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Executive Summary

Given today’s concern about the survivability of large complex networks such as the Internet,
there is a need to understand how these systems respond to planned attacks or random
accidents. This understanding requires insights into how information or artifacts flow through
networks and how networks respond to major disruptions. Thisin turn requires knowledge of
how nodes in the network are linked together, how they communicate, and how the failure of
selected nodes affects the performance of the network as a whole. Significant work in this
areaisongoing (seereview in Appendix A) but afull understanding has yet to be achieved.
Because the networks of interest can be topol ogically complex, are highly non-linear in their
responses, and are inherently unbounded (i.e., no node in the network can have global
knowledge), they are difficult to analyze. These issues are addressed in this report, which
provides practical techniques for modeling networked systems and illustrates the use of these
techniques with examples.

The basisfor these explorationsis the Easel modeling and simulation language. This
language is a general -purpose programming language that has enhancements for performing
simulation of networked systems. Because Easel is not yet widely known, we first review
some of the issues that motivated its devel opment (e.g., emergence in unbounded systems)
and describe some of the key features of the language.

Since network topology is a central theme to the report, we investigate how large networks
can be synthesized. In thisregard GENeSIS, a program written in Easd, is described and
used to illustrate the construction of network topologies. Networks with different topological
properties can be built to examine, for example, their relative survivability. The GENeSIS
program provides support to output topologies that can be used in survivability and other
network applications.

As an example application of synthetically generated networks, we investigate the
propagation of computer viruses. Two virus propagation models are defined and use networks
produced by GENeSIS as input. The models are simple but the exercise results in complexity
because of the non-deterministic manner in which the virus propagates through the network.
A variety of parametric variations are examined. For example, we look at the sensitivity of
the number of compromised nodes relative to the length of time before a virus patch is
released.

CMU/SEI-2002-TR-039 vii
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Abstract

The survivability of large, complex networks such as the Internet is an increasing concern,
but such networks are difficult to analyze because they are topologically complex, highly
non-linear in their responses, and inherently unbounded (i.e., no node in the network can
have global knowledge). To support survivability research, this report will describe how to
develop statistically valid networks for analysis and, as an example of their use, applying
them to the simulation of virus propagation. It will illustrate the construction of network
topologies with GENeSIS, a program written in the programming language Easel. The report
will also summarize ongoing significant work in this area of research and give readersinsight
into how information or artifacts flow through networks and how networks respond to major
disruptions.
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1 Introduction

This report describes the results of explorations into the use of simulation in examining Internet
survivability. As originally conceived during the Cold War [Baran 01], the ARPANET was
driven by survivability requirements, but these early notions were not sustained. In particular,
when the Internet was formally defined in 1995," issues of survivability became a distant
memory. However, given the Internet’s exponentia growth, itsimportance to commerce and the
military, and the increased concern about terrorism after September 11, 2001, Internet
survivability is now acritical issue. Survivability is acentral theme of the analyses reported
here.

Networks such as the Internet have global reach with no central control. This lack of central
control may make life harder for security personnel (or a paranoid government), but it does
help survivability. In particular, the Internet has no single point of vulnerability that, if attacked,
can bring the system down. However, the Internet is still vulnerable to attacks dueto
weaknessesin its topological structure [Albert 02b], its response to malicious code [ Staniford
02], and itslack of robust implementation (distributed denial of service or “DDoS’ attacks,
buffer overflow, etc.).

The Internet’s spatial and temporal characteristics can best be described stochastically, asno
“grand design” isimposed. These stochastic properties arise out of the opportunistic growth of
subnets connecting to the Internet and the myriad local actions that take place every second (e-
mails, Web downloads, etc.). From this state of dynamic flux, stable stochastic properties arise
in terms of both network linking patterns and message transmission patterns. These properties
are called emergent, as they are not designed into the system but result from aggregation of
locdl interactions, and often have a strong bearing on the network’s robustness in the face of
attacks and accidents. Network linking patterns are the focus of the first topic of this report,
while virus propagation is the focus of the second.

The ability of the Internet to survive attack is strongly dependent on the manner in which its
nodes (routers and other hosts) are connected together [Albert 02b]. Aswill be discussed |ater,
it has been empirically demonstrated [Faloutsos 99] that the number of links associated with the
nodes follows a power law. This law states that the probability of a node having a specified
number of links (called link degree) is proportional to that number of links raised to a constant
a (0~2.1). Because this distribution has no characteristic peak in link degree, it is sometimes

! See http://www.isoc.org/internet/history/brief.shtml.
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called “scale-free.” The distribution is aso sometimes called “heavy-tailed” because a small
percentage of nodes have a disproportionately large number of links.

While the Internet topology is relatively robust against random failures (as evidenced by
experience), thisis not true for attacks, since routers with high link degree make prime targets.
Taking down these routers would result in severe bottlenecking or even worse, isolation of parts
of the Internet. This raises a question: Can we replace highly-linked routers with a number of
less-linked routers, while providing the same quality of service and incurring an acceptable
economic penalty? In addition to being an important topic in its own right, the ability to
generate synthetic Internet topologies is an important foundation for many other investigations
into Internet survivability. In particular, an illustrative application discussed in hisreport (virus
propagation) depends on accurate modeling of the Internet’s topological properties.

In virus propagation, emergent properties again arise. When avirus is released, the manner in
which it propagates over the Internet is difficult to predict. It may appear to be dormant for
some period of time only to flourish later, or it may make a vigorous entry and then die down
quickly. Theoretical analysis of viral propagation can be very insightful [Frood 02, Pastor-
Satorras 02b], but simplifying assumptions often mean that real-world complexities have to be
ignored. Thus simulation is a key contributor in helping understand or predict the Internet’s
response to virus attack.
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2 The Easel Modeling and
Simulation System?

Easel isaconceptually new language and is central to the simulations that are to be described.
This section provides a brief overview of the characteristics of the language. We will review
some of the ideas that motivated the development of Easel; for example, its ability to analyze
and understand complex systems that are inherently survivable. To this end, we will look at the
notions of emergent algorithms and unboundedness and how they have influenced Easel’s
design. Further details on Easdl’s features and implementation can be found at the Easel Web
site.® However, a detailed knowledge of Easel is not required in order to understand subsequent
sections of thisreport.

2.1 Unbounded Systems and Emergent Algorithms

Easel isalanguage designed to model systems where unboundedness and emergence are
central themes. An unbounded system is any system in which the participants (human or
computerized) have only incomplete or imprecise information about the system as awhole.
They include human participants as well as automated components. Their boundaries are not
precisely known. Interconnections among participants in unbounded systems change constantly.
Furthermore, the trustworthiness and often the identity of participants is unknown. Centralized
administrative control cannot be fully effective in such systems. These are the characteristics of
critical national infrastructures, the Internet, and electronic commerce. They characterize most
social, economic, and biological systems, and most activities one participatesin every day.
Such systems contrast dramatically with the assumptions of closed, centrally-controlled
computer systems and with the assumptions underlying many modern computer security
technologies.

Emergent a gorithms differ from conventional hierarchical and distributed al gorithms: they
operate in the absence of complete and precise information; do not have central control,
hierarchical structure, or other single-point vulnerabilities, and achieve cooperation without
coordination. Mission requirements are satisfied in the form of global system properties that
emerge from the combined actions and interactions of all system components. For reasons of
mission survivability, our research considers only emergent algorithms that do not have single
(nor any fixed number of) points of failure. For reasons of practicality and affordability, we

? The author wrote this chapter with David Fisher and David Mundie.
3 See http://www.cert.org/easel /.
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consider only those emergent algorithms in which the cost of each node (whether measured in
dollars, CPU cycles, storage requirements, or communications bandwidth), islessthan
proportional to the number of nodes in the system. The effectiveness of this approach can be
further enhanced by dynamic trust validation among the participants.

2.2 The Need for Emergent Simulation

Although the benefits of ad hoc development of emergent algorithms has been demonstrated, a
rigorous process for deriving emergent algorithms from mission requirementsis a prerequisite
to their widespread use in automated systems. Intuitions about the global effects of local actions
and interactions among large numbers of nodes are seldom correct. The problem of designing
emergent algorithmsis especially difficult, because it begins with the desired global properties
and attempts to determine which simple combinations of local actions and interactions would
produce those effects over time in alarge-scale network. An effective design methodology will
depend on greater understanding of the influences of local action and interaction on emergent
global properties and on the sensitivities of emergent propertiesto local variations.

The obvious and probably only means to answer these questionsis by simulation of emergent
algorithms and the unbounded systems in which they operate. This recognition has opened a
new area of research for simulation of unbounded systems. Current simulation systems do not
produce accurate predictions of the behavior of unbounded systems. By definition, unbounded
systems are incompletely and imprecisaly defined. Thus, a simulation of an unbounded system
must be able to produce accurate results based only on incomplete information. Current models,
however, require complete information and thus are always built with assumptions or
inaccurate information. The ability to operate on abstract specifications and smulate at various
levels of abstraction is along-standing need of many applications, but is not provided asa
feature of existing simulation systems. Equally important, all object-based models (both
physical and computerized) are inherently inaccurate because they are based on complete
representations as objects. This might be acceptable when dealing with small numbers of nodes
or when great care istaken to differentiate between which modeling results are likely to be
valid. Such remedies seldom if ever succeed in differentiating inaccurate results when modeling
complex or large-scale systems. Furthermore, as the number of subsystemsin a model
increases, the inaccuracies of each subsystem pervade the whole after afew iterations and
guarantee that all simulation results will be inaccurate. This may account for the pervasive
failure of large scale simulations to produce accurate results. These problems are aggravated in
unbounded systems where the numbers of components are very large and a primary purpose of
simulation is to accurately predict the global effects from local activities.

