figure 2: Single-Process System ...5

Figure 3: Two-Process System with Shared Data...6

Figure 4: Replicated Processes on Separate Processors.......................................7

Figure 5: Replicated Processes Connected by a WAN...8

Figure 6: Replicated Processes with Different Access Points8

Figure 7: Single-Process System ...9

Figure 8: System with Separation of Concerns Applied ..9

Figure 9: Separate Processes with Data Division ...9

Figure 10: Separate Processes on Separate Processors10

Figure 11: Replication of Separate Processes..10

Figure 12: Distributed Processing .. 11

iv CMU/SEI-2003-TR-003

CMU/SEI-2003-TR-003 v

List of Tables

Table 1: Key for Matrix Symbols ...2

vi CMU/SEI-2003-TR-003

CMU/SEI-2003-TR-003 vii

Abstract

There is very little published work on how techniques that promote different architectural
qualities interact with each other. When developing a software system, software architects
need to understand the relationships among these techniques. For example, if a system is
compromised, architects must consider questions such as whether it makes sense to apply
damage confinement to achieve dependability, while at the same time shutting down
components to promote security. To help answer such questions, this report provides matrices
in which various techniques for promoting different architectural qualities are analyzed
relative to each other. Four architectural qualities were analyzed: performance, security,
modifiability, and dependability. The techniques that promote each one were selected and
categorized as promotion, detection, or correction. For each category, matrices are presented
that provide a detailed description of why a particular interaction is positive, negative, or
neutral, or cannot be determined without assessing a concrete system.

viii CMU/SEI-2003-TR-003

CMU/SEI-2003-TR-003 1

1 Introduction

This report was conceived from the realization that there is very little published work on how
techniques that promote different architectural qualities interact with each other. For example, if
the system is compromised, does it make sense to apply damage confinement to achieve
dependability, while at the same time shutting down components? This and many other similar
questions are considered by an architect when developing a software system.

This report is an attempt to provide software architects with a chart for determining the
relationships among techniques that promote different architectural qualities. In addition, we hope
that this report will help to bring awareness of the relationships among techniques to the
communities that specialize in architectural qualities. More communication across these
communities is needed.

The four architectural qualities that were selected for this report are defined below:

1. performance: the degree to which a system or component accomplishes its designated
functions within given constraints, such as speed, accuracy, or memory usage [IEEE 90]

2. security: the subfield of information science concerned with ensuring that information
systems are imbued with the condition of being secure, as well as the means of establishing,
testing, auditing, and otherwise maintaining that condition [Allen 99]

3. modifiability: for software products, the extent to which the product facilitates the
incorporation of changes, once the nature of the desired change has been determined [Boehm
78]; for a software system, the ease with which the system can be modified to changes in the
environment, requirements, or functional specification [Lassing 02]

4. dependability: the ability to deliver service that can justifiably be trusted. The service
delivered by a system is its behavior, as perceived by its user(s); a user is another system
(physical or human) that interacts with the former system at the service interface [Laprie 92]

The techniques that promote each of these qualities were selected and categorized into three
groups:

1. promotion: This group includes those techniques that are used to achieve a given
architectural quality attribute.

2. detection: This group includes techniques that are used to detect deviations from achieving
the desired quality attribute once a system has been deployed.

2 CMU/SEI-2003-TR-003

3. correction: In those cases where the detection techniques find a deviation, this group of
techniques is used to return the quality attribute to its desired value or reinstate it.

For each of these groups, we created a matrix in which each technique is analyzed relative to each
of the other techniques in the same group. The relationship between pairs of techniques is
expressed in terms of the following symbols (shown in Table 1):

Table 1: Key for Matrix Symbols

− The two techniques collide, and an architect may find it very difficult to support the two
techniques in the same architecture.

+ The two techniques work very well with each other; they may even facilitate each other. In
this case, an architect will be encouraged to use both techniques together.

= The two techniques are independent of each other. They can coexist in the same
architecture without disturbing or helping each other.

? The type of interaction between the two techniques (e.g., positive or negative) depends on
the system being studied. The result of the interaction cannot be generalized.

Grey rows correspond to interactions that were not analyzed because we assumed that the
interactions were symmetric.

1.1 Limitations

Comparing every technique that would promote the qualities selected would have been
impossible. Therefore, for this report, we concentrated on those techniques that are widely used
by practitioners. We didn’t include techniques proposed by researchers that are either
experimental or that have not been widely accepted by industry. Still, given the scope of this
work, we concentrated on breadth, covering many techniques instead of selecting a few and then
performing an in-depth analysis. Such in-depth analysis is left for future research.

In addition, to simplify our analysis, we assumed that interactions are symmetric. Symmetry
means that the interaction between techniques A and B is the same as that between B and A. For
most cases, this is valid.

1.2 Intended Audience

This report was written with practicing software architects in mind. It assumes that the reader has
some basic knowledge of software architecture and understands the concept of quality attributes.

CMU/SEI-2003-TR-003 3

1.3 Outline of This Report

In Section 2, we present our basic understanding of an interaction between techniques. In Section
3, the definitions for all the techniques are presented. Section 4 presents the results of the
interaction among all the techniques in the form of matrices: one for each group of techniques.
Finally, in the appendices, the matrices that detail every row of the summary matrix are presented.
These detailed matrices provide all the information that readers need to understand why we
believe that an interaction is positive, negative, neutral, or undetermined.

4 CMU/SEI-2003-TR-003

CMU/SEI-2003-TR-003 5

2 The Idea of Interacting Techniques

The fundamental theme of this report is the study of the interactions between different techniques
that are used to promote architectural qualities in software systems. For this report to be effective,
we need to define what we mean by the term interaction. Following is a series of examples to
demonstrate our idea of interacting techniques and why it is important.

The key shown in Figure 1 will be used for all the examples in Chapter 2. It won’t appear next to
each diagram to improve the flow of the explanation.

RPC - WAN
Processor IPCProcess RPC - LAN

Access

Data

Figure 1: Key for Examples

Techniques appear in italics (e.g., separation of concerns) to highlight them within the text.

Sections 2.1 and 2.2 exemplify the kinds of techniques that can be applied successively after
applying techniques to promote dependability and modifiability, respectively. It was not our
intention to cover every single possibility in each case but to present valid and realistic
alternatives that a software architect may consider. Furthermore, the examples use an abstraction
of a system for reasons of brevity and, more importantly, to focus the reader on the architectural
qualities and the techniques used to achieve those qualities.

2.1 Promoting Dependability

We will begin with a simple system, as shown in Figure 2. It consists of a single process located
on a single processor. This process (that could represent a system) has a single access point and
data repository.

textA
D

Figure 2: Single-Process System

6 CMU/SEI-2003-TR-003

This system doesn’t promote dependability because any failure will mean that the system will
stop providing its services. Security could be achieved if the system is properly configured.
Modifiability could or could not be present; this view is too coarse grained to tell. Finally,
performance may be adequate for a single user but probably not for multiple users and high
volumes of data.

Concentrating on dependability, process A could be replicated, creating the system shown in
Figure 3.

A A’

D

Figure 3: Two-Process System with Shared Data

Now the system supports a software failure, and its copy (A’) will take over processing. Hence,
this new system has better dependability. Security, on the other hand, may or may not have
degraded. It is possible that a user will now have access to both A and A’. If this is the case, both
need to be secured accordingly to guarantee data consistency. One option would be the use of
cryptography that, if added to A, will automatically be part of A’ too. This is a better option than
adding access control from the point of view that A and A’ may need different configurations. Yet,
by having A and A’, it is easier to configure the system to be more survivable to an attack.

From a performance standpoint, if the original system was using replicated data, this may or may
not carry over to the new configurations. One of the most common ways to achieve dependability
through replication is by eliminating all state from the servers. Then, storing partial results in
replicated data will probably no longer be an option. If the system is part of a larger real-time
system, rate monotonic analysis (RMA) techniques could have been used to establish its
schedulability. However, this technique breaks when used in the presence of a system that could
fail. Real-time dependable systems are currently an active research subject, and there is no
definite solution to the problem [Natarajan 00, Powell 88].

Even though the second system (Figure 3) is more dependable than the first system (Figure 2), a
hardware problem will take both replicas out of service. The usual solution to this problem is to
put the replicas on different physical systems. This renders a third system, shown in Figure 4.

CMU/SEI-2003-TR-003 7

textA textA’

D D’

Figure 4: Replicated Processes on Separate Processors

In this third system, one of the processors can be taken out of service and the second one will still
be capable of providing services. Although the dependability problem has been solved to a certain
degree,1 a security problem has now emerged; the information that moves between the two
processes is no longer secure. If an industry standard protocol like Transmission Control
Protocol/Internet Protocol (TCP/IP) is being used, the information on the wire can be snooped
and altered. To prevent this, cryptography techniques are usually used. Using these techniques
adds costs in terms of processing power dedicated to encryption and decryption on both
processors.2 In addition, if active replication is used, A and A’ must finish executing an operation
before a new one can be executed. This requires A and A’ to synchronize themselves, which
makes the overall system much slower due to the presence of a network connection. Then,
distribution is no longer an option to increase performance. Otherwise, the synchronization
penalty associated with distributed processing will most likely offset any benefit gained.

If the two replicas are connected by a wide area network (WAN), as shown in Figure 5, both the
performance and security problems are exacerbated. Distribution must be ruled out completely is
this case. Because there is a second physical processor running in a separate location, access
control is not only required but difficult because the main purpose of the second processor may
no longer be A’. Access control may need a compromise between the needs of A’ and some other
process B. Furthermore, the administrators assigned to the configuration of the two processors are
probably different, adding to the complexity of access control configuration.

1 The system, as shown, can support one point of failure.
2 Network Interface Cards (NICs) that take care of the cryptography could be used, reducing this

problem.

8 CMU/SEI-2003-TR-003

textA textA’

D D’

Figure 5: Replicated Processes Connected by a WAN

The most likely scenario in this case will be that both A and A’ will be accessible to users to
increase the system’s responsiveness (performance). Then, the system shown in Figure 6 is
achieved.

textA textA’

D D’

Figure 6: Replicated Processes with Different Access Points

Now, security problems arise because two identical copies of the system can be accessed from
different access points. As an example, the system now needs to coordinate access control
between A and A’.

As shown, when using a technique to promote an architectural quality, some qualities are
promoted, while others are reduced.

2.2 Promoting Modifiability

At this point, we want to explore a different evolution path for the system composed of Process A
on a single processor. As a reminder, the initial system configuration (previously shown in Figure
2) is shown again in Figure 7.

CMU/SEI-2003-TR-003 9

textA
D

Figure 7: Single-Process System

In this case, let’s assume that, due to changes that were too difficult in the original system,
separation of concerns was applied to simplify A’s maintenance by two different teams. The
resulting system is shown in Figure 8.

textA B

D

Figure 8: System with Separation of Concerns Applied

This division also simplifies running A and B as different processes (concurrency), which
increases the perceived performance of the overall system. There may be some shared memory
between the two processes, which must be encapsulated (information hiding) so that any one of
the processes can access its own data (data division). By dividing the data (as shown in Figure 9),
we are discouraging Markov models and replication due to their added complexity in the presence
of data division. Although dividing the data is a larger effort, which reduces performance slightly,
in most cases, this reduction in performance is minor.

A B

DbDa

Figure 9: Separate Processes with Data Division

To increase performance, this can be taken one step further (as shown in Figure 10) by using a
second processor to host B (concurrency).

10 CMU/SEI-2003-TR-003

A B

Da Db

Figure 10: Separate Processes on Separate Processors

Although this architecture looks better than the system’s previous incarnation (Figure 9), the
following problems are introduced in this new architecture:

• The same security problems outlined for the replication case (Figure 4) are also valid here.

• Although there are no coordination problems due to replication, A and B still need to interact.
When designing a system to be distributed, the interfaces between A and B would be
minimized. Given that the original system was not conceived to reside on separate processors,
there may be more coupling between A and B than strictly needed. This will affect
performance.

• If shared memory were used to improve performance in the communication between A and B,
a major problem would arise. Either the system would need to be redesigned in this respect,
or the data would need to be replicated in A and B.

If the two processes are connected by a WAN (as shown in Figure 11), replication could be added
to the system, increasing its complexity and testing effort in part because performance
engineering would become more difficult.

A B A’ B’

D D’

Figure 11: Replication of Separate Processes

This system returns coupling to its original level and shared memory is an option again, but
performance is lost due to the processes being collocated. On the positive side, the system has
gained dependability. But wouldn’t it be better if processing could be distributed again
(concurrency)? This new architecture (shown in Figure 12) would promote dependability and
performance.

CMU/SEI-2003-TR-003 11

A B’ A’ B

D D’

Figure 12: Distributed Processing

Indeed, this architecture allows for distributed processing, improving performance (or not,
depending on the coupling between A and B). Dependability is improved, too. This architecture is
even better than the previous architecture because if one of the processors is to be removed from
service, only one replica must be promoted to primary. However, there are now two access points,
making security a larger problem (access control).

This chapter has shown that different techniques that seem appropriate in isolation may not
interact correctly when combined. Furthermore, applying one technique may prevent another one
from being applied.

12 CMU/SEI-2003-TR-003

CMU/SEI-2003-TR-003 13

3 Techniques Used

In this chapter, we provide the definitions of the different techniques that were studied. The
definitions are grouped into the following categories, which were defined in Chapter 1:
promotion, detection, and correction. Within these groups, the techniques are further classified
based on the quality attribute that they promote. Furthermore, the techniques appear in the same
order as they do in the interaction matrices.

3.1 Definitions of Promotion Techniques

3.1.1 Security
1. cryptography: These techniques are used to achieve one or more of the following:

confidentiality, authentication, integrity, and non-repudiation of information [Viega 02].

2. access control: This technique has two very distinct aspects. System access control involves
ensuring that unauthorized users don’t get into the system and encouraging (and sometimes
forcing) authorized users to be security conscious. Data access control, on the other hand,
monitors who can access what data and for what purpose. The system can determine access
rules based on the security levels of the people, the files, and the other objects in your system
[Russell 91].

3. survivability: This technique is used to analyze the capability of a system to fulfill its
mission, in a timely manner, in the presence of attacks, failures, or accidents. The system is
used in the broadest possible sense, including networks and large-scale systems of systems.
The mission is a set of very high-level requirements or goals. The terms attack, failure, and
accident are meant to include all possible damaging events; but these terms do not partition
these events into mutually exclusive or even distinguishable sets [Ellison 97].

4. threat assessment: This technique is used to determine what possible threats a system may
face. The environment/context where the system will reside is a key source of threats
because it determines what is and is not possible.

5. vulnerability analysis: This set of techniques is used to find vulnerable points in the
software and hardware components of a system. These points are based on threat assessment
and other information like the programming language or languages in which the system will
be written [Krsul 98a, Krsul 98b].