Because accuracy and completeness are not simultaneously achievable when describing the
physical world, accurate smulation isfeasible only if the simulator can guarantee accurate
results from accurate but incomplete specifications. Other difficulties in simulating unbounded
systems include the following:

4 CMU/SEI-2002-TR-039



e the need for thousands to tens of thousands of nodes per simulation

e thelack of linguistic mechanismsin programming languages for making incompl ete and
impreci se specification

o theinability of object-oriented computations to describe and abstractly reason about the
real world

¢ the need to combine information about a system from multiple knowledge domains

¢ management of multiple simultaneous beliefs of the various stakeholdersin an
infrastructure

e integration among separately developed simulations

e (uadratic increasesin computational cost that accompany linear incrementsin the
granularity or number of nodesin asimulation (the so-called n-squared problem)

2.3 The Easel Solution

These considerations have led to a new approach to simulation: an emergent algorithm
simulation environment and language called “Easel.” Easel employs a paradigm of property-
based types (i.e., abstract classes of examples described by their shared properties) which have
the ultimate goal of addressing all of the above simulation problems. Because Easel is property-
based it can be used to give accurate, though incomplete, descriptions of anything in the
physical world. In combination with an automated logic system that has yet to be developed, it
will be used to produce accurate conclusions about examples from the physical world. This
contrasts with physical models and automated simulations that depend on representation of
objects, where descriptions must be complete (and thus inaccurate) and in which conclusions
are accurate only for the model but never for their extensiona interpretation in the real world.

Easel is currently a discrete event simulation language with limited support for continuous
variables. It supports multiple levels of abstraction, multiple simultaneous belief systems,
distributed specification, and dynamic graphic depictions. By using quantifiers, adjectives,
improper nouns, pronouns, and other forms of anonymous reference, Easel overcomes the
linguistic limitations that impair traditional programming systems' ability to handle incomplete
and imprecise descriptions. In combination with property-based types, these mechanisms
provide a semantic framework of examples of any type, whether real or imagined, and whether
from the computational, mathematical, or physical worlds.

Thus we believe that concepts of local action and visibility, unboundedness, and emergent
properties are important factorsin simulating systems where large numbers of loosely coupled
actors are involved; to this end, we have developed a new genera -purpose simulation language
called Easdl, which is currently being implemented. The rest of this section summarizes the
concepts behind Easel, describes some of its unique properties, and provides a simple example
of Easel’s use.

CMU/SEI-2002-TR-039 5



2.4 ATypels aTypels aType...

Being a property-based type (PBT) language, Easel considers all entitiesto be types. A typeisa
description of some class of objects, while adescription is aset of properties. An example of a
typeis any object that satisfies the type's properties. Easel has a built-in family of types that
can be extended to specify user-defined types.

Types are built up by inheriting properties of parent types. The following are some
characteristics of Easdl types:

o All typesinherit from the root type “all.” Thisincludes al consistent (true) types and
inconsistent (false) types.

o Thetypethat contains all typesisthe “false” type. It is so named since types with
inconsistent properties (e.g., 3 > 5) are aso types. However, the false type has no examples.

e Asone ascends the type hierarchy, types accumulate more and more examples from their
children.

o Asone descends the type hierarchy, types accumul ate more and more properties inherited
from their parents.

Here are some representative Easel types.

e Mutable— atype whose properties are changeable

e Immutable — atype whose properties are unchangeable

e Actor —aphysical “thing” that has behavior and is threaded

e Abstract —atype that can be described completely within computer memory
o Type—the set of named typesis also atype (the type type)

Even the number 5 isatype, albeit a degenerate, singleton type; it inherits properties from the
positive integer type and odd integer type, among others.

2.5 Type Manipulation Within Easel

The Easel type hierarchy alows you to build up and manipulate types. Thisis unlike other
conventional programming (or simulation) languages where you can only operate on examples
of the type (e.g., through iteration). In the object-oriented paradigm, classes are equivalent to
types. However, Easel’s types can be manipul ated in powerful symbolic ways that are not
possible with classes. The program shown in the example below illustrates some of the ways
that types can be manipulated. (Note that thisis a program, not a simulation.)

6 CMU/SEI-2002-TR-039



dog gonned( ): action is
food: type is enum(meat, vegetable, anything);
dog: type;
omnivorous: type is
diet :: food := anything;
Corgi: type is
property dog & omnivorous;

Jenkins: Corgi;

confirm Jenkins isa omnivorous dog;

dog _gonned () ;

Asisusual in Easd, wefirst define some simple types, and then build up more complex types
that inherit the properties of these simple types. Thus we begin by defining the type food, which
has vegetable, meat, and anything as values, and the type dog, which has no specified
properties. Then we build up the adjectival type omnivorous, which isthe type of all creatures
with adiet of anything, and the type Corgi, which is an omnivorous dog. Finally we declare
Jenkins to be an attribute whose type is Corgi, and confirm that he is an omnivorous dog. Easel
uses : to define constants and :: to define attributes whose value may vary over time.

Parameterized types allow subtypes to be defined in the same way that adjectives qualify nouns
in English.

example( ): action is
flower: type;
red(any) : type;
large (any) : type;
rose: type is large red flower;
American Beauty: rose;

confirm American Beauty isa red flower;

example () ;

Here “large red flower” is an adjectival phrase that returns the subtype of flowersthat arelarge
and red. This use of adjectives provides Easel with a powerful mechanism for defining
subtypes.

In asimilar way, the use of quantifiers such as any, all, some, and humeric quantifiers provides
Easel with a means of selecting subtypes that have to be manipulated or tested.

CMU/SEI-2002-TR-039 7



example( ): action is
flower: type;
red(any) : type;
large (any) : type;
bouquet: list flower := 3 new large flower;
biggy: type is all large flower;

example () ;

Here “3 new large flower” is aquantified expression that produces alist of three large flowers.

2.6 Actors and Neighbors

Easel’s architecture is designed so that it can simulate very large numbers of independent
actors. Actors are simulated entities of the physical world (e.g., a system administrator, user,
intruder, automobile, bird, or the moon), the el ectronic world (e.g., a computer, router, or
peripheral device), or the software world (e.g., a software agent or task). Giving each actor its
own thread of control allows for a high degree of parallelism in Easel’s execution. Actors can
interact directly only with their near neighbors, and only in ways prescribed by their neighbor
relationships. Neighbor relationships are protocols of interaction and are defined as types that
can be associated with any actor. Thus, in asimulation of birdsin flight, a bird’s near neighbors
might be any bird or other object that the bird can see from its current position and heading. In
an organizational simulation, an actor’s near neighbors might be only those actorswho are
connected by formal organizationd ties, and neighbor operations might include sending and
receiving messages.

In summary, actors have threads of control, have behavior, are “born” and can “di€”, and have
significant performance advantages over non-threaded approaches.

2.7 Interacting with a Simulation

A simulation needs mechanisms through which it can be controlled. Thus we need to be able to
start the simulation, set up simulation parameters, change parameters while the simulation is
proceeding, and observe output from the simulation. None of these functions are part of the
simulation: they either send information to the simulation or retrieve it from the simulation.
Easel recognizes two distinct roles: facilitators, which allow for global control, introduction of
new examples, and control of parameter values; and observers, which extract values of the
simulation parameters to do statistical analysis or drive graphical depictions.

8 CMU/SEI-2002-TR-039



Easel’s vishility rules allow selected actors to play the role of facilitators or observers without
any extra mechanisms.

2.8 An Example of a Simple Easel Simulation

Asagentleintroduction to Easel, let’'s consider the following example. Ants are an interesting
example of emergent algorithms, because an ant colony as a whole can evince behavior that is
complex, but without global visibility and central control. As acontrived, entomologically
unrealistic example, consider the question of how ants could form a circle without any
communication among them. Here is an Easel simulation that shows how it might be done:

# We are simulating an ant hill

ant _hill: simulation type is # 1
v :: view := ?;
ant list :: list := new list any;

# Life cycle of an ant

ant (id: int): actor type is # 2

# Ants have a position and a heading

heading :: number := random(uniform, 0.0, 2.0*pi); # 3
X :: number := 250.0;
y :: number := 250.0;

# Create a depiction
depict (sim.v, # 4
var offset by(paint (circle(0.0, 0.0, 5.0),

(firebrick)), var x, var y));

# Pick a heading, walk out, walk back, repeat

for every true do # 5
heading := random(uniform, 0.0, 2.0*pi);
for h: each (1 .. 20) do
X := X + 10.0 * cos heading;
y :=y + 10.0 * sin heading;
wait 1.0;
heading := heading + pi; # 6
for h: each (1 .. 20) do
X := X + 10.0 * cos heading;
y :=y + 10.0 * sin heading;

CMU/SEI-2002-TR-039 9



wait 1.0;

# Create the simulation and start its actors

ant circle(n: int): action is # 7

# Create an ant hill and its view

ant_sim :: ant hill := new ant hill; # 8
ant _sim.v := new view(ant sim,
"Ant Circle", (papayawhip), nil);

# Create the ants
for i: each (1..n) do # 9

push(ant_sim.ant list, new (ant_sim, ant 1i));

# Wait for simulation to finish

wait ant sim; # 10

ant_circle 50;

Wefirgt declare asimulation type (ant_hill) at the line labeled 1. This simulation type has two
attributes in addition to the predefined attributes of simulations: the view (v), which is used to
portray the ants, and alist of ants (ant_list) which can be used to reference ants (for example,
by iterating over thelist).

At thelinelabeled 2, we declare the ant actor type. The actor is a predefined type in Easel that
has the property of being threaded. This means that an actor is an independent process, hasits
own memory allocated (whileit exists), and requires some CPU time to update itsinternal state
and interact with other actors.

The properties of the ant type are defined next in line 3. These simple ants have only three
properties: their orientation, an x coordinate, and ay coordinate. Note that the direction for any
specific ant is defined randomly. Thus, each ant starts off at the center of the coordinate system
with random initial orientation.

At line 4 we specify that each ant is to be depicted using a firebrick circle with aradius of 5
units, offset by whatever the ant’s current coordinates are. It isthe call on var that ensures that
the depiction of the ant is continuously updated in the display asthe ant’s x and y coordinates
change.

Starting at line 5, we provide the basic simulation loop through which the behavior of each ant
is defined. This loop manages the thread of contral for the ant in question and defines the ant’s
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behavior. In this smple case, the ant moves out 20 steps, then turns around and moves back to
the center.

The procedure starting at line 7 (ant_circle ) isthe facilitator that manages the simulation. It
first creates asimulation (ant_hill) and its view at line 8, then allocates the ants at line 9. Once a
new ant has been created, it initiates a thread of execution that allows the ant to behave as
specified by the ant’s type (at lines 3-6).

Some miscellaneous observations of the program are worth making at this point. Note the type
hierarchies: ant_hill is a subtype of the simulation type, while an ant is a subtype of the actor
type. The code structure is defined through indenting and “outdenting.” Comments extending to
the end of the line are prefaced by the pound sign (#).

The ant example isinteresting for anumber of reasons. Firgt, it demonstrates the concept of
emergent properties. In this model, the emergent property is the circle that the ants generate as
they move away from the nest. No individual ant has knowledge of the fact that it is part of this
circle, yet, viewed globally, thisis the shape that they collectively generate. Second, the
example demonstrates the concept of neighbors. If neighborliness can be equated to nearness,
then each ant has fewer neighbors as it moves farther from the nest until it finally has none.
Third, other simulation languages that can address problems such as the ant circle often do so
using a grid pattern that constrains each ant to be located in one of the grid's squares. This
granularity issue has ramifications, for example, in accuracy of representation. While Easel
could model the problem using a grid, no such grid need be imposed as each ant simply has
position as one of its properties.
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3 Synthetic Networks

In order to understand the general survivability characteristics of the Internet, we first focus on
the construction of synthetic Internets that exhibit statistical properties comparable to the actual
Internet. There has recently been considerable activity by researchersto gather data on the
Internet (using, for example, Web “bots”). This data has provided insights about how to model
synthetic variants of the Internet that, although different from the Internet in layout (routers and
links), have statistical properties that reflect those of the Internet.

3.1 Existing Models

To date, there have been several attempts to develop synthetic models of the Internet. These
include WAXMAN [Waxman 88], BRITE | and Il [Medina00Q], INET [Jin 00], and TIERS
[Doar 96]. As with the approach taken here, these approaches do not attempt to generate exact
replicas of the Internet’s layout, but to generate models whose statistical properties (for
example, distribution of router size) reflect those of the Internet. The model developed in this
report was motivated in part by the limitations of these earlier models (asidentified by Yook
[Yook 02]), but it was al so devel oped to exercise the Easel simulation system in this area, to
provide us with some first-hand experience in developing such models, and to support work in
Internet survivability. For example, such models are important in examining the survivability
properties of different Internet |P protocols.

Existing network generation models appear to be deficient in one or more aspects that are
important to Internet modeling [ Yook 02]. A significant omission islack of appropriate spatial
clustering models for the nodal population. These models place network nodes randomly,
resulting in afractal dimension Dy of 2.0 (see Section 3.3 for the definition of Ds). However,
empirical evidence suggests that this clustering has afractal dimension of about 1.5 [Yook 02].
Figure 3.1 illustrates the difference between two nodal distributions, one having aDs of 2.0
and the other having a dimension of 1.41. Clearly thereis amgjor difference. Clustering occurs
because new nodes tend to co-locate in regions that aready have a high density of nodes. This
tendency isreflected in the way our model generates nodal distributions. The way this
clustering occursis centra to the overall spatial connectivity of the network and will have
significant implications for its survivability.
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dimension Ds of 2.0 (2000 nodes) dimension Dy of 1.41 (2000 nodes)

Figure 3.1: Nodal distributions with differing dimensions

Section 3 focuses on our approach to Internet topology modeling, how the approach is
implemented in GENeSIS,* how GENeSIS is used, and finally provides examples of
computations performed by GENeSIS. There are two appendices—one that reviews recent
research in network topology and a second that describes how to use GENeSIS. This program
can be accessed from the URL http://www.cert.org/easel/.

3.2 A Basis for Synthesizing Internet-Like Topologies

The approach we take to Internet topology modeling is based in part on the work of Barabas
and colleagues [Albert 02a, Albert 02b, Barabasi 99, Barabasi 02a, Barabasi 02b, and Yook
02]. Underlying their approach to characterizing the Internet’s topology are three assumptions:

The spatial distribution of the nodes’ in the Internet forms a fractal set.
The network is built incrementally by adding nodes one at atime.

New nodes are linked to the existing network through a mechanism called preferential
attachment (new nodes link preferentially to existing nodes that are more highly linked
and spatially close).

Use of these ssimple rules results in networks that, for the most part, reflect the statistical
properties of the actual Internet.® Each of these assumptionsis reviewed below.

* GENeSISisan acronym for Generation of Emergent Networksin Support of Internet Survivability
®> Routers, hosts, and any other devices that are linked into the network are considered as “nodes.”
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3.3 The Internet’s Spatial Distribution

After examining the spatial distribution of routersin North America and around the world,
Yook determined that this distribution was characterized by afracta set with dimension Ds ~1.5
[Yook 02]. Thiswas determined using the “box counting” method [Chen 93], the method also
used in the GENeSIS program to generate the spatial node distribution.

To determine the fractal dimension of atwo-dimensional pattern, a square grid of various
widths w is superimposed on an image of the pattern, in this case the distribution of network
nodes. The number of grid boxes N(w) of width w that contain one or more nodesis then
counted. The fractal dimension is defined through the equation N(w) = W‘Df, which could also
be stated as follows:

D, = -log(N(w))/log (w) (1)

In the GENeSIS program, the inverse procedure is used. Here
we start with an empty square box, diving it into four
guadrants. Each quadrant is recursively divided into four sub- e
quadrants and so on, down to a specified low level of
granularity. Thusif we do four recursions we obtain oMot =
256 low-level boxes. To determine the box in which to place
the next node, we select one of the top-level quadrants, biasing
our selection preferentialy to that quadrant that has the most
number of existing nodes (if thisisthe first node placement
then the selection will be purely random). Upon selecting one
of the quadrants, we repeat the procedure using the subquadrants within this quadrant, and so
on recursively down to the lowest-level box. At this point we place the node at alocation
determined by a normal distribution, centered in the middle of the box and with a standard
deviation equal to half the box width. This procedure is repeated as each node isincrementally
added to the population. Note two points. First, the degree of nodal clustering resulting from
this procedure will depend on the strength of the bias used in quadrant selection. This bias can
be changed through a fractal clustering exponent on the number of nodes in each of the boxes.”
By varying this exponent, one can influence the value of the fractal dimension. Second, in order
not to bias the clustering to any preferred box alignment, each time a new node calculation is
performed, the origin of the box coordinates is randomly shifted.

Figure 3.2: Basis for
fractal box algorithm

® Thereis still some disagreement about the complete accuracy of the resulting networks, at least as far
as these assumptions go with respect to modeling the Internet’s autonomous systems [Chen 02].
" For example, an exponent of 2 will bias the selection to the square of the number of nodesin each box.
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3.4 Incremental and Preferential Attachment

Once the spatial population of nodes has been defined, the nodes can then be linked. Thisis
performed by incrementally connecting the nodes in the sequence they were generated
(incrementa attachment). As each nodei is added to the network, it can be linked to one or
more nodes | already in the network. To accomplish this, a selection function of the following
form is used, where numLinksj isthe number of linksthat currently attach to nodej and
distance ; is the distance between nodesi and j:

o
sfij = (numLinksj)(x / distanceij O<= o<=1 (2)

The actual node(s) j to which the nodei is attached is probahilistically selected, based on the
magnitude of the sfj; values. With a=1, we get a topology that is strongly hub-based, and thisis
characterized by a power law in the distribution of numbers of links (see Scale Free Networks
in Appendix A). With a=0, only distance is important in determining linkage, and the topology
ismore like afishnet. Asdiscussed in Survivability Implications in Appendix A, these
differences have strong implications on network survivability. Empiricaly, it was found [ Yook
02] that o~1, but other relationships are possible, so this parameter provides that flexibility. For
example, for 6 =2 we would get an inverse square law on links and thus a greater weight would
be given to nearby nodes.

Nodes need not be symmetrically connected. In other words, if node X connectsto nodeY, Y
need not be connected to X. A connection probability p is specified such that if p= 1.0 then
symmetric connectivity is guaranteed. If p = 0.0 then the reverse connections are not made.