14 CMU/SEI-2003-TR-003

3.1.2 Performance
6. rate monotonic analysis: This technique includes a collection of quantitative methods and

algorithms that allow engineers to specify, understand, analyze, and predict the timing
behavior of real-time software systems [Klein 93].

7. performance engineering: This technique is defined as “. . . a systematic, quantitative
approach to constructing software systems that meet performance objectives. It uses model
prediction to evaluate tradeoffs in software functions, hardware size, quality of results, and
resource requirements” [Smith 02].

8. data replication: This technique uses local copies of information stored in a component that
enables them to be accessed more quickly than from their original location.

9. process replication: This technique executes the same process on multiple instances of a
hardware platform. Performance can be improved by using the aggregate computing power
of all the replica sites on a single load category [Helal 96].

10. data division: This technique consists of splitting the data used by different subsystems into
sets that have a property (like allowing parallel access by parallel processes) that is
beneficial to the overall system performance.

11. process division: This technique consists of splitting a task between processes that work in
parallel to reduce the overall time to complete the task.

3.1.3 Dependability
12. testing: This technique is the process of operating a system or component under specified

conditions, observing or recording the results, and making an evaluation of some aspect of
the system or component [IEEE 90].

13. Markov modeling: This technique uses Markov chains for dependability prediction for
fault-tolerant systems. It can model much of the combinatorial and sequence-dependent
behavior that other models do in addition to using complex repair strategies, dynamic
reconfiguration using spares, and complex fault/error recovery procedures that are not
always perfectly effective [Boyd 96].

14. replication: These techniques are used to implement the two fault-tolerance activities of
masking failures and reconfiguring the system in response to a failure [Helal 96].

3.1.4 Modifiability
15. change scenarios: In this technique, sequences of events that will change an architecture are

created. These sequences are then used to assess their impact on the system. They are
concrete, thus enabling detailed statements about their impact [Lassing 02].

16. separation of concerns: This technique is an approach to divide the inherent complexity of
the software into more manageable units. In an ideal world, these concerns could be
investigated separately and then integrated to create a whole solution [Savolainen 00].

CMU/SEI-2003-TR-003 15

17. information hiding: This is a software development technique in which each module’s
interfaces reveal as little as possible about the module’s inner workings, and other modules
are prevented from using information about the module that is not in the module’s interface
specification. (In summary, information hiding is a software development technique that
consists of isolating a system function or a set of data and operations on those data within a
module and providing precise specifications for the module [IEEE 90].)

3.2 Definitions of Detection Techniques

3.2.1 Security
1. logging: This technique consists of registering on permanent storage a set of activities that

are relevant to the detecting security breaches. For logging to be effective, monitoring has to
be put in place.

2. monitoring: This technique relies on logging to provide it with activities and events that are
happening in the system. Its main objective is to scan those activities to find possible
security breaches. For example, it can represent reviewing access logs and looking at packets
moving on the network.

3. honey pot: This technique promotes the use of misinformation to throw off attackers and to
facilitate the detection of malicious activities. This technique is valid for both internal and
external attackers [Ellison 01].

3.2.2 Performance
4. time-out: This technique relies on the detection of processes that cannot respond to simple

“heartbeat” queries because they are overloaded. In this case, the process that needs to
respond to the heartbeat requests is busy, and, therefore, its performance might not be
adequate.

5. missed deadlines: This technique relies on a real-time system’s ability to detect that its
processes are taking longer to finish than they should.

3.2.3 Dependability
6. triple modular redundancy (TMR): This technique is the evolution of Von Neumann’s

example of a redundancy scheme that is used for masking faults [Von Neumann 56]. In a
TMR system, three implementations (which might be the same or different) of the same
logic function are used, and the outputs of all the implementations are connected to a voter
[Mitra 00].

7. recovery blocks: This technique, as described by D. Nguyen, “. . . consists of three software
elements: (1) a primary module, which executes critical software functions; (2) an
acceptance test, which tests the output of the primary module after each execution; and (3) at
least one alternate module which performs the same function as the primary module (but
may be less capable or slower) and is invoked by the acceptance test upon detection of a
failure” [Nguyen 98].

16 CMU/SEI-2003-TR-003

3.2.4 Modifiability
8. time assessment: This technique relies on identifying an increasing time required to modify

a system compared to previous similar modifications.

9. defect assessment: This technique relies on identifying an escalating number of defects
introduced to a system regardless of the size of the proposed modification.

10. impact assessment: This technique relies on identifying a reduction of the impact in terms
of the number of modules affected. At this point, seemingly simple changes to a system will
require the modification of a larger-than-expected number of modules.

3.3 Definitions of Correction Techniques

3.3.1 Security
1. system reconfiguration: Two approaches are possible for this set of techniques: proactive

and reactive reconfiguration. These approaches are described as follows by Wolf and
colleagues [Wolf 00]:

Proactive reconfiguration adds, removes, and replaces components and
interconnections to cause a system to assume postures that achieve enterprise-wide
intrusion tolerance goals, such as increased resilience to specific kinds of attacks or
increased preparedness for recovery from specific kinds of failures. Proactive
reconfiguration can also cause a relaxation of tolerance procedures once a threat
has passed, in order to reduce costs, increase system performance, or even restore
previously excised data and functionality. In a complementary fashion, reactive
reconfiguration adds, removes, and replaces components and interconnections to
restore the integrity of a system in bounded time once an intrusion has been detected
and the system is known or suspected to have been compromised. Recovery strategies
made possible by reactive reconfiguration include restoring the system to some
previously consistent state, adapting the system to some alternative non-
compromised configuration, or gracefully shedding non-trustworthy data and
functionality. In our view, proactive and reactive reconfiguration are two sides of the
same coin that can be profitably unified into a coherent and comprehensive
survivability mechanism.

2. shutdown components: This technique consists of shutting off a component when it is
identified as compromised.

3. disable compromised access points: In this technique, an access point that is identified as
compromised is disabled, but the subsystem in which it was located is not removed from the
system.

4. restore components: In this technique, components are returned to the system for use when
they are considered safe and intruder free.

CMU/SEI-2003-TR-003 17

3.3.2 Performance
5. load balancing: This technique consists of judiciously and transparently redistributing the

load of the system among its nodes to achieve the maximum overall performance. These
algorithms attempt to equalize the loads on all computers involved [Shivaratri 92].

6. service degradation/interruption: In this technique, a low-priority or non-critical service is
selected for degradation/interruption. In this way, a higher priority service can take
advantage of the freed resources.

3.3.3 Dependability
7. damage confinement: This technique attempts to constrain the spread of errors from one

part of the system to another and to simplify damage assessment and error recovery [Taylor
99].

8. backward recovery: This technique replaces an erroneous state with some previous state
known to be free of errors (e.g., via checkpoints or recovery blocks).

9. forward recovery: This technique repairs the system state by finding a new one from which
the system can continue operation. Exception handling is one method of forward recovery.

10. compensation: This technique uses redundancy to mask an error and allow transformation
(perhaps via reconfiguration) to an error-free state. Compensation is achieved by modular
redundancy. Independent computations are voted on and a final result is selected. Majority
voting might be supplemented with other algorithms to mask complex, Byzantine faults.
Modular redundancy requires independence among component failures. This is a reasonable
assumption for physical faults but a questionable one for software design faults (e.g., N-
version programming).

3.3.4 Modifiability
11. refactoring: This technique is defined by Fowler as “. . . the process of changing a software

system in such a way that it does not alter the external behavior of the code yet improves its
internal structure” [Fowler 99].

12. reengineering: This technique is the examination and alteration of a subject system to
reconstitute and implement it in a new form [Chikofsky 90]. For our purposes, reengineering
includes both software and hardware.

13. wrapping: This technique consists of surrounding legacy systems with a software layer that
hides the unwanted complexity of the old system and exports a modern interface. Wrapping
removes mismatches between the interface that is exported by a software artifact and the
interfaces that are required by current integration practices [Comella 00].

18 CMU/SEI-2003-TR-003

CMU/SEI-2003-TR-003 19

4 Results and Further Work

Sections 4.1 through 4.3 show the results of this research. These results are presented in the form
of three matrices, one for each group of techniques: promotion, detection, and correction.

These matrices are very easy to read. For each technique, there are rows and columns based on
the quality attribute that it promotes. On the far right of each row of each summary matrix is a
number that corresponds to the detailed matrices provided in the appendices of this report. These
detailed matrices contain the explanations of all the interactions presented in the row.

As a convention, in all the matrices presented in this report, if a cell or row is blank (i.e., its color
is grey), the interaction is not explained due to the symmetry of the matrix. Because the research
conducted assumed that the interactions are symmetric, all the matrices are upper triangular.

Following each summary matrix is a subsection dedicated to the analysis of the overall interaction
of the quality attributes, with each other and with the other three attributes, in terms of the
techniques that were surveyed. For each quality group interaction, a score is given. This is a
simple way to determine how well a group of techniques interacts with itself or other groups. To
calculate this score, the following rules were followed:

1. If the interaction was positive, one point was added (+1).

2. If the interaction was negative, one point was subtracted (-1).

3. If the interaction was neutral, the score wasn’t modified (0).

4. If the interaction could not be determined—signified by a question mark (?)—a tolerance
coefficient (+/- 1) was added. These cases were added together and were not included with
the value calculated from Rules 1, 2, or 3 above.

20 CMU/SEI-2003-TR-003

4.1 Promotion Matrix Summary

 Security Performance Dependability Modifiability

 Promotion

 C
ry

pt
og

ra
ph

y

Ac
ce

ss
 c

on
tro

l

Su
rv

iv
ab

ilit
y

Th
re

at
 a

ss
es

sm
en

t

Vu
ln

er
ab

ilit
y

an
al

ys
is

R
M

A

Pe
rfo

rm
an

ce
 e

ng
in

ee
rin

g

D
at

a
re

pl
ic

at
io

n

Pr
oc

es
s

re
pl

ic
at

io
n

D
at

a
di

vi
si

on

C
on

cu
rre

nc
y

(P
ro

ce
ss

 d
iv

is
io

n)

Te
st

in
g

M
ar

ko
v

M
od

el
in

g

R
ep

lic
at

io
n

C
ha

ng
e

sc
en

ar
io

s
Se

pa
ra

tio
n

of
 c

on
ce

rn
s

In
fo

rm
at

io
n

hi
di

ng

D
et

ai
le

d
m

at
rix

Security Promotion Cryptography 1 + + = + � = � = = � � = = = + + 1

 Access control 2 + + + = = � � ? � � = � = + + 2

 Survivability 3 + + � � � + + � � − + + ? + 3

Threat
assessment

4 + = = � � + � � + � + ? + 4

Vulnerability
analysis

5 = = � = � � + + = + + + 5

Performance RMA 6 + � � � � + = � + + = 6

Performance
engineering

7 � � � � + = � + ? + 7

 Data replication 8 + = � � + + + = + 8

Process
replication

9 = � � + + = = = 9

 Data division 10 ? = � � + + + 10

Concurrency
(process
division)

11

 � � � � ? ?
11

Dependability Testing 12 + � = + + 12

Markov
modeling

13 + + + + 13

 Replication 14 + + + 14

Modifiability

Change
scenarios

15 + + 15

Separation of
concerns

16 + 16

Information
hiding

17

CMU/SEI-2003-TR-003 21

Analysis
Within security (9)

Different techniques that promote security can be combined with positive results in most cases.
All other interactions are neutral. Therefore, all of these techniques can be combined without
reducing security.

Within performance (-8 +/- 1)

Although the interaction between performance techniques is varied, the great majority of those
interactions is negative. This would suggest that usually only one performance technique should
be used for any given system.

Within dependability (1)

The only interaction that could result in reduced dependability is that of testing and replication.
All other combinations of techniques can be used without a negative effect on dependability.

Within modifiability (3)

The techniques examined for this quality always result in a positive interaction. Therefore, they
can be combined freely without affecting modifiability.

Security and Performance (-13 +/- 1)

Overall, security and performance techniques don’t seem to interact positively. Most of the
interactions are negative, followed by neutral interactions. Very few (3 out of 24) are positive.

Security and Dependability (-3)

These techniques have varied interactions. No trend is apparent for them, so an architect must be
careful when trying to promote these two qualities simultaneously.

Security and Modifiability (11 +/- 2)

The large majority of the interactions among techniques for these two qualities is positive. Two of
the interactions, related to separation of concerns, depend on the particular case that is being
studied. Overall, however, modifiability techniques can be applied without reducing the system’s
security and vice versa.

Performance and Dependability (-3)

There is no clear trend for the interactions among the techniques from these two qualities. An
architect should be very careful when using those techniques.

22 CMU/SEI-2003-TR-003

Performance and Modifiability (8 +/- 3)

Overall, the interactions are always positive or neutral with the sole exception of the interaction
between process division and change scenarios.

Dependability and Modifiability (8)

The techniques have a clear positive interaction between them. Therefore, a dependable system is
likely to be modifiable, and a modifiable system is likely to accept dependability easily.

Special Cases

• Performance techniques like data replication and process division (concurrency) seem to have
a negative effect in most interactions. All interactions with process division are negative or
uncertain (indicated by a question mark [?]), and only 5 out of 16 interactions with data
replication (about 30%) are positive.

• All three modifiability techniques (change scenarios, separation of concerns, and information
hiding) have a good to very good interaction with all other techniques.

• Separation of concerns seems to be the modifiability technique whose interactions vary from
system to system. It participates in four interactions that are undefined (indicated by a
question mark [?]) unless a concrete system is evaluated.

CMU/SEI-2003-TR-003 23

4.2 Detection Matrix Summary
 Security Performance Dependability Modifiability

 Detection

 Lo
gg

in
g

M
on

ito
rin

g

H
on

ey
 p

ot

Ti
m

e-
ou

ts

M
is

se
d

de
ad

lin
es

Tr
ip

le
 m

od
ul

ar
 re

du
nd

an
cy

R
ec

ov
er

y
bl

oc
ks

Ti
m

e
as

se
ss

m
en

t

D
ef

ec
t a

ss
es

sm
en

t

Im
pa

ct
 a

ss
es

sm
en

t

D
et

ai
le

d
m

at
rix

Security Detection Logging 1 + + ? ? = = ? ? = 17

 Monitoring 2 + + + + + � � = 18

 Honey pot 3 + + = = = = = 19

Performance Time-outs 4 � + + � � � 20

 Missed deadlines 5 ? + = = = 21

Dependability

Triple modular redundancy 6 + = = = 22

 Recovery block 7 ? ? ? 23

Modifiability Time assessment 8 ? = 24

Defect assessment 9 = 25

Impact assessment 10

Analysis
Within security (3)

The techniques work very well with each other. There are only positive interactions between
them.

Within performance (-1)

The only interaction between the two techniques is negative; therefore, the two techniques cannot
be applied at the same time.

Within dependability (1)

In this group of techniques, the only possible interaction is positive; therefore, the techniques can
be applied to the same system without problems. However, once one is adopted, the second one
should follow easily.