3.5 Cliques

In addition to spatial clustering, clustering can take place through association between nodes. If
nodeA islinked to node B and node B islinked to node C, in many cases there is a greater than
random probability that node A is also linked to node C. This phenomenon is central to social
networks—if Tom knows Mary and Mary knows Jean, then there is a significant probability
(relative to random) that Tom will also know Jean. This probability has been estimated to be
anywhere between afew percent to as high asfifty percent [Girvan 02, Newman 02],
depending on the size of the network. If the probability were to reach 100 percent then the
network would be fully connected (everyone would know everyone else), a situation that would
only apply for very small networks. Clearly associations formed by cliques can have a
significant influence on how viruses propagate through email lists, and that has motivated the
incorporation of clique behavior into the model.

In GENeSIS, cligue behavior is simply modeled by specifying that if node A associates with
node B, and node B associates with node C then, with a certain probability greater than random,
node A also associates with node C. This probability can vary anywhere between O to 1
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(i.e., 0 <= C; <=1). Thismodel does not, however, account for subpopul ations within a
population where local “cligquing” may be higher than average.

3.6 The N-Squared Problem

Generating the network is an inherently n-squared problem, i.e., the nth node that is
incrementally inserted into the network searches all existing n-1 nodes in order to find the most
desirable one(s) to link to. With very large n thisis computationally very intensive. One simple
approach to reducing the magnitude of this problem isto select and evaluate only arandom
sampling of all the existing nodes rather than every node. However, if too few random nodes
are sampled, then the statistical properties of the network may be skewed. In particular, the
node degree may no longer follow a power law. The following is a brief experiment into the
effect of sampling size.

GENeSIS allows one to enter a sampling size. Thus, for example, if one generates a network of
1000 nodes one can specify a sampling size of 250. While the growing network is below 250
nodes, all nodes are selected; while between 251 and 1000 (say 532 nodes), a random selection
250 nodes out of the 532 nodes is made. Of coursg, if the sampling size isthe same as the
number of nodes than all nodes are evaluated.

The charts in Figure 3.3 show the results of 24 parametric runsinvolving 250 and 1000 nodes.
In each case, there were 12 runs using different sample sizes. In the 250 node case, there were
runs on samples of 62, 125, and 250 nodes; in the 1000-node case, there were runs on samples
of 250, 500, and 1000 nodes.
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Figure 3.3: Results of parametric runs with different numbers of nodes

From the 250 node data it appears that, as the sampling size increases, the power law exponent
somewhat decreasesin size (becoming more negative), while the corresponding standard
deviation on the linear fit to the data becomes smaller. However, it is difficult to see such trends
in the 1000 node data (i.e., where confidence should be greater). Thus, at least within the
limited range of these experiments, there does not appear to be any strong dependency of the
power law exponent on sampling size.
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3.7 A Description of the GENeSIS Program

GENEeSIS generates networks. Whileit is written in the simulation language Easdl, there are no
time-dependent aspects to the computation. Hence it is not a simulation and does not use
Easel’s simulation features. An overview of functional elementsin GENeSISis shownin
Figure 3.4. The two major components of the GENeSIS program are the fractal computation of
the node spatia distribution and incremental network generation. One may run GENeSIS so
that the network is generated immediately after the node population has been computed (option
1in Figure 3.4), or one may capture the node population data in a separate file that can
subseguently be used to generate a network (option 2 in Figure 3.4). The latter option allows
one to generate different networks based on the same nodal distribution.

GENEeSIS generates a variety of graphical outputs to allow assessment of the properties of the
node/network properties to be made. Both the node and network spatial distributions can be
graphicaly displayed. The fractal dimension of the nodal distribution is calculated using the
box-counting method described in Section 3.3. Log N(w) is plotted against log w. In the
network generation component, two analyses are made. First, the network’s node degree®
distribution is plotted and the associated power law exponent computed. Second, the
distribution of link distancesis plotted and the associated power law exponent is computed.

Network spatia
distribution plot

Saved nodal
L distribution

Node nodal @
generation distribution

Fractal Node degree
analysis analysis

Figure 3.4: The structure of the GENeSIS program

Networ k network
generation model

Input
parameters
(file)

8 The node degree of anode is the number of links associated with a node.

CMU/SEI-2002-TR-039 19



3.8 Network Synthesis Using GENeSIS

In this section we will first generate node distributions and look at their properties, and then
based on these distributions we will investigate networks and |ook at their properties.

3.8.1 The Fractal Nature of Nodal Distributions

The following three figures show nodal distributions for 500, 1000, and 2000 nodes
respectively and their associated fractal dimension characteristics. The 500 and 1000 node data
sets were extracted as subsets of the 2000 node data. The fractal distributions show the -log
(box size) against the log(number of boxes of that size that contain at least one node). The slope
of thislineis the fractal dimension Dy. These data were made at aresolution of 2° * 2° = 4006
boxes for the fractal calculation and clearly indicate the fractal pattern of the data. The
dimensionality of each distribution is also quite smilar.
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Figure 3.5: Distribution and fractal dimension curve for 500 nodes
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Figure 3.7: Distribution and fractal dimension curve for 2000 nodes

3.8.2 Variability of Distributions Based on 500 Nodes

This section illustrates the variability of nodal distributions and typical networks generated
from these distributions. These runs were made for 500 nodes and a aresolution of 2°* 2° =
4096 boxes for the fractal calculation. These networks were generated such that a newly added
node only links to one existing node. With respect to the network layouts shown in Figure 3.8
and Figure 3.9, alink is suppressed graphically if either end of the link is attached to a node
having less than 25 links. This helps highlight the network structure—displaying all links can
result in avery messy picture.

CMU/SEI-2002-TR-039 21




Thelinearity of the power law distributions is not very accurate due to the limited number of

nodes (500) in the network.

Fractal population with 500 nodes
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Network with 500 nodes
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Figure 3.8: Case 1 showing variability of nodal distributions based on 500 nodes
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Figure 3.9: Case 2 showing variability of nodal distributions based on 500 nodes

3.8.3 Effect of Cliques

The degree to which individuals form cliques will have an effect on the linking structure of any
network. Thiswas examined by comparing two cases in which the nodal distribution was the
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same but the linking clique coefficient (see Section 3.5) was varied. In one case the clique
coefficient Cs = 0.0 while in the other C; = 0.25. Thusif Aiislinked to B and B islinked to C
then there is a 25 percent probability that A islinked to C.

The two networks can be seen in Figure 3.10 and Figure 3.11. Note the much more dense
linkages in the latter network, even though the nodal distributions in the two cases are the same.
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Figure 3.10: Case 1 (where C;=0.0)

It isinteresting to observe that the network with a high C; no longer obeys a power law in
degree distribution (see Figure 3.11).
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Figure 3.11: Case 2 (where C;=0.25)
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3.8.4 Varying the Network’s Topology

Thetopologiesillustrated in Section 3.8.3 were generated using node degree and distance to
determine linkage. The following networks show some variations on topology solely on the use
of distance as acriterion for linkage. While these networks do not reflect the Internet’s topol ogy,
they areinteresting since, lacking large hubs, they may be more survivable [Albert 02b]. They
may also better describe other networks such asthe Interstate or railroad systems. Note that the
nodal distributions for the random networks in Figure 3.12 and Figure 3.13 are the same.

Random network Clustered network

Figure 3.12: Variations in topology with distance as the only criterion for linkage
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Figure 3.13: Variations in topology with distance and node degree as
criteria for linkage
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4 Simulating Virus Propagation with Easel

This section briefly explores the use of Easel in simulating computer virus propagation. The
models are quite simple and are not intended to be rigorous. Rather, they illustrate the use of
Easel in this areaand in particular demonstrate how network topologies devel oped by
GENEeSIS can be imported into and used by a virus simulation. Extensions to the simulation
models described here could easily be developed to make them more redlistic.

Differencesin network topology may have a decisive impact on the ability of virusesto
propagate. The paper Epidemic Spreading in Scale-Free Networks [ Pastor-Satorras 02b] and
related work [Pastor-Satorras 0la, Pastor-Satorras 02c] are of particular interest. The authors
claim that the very property that makes scale-free networks efficient (i.e., existence of large
hubs) is aso responsible for their propensity to propagate viruses efficiently. This property
contrasts with the propagation of biological viruses that depend on socia networks, where
nodes (people) do not have the same high concentration of connections. Nor are people able to
infect neighborsin the massively parallel way that computer viruses can infect connected
nodes. The major claim of thisresearch is that thereis no critical threshold for virus spreading
and that viruses can continue to remain in the network at low levels for an indefinite period of
time (which has been observed). However, thiswork is based on somewhat idealized
assumptions of, for example, an infinite population and the consequent lack of spatial modeling
in infection propagation. In addition, the assumption that the Internet topology is the
appropriate one for virus spreading may be in doubt. Many viruses spread through e-mail
(buddy) lists, and this “network” topology may be quite different from that of the Internet
[Patch 02]. It has not been shown that it obeys a power law, and it would be insightful to
examine the distribution profile of “buddy-list” data. In a subsequent paper, “Immunization of
Complex Networks [Pastor-Satorras 02a], the authors suggest that targeted immunization
schemes that focus on nodal connectivity can sharply reduce vulnerability to epidemic attack
(not an unreasonabl e conclusion). This claim is supported by the paper “Halting Virusesin
Scale-Free Networks” by Dezst and Barabési [Dezsd 02]. However, these papers deal with
simplified analytic models (sometimes with verification through simplified simulation), and
they lack critical real-world behaviors.

A recent paper by Staniford and colleagues [ Staniford 02] presents some hypothetical models of
worm propagation. The issues cited in this paper are of concern because the proposed
mechanisms either result in (a) extremely rapid propagation throughout the Internet (in a matter
of minutes) or (b) very stealthy propagation. The latter would alow large numbers of “zombie”
machines to be set up in preparation for a potentially catastrophic attack. In all of these cases,
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an accurate understanding of the appropriate network topology is central to predicting how
serious these attacks would be. Staniford's paper addresses this issue, but additional work in
this area needs to be done.

The aim of this section isto illustrate the use of Easel in modeling propagation. We will look at
avariety of issues, particularly two issues that were not fully explored by the above papers.
First, we will look at clustering of network nodes as a mechanism for enhancing the survival of
viruses. Thisissue was identified in the paper “ Open Problemsin Computer Virus Research”
[White 98]. A second issue that will be explored is virus propagation through buddy lists.
Quoting Jon Kleinberg, “The real network on which viruses spread is an invisible network of
who talks to whom sitting on top of the Internet, and that’s a network that we have less ahility
to measure at the moment” [Patch 02].

Individuals who use the Internet tend to form communities whose frequency of communication
ishigh (for example, employees of a business or members of asocial club). Individualsin these
groups may be more prone to being reinfected through other members. Members may then
spread the virus outside the group at a lower frequency. In other words, pockets of the virus
may remain active within close-knit communities, while the prevalence of the virusislow or
non-existent in the general population (see Section 3.5).

4.1 The Easel Virus Propagation Models

Two standard models of infection are often considered. In the first, reinfection of an individual
can occur after the infection has been eliminated. Thisis called the susceptible-infected-
susceptible (SIS) model. In the second, immunization or death prevents reoccurrence of the
infection. Thisis called the susceptible-infected-removed (SIR) model. Both of these are
examined below.

The model accounts for the delay incurred in devel oping an anti-virus signature and the
probability that a host’s user has installed the software that supports the signature. If the host is
in the susceptible state, then to become infected (a) the host must receive the virus from another
host, and (b) the virus signature must be unavailable or the anti-virus patch must not have been
installed. If the host is infected, then the virus exploitsthe list of email contacts to propagate the
virus to other hosts. In the SIS model, the host is then cleared of the virus, but returnsto the
susceptible state. In the SIR model, the host is permanently vaccinated against this particul ar
virus. Thisis summarized in Figure 4.1 below. Note that these models use arbitrary time units.
While the time units are thought to be relatively consistent, further work isrequired to pin

down validated real-world values.
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Figure 4.1: State model of virus propagation

The key lines from the Easel model are as follows:

# chance in each cycle of acquiring virus SW, if virus signature is available
if (gen.signature & gen.acquiresrandom(uniform, 0.0, 1.0)) then
haveVirusSWw := true;

if state = susceptible then
# in susceptible state

clr := green;
if virusReceive then # virus is received ...
if (!gen.signature | # but the virus signature not available ...

# or virus signature is available but dont have antivirus S/W
(gen.signature & !haveVirusSW)) then
# then some of these individuals activate the virus
if gen.activate>random(uniform, 0.0, 1.0) then
virusReceive := false;
wait random(exponential, 1.0/dt_act); # delay until virus file is activated
newState := infected;
compromised := true;
wait gen.dt;
# in infected state
else if state = infected then
clr := red;
sendVirus (nodeList) ;
if (gen.signature & haveVirusSW) then # virus signature is available and have virus software
wait random(exponential, 1.0/dt_fix); # delay until virus is eliminated
if gen.modelType = SIS then # for the SIS model
newState := susceptible;
else if gen.modelType = SIR then
newState := removed;
else
wait gen.dt;

# in removed state (SIR model only)
else if state = removed then

clr := black;
wait dt_removed;

While the behavior of each host is simple, the emergent behavior of the overall network is quite
complex and sensitive to the network’s topol ogy.

The networks used in most of these virus simulations are shown in Section 3.8.2. Figure 4.2
illustrates typical transient plots from the virus propagation program using the first of these
networks. These are for the SIS and SIR models respectively. Note that the SIR model resultsin
nodes becoming immune while the SIS model does not.
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Figure 4.2: Typical transient plots from the virus propagation program using networks
described in Section 3.8.3

4.2 Simulating Virus Propagation Through Networks

We now briefly look at the response to some parametric variations of attributesin the model. In
all cases we use the network topology generation program GENeSI S to synthesize the networks
and then import them into the virus propagation program. To examine these sensitivities, a base
case virus propagation simulation was run. The simulation had the following properties:

e delay in developing anti-virus patch is 2 arbitrary time units

e 100 percent of individuals who receive virus activate it

e network is based on the topology of Figure 3.8

e SIRvirus propagation model is used

e virus activation and system fix times are constant across all nodes

e node 0 was selected (this node has four immediate links) for initial infection

e cliquing probability is set to zero

The resulting transient response is shown in Figure 4.3. The stepwise characteristics result from
the fact that the time for each node to activate the virusisthe same. Thusiit takes afixed time
for theinfection to spread from the first victim to its immediate neighbors (for example, set X)
and the same fixed time to spread from set X to its immediate neighbors (set Y), and so on.

With stochastic variations in the delay times, these discontinuities become smoothed out (asin
Figure4.2).
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Figure 4.3: Baseline deterministic simulation of virus propagation (SIR model)

Table 4.1 summarizes the parametric runs based on the above simulation.

Table 4.1 Results of parametric variations on virus propagation attributes

Case | Description of run

Base case

Effect of delay in virus patch availability

Effect of cliquing

Probability of activating areceived virus

Topology modeled with distance-based incremental attachment only

SIS model of virus propagation

Stochastic variation in activation time

Stochastic variation in fix time

0| N ||~ | W |N | |O

Node selected for virusinsertion

Case 1: Effect of Delay in Virus Patch Availability

Case 1 examined the effect of delaying the availability of avirus patch.The rapidity with which
anti-virus software vendors can release a virus patch is clearly important. However, what effect
does this speed of response have on the spread of viruses? Figure 4.4.A shows the sensitivity to
nodal compromise that results from different delay times in patch availability. These results are

based on a constant time (Tgy) for al individualsto install (activate) the patch once it has been
released. The stepwise increment in the number of compromised nodes is again areflection of

CMU/SEI-2002-TR-039 31




the constant patch activation time (i.e., each node delays patch installation by the same amount
after it has received the patch. Figure 4.4.B shows a more realistic response when stochastic
variationsin delay time are introduced. These variations are based on an exponential
distribution having a characteristic time of T4, Stochastic variations of activation time appear
to result in wide variations in the degree to which the popul ation becomes compromised,
particularly when the patch is rapidly released. Note that the model does not account for
individuals who take measures to protect themselves before or after a patch becomes available.
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Figure 4.4: Sensitivity of compromise to patch time

Case 2: Effect of Cliquing

Case 2 examined the effect of cliquing. The formation of cliques, that is, groups of nodes that
have a high frequency of interaction, will have the effect of perpetuating a virus within these
clusters of nodes. To assess the effect of clique formation, two sets of parametric runs were
performed. The first set of six runs was based on a network in which no cliquing was model ed,
while the second set of six runs was based on a network in which a cliquing probability of 0.15
was assumed.’ These networks are shown in Figure 4.5, where it can be seen that the linking in
the latter caseis more local. (For clarity, links that connect to nodes with less than ten links at
either end are suppressed). While these networks were based on the same nodal distribution,
their linkage patterns were different, but the average link degree isthe same in both cases.
Because of the topological differences, comparing their responses to virus propagation requires
statistical examination. For both cases, the last six nodes in the network (nodes 494 through
499) wereinitially infected. Although these nodes are not comparabl e with respect to their
linkages, they are outliersin that they were the last to connect to the network. Six runsin each
category is probably not statistically sufficient, but the results show some consistency.

° The cliquing model defines a probability p that if node A islinked to node B, and node B islinked to
node C, then Cislinked to A.
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The cases where cliquing occurs appear to result in lower overall compromise, which can be
explained by the fact that cliquing tends to result in islands of infection that are somewheat isolated.

Network with no cliquing (cliquing probability = 0.0) Network with cliquing (cliquing probability = 0.15)

Figure 4.5: Effects of cliquing on virus propagation

The numbersin Table 4.2 reflect the final percentages of nodes that were compromised.

Table 4.2 Sensitivity of nodal compromise to cliquing

Network with no cliquing (cliquing probability = 0.0)
Run # 1 2 3 4 5 6
18.8 6.4 16.2 134 4.4 16.2
Network with cliquing (cliquing probability = 0.15)
Run # 1 2 3 4 5 6
22 46 0.8 3.0 10 18.8

Case 3: Probability That a Virus Is Activated

In case 3, the probability that avirusis activated is reduced from 100 percent to 50 percent.
Thisreduction in activation results in a dramatic reduction in the number of compromised
nodes—the two cases indicate compromise of only 1.4 and 0.8 percent respectively. A
significant reason for this large drop can be attributed to the slower spread of the virus, which
allowed greater application of the anti-virus patch prior to major build-up of serious infection.
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Case 4: Topology Modeled with Distance-Based Incremental Attachment Only

In case 4, the topology of the Internet is strongly influenced by the presence of large hubs. As
has been pointed out elsewhere [Albert 02b], thisis both a strength (in terms of the ability to
function despite alarge number of random failures) and a weakness (in terms of the breakdown
in connectivity when the large hubs are targets of attack). The following comparison illustrates
the sengitivity of virus spread as a function of nodal topology.