24 CMU/SEI-2003-TR-003

Within modifiability (+/- 1)

The result of the interaction between these techniques is dependent on the interaction between
time assessment and defect assessment. In addition, this interaction is relative to the system being
evaluated. Therefore, we cannot make any conclusion about the interaction of modifiability
techniques.

Security and Performance (4 +/- 2)

The interaction among the techniques examined for these two qualities is mostly positive. The
effect of logging seems to be unknown when interacting with performance techniques. Concrete
systems need to be evaluated.

Security and Dependability (2)

Monitoring has positive interaction with all the dependability techniques examined, while logging
and honey pot are neutral. Therefore, an architect combining security and dependability
techniques can do so freely.

Security and Modifiability (-2 +/- 2)

In this case, honey pot has the best interaction with modifiability techniques as it is neutral to
them. Monitoring is clearly negative, while logging can be either negative or positive, depending
on the system being analyzed. An architect should be careful when trying to promote both
qualities. Overall, very little can be established about their interaction.

Performance and Dependability (3 +/- 1)

Time-outs can be used safely when trying to promote performance and dependability in an
architecture. Missed deadlines is the technique that could potentially not have a positive
interaction. Architects should be careful about missed deadlines.

Performance and Modifiability (-3)

In this case, missed deadlines is neutral to the modifiability technique used. On the other hand,
time-outs do not interact well with modifiability techniques. Overall, these two qualities do not
interact well.

Dependability and Modifiability (0 +/- 3)

The interaction between the techniques associated with these two qualities is uncertain. Architects
should be very careful when trying to promote both.

Special Cases

Honey pot is fairly innocuous when interacting with the other techniques. The interactions are
positive (indicated by a plus sign [+]) or neutral (indicated by an equal sign [=]), and there are no

CMU/SEI-2003-TR-003 25

undefined interactions (indicated by a question mark [?]). This result was expected because honey
pot lies outside the boundary of the system it protects.

26 CMU/SEI-2003-TR-003

4.3 Correction Matrix Summary
 Security Performance Dependability Modifiability

 Correction

 Sy
st

em
 re

co
nf

ig
ur

at
io

n

Sh
ut

do
w

n
co

m
po

ne
nt

s

D
is

ab
le

 c
om

pr
om

is
ed

ac

ce
ss

 p
oi

nt
s

R
es

to
re

 c
om

po
ne

nt
s

Lo
ad

 b
al

an
ci

ng

Se
rv

ic
e

de
gr

ad
at

io
n/

in
te

rru
pt

io
n

D
am

ag
e

co
nf

in
em

en
t

Ba
ck

w
ar

d
re

co
ve

ry

Fo
rw

ar
d

re
co

ve
ry

C
om

pe
ns

at
io

n

R
ef

ac
to

rin
g

R
ee

ng
in

ee
rin

g

W
ra

pp
in

g

D
et

ai
le

d
m

at
rix

Security Correction System
reconfiguration

1 � � + + + � = = = ? � = 26

 Shutdown
components

2 � + = + + ? � + ? � + 27

 Disable
compromised
access points

3

 = = + + ? ? = = = +
28

 Restore
components

4 = + = = = = = = + 29

Performance Load balancing 5 = ? ? � = ? � + 30

 Service
degradation/
interruption

6

 + + + = = � +
31

Dependability Damage
confinement

7 + + + � � = 32

Backward recovery 8 + + = � = 33

Forward recovery 9 + = � = 34

 Compensation 10 = � = 35

Modifiability Refactoring 11 � � 36

 Reengineering 12 � 37

 Wrapping 13

CMU/SEI-2003-TR-003 27

Analysis
Within security (-1)

The interaction between techniques used to promote security is weak to bad. Only “restore
components” seems to be applicable independent of the other techniques used.

Within performance (0)

Performance techniques are independent of each other, so they can be applied without risks.

Within dependability (6)

Dependability techniques are enhanced by the presence of each other. An architect can
comfortably use more than one of them to improve dependability without worrying about their
interactions.

Within modifiability (-3)

The modifiability techniques don’t seem to interact with each other gracefully. We therefore
advise that only one of them be applied for a given system.

Security and Performance (5)

Approximately half of the interactions are positive, while the other half is neutral. Therefore,
these techniques can be combined freely.

Security and Dependability (1 +/- 3)

There is no concrete pattern of interaction for these two groups of techniques. Backwards
recovery and the disabling of compromised access points add most of the uncertainty to this
interaction; therefore, architects should keep these techniques in mind as possible sources of
architectural mismatches.

Security and Modifiability (1 +/- 2)

The overall interaction between techniques for these two qualities is close to neutral. Yet, the
individual interactions are spread over all possibilities. Each interaction needs to be considered in
isolation.

Performance and Dependability (2 +/- 2)

Although service degradation/interruption has a positive interaction with all the dependability
techniques, load balancing is dependent on the technique with which it interacts. Therefore, no
general rule can be derived for these qualities.

Performance and Modifiability (0 +/- 1)

This case is similar to that of performance and dependability; no general rule can be established
for them.

28 CMU/SEI-2003-TR-003

Dependability and Modifiability (-5)

Techniques that belong to these two qualities tend to have neutral or negative interactions. In
particular, reengineering is negatively affected by all dependability techniques.

Special Cases

• Disabling compromised access points and restoring components has mostly positive or
neutral interactions (except for a couple of undefined interactions (indicated by a question
mark [?]) with other techniques.

• Reengineering has mostly negative interactions with other techniques.

• Except for its negative interaction with reengineering, compensation can be used with any
other technique without concerns.

4.4 Further Work

This work is not finished and will probably never be. It needs to be updated and extended to
cover all the techniques in use by current practitioners. Techniques that are currently leaving the
research laboratories because a practical application has been found for them should also be
included. We encourage readers to send us their feedback regarding improvements to this report
and the usability of the summary matrices.

CMU/SEI-2003-TR-003 29

5 Summary of Appendices

In the following appendices, every row presented in the previous summary matrices is presented
in the form of another matrix. These matrices have a detailed description of why we believe that a
particular interaction is positive, negative, neutral, or cannot be determined without assessing a
concrete system. Each matrix has one row per technique that belongs to the group being analyzed
(promotion, detection, or correction) and is color-coded accordingly.

As mentioned at the beginning of this document, the following convention was followed when
analyzing the interaction between two techniques.

� The two techniques collide, and an architect may find it very difficult to support the two
techniques in the same architecture.

+ The two techniques work very well with each other; they may even facilitate each other. In
this case, an architect will be encouraged to use both techniques together.

= The two techniques are independent of each other. They can coexist in the same
architecture without disturbing or helping each other.

? The type of interaction between these two techniques (positive or negative) depends on the
system being studied. The result of the interaction cannot be generalized.

Grey rows correspond to interactions that were not analyzed because we assumed that the
interactions were symmetric.

30 CMU/SEI-2003-TR-003

CMU/SEI-2003-TR-003 31

Appendix A – Promotion Techniques
Matrices

Matrix 1 – Interactions with Cryptography

 Interactions with cryptography

 Rel Description

Promotion 1 Cryptography

2 Access control +

Cryptography can be used to authenticate users of a
system, thereby providing access control to it. Therefore,
the two techniques have a positive interaction.

3 Survivability +

If cryptography is used for the data stored in the system, it
will foster survivability because even when a system has
been compromised, its data may not be. The same is true if
the survivable part of the system uses cryptography to
communicate between its components. It is less likely that
an intruder will be able to compromise the survivable part of
the system. Thus, there is a positive interaction between the
two techniques.

4 Threat assessment =

Threat assessment may lead to the use of cryptography,
but, other than this, there is no interaction between the two
techniques.

Security

5 Vulnerability analysis +

The presence or even the possiblity/impossiblity of applying
cryptography methods can change the outcome of the
analysis of the system’s vulnerable points. Using
cryptography for authentication can make a system less
vulnerable to malicious users by preventing the
impersonation of valid users. Using cryptography for
confidentiality can prevent eavesdroppers from stealing
information “in the wire.” For these reasons, the interaction
of the two techniques is positive.

6
Rate monotonic analysis
(RMA)

�

Cryptography algorithms have complexity proportional to
their input size. Unless the input size is bounded or the
outcome of the algorithm is not considered real-time and
can be preempted, the use of cryptography represents a
problem for RMA. In that case, the interaction is a negative
one.

7 Performance engineering =

Performance engineering treats cryptography as a black-
box process and abstracts its complexities. Hence, the two
techniques do not interact.

Performance

8 Data replication �

Either all the data are replicated, or the software must
manage different groups of replicated data, some of them
with encrypted data and some without. Furthermore, unless
access to data is managed at the data level and not at the
group level, encrypted and non-encrypted data cannot
coexist in the same group. Therefore, the two techniques
have a negative interaction.

32 CMU/SEI-2003-TR-003

Matrix 1 – Interactions with Cryptography (cont.)
 Interactions with cryptography

 Rel Description

9 Process replication =

When replicating for performance, identical copies of a
process are distributed. Hence, if such a process is
already using cryptography, it will not be affected by the
distribution. Therefore, the two techniques are
independent of each other.

 Performance (cont.)

10 Data division =

Data will be divided into logical groups, and these groups
will be subject to encryption. Data are not usually divided
into non-cohesive sets. For example, address information
will not be divided. This allows closely related information
to be encrypted together. Therefore, whether the data
have been divided does not matter to cryptography.

11
Concurrency (process
division) −

When using concurrency, a process is distributed between
processors. In addition to the inputs and outputs to the
system using cryptography, communication between the
distributed components (particularly if they are physically
distributed) must also use cryptography. Although the use
of cryptography may not always be necessary, the
analysis of when to use it is not trivial, and the system is
likely to lose performance. Therefore, the interaction
between these two techniques is negative.

Dependability

12 Testing −
The algorithms used for encryption or the components
used for this purpose must be tested thoroughly; this effort
is not trivial. Because certifying these components is
difficult, these two techniques have a negative interaction.

13 Markov modeling =
The use of cryptography can be abstracted from the model
of the system unless the cryptography algorithms are
being modeled; this is not usually the case. Therefore,
there is no interaction between these techniques.

14 Replication =
The two techniques don’t interact. Replication is achieved
by using multiple copies of a process. Whether this
process uses cryptography doesn’t change the way
replication is implemented.

Modifiability

15 Change scenarios =

Cryptography may limit change scenarios (like moving
from a centralized to a distributed/concurrent system).
However, these kinds of changes will probably represent
large efforts and radical changes to the system’s
architecture, which goes against the spirit of change
scenarios. As a consequence, there is no interaction
between cryptography and change scenarios.

16 Separation of concerns +

The algorithms and procedures used to manage the
encryption process will most likely be isolated (by applying
the principle of separation of concerns). So, modifying
them will not be pervasive through the system. In this
case, the interaction is positive.

17 Information hiding +

The use of information hiding can complement
cryptography nicely. Information hiding can reduce the
need for cryptography because much information will
remain local and not directly accessible. Therefore, the
interaction is a positive one.

CMU/SEI-2003-TR-003 33

Matrix 2 – Interactions with Access Control
 Interactions with access control

 Rel Description

Security Promotion 1 Cryptography

 2 Access control

3 Survivability +

Access control enhances survivability, and survivability
requires better access control for those parts of the system
that need to survive an intrusion. Those components of the
system that need to survive must form a subsystem where
access control is stricter than the other system’s subsystems.
These characteristics yield a positive interaction between the
two techniques.

4 Threat assessment +

The kinds of threads that the system may have to withstand
determine the levels of access control. Therefore, each
technique promotes the other.

5 Vulnerability analysis +

Vulnerability analysis tries to determine the points in a system
where attacks are most likely to take place. It is simplified by
the presence of access control because access control
bounds its work. Therefore, the interaction between access
control and vulnerability is positive.

Performance

6
Rate monotonic analysis
(RMA)

=
Because access control is a bounded process, it should be
schedulable using RMA. In most cases, access control is not
a real-time process, so it falls outside the scope of RMA. The
two techniques do not interact.

7 Performance engineering =

Access control can be treated as a black-box process that
takes some time to validate a user trying to gain access to
some component. Because access control can be abstracted
away from the performance-engineering model, there is no
interaction between the two techniques.

8 Data replication �

If replicated data are distributed, access control will also be
required, increasing the complexity of the replication
mechanism. For example, if data are very difficult to calculate
but can be reused once they have been calculated (like data
produced by radiosity algorithms) and the data storage is
distributed due to the data’s volume or because the data are
accessed by multiple processes, those locations where the
data are stored also need to be secured. Furthermore, those
locations can be under the control of different administrators,
complicating the situation even more. For all these reasons,
there is a negative interaction between access control and
data replication.

9 Process replication �

Replication is more difficult in the presence of access control.
All replicas must be synchronized with respect to access-
control information by active communication to enforce a fair
policy. Otherwise, an attacker could, for example, probe
passwords in one machine and, when about to be locked out,
try another, and keep doing this until the password is found.
Therefore, the two techniques have a negative interaction.

34 CMU/SEI-2003-TR-003

Matrix 2 – Interactions with Access Control (cont.)
 Interactions with access control

 Rel Description

 Performance (cont.)

10 Data division ?

The interaction between data division and access control can
be either positive or negative. It will be positive if the division
allows for different access-control mechanisms or policies to
be applied to the different groups of data. It can be negative
if the configuration of the access control for each group of
data is different and even worse if this configuration depends
on different people. For these reasons, this interaction
depends on the concrete system under study.

11
Concurrency (process
division) �

Access control now extends not only to the computer, the
system, or even the network where a system is started, but
also to every other computer, system, or network where
other pieces of the process are being run. Thus, the
interaction between concurrency and access control is very
difficult. This interaction is very similar to that for process
replication (2.9) and is therefore negative.

Dependability

12 Testing �

Testing a system with access control in place adds
considerable work to the testing effort. It requires more
configuration to represent different combinations of users;
testing it, particularly for intrusion, is difficult. For these
reasons, the interaction is negative.

13 Markov modeling =

Modeling and access control do not interact because the use
of access control can be abstracted from the model. For this
reason, the two techniques are independent of each other.

14 Replication �

All the replicas must be synchronized and function as a
single access point. If one system is taken out of service, its
access information should remain accessible. Therefore, a
system that uses the two techniques is more complex than a
system that uses only one of them. For these reasons, the
interaction between replication and access control is
negative.

Modifiability

15 Change scenarios =

There is very little to no interaction between these two
techniques. Access control might affect change scenarios
either by limiting what can change due to the need to control
access or by imposing access control to changes that
represent opening new access points to the system.
Therefore, the two techniques are independent of each
other.

16 Separation of concerns +
The interaction between access control and separation of
concerns generates components that are in charge of such
control. This improves the components’ modifiability, making
this a positive interaction.