In the two cases, the same 500-node spatial distribution is used. The first arrangement (the base
case) generates links using both node degree and node distance criteria; the second only uses
the distance criterion for link generation.”® (These cases use the equation found in Section 3.4
with the values 0=0.0, 6=1.0.) These networks are shown below in Figure 4.6. Although it
appears that the former topology has many more links, the number of links for the two casesis
virtualy the same. Thus the average link degree is the same.

The distance-based topology indicates an increase in total number of compromised nodes (from
37.8% to 51.2%). This may result from the fact that, although the base case has more highly
connected nodes, it also has more nodes that have few connections (despite the impression
given by the figures). These more isolated nodes are less likely to become infected and may
suppress the total number of compromised nodes.

Base case network Distance-based network

Figure 4.6: Networks showing the sensitivity of virus spread as a function of
nodal topology

19 The standard distance criterion in GENeSIS is probabilistic in the sense that the smaller the distance
between two nodes, the more likely they are to be linked. However, the distance criterion used here
deterministically links the closest node to the one in question.
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Case 5: SIS Model of Virus Propagation

In case 5, the simulation was run with the SIS model. The number of compromised nodes for
this model is the same asthat for the SIR model. At first this may seem counterintuitive, as
compromised nodesin the SIR model are removed from further involvement in virus spreading.

However, even though the nodes in the SIS model return to the susceptible state, they have

aready contaminated 100 percent of their linked neighbors. Further contamination of these
neighbors does not result in increasing the total pool of compromised nodes.

Case 6: Stochastic Variation in Activation Time

Case 6 examined stochastic variation in victim activation time. In this case, stochastic

variations refersto the time it takes for victims to activate the virus once they have received it.
These variations have the effect of smoothing out the responses (over those observed in Figure

4.4.). The overall effect on compromise is mixed—sometimes the result islower and sometimes

itishigher.

Case 7: Stochastic Variation in Fix Time

Case 7 examined variation in victim activation time. Stochastic variations of this parameter

have no effect on level of compromise.

Case 8: Node Selected for Virus Insertion

Case 8 examined theinitial fan-out
of the virus. The ability of the virus
to gain afoothold is critically
dependent on whether it can
establishitself early oninthe
network. Thus we examine the
effect of the degree of fan-out from
nodes neighboring the node that is
first infected. Figure 4.7 shows the
sensitivity of the spread of the virus
to this fan-out for three cases, which
differ only in the node that was
initially infected. Thisclearly
illustrates the property that initial
fan-out of the virus (asreflected in
theinitial gradients of the curves) is
important in predicting the severity
of the vira outbreak.
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4.3 Conclusions

There are several tentative implications that can be drawn from the simulationsin this section.™

e Thedeay in patch availability has a noticeable effect on the ability of the virus to spread.
However, if the patch is released with reasonable promptness, then the degree of
compromise shows such wide swings (as aresult, for example, of which nodeisinitialy
infected) that some latitude in release delay may be acceptable.

e Cliguing has atendency to isolate clusters of nodes, which can hinder viral spread through
the whol e population.

o When the virus activation rate (i.e., the fraction of nodes that activate a virus upon
receiving it) is reduced from 100 percent to 50 percent, thereis adramatic drop in the
compromise to the entire population.

e Thelink degree of theinitially compromised nodes has a strong effect on the subsequent
ability of the virus to compromise the entire population.

™ Further work should be performed to collect empirical data upon which to base the numerical values
used in this analysis and validate the responses of the simulations.
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Appendix A: Survivability and Network
Topology: A Survey of Recent Research

Introduction

The ability of the Internet to survive broad attacks, accidents, or failuresis quite dependent on
itstopological characterigtics, i.e., the properties that govern how routers and connected
platforms are linked together. In the past handful of years there has been a significant paradigm
shift in our understanding of how real-world networks are constructed. Thisis having a huge
impact on modeling, not only of the Internet’s topology [Barabasi 02b, Chen 02, Magoni 02,
Medina 00, Pastor-Satorras 01a, Vazquez 02, Yook 02,], but also of many other natural and
artificial systems such as electrical grids [Stubna 02, Watts 98], socia interactions [Barabas 99,
Ball 02], and food webs [Montoya 02, Strogatz 01]. The increased understanding of how these
systems are composed can shed light on how to make the Internet more survivable. The issues
raised are new and different from those we commonly encounter in computer science. Quoting
Barabési, “Increasingly we are reaizing that our lack of understanding of the Internet and the
Web is not a computer science question. Rather it is rooted in the absence of a scientific
framework to characterize the topology of the network behind it.” [Barabasi 02b].

This appendix isintended to summarize what has been done in the field and provides extensive
references to relevant articles for those who wish to dig deeper. It also suggests some directions
we might take to address some of the survivability concerns.

Summary of Network Concepts

Pioneering work on examining network characteristics was done by Erdos and Rényi [Erdds
60]. They primarily focused on unbounded networks in which nodes were randomly connected.
Such graphs are appealing since they can be investigated analytically and provide insights into,
for example, the connectedness of subgraphs within the overall graph. In these models, any two
nodes are connected with a probability p. Thus, for a graph with N nodes the total expected
number of links in the network is pN(N-1)/2. In addition, Erdés and Rényi discovered that for
large numbers of nodes, the distribution of the number of links attached to each node in the
graph turns out to be a Poisson distribution [Erdos 60]. This isimportant since the Poisson
assumption was often made in constructing synthetic networks. However, for many network
topologies, including the Internet, the Poisson assumption turns out to be very poor. Another
important factor that was examined is the so-called “ diameter” of the network [Barabéasi 99].
The diameter is the average number of hops it takes to get from one node to another. In this
regard, random networks have characteristics that differ significantly from networks such as the
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Internet. While both types of network show alogarithmic increase in number of hopsas a
function of the number of nodes, the Internet needs fewer hopsto get from one node to another
[Albert 023).

At the other end of the network topology spectrum are grid models. These networks conform to
aregular lattice of links that often form arectangular lattice.”? They have high diameter, sinceit
takes many hopsto travel from one node to another.

Between the extremes of random and lattice networks is the most interesting class of
networks—small world networks—of which the Internet is an example. Figure A.1 illustrates a
“ring” model created by Watts and Strogatz [Albert 02a, Strogatz 01] and provides a context to
demonstrate the evolution of a network from aregular lattice to random network. With
probability p, one end of each link can be reconnected to another node. Two properties are of
particular importance here: diameter and coupling. The former was discussed above, while the
latter is a measure of how clumped the nodes are. If we choose anodei and select all its k;
immediate neighbors, then these nodes can have a maximum number of interconnections k; (k;-
1)/2. If the actual number of interconnectionsis E;, then the node is said to have a clustering
coefficient of C; = 2Ej/k; (kj-1). The average of this over al nodes (C) isthe clustering value of
the whole network. Clustering is“good” since it means that immediate neighbors can always
get to each other quickly—but it doesn’'t necessarily mean that there are short paths to distant
nodes. As shown in Figure A.2, the clustering of the lattice model is high. However, because
the normalized diameter, L (p)/L(0), isalso high, it takes many hops to get to distant nodes. In
the random network, the opposite is the case—local nodes may be many hops away, while
distant nodes may have few hops. The intermediate small world graph (which has a small
number of reconnections) is interesting since it has the best of both worlds—high clustering
and low diameter.

small world

=0 increasing randomness =1

Figure A.1:Spectrum of simple network models

12 See Figure A.1 for another lattice example.
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Thus, we can get to neighbors quickly without sacrificing the need for short hops to distant
nodes. Thisis a characteristic of the Internet. Note, from Figure A.2, that with only one percent
of the links being reconnected we achieve the small world property. This has significant
implications for the “survivability” of this simple model, since breaking these few crucia long-
distance links rapidly increases the network’s diameter.
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Figure A.2:Normalized coupling and diameter as functions of probability of links
being randomly reconnected [Watts 98]

Percolation Theory

The Internet is designed with redundancy in mind—i.e., there are multiple paths through
intermediate routers between source and destination nodes. However, if mgjor routers are
corrupted or destroyed, quality of service will be degraded—and the effective diameter
increases. At some threshold point of destruction the network may become digoint with non-
communicating subnets (and the diameter between the subnets becomes infinite). This problem
falls within the domain of percolation theory [Stauffer 94], which deals with the ability of a
system to function under increasingly degraded conditions. One classical percolation model
addresses the manner in which afire consumes aforest [Maamud 02]. Below a certain density
of trees, aspark may ignite some trees locally but fail to propagate. However, above a critical
density,™ the forest may be totally consumed. Thisisillustrated in Figure A.3, which shows that
close to the critical density (0.593) the ability of the fire to propagate changes rapidly. Not only
is percolation theory relevant to the ability of degraded networksto function, but it is aso very
relevant to epidemics, including the spread of computer viruses. Some viruses fail to propagate,
while others take off with strong virulence. Understanding why isimportant and percolation
theory should shed light on the issue. This simplified forest fire model also demonstrates an
issue that isimportant to network survivability: cascading failure.

13 This density turns out to be a very precise threshold value, 0.592, for a normalized maximum density
of 1.0 (i.e., when the forest has no empty spaces).
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Figure A.3:Simulated forest fire with different tree densities (p) (Green represents
unburned trees, black represents burned trees)

Scale-Free Networks

One areathat has received wide attention recently is the statistical characterization of real
networks. Because the Internet was a ready source of data, it was the first target [Fal outsos 99],
but this rapidly broadened out to an examination of other fields [Albert 02a, Amaral 02]. This
work has shown that many topological features of the Internet can be described through a
power law of the form P(k) ~ k™ , an equation which states that the probability P of a node
having k links is proportional to k where v is a constant somewhere between 2.0 and 3.0. The
resulting topological difference between this class of network and random networks can be seen
in Figure A.4". These two distributions have the same number of nodes and links but their
connectivities are clearly quite different. These characteristics are reflected in the shape of the
link distributions (see Figure A.5). Because the power-law based topology does not have a
characteristic peaked mean value (as in the Poisson case) it is often called “scale-free.”
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Figure A.4:  Comparison of random and scale-free network topologies [Barabasi 02b]

4 The topologiesin Figure A.4 were taken from Barabéasi [Cohen 02].
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Figure A.5:Comparison of distributions for random and scale-free topologies [Barabasi 02b]

Construction of Scale-Free Networks

Therevelation that the Internet is scale-free has led to new attempts to understand the
underlying mechanisms that make the Internet topology what it is. In particular the work of
Barabéasi and colleagues [Barabasi 02b, Willinger 02] has attempted to define some simple
underlying mechanisms that result in the observed scale-free distribution of links. Barabési
hypothesized that two simple rules were sufficient to define such scale-free networks:

e incremental growth (nodes are added one at atime and connected to the nodes that
currently exist in the network)

o preferentia attachment (new nodes are connected preferentially to existing network nodes

that already have high numbers of links. There is aso preferential attachment to nodes that
are nearby.)

Networks thus constructed exhibit the required scal e-free property.

While these results look encouraging, recent work [Chen 02, Willinger 02] has cast some doubt
on whether these simple rules accurately capture the essence of the problem. Thisissue will be
revisited later. There are now a number of software packages available that generate synthetic
networks based on power law and other (e.g., random) statistics [Medina 01, SSFRN 02, IS
02]. The software described in thisreport (GENeSIS) adds to thislist.
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Attacks Against Scale-Free Based Networks

Albert and colleagues have addressed the issue of how the Internet’s topological properties
affect its tolerance to failures and attacks. In the paper The Internet’s AchillesHeel: Error and
Attack Tolerance of Complex Networks [Albert 02a] they examine ability of networksto
function under increasingly degraded conditions, specifically focusing on random failures and
organized attacks. A significant conclusion they draw isthat, for scale-free networks, random
removal of nodes makes little difference to the ability of a scale-free network to route messages
(the diameter changes little). Thisis consistent with observed robustness in the face of local
failures of the actual Internet. However, with atargeted attack, the situation is significantly
different. Targeted attacks would attempt to destroy the largest, most critical nodes (hubs), and
in this situation, the effective diameter rapidly increases. With random networks the situation is
different. Random networks do not exhibit the frequency of highly connected nodes that scale-
free networks do. There is thus much less difference between the responses to random failures
and organized attacks for networks with random topol ogies.

These differences are illustrated by the graphs shown in Figure A.6. These graphs were
extracted from the paper mentioned above. Graph a shows the results of synthetic random (E)
and scale-free (SF) networks under random failure and organized attack. The fraction of nodes
removed isf, whiled is the effective network diameter. These results show the following:

e theinsensitivity of scale-free networks to random failure (squares)

o thegreater sensitivity of scale-free networksto attack as opposed to random failure (circles
and squares)

o theinsensitivity of random networksto attack or random failure (diamonds and triangles)

Graphs b and ¢ show similar characteristics for subsets of the actual Internet and the World
Wide Web.
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Figure A.6:Response of networks to random failures and organized attacks [Albert 02b]

Natural Versus Engineered Systems

It isempirically evident that many of the Internet’s topological features scale using the power
law [Faloutsos 99, Tangmunarunkit 01]. However, the reason it, and other systems, do so is till
not universally agreed on. Carlson and Doyle claim that engineered systems (be they biological
or man-made in origin) have designed-in features that make their behavior quite different from
those of non-engineered systems studied by physicists [Carlson 02]. Such non-engineered
systems exhibit properties that tend to be homogeneous and whose responses are ensemble
averages over the system’sindividual particles. Thisisthe case with the forest fire example.
Carlson and Doyl e describe engineered systems as having highly optimized tolerance (HOT)
and show how their theory can explain these power law distributions. They claim that the
examples physics commonly focuses on deal with self-organizing criticality around phase
transition points and that engineered systems may operate far from phase transition.
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Asan illustration [Carlson 99] they extend the forest fire example to include an engineered
component, firebreaks.” Without such barriers, afire will spread through the forest (assuming
the critical tree density has been exceeded). However, with judiciously placed barriers, the loss
can be greatly reduced. Optimal placement of barriers can be determined based on cost-benefit
analysis. Such atradeoff can be determined through minimizing the expected cost J, where pi is
the probability of an event i whose sizeisli, and whereri is the resource alocated to deal with
the event [Carlson 00b]:

J =2 pi 1i given 1li = £(ri), and X ri eR

Given certain additional assumptions, this minimization leads to a power law that relates the
event probability toits size: pi ~ li-a. Firebreaks might be optimally engineered for a particular
spatia probability of spatial spark distribution or tree density. If these parameters change, then
the optimal performance is degraded. Thus HOT systems tend to be robust in the face of known
events but fragile in the face of unpredicted events [Carlson 00a].

Survivability Implications

The power-law results described above are relevant, since they may indicate (per the arguments
of Carlson and Doyle) that cost-benefit issues are important in determining the Internet’s
topology. This has definite survivability implications. We can ask whether there are other
topological arrangements that are as efficient as the current one but more resilient to attack.
Would such alternates be economically viable? How could we develop appropriate firebreaks?

Oneintriguing possibility of alternative design is that based on the Watts and Strogatz mode!.
In this case thereislocal clustering with afew long-distance links. While the current Internet
topology is vulnerable to the destruction of the small number of highly connected hubs, the
Watts and Strogatz topology would be vulnerabl e to the destruction of the small number of
long-distance links. Perhaps a topology that incorporates features of both models would be an
improvement.

The Internet isrobust against predicted events such as local router failure, but when
unpredicted events occur, such asthe release of a new virus, then fragility becomes evident.
One event for which the Internet was not designed is amajor loss of backbone routers. There
will come acritica point at which communication across the network ceases. Thistype of
massive failure is not one that the Internet has been designed to withstand. Thus HOT-designed
features will not be applicable and we return to a system with a definite phase transition point.
In such a case, percolation theory would become applicable again and we would need to ook at
survivability as afunction of the density of disabled links.

> They also look at an avalanche example.

44 CMU/SEI-2002-TR-039



Appendix B: Running the GENeSIS Program

Data Input

Genesis runsin the Easel environment.* All data for a GENeSIS run are currently entered as an
includefile to the GENeSIS program. A datainput file (for example, “datainput.txt”) is
specified through the include statement (include “::data files:data input.txt”) at the point in the
GENEeSIS program where the linesin the include file need to be located. (This point is

identified near the foot of the GENeSIS program.) This external specification of data allows
one to manage these data in appropriately named files. Only the included file name need be
changed within the GENeSIS program beforeit isrun. A typical set of datain aninclude file
might look like this:

"mmn 1 - 500 node run", true, 500, 500, 4, 1.5, "",true, 0.25, 1.0, 1.0, 1.0, true, true, # run 1
"mn 2 - 1000 node run", true, 1000, 1000, 4, 1.5, "", true, 0.25, 1.0, 1.0, 1.0, true, true, # run 2
“end” # terminator
Each data line corresponds to a separate node/network generation run. Thusindividual
generation runs can be stacked to run consecutively. Each line of the data contains 14 data
elements although some of the data may beirrelevant for a particular run. For example, in the
above run data, no network generation is called for in the first calculation (data e ement 7), so
data elements 8 through 11 are not used. To terminate the run, the last line contains the title text
string “end.” The data for each line contains the following:

1. Adescriptivetitlefor thisrun

2. GN (aBoolean value that determines whether to perform anodal calculation or use node
location data from a previous run)

If GN=true then input values 3 through 6 are relevant:
3. number of nodesin node population
4. sampling size (see Section 3.6)

5. cell exponent c (determines the number of lowest level cells N =2"2c—see examplein
Section 3.3)

6. fractal clustering exponent (see Section 3.3)

If GN=false theninput values 7 and 8 are relevant:
7. file name of file that contains an existing nodal population
GL (aBoolean value that determinesif a network is to be generated)

If GL=true then input values 9 through 12 are relevant:

18 Easel is available for download from http://www.cert.org/easel and runs on Macintosh OSX.
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9. probability that if node A links with node B, and B with C, then node A will link
with node C

10. preferentia attachment (for link degree) exponent a. (see Section 3.4)

11. preferential attachment (for distance) exponent ¢ (see Section 3.4)

12. probability that if node A [I1b2]links to node B then node B links to node A
13. doSpatialPlats (if true then generate the nodal distribution and network plots)
14. doStatistPlots (if true then generate the statistical plots)

A complete record of aset of GENeSIS runs is automatically captured in the Easel output file
asASCII data. Thisincludes a copy of theinput datafor each run and all output data described
above. Note that any subsequent calculation will overwrite thisfile. If the dataisimportant, its
contents should be immediately transferred to another file. In order to use node data for
network generation, that section of the output file that contains the node data (and only this
data) should be copied and pasted into another ASCII file (for example, “node data.txt”). The
name of thisfile (e.g., “node data.txt”) is then specified asthe input fileitem 7 for the
subsequent network generation run (GN=false).