17 Information hiding +

If information hiding is applied through a system, access
control could be circumscribed to those components that
hide the data for which access must be controlled. Therefore,
information hiding and access control have a positive
interaction.

CMU/SEI-2003-TR-003 35

Matrix 3 – Interactions with Survivability
 Interactions with survivability

 Rel Description

Security Promotion 1 Cryptography

 2 Access control

 3 Survivability

4 Threat assessment +

A system will probably require more than one level of
survivability, depending on the extent of damage that a threat
can cause to a system. Therefore, threat assessment will
probably help achieve a higher level of survivability in the
system, making the interaction between these two techniques
positive.

5 Vulnerability analysis +

Knowing what needs to survive helps a designer concentrate
on making certain subsystems less vulnerable than others.
From the opposite perspective, vulnerability analysis helps
establish what can survive an attack. Hence, the two
techniques have a positive interaction.

Performance

6
Rate monotonic analysis
(RMA) �

As every configuration of a survivable system is a system in
itself, RMA must be applied to each of those configurations.
Doing so increases the complexity of the analysis, and the
result of the analysis may indicate that the system is not
schedulable for one or more survivable configurations. For
these reasons, the interaction between RMA and survivability
is negative.

7 Performance engineering �

This is the same situation as for RMA (3.6). Thus, there is a
negative interaction between these two techniques.

8 Data replication �

Data that need to survive cannot be replicated with data that
may or may not survive an attack. This situation makes the
creation and management of replication groups more complex
and maybe less efficient, and limits what can and cannot be
replicated. Therefore, the interaction between these two
techniques is negative.

9 Process replication +

As replication uses identical copies of processes on multiple
servers, the survivability of the overall system increases
because even if a server is lost completely, other servers will
pick up its workload. Furthermore, if a system is survivable, it
is not made more complex in the presence of multiple servers
because for all purposes, all replicas are identical. Therefore,
these two techniques have a positive interaction.

10 Data division +

Data division can be used to partition the data that are used by
different parts of a system. Then, if one subsystem is
compromised, another might not depend on the compromised
subsystem’s data, which will make the system more
survivable. As such, the two techniques have a positive
interaction.

36 CMU/SEI-2003-TR-003

Matrix 3 – Interactions with Survivability (cont.)
 Interactions with survivability

 Rel Description

 Performance
(cont.)

11
Concurrency (process
division) �

Concurrency is more difficult to achieve and exploit in the
presence of a survivable system because a system may be
partially compromised (e.g., one or a few servers). The critical
subsystems in the compromised server must survive the
attack, while the servers that have not been compromised
must work as if nothing has happened. In an extreme situation,
a concurrent process must be able to run as if no concurrency
was possible. This scenario can become a reality if enough
systems are compromised. The easiest solution to this
problem is not to use concurrency for those subsystems that
need to survive an attack, but this defies the purpose of
concurrency. For this reason, the two techniques have a
negative interaction.

Dependability

12 Testing �
Survivability makes the testing effort more difficult. There is a
need to simulate possible attacks and to ensure that the
system configuration that survives the attack is valid. Thus,
these two techniques interact negatively.

13 Markov modeling �

A system that survives an attack is, for the purposes of
modeling, a subset of the original system. There can be many
such subsystems, as many as the number of survivability
configurations. Each of those configurations must be proven
valid both individually and as a subset of the subsystem that
encloses it. This validation adds a large amount of effort to the
modeling of a system. Thus, there is a negative interaction
between survivability and Markov modeling.

14 Replication +

This case is analogous to process replication in the case of
performance (3.9). Thus, there is a positive interaction
between these techniques.

Modifiability

15 Change scenarios +

A system that survives an attack can be considered a case of
a change scenario; therefore, the two techniques complement
each other yielding a positive interaction.

16 Separation of concerns ?

There are two possibilities to consider in the interaction
between survivability and separation of concerns. If the system
has been partitioned into, at least, a core set of services and
additional, peripheral services, it is possible that survivability
will be simplified by this partitioning. If, on the other hand,
survivability was not considered when the system was
partitioned, survivability may be nearly impossible unless the
whole system is reengineered. It is therefore impossible to
determine how these two techniques interact unless a real
system is evaluated.

17 Information hiding +

Survivability should foster information hiding because
information needs to be hidden from the non-survivable parts
of the system. Therefore, information will most likely be held in
individual components, focusing the development effort on
making survivable components. This makes for a positive
interaction.

CMU/SEI-2003-TR-003 37

Matrix 4 – Interactions with Threat Assessment
 Interactions with threat assessment

 Rel Description

Security Promotion 1 Cryptography

 2 Access control

 3 Survivability

 4 Threat assessment

5 Vulnerability analysis +

Vulnerability analysis and threat assessment enhance each
other when combined. From the point of view of threat
assessment, vulnerability analysis helps architects understand
possible threats to a system. From the point of view of
vulnerability analysis, a system is vulnerable only in the
presence of threats. Their nature can help focus the
vulnerability analysis. For these reasons, the interaction is
positive.

Performance

6
Rate monotonic analysis
(RMA)

=
Threat assessment has no impact on RMA calculations
because threat assessment identifies intrusion possibilities,
while RMA is interested only in the internals of the system.
Processes related to RMA are not usually related to security.

7 Performance engineering =
Performance engineering creates performance models of a
system. These models are independent of the presence of
threats. Therefore, performance engineering and threat
assessment are independent.

8 Data replication �

Threat assessment identifies intrusion possibilities for a
system. Given the assessment’s results, data may or may not
be replicated in certain subsystems or in the system at all.
Hence, the type of possible intruders limits what can be
cached, and the two techniques don’t interact well.

9 Process replication �

As mentioned earlier, replication makes use of multiple
servers, and then assessment must be performed for each
one. Each server could potentially be located in a completely
different environment, and even managed by different people.
Furthermore, those systems’ primary functions might not be
those of the replicated system. For these reasons, replication
and threat assessment interact in a negative way.

10 Data division +

Each of the groups into which the data are partitioned can
have different threats. Although this makes threat assessment
more complex, it gives the system the flexibility to secure each
data group based on its needs. Because of this partitioning,
the two techniques interact positively.

11

Concurrency (process
division) �

This interaction is analogous to that of process replication
(4.9). The interaction is negative.

Dependability

12 Testing �
Threat assessment will increase the testing effort because it
requires that all relevant threat scenarios be taken into
account. Threat assessment, therefore, doesn’t help testing,
hindering the interaction of the two techniques.

13 Markov modeling +

Thread assessment can help determine what needs to be
modeled as external entities to the system and their behavior.
It should also help focus the modeler on security. By
determining which intrusion scenarios are possible, the
modeler can use this information to represent the system as it
evolves when threats become real and reduce the system’s
operability. Therefore, this is a positive interaction.

38 CMU/SEI-2003-TR-003

Matrix 4 – Interactions with Threat Assessment (cont.)
 Interactions with threat assessment

 Rel Description

 Dependability (cont.)

14 Replication �

This interaction is analogous to that of process replication
and threat assessment (4.9). Then, the interaction is a
negative one.

Modifiability

15 Change scenarios +
Threat assessment can help create a better architecture by
exposing security solutions that, although fine for the
original architecture, are shortsighted considering the
system’s evolution. Therefore, this is a positive interaction.

16 Separation of concerns ?

Threat assessment can drive the process of splitting the
system into subsystems. Splitting may or may not be good
for modifiability purposes. If it helps isolate those
mechanisms that are used to handle the identified threats,
the interaction with separation of concerns will be positive.
If, on the other hand, it forces the separation of components
against their natural grouping to support attacks, the
interaction with separation of concerns will be negative. For
these reasons, no conclusion is possible without evaluating
a concrete system.

17 Information hiding +

If the threats identified by threat assessment are mostly
related to loss of data, information hiding can be improved
by ensuring that data are isolated appropriately from other
system components. At the same time, threat assessment
should simplify protecting data since the data will probably
have only one point of access, Thus, there is a positive
interaction between the two techniques.

CMU/SEI-2003-TR-003 39

Matrix 5 – Interactions with Vulnerability Analysis
 Interactions with vulnerability analysis

 Rel Description

Security Promotion 1 Cryptography

 2 Access control

 3 Survivability

4 Threat assessment

 5 Vulnerability analysis

Performance

6
Rate monotonic analysis
(RMA)

=

There is no interaction between vulnerability analysis and
RMA because vulnerability analysis is concerned with
determining which points in a system are vulnerable, while
RMA is concerned with whether the system is schedulable.
Therefore, the two don’t interact.

7 Performance engineering =
The creation of performance models of a system
(performance engineering) is not affected by knowing which
parts of a system are vulnerable and to what. Therefore, there
is no interaction between these two techniques.

8 Data replication �

Data stored in a cache can be vulnerable to attacks. If the
data are stored only in memory, they can be overwritten by a
maverick process. If the data are held in secondary storage,
they can be rewritten and even physically removed from the
system. The use of cached data will make a system more
vulnerable. The interaction, therefore, is negative.

9 Process replication =
A vulnerability analysis on a system needs to be performed
only once, for the primary copy. All the replicas used by the
selected replication technique will benefit as a side effect.
Consequently, the two techniques do not interact.

10 Data division �

If data are divided within a unique server, vulnerability
analysis is not affected by this technique. However, if the data
are divided and spread across servers (the most likely
scenario), the system becomes more vulnerable than one in
which the data are centralized. This situation is particularly
aggravated when multiple administrators are in charge of
executing countermeasures for the vulnerabilities found in the
analysis. These drawbacks make the interaction between the
techniques a negative one.

11
Concurrency (process
division) �

Concurrency can be complex if different vulnerability analyses
identify a heterogeneous set of vulnerabilities for different
servers. This will require different solutions for different
servers, making the overall system more complex and less
cohesive. (This assumes that not all the threats can be
considered for all components due to their nature or their high
cost to implement.) Therefore, concurrency and vulnerability
analysis hinder each other.

Dependability

12 Testing +

The testing effort should increase because it must
accommodate testing for the vulnerable points that were
identified. However, vulnerability analysis leads to more
predictable testing because there is a target to test. Therefore,
the two techniques have a positive interaction.

13 Markov modeling +
Vulnerability analysis can be used to feed a Markov model
with possible failures that will trigger the dependability
mechanism. Therefore, the two techniques have a positive
interaction.

40 CMU/SEI-2003-TR-003

Matrix 5 – Interactions with Vulnerability Analysis (cont.)
 Interactions with vulnerability analysis

 Rel Description

 Dependability
(cont.)

14 Replication =
This interaction is equivalent to the case of replication for
performance (5.9). This is no interaction between the two
techniques.

Modifiability

15 Change scenarios +

Vulnerability analysis helps determine which change
scenarios are possible given the context of the identified
vulnerabilities. This is a positive interaction. Another positive
interaction is presented by looking at change scenarios
considering which new vulnerabilities they would either
introduce or remove from the system.

16 Separation of concerns +
Vulnerability analysis helps partition a system. At a minimum,
the most critical components to vulnerability should be
isolated. This will help with validation and verification. As
such, this is a positive interaction.

17 Information hiding +

This interaction is the same as that for separation of concerns
and vulnerability analysis (5.16). Therefore, it is a positive
interaction.

CMU/SEI-2003-TR-003 41

Matrix 6 – Interactions with Rate Monotonic Analysis
(RMA)

 Interactions with RMA

 Rel Description

Security Promotion 1 Cryptography

 2 Access control

 3 Survivability

4 Threat assessment

5 Vulnerability analysis

Performance
6

Rate monotonic analysis
(RMA)

7 Performance engineering +

RMA is concerned with the ability to schedule processes, and
performance engineering is concerned with how long a
process will take to execute; they complement each other, as
one can feed information to the other. This complementary
relationship is especially true regarding process
synchronization, which is a particularly difficult element to
analyze. The two techniques, which provide different
perspectives on the problem, should help each other. For
these reasons, the two techniques have a positive interaction.

8 Data replication �
RMA will not be applicable to those processes that use data
replicated across systems or servers. If those processes are
part of the scheduling problem that is being modeled, the two
techniques have a negative interaction.

9 Process replication �

If task completion depends on distributed tasks completing
their work, the task cannot be included in RMA; due to
latencies, the time a task will take to complete is not bounded
and therefore cannot be fed into a RMA. The two techniques,
then, don’t work well together.

10 Data division �
Unless the groups of data are collocated with the processes
that access them, access to remote data becomes unbounded
and RMA is not applicable. For this reason, the interaction is
negative.

11
Concurrency (process
division) �

If task completion depends on distributed tasks completing
their work, the task cannot be included in RMA. Due to
latencies, the time a task will take to complete is not bounded.
Therefore, there is a negative interaction between the two
techniques.

Dependability

12 Testing +
Once RMA is done (if based on accurate data), it should
reduce system testing because the system is known to be
schedulable. Therefore, there is a positive interaction between
the two techniques.

13 Markov modeling =
RMA is a modeling technique in itself, but is concerned only
with performance. Therefore, it complements any other
models of a system that may exist. The two techniques are
independent of each other.

14 Replication −

As mentioned earlier for performance, when distributed
algorithms are used for consistency checking, RMA cannot be
used because the operations are not time-bounded. In this
case, the interaction between these two techniques is
negative.

42 CMU/SEI-2003-TR-003

Matrix 6 – Interactions with Rate Monotonic Analysis
(RMA) (cont.)

 Interactions with RMA

 Rel Description

Modifiability

15 Change scenarios +

Although RMA must be done for each individual change
scenario, it will help understand whether the scenarios are
realistic in terms of the schedulability of the system.
Therefore, the interaction between these two techniques is
positive.

16 Separation of concerns +
Simpler tasks are easier to analyze with RMA than complex
tasks that perform many functions and are therefore not
cohesive. Separation of concerns tries to make the analysis
simpler too, so both techniques should foster each other.

17 Information hiding =

Although information hiding adds overhead to any
implementation, this overhead can be factored out of RMA.
Therefore, the two techniques don’t interact.

CMU/SEI-2003-TR-003 43

Matrix 7 – Interactions with Performance Engineering
 Interactions with performance engineering

 Rel Description

Security Promotion 1 Cryptography

 2 Access control

 3 Survivability

 4 Threat assessment

 5 Vulnerability analysis

Performance

6
Rate monotonic analysis
(RMA)

 7 Performance engineering

8 Data replication �

The presence of data replication increases the complexity of
the performance-engineering model if the replication must be
accurate. Although worst-case scenarios can be used, they
are most likely not satisfactory (which is why the performance
analysis is conducted in the first place). Therefore,
performance analysis and data replication interact negatively.

9 Process replication �

Replication makes performance models more complex and
requires additional work. Latencies must be identified and
taken into account, particularly when considering
synchronizations between processes. Doing so can make the
model intractable. Therefore, there is a negative interaction
between the two techniques.

10 Data division �

This is analogous to the interaction between RMA and data
replication (6.8). Unless data are collocated, performance
engineering becomes so complex that it might be incorrect or
even intractable. There is a negative interaction between the
two techniques.

11
Concurrency (process
division) �

The interaction between concurrency and performance
modeling has the same consequences as those of the
interaction between replication and performance engineering
(7.9). The two techniques interact negatively with each other.

Dependability

12 Testing +

Although verification is needed for performance assumptions,
if they are verified, performance and system testing should not
only be easier but much more predictable than without the use
of performance-engineering techniques. Therefore, there is a
positive interaction between the two techniques.

13 Markov modeling =

As in the case for RMA (6.13), performance engineering
models a system from a complementary point of view. Hence,
the techniques do not interact.

14 Replication �
The interaction between replication to increase dependability
and performance modeling has the same consequences as
those of the interaction between replication for performance
and performance engineering (7.9). The two techniques
interact negatively with each other.

Modifiability

15 Change scenarios +

Although each change scenario can potentially require a
separate performance model, those models will help
architects better understand the impact of each change
scenario, and determine if the scenarios aren’t plausible given
the performance constraints of the system. In this case, there
is a positive interaction between these two techniques.

44 CMU/SEI-2003-TR-003

Matrix 7 – Interactions with Performance Engineering (cont.)
 Interactions with performance engineering

 Rel Description

 Modifiability
(cont.)

16 Separation of concerns ?

This interaction depends mainly on the way in which the
system was partitioned. If the main goal is to ease
performance modeling, one technique is promoting the other.
If the main goal is not performance related, performance
analysis could be very complex. A concrete system is needed
to determine how these two techniques interact.

17 Information hiding +

If correctly used, the performance model should be easier to
create with information hiding because there is only one way
to access/change information in the system. Once each
operation is modeled, the modeler knows that this information
is valid for every process/component in the system. Therefore,
the two techniques have a positive interaction with each other.

CMU/SEI-2003-TR-003 45

Matrix 8 – Interactions with Data Replication
 Interactions with data replication

 Rel Description

Security Promotion 1 Cryptography

 2 Access control

 3 Survivability

 4 Threat assessment

 5 Vulnerability analysis

Performance

6
Rate monotonic analysis
(RMA)

 7 Performance engineering

 8 Data replication

9 Process replication +
The use of data and process replication will allow replicated
processes to access data locally and not necessarily across
servers. This creates a positive interaction between the
techniques.

10 Data division =

Once data replication is in place, the number of groups into
which it is divided is not a drawback. Therefore, the two
techniques are independent of each other.

11
Concurrency (process
division) �

The combination of concurrency and data replication makes
the resulting system very complex because replicated data
need to be globally consistent. This complexity causes a
negative interaction between the two techniques.

Dependability

12 Testing �
Certifying that the replicated data remain consistent in the
presence of server and process failures is a very complex
testing activity. Therefore, the two techniques exhibit a
negative interaction.

13 Markov modeling + Data replication is accommodated in Markov models.

Therefore, the two techniques have a positive interaction.

14 Replication +

The use of data replication for performance and process
replication for dependability complement each other. Data
replication adds to the dependability of the system, while
process replication allows for processes and data to be
collocated as described under process replication (8.9).
Therefore, the interaction between these two techniques is
positive.

Modifiability

15 Change scenarios +
Change scenarios can validate whether the architecture of a
system is using replicated data in a way that will prove useful
when encountering foreseeable changes. Therefore, these
two techniques have a positive interaction.

16 Separation of concerns =

Separation of concerns is concerned with functional
decomposition, whereas data replication is concerned with
data location. Therefore, the two techniques do not interact.

17 Information hiding +

By combining information hiding and replicated data,
specialized replication policies can be used depending on the
data being replicated. Information hiding also means that
there is only one point of access to the data; therefore, there
are no spurious accesses to data without going through the
data replication interface. For these reasons, the interaction
between information hiding and data replication is a desired
one.

46 CMU/SEI-2003-TR-003

Matrix 9 – Interactions with Process Replication
 Interactions with process replication

 Rel Description

Security Promotion 1 Cryptography

 2 Access control

 3 Survivability

 4 Threat assessment

 5 Vulnerability analysis

Performance

6
Rate monotonic analysis
(RMA)

 7 Performance engineering

 8 Data replication

 9 Process replication

10 Data division =

Process and data replication are orthogonal to each other.
Because replicated processes are exact copies of each other,
the problem of replicated data is solved once for the whole
system of replicas. Therefore, the two techniques do not
interact.

11

Concurrency (process
division) �

Systems that support both concurrency and replication are
very difficult to construct, test, and validate. Therefore, the
interaction between these two techniques is negative.

Dependability

12 Testing �

In addition to testing in isolation the process to be replicated,
replication requires testing several copies of the process
running at the same time. Furthermore, the subsystem that
implements the replication strategy must also be tested. Much
testing is required to ensure that all the replicas produce the
same results and don’t interact with each other in unexpected
ways that could corrupt their shared data. Process replication
adds considerable effort and complexity to testing. As a result,
the interaction between the two techniques is negative.

13 Markov modeling + The process replication is part of the model. Therefore, the

two techniques have a positive interaction.

14 Replication +

The interaction of replication for both performance and
dependability increases the number of failures that the system
can sustain (albeit with degraded performance). The two
techniques work in favor of each other, making this a positive
interaction.

Modifiability

15 Change scenarios =

Assuming that there is no communication between the copies
and that the copies are identical, changes should need to be
applied to only one of the copies. Therefore, process
replication doesn’t add any complexity to the change
scenarios, and the two techniques do not interact.

16 Separation of concerns =

There is no interaction between separation of concerns and
process replication because process replication is applied to
complete systems, while separation of concerns is applied to
individual components.

17 Information hiding =

This interaction is analogous to the interaction of separation of
concerns with process replication (9.16); therefore, the two
techniques do not interact.

CMU/SEI-2003-TR-003 47

Matrix 10 – Interactions with Data Division
 Interactions with data division

 Rel Description

Security Promotion 1 Cryptography

 2 Access control

 3 Survivability

4 Threat assessment

 5 Vulnerability analysis

Performance

6
Rate monotonic analysis
(RMA)

7 Performance engineering

 8 Data replication

9 Process replication

 10 Data division

11
Concurrency (process
division)

?

The presence of data division will probably imply that the data
are located on different servers. If the divided processes are
collocated with the data they use, performance should be
increased with respect to a monolithic system. On the other
hand, if data and processes are not always collocated,
performance will suffer and can potentially be worse than for a
monolithic system. Therefore, a concrete system is required to
determine how these two techniques interact.

Dependability

12 Testing =
Although the configuration of a system with data division can
be more complex than one without it, the testing effort is, for
the most part, independent of the division. Therefore, the two
techniques don’t interact.

13 Markov modeling �

As divided data become a point of failure, the Markov model
becomes more complex. Therefore, the two techniques have
a negative interaction.

14 Replication �

Data division requires a replication scheme of its own that
adds to the complexity of system replication for dependability.
Therefore, the two techniques have a negative interaction.

Modifiability

15 Change scenarios +

Change scenarios should help validate if a given data division
is valid, not just for the current incarnation of a system, but for
subsequent ones when the change scenarios are applied.
Therefore, there is a positive interaction between these two
techniques.

16 Separation of concerns +

Separation of concerns can be used to split data into cohesive
groups (e.g., employee information from customer
information). This should help create data groups that can be
used by different applications and rarely cross referenced.
This separation would improve performance, so the two
techniques have a positive interaction.

17 Information hiding +

Information hiding allows data division to be transparent to
users of the data. Therefore, the two techniques have a
positive interaction.

48 CMU/SEI-2003-TR-003

Matrix 11 – Interactions with Process Division
 Interactions with process division

 Rel Description

Security Promotion 1 Cryptography

 2 Access control

 3 Survivability

4 Threat assessment

5 Vulnerability analysis

Performance
6

Rate monotonic analysis
(RMA)

7 Performance engineering

 8 Data replication

9 Process replication

 10 Data division

11

Concurrency (process
division)

Dependability
12 Testing �

Testing concurrent systems is very difficult; therefore, the two
techniques interact in a negative way.

13 Markov modeling �
Modeling concurrent systems is very difficult; they make the
Markov model more difficult to construct accurately.
Therefore, the interaction between these two techniques is
negative.

14 Replication �

This interaction is the same as that for process division and
process replication for performance (9.11). The interaction
between the two techniques is therefore negative.

Modifiability

15 Change scenarios �

Implementing change scenarios in a concurrent system is
difficult. Describing them need not be difficult, but evaluating
them in a concurrent system is much harder than in a non-
concurrent system. Therefore, the two techniques have a
negative interaction.

16 Separation of concerns ?

A concrete system must be examined to determine whether
the interaction between separation of concerns and
concurrency is positive or negative. The interaction depends
on what criteria were used to separate the system into
components. If the components are inherently and
computationally independent, concurrency can be achieved
relatively easy. But if they are not independent, the useful
concurrency of a system can be limited.

17 Information hiding ?

This is a similar case to that mentioned above for separation
of concerns. If the hidden data are local to where the process
is executing, concurrency will not be affected and might even
be fostered. If the information is not local, calls across
processes are required. This scenario can limit or cancel any
advantage that concurrency might have tried to achieve.
Therefore, the interaction between concurrency and
information hiding cannot be assessed unless a concrete
system is evaluated.

CMU/SEI-2003-TR-003 49

Matrix 12 – Interactions with Testing
 Interactions with testing

 Rel Description

Security Promotion 1 Cryptography

 2 Access control

 3 Survivability

4 Threat assessment

5 Vulnerability analysis

Performance

6
Rate monotonic analysis
(RMA)

7 Performance engineering

 8 Data replication

9 Process replication

 10 Data division

11

Concurrency (process
division)

Dependability 12 Testing

13 Markov modeling +
A good model of a system will not only help testing, it will also
direct it. A model can be used to determine error conditions to
test what would otherwise not be noticed. Testing and
modeling interact well together.

14 Replication �
A replicated system is more complex to test because many
scenarios, quite a few of which require precise timing, are
required. This complexity makes the interaction between the
two techniques a negative one.

Modifiability

15 Change scenarios =

Change scenarios and testing do not interact because change
scenarios are concerned with the potential of change, not
change that has taken place. Although the two techniques do
not interact, change scenarios, if properly documented and
analyzed, can help create test plans if the change scenarios
become real.

16 Separation of concerns +

Separation of concerns makes more cohesive components,
which helps to simplify testing those components because test
engineers need to know less to do their work. Consequently,
the tests will also be simpler since components tend to be
independent of each other. Therefore, these two techniques
interact positively.

17 Information hiding +
The interaction between information hiding and testing is
analogous to the one between separation of concerns and
testing (12.16). The interaction between the two techniques is
therefore positive.

50 CMU/SEI-2003-TR-003

Matrix 13 – Interactions with Markov Modeling
 Interactions with Markov modeling

 Rel Description

Security Promotion 1 Cryptography

 2 Access control

 3 Survivability

4 Threat assessment

5 Vulnerability analysis

Performance
6

Rate monotonic analysis
(RMA)

7 Performance engineering

 8 Data replication

9 Process replication

 10 Data division

11

Concurrency (process
division)

Dependability 12 Testing

 13 Markov modeling

14 Replication +

Markov models are created to study dependability in the
presence of replication, so the two techniques have a positive
interaction.

Modifiability

15 Change scenarios +
The model of a system can be used to discuss change
scenarios, and their impact can be established on a more
solid foundation than by using intuition. For these reasons, the
techniques have a positive interaction.

16 Separation of concerns +

The only circumstance when a model of a system is
manageable is when separation of concerns is used to make
the components cohesive enough to be tractable. Then, in
most cases, one technique benefits from the presence of the
other, rendering a positive interaction.

17 Information hiding +

This case is analogous to the interaction of separation of
concerns and modeling (13.16). As such, the two techniques
have a positive interaction.

CMU/SEI-2003-TR-003 51

Matrix 14 – Interactions with Replication
 Interactions with replication

 Rel Description

Security Promotion 1 Cryptography

 2 Access control

 3 Survivability

4 Threat assessment

5 Vulnerability analysis

Performance
6

Rate monotonic analysis
(RMA)

7 Performance engineering

 8 Data replication

9 Process replication

 10 Data division

11

Concurrency (process
division)

Dependability 12 Testing

 13 Markov modeling

 14 Replication

Modifiability

15 Change scenarios +

Change scenarios should help validate that the replication
used in a system is valid for the evolution of that system. It can
highlight what can and cannot be replicated due to the
performance and survivability of the system. Therefore, the
two techniques have a positive interaction.

16 Separation of concerns +
Separation of concerns helps replication because when it is
applied to a system, the system’s components will be more
cohesive and thus easier to replicate. Therefore, the two
techniques interact in a positive way.

17 Information hiding +

Information hiding helps replication because access to data is
controlled from a single location, which should simplify
replication. On the other hand, if commonly accessed data are
not collocated in the same information-hiding module, once
replication is applied to a system, many communications
across processes that might not be collocated can occur,
affecting performance. This problem is not a concern of
dependability, so the two techniques interact in a positive way.

52 CMU/SEI-2003-TR-003

Matrix 15 – Interactions with Change Scenarios
 Interactions with change scenarios

 Rel Description

Security Promotion 1 Cryptography

 2 Access control

 3 Survivability

4 Threat assessment

5 Vulnerability analysis

Performance
6

Rate monotonic analysis
(RMA)

7 Performance engineering

 8 Data replication

9 Process replication

 10 Data division

11

Concurrency (process
division)

Dependability 12 Testing

 13 Markov modeling

 14 Replication

Modifiability 15 Change scenarios

16 Separation of concerns +
Change scenarios help identify the most convenient way to
partition the system so that the possible changes are as
simple as possible. Therefore, the interaction between the two
techniques is a positive one.

17 Information hiding +

Change scenarios help identify what information must be
hidden to simplify making those possible changes. Therefore,
the interaction is positive.

CMU/SEI-2003-TR-003 53

Matrix 16 – Interactions with Separation of Concerns
 Interactions with separation of concerns

 Rel Description

Security Promotion 1 Cryptography

 2 Access control

 3 Survivability

4 Threat assessment

5 Vulnerability analysis

Performance
6

Rate monotonic analysis
(RMA)

7 Performance engineering

 8 Data replication

9 Process replication

 10 Data division

11

Concurrency (process
division)

Dependability 12 Testing

 13 Markov modeling

 14 Replication

Modifiability 15 Change scenarios

16 Separation of concerns

17 Information hiding +

Information hiding and separation of concerns usually
complement each other. Making components cohesive by
hiding some particular knowledge or information, achieves
separation of concerns and vice versa. The interaction
between the two techniques is a desired interaction that
should be sought.