Example Runs of GENeSIS

Figure B.1 shows example input to a GENeSIS run. Thefirst 16 lines are comment lines and
are ssimply there for clarification. As discussed earlier, the program automatically saves text
output to the Easel text output file. The input data generate 25 nodes but do not link them.

#

Truntitle

boolean: generate fractal node population

: number of nodes to be generated

: number of nodes to be sampled

. exponent for fractal box calculation

. exponent to vary degree of fractal clustering

: file name if node distribution to beread in

: boolean: network generation requested

: prob that if A linksto B & B linksto C, A will link to C
10: exponent for node degree preferential attachment
11: exponent for distance preferential attachment

12: probability that if A connectsto B, B connectsto A
13: boolean: display spatial plots

14: boolean: display statistical plots

©CONODUDNWNPR

Figure B.1: Input to a small GENeSIS run

The resulting text output file is generated as shown in Figure B.2.
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Plots of the spatial node distribution and fractal characteristics are also generated (Figure B.4
and Figure B.6). These figures are for illustrative purposes only—because of the small number
of nodes used in this example, the distributions are statistically very poor.

If anetwork based on this distribution is subsequently desired, then the node data for nodes 0
through 24 inclusive is extracted from the output file and renamed (for example, as “node
data.txt™). A second run can then be made using the generated node data. Of course, the two
calculations can always be performed within the same run, but sometimesiit is useful to
separate them.

"mmn 2 - 25 node run", false, 25, 25, 4, 1.5, "node data.txt", true, 0.25, 1.0, 1.0, 1.0, true, true,
llerxill

The resulting output is shown in Figure B.3, while the graphical plots are shown in Figure B.5,
Figure B.7, and Figure B.8.

CMU/SEI-2002-TR-039 47



%6%6%6%6%6%6%6%6% | nput data %6%6%6%6%6%6%6%6%
25 node run

node population generation requested

--- total number of nodes = 25

--- node sampling size = 25

--- cell box exponent = 6

--- clustering exponent = 1.5

gpatial plots requested

statistical plots requested

%%%%%% End of input data %%6%:%6%%%%%

generating node data..........ccccoeeeennee.
node ID x-location y-location

0, 115.962, 153.337

1, 98.2674, 208.786

2, 437.554, 61.3323

3, 442.283, 82.7091

4, 469.218, 84.6452

5, 281.366, 26.484

6, 416.546, 72.4228

7, 255.526, 50.4265

8, 427.826, 43.5817

9, 459.94, 180.66

10, 466.395, 72.5001

11, 451.034, 61.7231

12, 18.2165, 49.2202

13, 164.666, 463.854

14, 454.196, 71.4427

15, 334.774, 88.7131

16, 459.646, 210.756

17, 435.884, 60.6086

18, 267.455, 474.849

19, 193.329, 486.155

20, 277.733, 487.1

21, 264.728, 9.89424

22, 62.0941, 59.5935

23, 76.8364, 63.6913

24, 102.968, 148.429
khkhkkkhkhkhkhkhkkhkhhkkhhkkhhhkhhkhhhhhhkhhhhhkkhhhdhhkkhhhhhkhhhdhhhhkkhdhdhkhhhdktk
computing fractal dimension data...
Lcell-length, # non-empty cells, log(L/cell-length), log(# non-empty cells)

1,1,0,0

2, 4, 0.30103, 0.60206

4,7, 0.60206, 0.845098

8, 15, 0.90309, 1.17609

16, 19, 1.20412, 1.27875

32, 23, 1.50515, 1.36173
——————————————————— Power law fit
exponent k for fity = x*k is 1.06198
standard deviation on fit = 0.605369

khkkhkkhkhkhkhkhkhkhkkkkhhhhhhhhhhhhkhdkhhhhhhhhhhhdkdkhhhdddhhhrrdxkhkkhddx

drawing node data...

Figure B.2: Output data from node generation run
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%%0%%%%%%% Input data %6%6%%%%%%
25 noderun

prior node population read from file: node
data.txt

network generation requested

--- clique probabiluty = 0.25

--- weight on preferential attachment for link
degree=1

--- weight on preferential attachment for
distance= 1

--- asymetric connection probability = 1
gpatial plots requested

statistical plots requested

%%%%%% End of input data
%6%0%%6%0%%6%%

reading node data.....

khkkhkkhkhkhkhkhkhkhkkkkhkhkhhhhhhhhhkdkdxhkhkhkhddhhx

*kkk*

drawing node data...

khkkhkkhkhkhkhkhkhkhkkkkhkhkhhhhhhhhhkdkdxhkhkhkhddhhx

*kkkk*k

generating link data..........c.ccocoveeneee.

node ID x-location y-location IDs of linked
nodes

0, 115.962, 153.337, 1, 2, 3, 4, 6, 10, 15, 24
1, 98.2674, 208.786, 0, 21, 24

2,437.554, 61.3323, 0, 3, 11

3,442.283, 82.7091, 2,0, 4, §, 11, 17, 18
4,469.218, 84.6452, 3,0, 5, 7, 9, 10, 14, 15,
16, 22

5, 281.366, 26.484, 4,7, 9, 12, 22, 23

6, 416.546, 72.4228, 0

7, 255.526, 50.4265, 5, 4, 9, 12, 23

8, 427.826, 43.5817, 3, 11

9, 459.94, 180.66, 4, 5, 7

10, 466.395, 72.5001, 4, 0, 14, 16

11, 451.034, 61.7231, 3, 2, §, 13, 18

12, 18.2165, 49.2202, 5, 7, 23

13, 164.666, 463.854, 11, 19

14, 454.196, 71.4427, 10, 4, 16, 22

15, 334.774, 88.7131, 4, 0, 22

16, 459.646, 210.756, 4, 10, 14

17, 435.884, 60.6086, 3

18, 267.455, 474.849, 3, 11, 20
19, 193.329, 486.155, 13

20, 277.733, 487.1, 18

21, 264.728, 9.89424, 1
22,62.0941, 59.5935, 4, 5, 14, 15
23, 76.8364, 63.6913, 12, 5, 7
24, 102.968, 148.429, 0, 1

10000

khkkhkkhkhkhkhkhkhkhkkkkhkhkkhhhhhhhhhkkdkhkhkkhdhhdk

*

generating link degree data...
# nodes link degree log(# nodes) log(link
degree)

5,1, 0.69897, 0
3,2,0.477121, 0.30103

8, 3, 0.90309, 0.477121

3, 4, 0.477121, 0.60206

2,5, 0.30103, 0.69897
1,6,0,0.778151

1,7, 0, 0.845098

1, 8, 0, 0.90309

1,10,0,1

------------------- Power law fit-------------------
exponent k for fity = x*k is-0.918276
standard deviation on fit = 1.90487

khkkhkkhkhhhkhkhkhkkkkhkhkkhhhhhhhhhkkdxhkhkkhhdik

lower dist upper dist cum. prob.

0, 32.9117, 0.25

32.9117, 65.8235, 0.386364
65.8235, 98.7352, 0.409091
98.7352, 131.647, 0.431818
131.647, 164.559, 0.5
164.559, 197.47, 0.545455
197.47, 230.382, 0.636364
230.382, 263.294, 0.727273
263.294, 296.206, 0.772727
296.206, 329.117, 0.795455
329.117, 362.029, 0.886364
362.029, 394.941, 0.909091
394.941, 427.852, 0.931818
427.852, 460.764, 0.977273
460.764, 493.676, 1

kkkkkkhkhkkhhkkhkhkkhhkkhhkhkkhhkkhkkkhkkhkhkk kx*%

drawing network...
kkhkkkhhkhhkkhkkkkkhkkhkkhhkhhhhhhkhkhddhkhhkdkddkx*x

Figure B.3: Output from network generation run
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Figure B.4: A plot of the generated Figure B.5: A plot of the generated
nodal distribution network
froctol dimension - log(# non-empty cells) link degree - log(# nodes)

1,38292 9,24279e-1

1.25517 8.38229-1

112743 7.52178e~1

9.99582e-1 6.66128e~1

3.71938s-1 5.80077e~1

7.44193e-1 4.94027e-1

6. 16448e-.1 4.07976e~1

4.88703e-1 3.21926e~1

3.60938e-1 2.35875e~1

2.33213e-1 1.49825e~1

1.054688-1 6.37742e~2

-2.227642~2 _3.257536.7

6 1 3 4 3 7 ] 10 1112 14 15 *1eEd
log(1/cell-1length)

6 1 2z 3 4 3 3 8 7 8 9 1o *19E-1
log(link degree)

Figure B.6: Fractal dimension Figure B.7: Link degree distribution
distribution for Ds

cum. distance prob.

1.85

9,54545e~1

8,59691e~1

7.63636e~1

6.68182e~1

5,72727e~1

4.77273e~1

3.81818e~1

2,863648~1

1,90969s~1

9.54547e~2

1,3411e~7

2 6 10 15 19 24 28 32 3F 41 45 56 *10E1

link distances

Figure B.8: Link distance distribution
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