54 CMU/SEI-2003-TR-003

CMU/SEI-2003-TR-003 55

Appendix B – Detection Techniques Matrices

Matrix 17 – Interactions with Logging
 Interactions with logging

 Rel Description

Detection 1 Logging

2 Monitoring +

Although monitoring can be performed without logging, it is not realistic
to do so. Logging adds history and review capabilities to the system. If
an intruder penetrates a system, even if the penetration is confined and
doesn’t cause any harm, it is difficult to discover what has happened
and fix the defect that led to the intrusion without logging. Therefore,
these two techniques have a positive interaction.

Security

3 Honey pot +

This interaction is very similar to that with monitoring (17.2). Without
logging, the honey pot can divert intruders, but their activities cannot be
assessed. Therefore, the two techniques have a positive interaction.

4 Time-outs ?

There are two possible interactions here. In the first one, the interaction
between logging and time-outs is negative because logging is the
cause of the time-outs. The second one, positive, uses logging to
record time-outs. If the logged time-out information contains such data
as the state of the system when it timed-out, logging can help architects
understand why the time-out happened in the first place. Given the
preceding explanation, a concrete system must be studied to determine
the interaction between these two techniques.

Performance

5 Missed deadlines ?

This interaction is very similar to that with time-outs (17.4). If logging is
used within real-time tasks, tasks can miss their deadlines. If logging is
a preemptable, low-priority process, it might not generate missed
deadlines. The interaction depends on how and where logging is
implemented in a concrete system.

6

Triple modular
redundancy (TMR) =

Logging is not involved in the decision-making algorithm for TMR.
Therefore, these techniques do not interact.

Dependability

7 Recovery blocks =

Logging and recovery blocks are not related. Unless security logging is
a critical function for a system, recovery blocks will provide
dependability for other modules.

Modifiability

8 Time assessment ?

Two possibilities arise for the interaction of logging and time
assessment. On one hand, modifying a module that interacts with the
logging mechanism is seldom trivial. It can lead to less accurate time
assessments for the modifications. On the other hand, these concerns
are relevant only if the change involves the logging mechanism.
Therefore, the interaction between these two techniques can be
evaluated only for concrete cases.

9 Defect assessment ?

Logging can signal a defect and be used to narrow down defect
possibilities, but only if the component that has the defect uses the
logging mechanism in meaningful ways. Therefore, as was the case for
time assessment (17.8), the interaction between these two techniques
cannot be assessed without evaluating a concrete case.

56 CMU/SEI-2003-TR-003

Matrix 17 – Interactions with Logging (cont.)

 Interactions with logging

 Rel Description

 Modifiability (cont.)

10 Impact assessment =

Logging can be used as a proxy of the number of components affected
by a defect if they use the logging mechanism and the defect is
reflected in the log. However, in most cases, there is no interaction
between impact assessment and logging because the majority of
defects are not recorded by the logging mechanism.

CMU/SEI-2003-TR-003 57

Matrix 18 – Interactions with Monitoring
 Interactions with monitoring

 Rel Description

Security Detection 1 Logging

 2 Monitoring

3 Honey pot +
The main purpose of a honey pot is to redirect an intruder to a known
system to analyze the intruder. Then monitoring must be used to
trigger the logging mechanism and inform operators of the intrusion.
Therefore, these two techniques have a positive interaction.

Performance

4 Time-outs +
Monitoring time-outs could be used to detect denial-of-service attacks
and other similar forms of service degradation due to intrusions.
Therefore, there is a positive interaction between the two techniques.

5 Missed deadlines +
Monitoring can also be used to detect missed deadlines as an
indication of denial of service or some other form of intrusion. As in the
interaction between time-outs and monitoring, these techniques have a
positive interaction.

Dependability

6
Triple modular
redundancy (TMR)

+

Monitoring can be used to detect intrusions and the replacement of
good software modules with “bad” ones. If monitoring finds these fake
modules, it can instruct the TMR not to use that module in the voting
process. Because of this possibility, the two techniques have a positive
interaction.

7 Recovery blocks +
Similar to TMR (18.6), monitoring can be used to instruct the recovery-
block mechanism to consider a compromised module as failed and
move on to another trusted one. Therefore, these two techniques have
a positive interaction.

Modifiability

8 Time assessment �
Monitoring mechanisms are usually intrusive to the components they
monitor, making modifications to those components more complicated
than expected and resulting in wrong time assessments. Therefore, the
two techniques have a negative interaction.

9 Defect assessment �
The interaction between defect assessment and monitoring is
analogous to the interaction of time assessment and monitoring (18.8).
Therefore, there is a negative interaction between defect assessment
and monitoring.

10 Impact assessment =

Unless the modification affects the monitoring system, modifications to
components that are subject to monitoring are the same as those that
aren’t. Therefore, in most circumstances, the two techniques do not
interact.

58 CMU/SEI-2003-TR-003

Matrix 19 – Interactions with Honey Pot
 Interactions with honey pot

 Rel Description

Security Detection 1 Logging

 2 Monitoring

 3 Honey pot

Performance

4 Time-outs +

A honey pot contains an intruder in a safe and isolated system; thus, it
helps prevent time-outs due to an intrusion. Otherwise, the honey pot
does not make the time-out detection algorithm simpler or more
complex. Therefore, there is a positive interaction between the two
techniques.

5 Missed deadlines +

A honey pot contains an intruder in a safe and isolated system.
Therefore, a honey pot helps prevent missed deadlines due to an
intrusion. Otherwise, the honey pot does not make the algorithm that
detects missed deadlines simpler or more complex. This is analogous
to the previous interaction (19.4), making the interaction a positive one.

Dependability

6
Triple modular
redundancy (TMR)

=
Honey pots are independent of TMR because the TMR is implemented
inside a system. In contrast, a honey pot is by definition independent
from the system that implements TMR. Therefore, the two techniques
do not interact.

7 Recovery blocks =

Recovery blocks are independent from honey pots, as was the case for
TMR (19.6). Detecting a failure in a module is not affected by the
presence or absence of a honey pot (which lies outside the system with
the recovery block). Therefore, the two techniques do not interact.

Modifiability

8 Time assessment =

The honey pot is independent from changes to the system. Its evolution
is not tied to the system that it guards. Therefore, the two techniques do
not interact.

9 Defect assessment =

There is no interaction between defect assessment and a honey pot for
the same reasons explained above for time assessment (19.8). Then,
the two techniques are independent of each other.

10 Impact assessment =

There is no interaction between impact assessment and a honey pot for
the same reasons explained above for time assessment (19.8). There
is no interaction between these two techniques.

CMU/SEI-2003-TR-003 59

Matrix 20 – Interactions with Time-Outs
 Interactions with time-outs

 Rel Description

Security Detection 1 Logging

 2 Monitoring

 3 Honey pot

Performance 4 Time-outs

5 Missed deadlines �

Time-outs and missed deadlines represent different approaches to
detecting performance problems. Time-outs are concerned with
subsystems or processes being alive, while missed deadlines are
concerned with processes taking too long to complete. It is very difficult
to combine these two techniques because a process can miss its
deadline but still be alive. Conversely a process that is not alive, by
definition, will miss its deadline. Therefore, these two techniques have
a negative interaction.

Dependability

6
Triple modular
redundancy (TMR)

+
Time-outs find that a subsystem or process failed to respond on time.
TMR can act on this knowledge if it considers that the system is
therefore not available. This relationship implies that the techniques
interact in a positive way.

7 Recovery blocks +

Recovery blocks can use time-outs as a test to determine if a process
should be replaced by its recovery block. Therefore, the two techniques
have a positive interaction.

Modifiability

8 Time assessment �

The components of the system that depend on the time-out mechanism
are usually critical. This fact, combined with the use of the time-out
mechanism, increases the complexity of assessing the time that
modifications will require. Therefore, the interaction between these two
techniques is negative.

9 Defect assessment �
Time-out mechanisms are hard to implement and change. Therefore,
changes related to the time-out mechanism are likely to be error prone.
As in the previous case (20.8), the techniques have a negative
interaction.

10 Impact assessment �
Adding even simple functionality that must be monitored by the time-
out mechanism will require more effort than adding functionality that
doesn’t. Therefore, the two techniques interact negatively.

60 CMU/SEI-2003-TR-003

Matrix 21 – Interactions with Missed Deadlines
 Interactions with missed deadlines

 Rel Description

Security Detection 1 Logging

 2 Monitoring

 3 Honey pot

Performance 4 Time-outs

 5 Missed deadlines

Dependability

6
Triple modular
redundancy(TMR)

?

For hard, real-time systems, a missed deadline means a value that is
not valid. Missed deadlines can be used with TMR to determine which
values produced for the voting process are useful. Otherwise, for non-
real-time systems, the techniques don’t interact. The interaction
depends on the concrete system studied.

7 Recovery blocks +

Missed deadlines can be used by a recovery-block mechanism to
detect that a block is no longer satisfying its mission. That block can be
replaced by another block that takes less time to complete the task
being monitored by the recovery-block mechanism. Therefore, the two
techniques have a positive interaction.

Modifiability

8 Time assessment =

Missed deadlines are independent of maintenance work because they
are usually implemented by an independent monitoring system.
Although it can be argued that modifying the monitoring system is
usually difficult and the time required to make such modifications is
hard to assess, we believe that they rarely occur. Therefore, the
techniques do not interact with each other.

9 Defect assessment = This interaction is analogous to the interaction with time assessment

(21.8). The two techniques are independent of each other.

10 Impact assessment =

This interaction is analogous to the interactions with time assessment
(21.8) and defect assessment (21.9). Therefore, there is no interaction
between impact assessment and missed deadlines.

CMU/SEI-2003-TR-003 61

Matrix 22 – Interactions with Triple Modular Redundancy
(TMR)

 Interactions with triple modular redundancy

 Rel Description

Security Detection 1 Logging

 2 Monitoring

 3 Honey pot

Performance 4 Time-outs

5 Missed deadlines

Dependability

6

Triple modular
redundancy (TMR)

7 Recovery blocks +

TMR and recovery blocks can be combined. TMR can be used as the
source of decisions for recovery blocks. Therefore, the two techniques
have a positive interaction.

Modifiability

8 Time assessment =

Unless the changes are related to TMR, there is no interaction between
the two techniques. When the changes are related to TMR, given its
usual complexity, they will probably take longer than normal changes.
However, such changes are unlikely. No interaction has been found
between the two techniques.

9 Defect assessment =

This interaction is similar to the previous case. TMR does not imply that
changes to the system will introduce many defects. This is not true, of
course, if the changes are made to the TMR component. However,
such changes are unlikely. Therefore, the two techniques are
independent of each other.

10 Impact assessment =

This interaction is similar to the previous case. TMR does not imply that
small changes to the system will take longer than expected. This is not
true, of course, if the changes are made to the TMR component.
However, these changes are unlikely. For our purposes, there is no
interaction between the two techniques.

62 CMU/SEI-2003-TR-003

Matrix 23 – Interactions with Recovery Blocks
 Interactions with recovery blocks

 Rel Description

Security Detection 1 Logging

 2 Monitoring

 3 Honey pot

Performance 4 Time-outs

5 Missed deadlines

Dependability

6

Triple modular
redundancy (TMR)

7 Recovery blocks

Modifiability

8 Time assessment ?

If the recovery block controller is affected, the defect should be simple
to correct due to its use of simple algorithms for the test. Then, time
assessment of the defect should be accurate. On the other hand, fixing
one or more of the blocks in the recovery mechanism can be very
difficult to perform and estimate due to the difficulty of determining if
flaws in one block are also present in others. Therefore, the interaction
of these two techniques can be evaluated only for concrete cases.

9 Defect assessment ?
The interaction between defect assessment and recovery blocks can
be evaluated only for concrete systems. The reasoning for this is
analogous to that for time assessment (23.8). The interaction will
depend on the system under study.

10 Impact assessment ?
The interaction between impact assessment and recovery blocks can
be evaluated only for concrete systems. The reasoning for this is
analogous to that for time assessment (23.8). The interaction will
depend on the system being studied.

CMU/SEI-2003-TR-003 63

Matrix 24 – Interactions with Time Assessment
 Interactions with time assessment

 Rel Description

Security Detection 1 Logging

 2 Monitoring

 3 Honey pot

Performance 4 Time-outs

5 Missed deadlines

Dependability

6

Triple modular
redundancy (TMR)

7 Recovery blocks

Modifiability

8 Time assessment

9 Defect assessment ?

This is one of the few cases where the interaction between two
techniques is not symmetrical. Time assessment does not necessarily
depend on defect assessment because modifications might not be due
to defects. If they are, defect assessment becomes critical for a correct
time assessment. There is no interaction between the two techniques
from the point of view of defect assessment. Although a defect can
take a long time to correct because of its complexity, the defect’s
complexity is not necessarily the only reason for a long correction time.
A trivial but pervasive defect can also take a long time to correct.
Therefore, the interaction between the techniques can be positive or
negative, depending on the situation.

10 Impact assessment =

These two techniques are not necessarily related. Bad time
assessment for the removal of a defect does not imply that the impact
of the defect is going to be either large or small. It could be known that
a defect is circumscribed to a particular module, yet the time estimated
to fix it can be off by two orders of magnitude (in any direction).
Therefore, there is no interaction between the two techniques.

64 CMU/SEI-2003-TR-003

Matrix 25 – Interactions with Defect Assessment
 Interactions with defect assessment

 Rel Description

Security Detection 1 Logging

 2 Monitoring

 3 Honey pot

Performance 4 Time-outs

5 Missed deadlines

Dependability

6

Triple modular
redundancy (TMR)

7 Recovery blocks

Modifiability

8 Time assessment

9 Defect assessment

10 Impact assessment =
If a badly assessed defect is encapsulated, its impact on the overall
system can be minimal. A well-assessed defect can imply either a
small or large impact. Therefore, there is no interaction between the
two techniques.

CMU/SEI-2003-TR-003 65

Appendix C – Correction Techniques
Matrices

Matrix 26 – Interactions with System Reconfiguration
 Interactions with system reconfiguration

 Rel Description

Security Correction
1 System reconfiguration

2 Shutdown components �

Shutting down components limits the amount and kind of
reconfiguration that the system can support. Therefore, the two
techniques have a negative interaction.

3
Disable compromised
access points �

This interaction between disable compromised access points and
system reconfiguration is analogous to the one between system
configuration and shutting down components (26.2). Therefore, the
interaction is negative.

4 Restore components +

In contrast to shutting down components (26.2), restoring
components augments the possibilities for system reconfiguration.
Therefore, the interaction between the two techniques is positive.

Performance

5 Load balancing +

Load balancing enhances the reconfiguration of a system. Load
balancing can distribute work based on load and availability. Then,
when a compromised system is reconfigured, the load-balancing
mechanism can ignore those components that are offline. Therefore,
there is a positive interaction between the two techniques.

6
Service degradation/
interruption

+

It’s safe to assume that a reconfigured system still supports the core
business for which it was created, even if the system is slower.
Degradation, then, will serve as a guideline for system
reconfiguration and vice versa. Therefore, there is a positive
interaction between the two techniques.

Dependability

7 Damage confinement �

Damage confinement removes a service or components from service.
However, there is no provision to return it back to service, thus
limiting what system reconfigurations are possible as the system
loses components. Furthermore, the configurations that are possible
at a given point in time depend on what has happened before that
point, making reconfiguration a very complex problem, Therefore, the
interaction between the two techniques is a negative one.

8 Backward recovery =

Backward recovery is independent from system reconfiguration
because the main function of backward recovery is to hide problems
at a level that is lower than the level where the need for a system
reconfiguration is found. The two techniques are independent of each
other.

9 Forward recovery =

The interaction between forward recovery and system reconfiguration
is analogous to that for backward recovery (26.8). Therefore, there is
no interaction between the two techniques.

10 Compensation =

The interaction between compensation and system reconfiguration is
analogous to that for backward recovery (26.8). Therefore, they are
independent of each other.

66 CMU/SEI-2003-TR-003

Matrix 26 – Interactions with System Reconfiguration (cont.)
 Interactions with system reconfiguration

 Rel Description

Modifiability

11 Refactoring ?

Depending on the scope of the refactoring effort, system
reconfiguration may or may not be affected. If refactoring is applied
inside a component or a subsystem that is not partitioned during
system reconfiguration, the two techniques will not interact. If, on the
other hand, a major refactoring needs to take place, it might be
limited by the ability to reconfigure the system or might hamper the
system reconfiguration if not done carefully. This implies that the
interaction will vary from system to system.

12 Reengineering �

The reengineered system will need to support at least the same level
of system reconfiguration as the initial system. Not only is this
support difficult to achieve in a running system, it might also be
difficult to achieve in terms of eliciting the current system’s
reconfiguration capabilities. For these reasons, the interaction
between the two techniques is negative.

13 Wrapping =

System reconfiguration is concerned with the topology of the system,
whereas wrapping is concerned with hiding the complexity of the
system’s components. Therefore, the two techniques are
independent of each other. However, good insight into the different
possibilities for system reconfiguration can provide the wrapping
effort with good information about what components should not be
split and therefore wrapped.

CMU/SEI-2003-TR-003 67

Matrix 27 – Interactions with Component Shutdown
 Interactions with component shutdown

 Rel Description

Security Correction 1 System reconfiguration

2 Shutdown components

3
Disable compromised
access points

�
Shutting down a component prevents disabling only the component’s
external interface while still allowing that component to be used for
other processes (like replication). Therefore, the two techniques have
a negative interaction.

4 Restore components +

Restore components allows components previously shutdown to be
reintegrated with the system. Therefore, these two techniques
complement each other in a positive way.

Performance
5 Load balancing =

Load balancing does not interact with components shutting down
because a component that shuts down is no longer considered part of
the load-balancing set. Therefore, the techniques do not interact.

6
Service degradation/
interruption

+

As components are shut down, the degradation mechanism can
detect that fewer resources are available and act upon the situation.
This happens because the service degradation/interruption
mechanism can consider the new system configuration as one where
components must be subjected to larger workloads. Therefore, the
two techniques have a positive interaction.

Dependability
7 Damage confinement +

Damage confinement is usually implemented by component
shutdown. Therefore, the interaction between the techniques is
positive.

8 Backward recovery ?

If the component that is shut down is the only additional component
of a recovery-block mechanism, the mechanism will cease to be
useful, rendering the subsystem that depends on it non-dependable.
If, on the other hand, the component that is shut down does not
belong to the recovery-block mechanism or there are more
components available, the two techniques do not interact. Therefore,
the nature of the interaction between component shutdown and
backward recovery depends on the subsystem under study.

9 Forward recovery �
Only one component that belongs to TMR can be shut down at any
given time, otherwise the forward-recovery mechanism will not have
enough modules for TMR to function. This situation limits what
components can be shut down and therefore makes the interaction
between forward recovery and component shutdown a negative one.

10 Compensation +

Compensation masks components that are shut down. Therefore, the
two techniques complement each other, resulting in a positive
interaction.

Modifiability
11 Refactoring ?

The interaction between component shutdown and refactoring is
analogous to that of system reconfiguration and refactoring (26.11).
Therefore, the interaction will depend on the system under study.

12 Reengineering �
Reengineering becomes more complex in the presence of component
shutdown because the need for the system to continue working in the
absence of some components must be considered. This interaction
makes understanding the system more difficult; thus, the two
techniques have a negative interaction.

13 Wrapping +

For a component to be shut down, it must be self contained; then it
can be wrapped easily. Therefore, there is a positive interaction
between the two techniques.

68 CMU/SEI-2003-TR-003

Matrix 28 – Interactions with Disabling Compromised
Access Points

 Interactions with disabling compromised access points

 Rel Description

Security Correction
1 System reconfiguration

2 Shutdown components

3

Disable compromised
access points

4 Restore components =

Restoring components and disabling compromised access points
have complementary functions. Restoring components brings
components that were shut down back online, while disabling
compromised access points never takes a component offline.
Therefore, the two techniques do not interact.

Performance

5 Load balancing =
Disabling a component’s access points doesn’t mean that the
component is unable to process information on behalf of a process
with a larger load. Therefore, the two techniques do not interact.

6
Service degradation/
interruption

+
Disabling compromised access points will trigger a
degradation/interruption of services. This means that the two
techniques have a positive interaction with each other.

Dependability

7 Damage confinement +
Damage confinement can be implemented by disabling compromised
access points. Therefore, these techniques foster each other, and
there is a positive interaction between them.

8 Backward recovery ?

There is a negative interaction between backward recovery and
disabling compromised access points if the disabled component is
used by the backward-recovery mechanism. An example of this
situation would be when the backward-recovery mechanism must
restore information from a server whose access points have been
disabled. However, in some cases, the two techniques might not
interact because the backward-recovery mechanism is self-contained
with respect to access points. Therefore, the interaction between
these two techniques can be assessed only in the presence of a
concrete system.

9 Forward recovery ?
This interaction is analogous to that between backward recovery and
disable compromised access points (28.8). Therefore, the interaction
between these two techniques can be assessed only in the presence
of a concrete system.

10 Compensation =
Compensation is concerned with faulty components and masking the
failure of one component in a set. This technique has no relation to
disabling compromised access points. Therefore, the two techniques
are independent of each other.

Modifiability
11 Refactoring =

These two techniques are independent. Refactoring is not concerned
with components that are disabled at runtime.

12 Reengineering =

Reengineering and disabling compromised access points are
independent. Reengineering must take into account that a system
needs to disable compromised access points, but this is easy to
identify and does not represent a large effort compared to other tasks
that must be done to reengineer a system. The two techniques are
independent of each other.

CMU/SEI-2003-TR-003 69

Matrix 28 – Interactions with Disabling Compromised
Access Points (cont.)

 Interactions with disabling compromised access points

 Rel Description

 Modifiability
(cont.)

13 Wrapping +
Identifying the access points that can be disabled is a good lead into
finding the interfaces that a wrapping component will have to support.
Therefore, the two techniques have a positive interaction.

70 CMU/SEI-2003-TR-003

Matrix 29 – Interactions with Restoring Components
 Interactions with restoring components

 Rel Description

Security Correction 1 System reconfiguration

 2 Shutdown components

3

Disable compromised
access points

 4 Restore components

Performance
5 Load balancing =

Load balancing expects components to go offline and come back.
Therefore, restoring components does not affect load balancing.

6
Service degradation/
interruption

+

Degradation allows a system to provide either fewer services or the
same services with slower performance. Restoring components
brings components back online. This process can return a system to
its original configuration and end a degradation period. Therefore, the
two techniques have a positive interaction.

Dependability

7 Damage confinement =

Damage confinement is concerned with removing components from a
system, while restoring components brings them back. Although both
techniques complement each other, they do not interact because
damage confinement is concerned only with shutting down faulty
components.

8 Backward recovery =

Backward recovery is used when a component fails, not when a
component is brought back online. Therefore, the techniques are
independent of each other.

9 Forward recovery =
This interaction is very similar to that of backward recovery (29.8).
Forward recovery is used when a component is detected as faulty
rather than when a component is brought back online. There is no
interaction between these two techniques.

10 Compensation =

This interaction is also similar to the interaction of restoring
components and backward recovery (29.8). Compensation masks
failures and takes components out of the system; compensation is
not affected or improved by returning components to the system. The
techniques are independent of each other.

Modifiability

11 Refactoring =
Restoring components is not affected by code refactoring. Restoring
components is a runtime activity, while refactoring is concerned only
with the static view of the system. The two techniques are
independent of each other.

12 Reengineering =
The only interaction between restoring components and
reengineering is that architects must consider the need to restore
components when reengineering a system. Therefore, there is no
interaction between these two techniques.

13 Wrapping +
A component that can be restored is a well-defined element for
wrapping purposes. Therefore, restoring components should ease
wrapping, and there is a positive interaction between these two
techniques.

CMU/SEI-2003-TR-003 71

Matrix 30 – Interactions with Load Balancing
 Interactions with load balancing

 Rel Description

Security Correction 1 System reconfiguration

2 Shutdown components

3

Disable compromised
access points

 4 Restore components

Performance 5 Load balancing

6
Service degradation/
interruption

=

Load-balancing techniques try to make a system more responsive or
make better use of the system’s resources. They are not concerned
with system degradation. Whether service degradation is used
depends on the load in the component. Therefore, the two techniques
operate at different levels of detail and do not interact with each
other.

7 Damage confinement ?

In this case, the interaction depends on which technique is applied
first. If load balancing is in place, adding damage confinement will not
affect it. On the other hand, if damage confinement is present, adding
load balancing will allow a system to shift work from one damaged
subsystem to another. For this enhancement to be realized, load
balancing must monitor services, not just servers. Therefore, this
interaction depends on the concrete system under study.

8 Backward recovery ?

If dynamic load balancing is used, the load-balancing mechanism will
react appropriately to a backward recovery by moving processing to
other processors that have a lighter load. If static load balancing is
used, the load-balancing mechanism will ignore that a block is being
recovered and continue to send it processing requests. In addition,
the performance of the affected component may change due to
backward recovery, requiring the load-balancing system to react
accordingly. The interaction between the two techniques depends on
the concrete system being analyzed.

9 Forward recovery �

Forward recovery generally implies the use of a simple algorithm to
calculate a safe value. In this case, this simple algorithm is more
likely to require fewer computer resources and run faster. Then, a
dynamic load balancer is likely to try to pick this component for use
more often than components that take longer to execute although
they produce the correct answer. Therefore, the interaction between
the two techniques is negative.

Dependability

10 Compensation =

These techniques do not interact because the load balancer is
concerned with larger components than compensation.

Modifiability

11 Refactoring ?

If refactoring steps outside the boundaries of a process, it will affect
load balancing because the rearranged processes/modules need to
support the interface used by the load-balancing mechanism.
Otherwise, if refactoring stays within the boundaries of a process, the
two techniques don’t interact. Therefore, the interaction between
these two techniques depends on the concrete case being examined.

72 CMU/SEI-2003-TR-003

Matrix 30 – Interactions with Load Balancing (cont.)
 Interactions with load balancing

 Rel Description

 Modifiability (cont.)

12 Reengineering �

Load balancing is a requirement that must be considered when
reengineering a system. Usually, load balancing is implemented by
removing state from the servers. Doing this allows for switching
dynamically between components on different physical machines
without having any state dependencies between a process and
where it is located. Load balancing thus makes reengineering the
system more costly. Therefore, the interaction is negative.

13 Wrapping +

Wrapping means hiding a subsystem to conform to a new interface.
Load balancing needs an interface too, so the two techniques can
be combined without problems. If the original system supported load
balancing, then this interface only needs to be exposed through the
wrapper interface. If the system didn’t support load balancing,
wrapping could be a way to achieve it. Therefore, the interaction is
positive.

CMU/SEI-2003-TR-003 73

Matrix 31 – Interactions with Service Degradation/
Interruption

 Interactions with service degradation/interruption

 Rel Description

Security Correction
1 System reconfiguration

2 Shutdown components

3
Disable compromised
access points

4 Restore components

Performance 5 Load balancing

6
Service degradation/
interruption

Dependability

7 Damage confinement +

If a degradation/interruption mechanism is in place, damage
confinement should be easier to implement because if a component
is removed from the system, the system can still either provide
degraded performance for the component that was removed or
continue to provide other services despite the removed component.
Therefore, the two techniques have a positive interaction.

8 Backward recovery +

The interaction between backward recovery and service
degradation/interruption is analogous to that of damage confinement
and service degradation/interruption (31.7). A system implementing
degradation/interruption can cope with a backward-recovery
operation that might take an appreciable amount of time to complete.
Therefore, there is a positive interaction between the two techniques.

9 Forward recovery +

This interaction is analogous to backward recovery and
degradation/interruption (31.8). Therefore, there is a positive
interaction between the two techniques.

10 Compensation =
Compensation masks faults by using parallel computation. Since
compensation does not require service degradation/interruption, the
two techniques are independent of each other.

Modifiability

11 Refactoring =
Service degradation/interruption is concerned with services at
runtime, whereas refactoring is concerned with compile-time
components. Therefore, there is no interaction between the two
techniques.

12 Reengineering �
Reengineering a system that allows service degradation/interruption
is more complex than reengineering one that doesn’t because there
will be subtleties in the implementation of the original system that will
be difficult to replicate in the newly reengineered system. Therefore,
the two techniques have a negative interaction.

13 Wrapping +

Service degradation/interruption implies that the system under
consideration has well-defined components, which must be cohesive.
These components are an asset to the wrapping process, and they
are good candidates to be wrapped individually. Therefore, there is a
positive interaction between these two techniques.

74 CMU/SEI-2003-TR-003

Matrix 32 – Interactions with Damage Confinement
 Interactions with damage confinement

 Rel Description

Security Correction
1 System reconfiguration

2 Shutdown components

3
Disable compromised
access points

4 Restore components

Performance 5 Load balancing

6
Service degradation/
interruption

Dependability
7 Damage confinement

8 Backward recovery +
Damage confinement helps backward recovery by reducing the
extent of the operation to be recovered and making the mechanism
faster. Thus, the interaction between these two techniques is positive.

9 Forward recovery +

This case is analogous to that of backward recovery and damage
confinement (32.8). Therefore, the two techniques exhibit a positive
interaction.

10 Compensation +

Damage confinement constrains the spread of an error, thereby
creating components that are good candidates for compensation.
Therefore, the two techniques have a positive interaction.

Modifiability

11 Refactoring �
Refactoring must limit itself to be within the boundary of the
subsystems defined by damage confinement. This might not always
yield the best overall structure for the subsystems. Therefore, there is
a negative interaction between the two techniques.

12 Reengineering �

Similar to refactoring, damage confinement limits the range of
reengineering solutions for a given system. Those components that
exhibit damage confinement will probably need to remain untouched.
Therefore, there is a negative interaction between the two
techniques.

13 Wrapping =
Wrapping will probably hide the details of damage confinement,
because wrapping is not usually used for components that depend on
larger components inside a legacy system. Therefore, the two
techniques don’t interact with each other.

CMU/SEI-2003-TR-003 75

Matrix 33 – Interactions with Backward Recovery
 Interactions with backward recovery

 Rel Description

Security Correction
1 System reconfiguration

2 Shutdown components

3
Disable compromised
access points

4 Restore components

Performance 5 Load balancing

6
Service degradation/
interruption

Dependability
7 Damage confinement

8 Backward recovery

9 Forward recovery +
The combination of forward and backward recovery creates very
powerful and fast dependability mechanisms. Which one is applied
first in the error-recovery process depends on the nature of the
application, but the interaction is always positive.

10 Compensation +

The module that encompasses the backward recovery will exhibit
compensation characteristics. Therefore, the interaction between the
two techniques is a positive one.

Modifiability

11 Refactoring =
Refactoring is independent of backward recovery because backward
recovery restores a previous state, which is a very well-defined
function. Refactoring, on the other hand, is concerned with how
functionality is split between components.

12 Reengineering �
Reengineering becomes more complex in the presence of backward
recovery because the backward-recovery mechanism, the state
space from which the system can recover, and the state space to
which the system will be taken are usually not trivial. Therefore, the
interaction between the two techniques is negative.

13 Wrapping =

This interaction is analogous to the one between wrapping and
damage confinement (32.13). Therefore, there is no interaction
between the two techniques.

76 CMU/SEI-2003-TR-003

Matrix 34 – Interactions with Forward Recovery
 Interactions with forward recovery

 Rel Description

Security Correction
1 System reconfiguration

2 Shutdown components

3
Disable compromised
access points

4 Restore components

Performance 5 Load balancing

6
Service degradation/
interruption

Dependability
7 Damage confinement

8 Backward recovery

9 Forward recovery

10 Compensation +

This case is analogous to compensation and backward recovery
(33.10). Therefore, the two techniques have a positive interaction.

Modifiability
11 Refactoring =

This case is analogous to refactoring and backward recovery (33.11).
Therefore, the two techniques are independent of each other.

12 Reengineering � This case is analogous to reengineering and backward recovery

(33.12). Therefore, the two techniques have a negative interaction.

13 Wrapping =

This case is analogous to wrapping and backward recovery (33.13).
Therefore, the two techniques are independent of each other.

CMU/SEI-2003-TR-003 77

Matrix 35 – Interactions with Compensation
 Interactions with compensation

 Rel Description

Security Correction
1 System reconfiguration

2 Shutdown components

3
Disable compromised
access points

4 Restore components

Performance 5 Load balancing

6
Service degradation/
interruption

Dependability
7 Damage confinement

8 Backward recovery

9 Forward recovery

 10 Compensation

Modifiability

11 Refactoring =

Refactoring and compensation are not related. Compensation is
concerned with higher level components than refactoring. Even more,
compensation is concerned with a runtime behavior (masking
problems), while refactoring is concerned with a compile-time
behavior (making the code structure cleaner). Therefore, the two
techniques are independent of each other.

12 Reengineering �
Reengineering a system that supports compensation is complex due
to the difficulty of reproducing compensation behavior accurately with
respect to the original system. Therefore, there is a negative
interaction between the techniques.

13 Wrapping =
This interaction is analogous to the ones between wrapping and
damage confinement (32.13), wrapping and backward recovery
(33.13), and wrapping and forward recovery (34.13). Therefore, the
two techniques are independent of each other.

78 CMU/SEI-2003-TR-003

Matrix 36 – Interactions with Refactoring
 Interactions with refactoring

 Rel Description

Security Correction
1 System reconfiguration

2 Shutdown components

3
Disable compromised
access points

4 Restore components

Performance 5 Load balancing

6
Service degradation/
interruption

Dependability
7 Damage confinement

8 Backward recovery

9 Forward recovery

 10 Compensation

Modifiability 11 Refactoring

12 Reengineering �
The two techniques are mutually exclusive. Reengineering is used
when refactoring fails due to the scope of the problem to be solved.
Therefore, the interaction between these two techniques is negative.

13 Wrapping �

The two techniques are mutually exclusive. Wrapping is used to hide
a system behind an interface. Wrapping is done because making
small changes either are no longer cost effective or won’t solve
problems that the system has when integrated with new technologies
or other systems. Therefore, there is a negative interaction between
the two techniques.

CMU/SEI-2003-TR-003 79

Matrix 37 – Interactions with Reengineering
 Interactions with reengineering

 Rel Description

Security Correction
1 System reconfiguration

2 Shutdown components

3
Disable compromised
access points

4 Restore components

Performance 5 Load balancing

6
Service degradation/
interruption

Dependability
7 Damage confinement

8 Backward recovery

9 Forward recovery

 10 Compensation

Modifiability 11 Refactoring

 12 Reengineering

13 Wrapping −
Wrapping is used to prevent reengineering. Wrapping is used when
it’s possible to hide a system that can’t be improved behind an
interface, but the cost of reengineering is too large. Therefore, these
techniques are mutually exclusive, and their interaction is negative.

80 CMU/SEI-2003-TR-003

CMU/SEI-2003-TR-003 81

References

URLs valid as of June 2003.

[Allen 99] Allen J. et al. State of the Practice of Intrusion Detection Techniques
(CMU/SEI-1999-TR-028, ADA 375846). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 1999.
<http://www.sei.cmu.edu/publications/documents/99.reports/99tr028
/99tr028abstract.html>.

[Boehm
78]

Boehm, Barry W.; Brown, John R.; Kaspar, Hand; Lipow, Myron; Macleod,
Gordon J.; & Merritt, Michael J. Characteristics of Software Quality. New
York, NY: American Elsevier, 1978.

[Boyd 96] Boyd, Mark A. “What Markov Modeling Can Do for You: An Introduction,”
1-25 (Tutorial 2C). Proceedings of the Annual Reliability and Maintainability
Symposium Tutorial Notes, the International Symposium on Product Quality
and Integrity (Our 42nd Year) “New Challenges, and a Changing
Environment.” Las Vegas, NV, January 22-25, 1996. Banner Elk, NC: Annual
Reliability and Maintainability Symposium, Scien-tech Association, 1996.

[Chikofsky
90]

Chikofsky, E. J. & Cross, J. H., II. “Reverse Engineering and Design
Recovery: Taxonomy.” IEEE Software 7, 1 (January 1990): 13-17.

[Comella
00]

Comella-Dorda, S.; Wallnau, K.; Seacord, R. C.; & Robert, J. A Survey of
Legacy System Modernization Approaches (CMU/SEI-2000-TN-003, ADA
377453). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2000. <http://www.sei.cmu.edu/publications/documents/00.reports
/00tn003.html>.

[Ellison
97]

Ellison, R. J.; Fisher, D. A.; Linger, R. C.; Lipson, H. F.; Longstaff, T.; &
Mead, N. R. Survivable Network Systems: An Emerging Discipline
(CMU/SEI-97-TR-013, ADA 341963). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 1997. <http://www.sei.cmu.edu
/publications/documents/97.reports/97tr013/97tr013abstract.html>.

82 CMU/SEI-2003-TR-003

[Ellison
01]

Ellison, R. J. & Moore, A. P. Architectural Refinement of the Design of
Survivable Systems (CMU/SEI-2001-TN-008, ADA 396627). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, October 2001.
<http://www.sei.cmu.edu/publications/documents/01.reports/01tn008.html>.

[Fowler 99] Fowler, M. Refactoring: Improving the Design of Existing Code. Reading,
MA: Addison-Wesley, 1999.

[Helal 96] Helal, Abdelsalam A.; Heddaya, Abdelsalam A.; & Bhargava, Bharat B.
Replication Techniques in Distributed Systems. Boston, MA: Kluwer
Academic Publishers, 1996.

[IEEE 90] Institute of Electrical and Electronics Engineers (IEEE). IEEE Standard
610.12-1990: IEEE Standard Glossary of Software Engineering Terminology.
New York, NY: IEEE, 1990.

[Klein 93] Klein, Mark H.; Ralya, Thomas; Pollak, Bill; Obenza, Ray; & González
Harbour, Michael. A Practitioner’s Handbook for Real-Time Analysis: Guide
to Rate Monotonic Analysis for Real-Time Systems. Boston, MA: Kluwer
Academic Publishers, 1993.

[Krsul 98a] Krsul, I. “Computer Vulnerability Analysis.” Thesis proposal. West Lafayette,
IN: The COAST Laboratory, Department of Computer Sciences, Purdue
University, 1998. <http://ftp.cerias.purdue.edu/pub/papers/ivan-krsul
/krsul9807.pdf>.

[Krsul 98b] Krsul, I. “Software Vulnerability Analysis.” PhD diss. Purdue University,
1998. <http://www.acis.ufl.edu/~ivan/articles/main.pdf>.

[Laprie 92] Laprie, Jean-Claude, ed. Dependable Computing and Fault-Tolerant Systems,
Volume 5, Dependability: Basic Concepts and Terminology. New York, NY:
Springer-Verlag, 1992.

[Lassing
02]

Lassing, Nico; PerOlof, Bengtsson; van Bliet, Hand; & Bosch, Jan.
“Experiences with ALMA: Architecture-Level Modifiability Analysis.”
Journal of Systems and Software 61, 1 (March 1, 2002): 47-57.

CMU/SEI-2003-TR-003 83

[Mitra 00] Mitra, S. & McCluskey, E. J. “Word-Voter: a New Voter Design for Triple
Modular Redundant Systems,” 465-470. Proceedings of the 18th IEEE VLSI
Test Symposium (VTS’00). Montreal, Canada, April 30-May 4, 2000. Los
Alamitos, CA: IEEE Computer Society, 2000.

[Natarajan
00]

Natarajan, Bala; Gokhale, Andy; Schmidt, Douglas C.; & Yajnik, Shalini.
“DOORS: Towards High-Performance Fault-Tolerant CORBA,” 39-48.
Proceedings of the 2nd International Symposium on Distributed Objects and
Applications (DOA ‘00). Antwerp, Belgium, September 21-23, 2000. Los
Alamitos, CA: IEEE, 2000.

[Nguyen
98]

Nguyen, D. & Liu, D. “Recovery Blocks In Real-Time Distributed
Systems,” 149-154. Proceedings of the Annual Reliability and
Maintainability Symposium. International Symposium on Product Quality
and Integrity. Anaheim, CA, January 19-22, 1998. New York, NY: IEEE,
1998.

[Powell 88] Powell, D.; Bonn, G.; Seaton, D.; Verissimo, P.; & Waeselynck, F. “The
Delta-4 Approach to Dependability in Open Distributed Computing
Systems,” 246-251. Proceedings of the Eighteenth International Symposium
on Fault-Tolerant Computing. Tokyo, Japan, June 27-30, 1988. Washington,
D.C.: IEEE Computer Society Press, 1988.

[Russell
91]

Russell, Deborah & Gangemi, G. T., Sr. Computer Security Basics.
Sebastopol, CA: O’Reilly and Associates, 1991.

[Savolaine
n 00]

Savolainen, Juha. “Improving Product Line Development with Subject-
Oriented Programming.” A position paper for the International Conference
on Software Engineering, Workshop on Multi-Dimensional Separation of
Concerns in Software Engineering. Limerick, Ireland, June 4-11, 2000. New
York, NY: Association for Computing Machinery, 2000.
<http://www.research.ibm.com/hyperspace/workshops/icse2000/Papers
/savolainen.pdf>.

[Shivaratri
92]

Shivaratri, N. G.; Krueger, G. P.; & Singhal, M. “Load Distributing for
Locally Distributed Systems.” Computer 25, 12 (December. 1992): 33-44.

84 CMU/SEI-2003-TR-003

[Smith 02] Smith, Connie U. & Williams, Lloyd G. Performance Solutions: A Practical
Guide to Creating Responsive, Scalable Solutions. Boston, MA: Addison
Wesley, 2002.

[Taylor 99] Taylor, David J. “Practical Techniques for Damage Confinement in
Software,” 132-143. Proceedings of Computer Security, Dependability, and
Assurance: From Needs to Solutions. York, United Kingdom and
Williamsburg, VA, July 7-9, 1998. Los Alamitos, CA: IEEE Computer
Society, 1999.

[Viega 02] Viega J. & McGraw, G. Building Secure Software: How to Avoid Security
Problems the Right Way. Boston, MA: Addison-Wesley, 2002.

[Von
Neumann
56]

Von Neumann, J. “Probabilistic Logics and the Synthesis of Reliable
Organisms from Unreliable Components,” 43-98. Automata Studies, Annals
of Mathematics Studies, no. 34. Edited by C. E. Shannon and J. McCarthy.
Princeton, NJ: Princeton University Press, 1956.

[Wolf 00] Wolf, A. L.; Heimbigner, D.; Knight, J.; Devanbu, P.; Gertz, M.; &
Carzaniga, A. “Bend, Don’t Break: Using Reconfiguration to Achieve
Survivability,” 187-189. Proceedings of the Information Survivability
Workshop 2000. Cambridge, MA, October 24-26, 2000. Piscataway, NJ:
IEEE, 2000.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations
and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-
0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

14. REPORT DATE

June 2003

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Interactions Among Techniques Addressing Quality Attributes

5. FUNDING NUMBERS

F19628-00-C-0003
6. AUTHOR(S)

Hernan R. Eguiluz, Mario R. Barbacci
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2003-TR-003

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

ESC-TR-2003-003

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. abstract (maximum 200 words)

There is very little published work on how techniques that promote different architectural qualities interact with each
other. When developing a software system, software architects need to understand the relationships among these
techniques. For example, if a system is compromised, architects must consider questions such as whether it makes
sense to apply damage confinement to achieve dependability, while at the same time shutting down components to
promote security. To help answer such questions, this report provides matrices in which various techniques for
promoting different architectural qualities are analyzed relative to each other. Four architectural qualities were analyzed:
performance, security, modifiability, and dependability. The techniques that promote each one were selected and
categorized as promotion, detection, or correction. For each category, matrices are presented that provide a detailed
description of why a particular interaction is positive, negative, or neutral, or cannot be determined without assessing a
concrete system.

14. SUBJECT TERMS

architectural qualities, dependability, interactions, matrices, modifiability,
performance, security, software system, techniques

15. NUMBER OF PAGES

96

16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Interactions Among Techniques Addressing Quality Attributes
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	2 The Idea of Interacting Techniques
	3 Techniques Used
	4 Results and Further Work
	5 Summary of Appendices
	Appendix A – Promotion Techniques Matrices
	Appendix B – Detection Techniques Matrices
	Appendix C – Correction Techniques Matrices
	References

